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Abstract— Finding chemical compounds in the air has ap-
plications when situations such as gas leaks, environmental
emergencies and toxic chemical dispersion occur. Enabling
robots to undertake this task would provide a powerful tool
to prevent dangerous situations and assist humans when emer-
gencies arise. While the dispersion of chemical compounds in
the air is intrinsically a three-dimensional (3D) phenomenon,
the scientific community tackled primarily two-dimensional
(2D) scenarios so far. This is mainly due to the challenges of
developing a platform able to successfully provide chemical
compounds samples of a 3D space. In this paper, a 3D bio-
inspired algorithm for odor source localization, previously
validated in a controlled physical environment leveraging a
robotic manipulator, is adapted for deployment on a micro
aerial vehicle equipped with an odor sensor. Given the effect
that the propellers have on a gas distribution, the algorithmic
adaptation focused on enhancing the sensing strategy of the
platform. Additionally, two sensor placement configurations are
assessed to determine which one yields best sensing results.
A performance evaluation in different environmental scenarios
is carried out to test the robustness of the implementation.
Two different localization systems are used for the performance
evaluation experiments to quantify the impact of localization
accuracy on the algorithm’s outcome.

I. INTRODUCTION

When gas leaks, toxic chemical dispersion or environ-
mental emergencies occur, Odor Source Localization (OSL)
could play a crucial role in taking fast and effective counter-
measures. The scientific advances in the fields of robotics,
embedded systems and chemical sensing allow OSL to be
performed by robots and sensor nodes equipped with odor
sensors. The vast majority of the research in robotic OSL
so far employs ground robots capable of navigating on a 2D
plane [1]. This is mainly due to the fact that platforms ca-
pable of 3D motion usually displace using propellers, which
impact greatly the gas distribution and hinder the sensing
abilities of the system. However, since odor dispersion is
inherently a 3D phenomenon, effectively extending odor
source localization to the third dimension is an important
direction for this field of research.

In recent years, Unmanned Aerial Vehicles (UAVs) have
been equipped with gas sensing capabilities and used for
odor source localization and mapping tasks [2], [3]. The main
challenge when using UAVs for OSL is that the turbulence
created by the drone’s propellers, called “wake”, has an
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effect on the plume of the gas, making its detection a
challenging task [4], [5], [6]. In order to avoid the effect
of the wake, Neumann et al. [7] proposed a robotic platform
for aerial sensing that uses remote gas sensors. However, the
start-stop strategy for gas detection proposed in this paper
does not allow continuous detection and drains the battery
quickly. Moreover, quadrotors of large dimensions are not
suited for deployment in indoor and cluttered environments.
In [8], sensing was achieved by having a human operator
halt the propellers when the drone is close to the source to
enhance odor detection. However, this operation mode, called
“butterfly”, does not scale well to large scenarios and does
not fully exploit the capabilities of the drone. Other flying
vehicles, such as blimps, whose propellers are less impactful
on the plume since they are not used to maintain buoyancy,
are used for gas localization and mapping [9]. Although
blimps allow for a longer flight time, these vehicles do not
present the same range of maneuverability and versatility as
rotary-wing aerial vehicles.

Micro Aerial Vehicles (MAVs) offer an interesting alterna-
tive to traditionally bigger drones, while maintaining similar
flight dynamics properties. Given the smaller size of the
propellers, their impact on the plume does not hinder odor
detection as much as with UAVs and makes them a viable
alternative for odor source localization [5], [10]. Moreover,
they are well-suited for deployment in indoor and cluttered
environments, such as factories or chemical plants. Shigaki et
al. [5] achieve satisfactory sensing results by placing sensors
on the sides of two drone propellers and emulating the
sensing strategy of the silkworm moth. In [10] the authors
were able to extract an odor map that indicates the position
of the source by gathering data while the MAV flies on
a predefined path at fixed heights. Although no algorithm
was implemented to define the path of the MAV, their work
demonstrates that a rough approximation of the location of
the odor source can be obtained in a short time. Thus, micro
drones, even with their limited flight time capabilities, can be
good candidates for odor source localization and mapping.

Interesting considerations can be made about the optimal
sensor placement to improve the sensing capabilities of a
UAV. In [11], Neumann et al. use the airflow of the propellers
to convey odor particles to the sensors placed below them.
This solution was identified as the best trade-off between
a long carbon fiber tube that would avoid the turbulence
entirely and placing the sensor directly at the bottom of
the drone. This conclusion was also reached in [8], where a
micro drone is equipped with a gas sensor and a qualitative
study is conducted to identify an optimal position for the
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sensor placement. However, this solution affects the stability
of the drone, especially when applied to smaller vehicles.
Villa et al. [6] tried to evaluate the air flow to determine
where a gas sensor should be mounted on a drone. Their
findings suggest that the sensor should be placed as far away
from the center of the UAV as possible to avoid decreasing
the sensor’s capabilities. This is not always possible, thus
a trade-off between optimal placement and feasibility is
recommended. In [5], particle image velocimetry is used to
visualize the airflow around the quadcopter. The aim of this
analysis is to validate the chosen configuration of sensors
(two on the front side of the quadrotor) that was selected for
this work. Unfortunately, one cannot draw conclusions about
the optimal placement in general. One interesting considera-
tion is that the authors suggest that placing a chemical sensor
where the wind speed is highest might not be beneficial,
since the sensor’s heater cools down and does not react to
odor as well. A consensus is not reached as of what the best
sensor placement is, while also taking into consideration the
feasibility of the implementation. In this work, two sensor
placements are evaluated: on top and at the bottom of the
drone’s body. These were chosen because they are the most
straightforward to implement and the results obtained in [10]
with a similar setup suggested that a more elaborate sensor
placement on a MAV might not be necessary.

Odor source localization algorithms often take inspiration
from natural phenomena [12]. In fact, many living species
such as moths, bacteria and dung beetles rely on the ability
of localizing an odor source for survival [13], making bio-
inspired algorithms optimized for the end goal. Bio-inspired
algorithms require low computational resources and a small
memory, and are very reactive. This makes them good can-
didates for deployment on UAVs in general and on MAVs in
particular, as they usually present limited resources in terms
of flying time and computational capabilities. Neumann et al.
[11] compares three bio-inspired algorithms for odor source
localization implemented on a UAV: surge-cast [14], zigzag
[15] and pseudo-gradient-based [16]. All three algorithms
were successful in real world experiments, with zig-zag and
pseudo-gradient-based performing slightly better. However,
this evaluation was carried out with a larger drone (1 m
diameter), whose motion was limited to a 2D plane in the
air, and without exploiting the full range of motion available
when using an aerial vehicle. Thus, a conclusion on which
type of bio-inspired algorithm would perform better in a 3D
environment cannot be drawn. An experimental evaluation
of a three dimensional algorithm with a MAV was presented
by Shigaki et al. [5]. The algorithm proposed is inspired by
the behavior of the silkworm moths [17]. The experiments
assume that the quadrotor starts two meters away from the
source and in front of it, at different heights. Better success
rate were obtained when the drone’s initial position was
lower than that of the source due to the fact that ethanol,
used for these experiments, is heavier than air. The biggest
limitation of this approach is that the chances of failure
increase when the drone does not detect chemical compounds
fast. Moreover, the fixed starting position in front of the

plume and the limited testing area provide a highly simplified
environment.

Rahbar et al. [18] proposed a 3D bio-inspired algorithm
that uses a Lévy Walk algorithm to initially find the plume
and then proceeds to follow the plume with an upwind surge.
If the plume is lost, a 3D spiraling motion, inspired by moths,
is used to reacquire the odor [14], [19]. The algorithm was
tested in a wind tunnel, which provides controllable quasi-
laminar flow, and a comparison between the surge-cast and
spiral method in 2D and in 3D highlights the fact that a three
dimensional approach yields a more robust localization of the
source. However, the validation, which was carried out with
a small-scale wheeled robot mounted on a traversing system
used to emulate a 3D motion, does not tackle the challenges
of a deployment on a platform that could be exploited in real-
world scenarios, such as localization, sensor integration and
possible algorithmic adaptations needed to account for the
effect of the wake of the propellers on the gas distribution.

The contribution of this work is therefore the adaptation
of the 3D bio-inspired algorithm reported in [18] for deploy-
ment on a MAV and an evaluation of its performance in a
controlled environment offering a good compromise between
repeatability and realism. Moreover, this paper will compare
the results of odor source localization with two different
sensor placements shown in Figure 1. A performance evalua-
tion in different environmental conditions is also carried out,
together with an evaluation of the impact of two different
localization systems on the performance of the algorithm.
No previous work presents an in-depth evaluation of a 3D
bio-inspired algorithm on a MAV equipped with sensing
capabilities. Additionally, the deployment is carried out in
a sizable area compared to the drone’s size, is not limited to
a 2D plane, and exploits the whole range of motion of the
MAV, making this contribution an important step towards the
application of 3D OSL in real-world scenarios. The following
sections of the paper outline the proposed method, describe
the experimental setup and present the results obtained.

II. MATERIALS AND METHODS

This section describes the platform used for this work,
a MAV equipped with sensing capabilities, and presents the
algorithm implemented. Moreover, it introduces the localiza-
tion strategies used throughout the performance evaluation.

A. Micro drone

To accomplish the task of 3D odor source localization,
a commercially-available MAV was equipped with sensing
capabilities (Figure 1). A Crazyflie V2.1 (CF2, Bitcraze AB,
Malmö, Sweden) was chosen due to its small dimensions
(10 x 10 cm), open hardware and software architecture and
because this drone has already been successfully employed
for odor localization and mapping tasks in the literature
[4], [10]. The CF2 is built with development in mind and
provides access to power lines, µC pins and communication
buses. The main limitations of this platform are the flight
time of up to 7 minutes and a maximum payload of 15 g.
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Fig. 1. Crazyflie V2.1 equipped with a custom PCB for odor sensing. Both
sensor configuration (top and bottom) are presented.

A custom Printed Circuit Board (PCB) was developed to
provide sensing capabilities to the CF2. The PCB hosts a
MICS-5521 CO/VOC sensor [20] and a STM8L151F3U6TR
ultralow power micro-controller used to convert analog data
coming from the sensor to digital with a sampling frequency
of 10 Hz. The I2C bus is used to send odor data coming
from the sensor to the CF2 micro-controller.

B. Algorithm

The algorithm selected for this implementation is the
one described in [18]. The algorithm is composed of three
parts: plume finding, plume following and plume acquisition.
During plume finding, a Lévy Walk is performed on a cross-
wind plane to acquire the plume. In this work, the wind
is assumed quasi-laminar and parallel to the Y direction,
making the X-Z plane the crosswind one (see Figure 2 for
a schematic view of the wind tunnel which highlights the
coordinate system used). When the plume is found (i.e. the
odor concentration is above a given threshold), an upwind
surge is performed in the Y direction to follow the plume.
When the plume is lost (i.e. the odor concentration is below
the same threshold), a 3D spiraling motion on the X-Z plane
is used to reacquire it. The source is considered reached when
the robot is in the plume and reaches an area of 40 x 40 x
30 cm3 around the source.

While the general structure of the algorithm is the same
as in [18], some adaptations were necessary to enhance the
sensing strategy of the MAV and compensate for the pro-
peller effect. In [18], the robot stops at the end of each step
to sample odor values in order to reduce noise during data
acquisition. However, in this work, the drone does not stop to

sample because of the great impact that hovering has on the
plume. As a result, sampling is done continuously while in
motion. Additionally, given the lower quality of the acquired
data, the maximum odor value within a sliding window is
used to decide on the next step of the algorithm, rather
than an average of the samples. Although averaging is an
effective method to improve sensing in a noisy setting, in this
scenario it is more important to avoid missing a cue about
the presence of the plume than to low-pass filter the signal.
The spiral drift constant, which defines the distance between
the laps of the spiral movement, was also lowered. In fact,
the plume can be lost due to the propeller effect and a denser
spiral allows to linger for a longer time closer to where
the plume was last sensed. Given the tight time constraints
imposed by the flight time of the CF2, an initial scanning
to determine the odor threshold that identifies whether the
plume is detected or not is not possible. For this reason, the
threshold is defined a priori. The velocity of the CF2 is kept
constant at 0.3 m/s and the size of the step that the MAV
can take at each iteration of the algorithm is 0.1 m. This
step size was chosen to limit the oscillations of the drone.
A dedicated simulator was not used to select the algorithm’s
parameters described above due to the considerable challenge
posed by modelling the effect of the drone propellers on
an odor distribution. Instead, the parameters were chosen
empirically with dedicated experiments.

C. Implementation details

Two localization strategies are used for the experimen-
tal evaluation. The first one exploits an Ultra Wide Band
(UWB) system called Loco Positioning System, also built by
Bitcraze. The system is based on the Decawave DWM1000
chip and has a reported accuracy in the 10 cm range.
To provide coverage to the desired area, 8 UWB anchors
were deployed and used for localization. An UWB tag is
placed on the CF2 to allow the quadcopter to acquire its
position. An Extended Kalman Filter, exploiting UWB and
Inertial Measuring Unit (IMU) data, is used to improve the
estimation of the position. The second localization strategy
exploits a Motion Capture System (MCS) from Motion
Analysis1 consisting of 13 Kestrel 1300 cameras deployed
inside the wind tunnel. Five passive markers of diameter of
10 mm are placed on the CF2 to allow localization. MCSs
offer very precise localization measurements, with accuracy
of around 1 mm. However, they are significantly more
expensive than an UWB system such as the one used during
this project. Moreover, an UWB system can be deployed
more quickly even in realistic environments (e.g., outside a
laboratory or outdoors), and represents up to date the best
localization system in non-line-of-sight conditions, due to the
capabilities of a large spectrum of electromagnetic waves to
penetrate a large palette of materials. The objective of the
comparison between the two localization systems is that of
quantifying the effect that a more precise localization has on

1https://www.motionanalysis.com/
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the algorithm performance and whether an UWB solution
can provide satisfactory results.

The CF2 communicates with the ground station (a PC
equipped with a USB antenna) over the 2.4 GHz ISM radio
band. When using the UWB localization system, the CF2
sends position and odor data to the ground station and
receives a command to move to the next waypoint based on
the algorithm described previously. When the MCS is used,
the position data is acquired by the MCS software and sent
to the CF2 through the radio link.

The payload of the CF2 includes the custom PCB board
and the UWB tag board or MCS markers. The total weight
of the payload is 6.5 g in both cases. Observations during
preliminary experiments estimated a flight time of 4 to 5
minutes in these conditions, depending on the maneuvers
performed by the vehicle.

III. EXPERIMENTAL EVALUATION

Two sets of experiments were carried out to evaluate
the performance of the MAV. The first set of experiments
tries to determine the optimal sensor placement between
the top and the bottom of the body of the quadcopter. The
second sets of experiments evaluates the performance of the
algorithm in different conditions, and using the best sensor
placement determined previously. The first set of experiments
was carried out using the UWB localization system, while
the second set was repeated also with the MCS system.

A. Sensor placement

The versatility of the CF2 platform allowed to place the
custom PCB above or below the drone with only a minor
change. The two configurations can be seen in Figure 1. Ten
experiments were carried out with each configuration and the
results were compared. The aim was to decide which sensor
placement works best among the two that are easier and more
immediate to implement. To create favorable environmental
conditions, the wind speed during these experiments is set
to high ( 0.7 m/s), since the work in [18] presented evidence
that the algorithm is sensitive to low wind speed. While the
source release rate was found to be less significant on the
impact of the algorithm in [18], we chose the high release
setting for this set of experiments.

B. Performance evaluation

After selecting the best sensor placement, a performance
evaluation was carried out to verify the robustness of the al-
gorithm implemented on the MAV in different environmental
conditions. This section describes the parameters chosen and
their expected impact on the experiments as documented in
[18]. Five experiments were carried out for each setup. The
parameters of the setups tested and their values are presented
in Table I.

1) Wind speed: The strength of the wind impacts the
width of the plume. For stronger wind, the plume is narrower,
making the acquisition of the plume more challenging.
However, once the plume is found, the task of following
it is supposedly easier, since the robot is well positioned

TABLE I
SETUP PARAMETERS USED IN THE PERFORMANCE EVALUATION

Setup Wind Speed Release Rate
A 0.7 m/s high
B 0.2 m/s high
C 0.7 m/s low
D 0.2 m/s low

to find the source. Theoretically, this does not happen with
lower wind and a wider plume. In fact, in this scenario, the
robot might acquire the plume faster, but lose it several times
before reaching the source. The conclusions in [18] support
this claim.

In this paper, the effect of the wind speed when using a
MAV is studied. The wind speeds used are 0.2 and 0.7 m/s.
The higher wind speed setting is lower than the one used in
[18], which was 0.9 m/s, because the CF2’s flying capability
is impacted greatly by the wind conditions. These values are
coherent with real world scenarios.

2) Source release rate: The source release rate affects
how dense the plume is. Theoretically, a higher source
release rate produces a denser plume, which makes the de-
tection easier for the robot. However, in [18], this parameter
was found experimentally to be less critical than wind speed.

The gas used for the experiments is ethanol and it is
released with a stationary electric pumping device. Two
values for source release rate are chosen for this work: 0.5
L/min (high) and 0.25 L/min (low). These values correspond
to the mix of air and evaporated ethanol that is released by
the pump. The ratio of ethanol to air is not known. The
traces of ethanol released in the air are not detectable by a
human nose. The values chosen for this set of experiments
are higher than the ones used in [18], which were 0.1 and
0.2 L/min respectively, to facilitate the sensing for the MAV.

C. Evaluation Metrics

Two metrics are used to quantify the performance of the
algorithm in the different scenarios: success rate and distance
overhead.

A successful run occurs when the MAV can find the source
of the odor within 4 minutes and 40 seconds from the start
of the experiment. This timeout value was chosen based on
the flight time capabilities of the drone with a payload of 6.5
g. The success rate sr is defined as the number of successful
runs over the total number of runs:

sr =
# successful runs

# runs
(1)

To understand how well the algorithm is performing
compared to the best case scenario in which the robot goes
straight to the source, the distance overhead do is used.
This metric was introduced in [21] and is computed by the
distance effectively travelled by the robot, dt, divided by the
shortest upwind distance, du:

do =
dt
du

(2)
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Fig. 2. Schematic view of the wind tunnel channel. The source position,
wind direction, starting line and coordinate system are highlighted.

In this setup, the upwind distance is 10.72 m and is defined
as the distance between the source and the optimal starting
point of the robot, in front of the source at minimum height.
As the velocity of the drone is kept constant (0.3 m/s), the
travelled distance information allows for computing the time
taken to reach the source.

D. Experimental setup

1) Wind tunnel setup: The experiments were carried out
inside a wind tunnel of volume 4 x 18 x 2 m3. The wind flow
inside the wind tunnel can be adjusted as desired and lam-
inarized by a dedicated honeycomb filter. The experiments
were carried out with a wind flow of 0.2 m/s and 0.7 m/s, in
a quasi-laminar regime. The volume of the tunnel effectively
used for the experiments is 2.5 x 10.8 x 0.8 m3. Limitations
in volume are due to the fact that the UWB system presents
several blind spots closer to the anchors. Moreover, the wind
tunnel is an almost entirely metallic structure, which affects
the accuracy of the UWB and contributes to limiting the
usable area. The same experimental volume was used for
experiments with the MCS, although this system offers better
coverage inside the tunnel. The source is placed at a height
of 0.82 m. A schematic view of the wind tunnel channel can
be seen in Figure 2.

2) Starting position: In all the experiments that were
carried out, the drone is placed on the ground in the same
corner of the volume, far from the source. The X coordinate
of the starting position is randomized for every experiment,
while for Z and Y the minimum value is chosen. The
minimum Y value is chosen so that the robot performs the
Lévy Walk on the same crosswind plane each time, while
the same Z was chosen as a simplification and to save time
overhead at the beginning of the experiment.

IV. RESULTS

This section outlines the results obtained when comparing
two sensor placement positions and presents an in-depth per-
formance evaluation of the system in different environmental
conditions and using two localization strategies.

A. Sensor Placement Results

The first set of experiments was meant to determine where
to place the sensor on the MAV. Figure 3 shows that the
success rate is higher when the sensor is placed at the
bottom of the CF2. Moreover, Figure 3 shows that the
distance overhead is smaller with the bottom configuration,

Fig. 3. Top picture: success rate for the sensor placement at the bottom
and on top of the MAV. Bottom picture: distance overhead for the sensor
placement at the bottom and on top of the MAV.

and presents a lower variability. From these results it seems
that the down-washing effect of the propellers is conveying
odor particles towards the bottom sensor. This conclusion is
in line with the results presented in [11] and [8]. No tube
is used to place the sensor further away from the drone, a
solution that would decrease vehicle stability and not ease
the integration of the sensor on the MAV.

B. Performance Evaluation Results

The second set of experiments evaluated the robustness
of the algorithm to different wind speeds and source release
rates. The results obtained with the UWB localization system
will be presented first. All runs in each setup gave a success-
ful outcome. Figure 4 shows the distance overhead for the
four setups. Setup B and D, the ones with lower wind speed,
present a higher variability of data. Moreover, experiments
C and D, where the source release rate is low, have a higher
mean distance overhead. In general, all configurations yield
good results, with outstanding performance in case of high
release rate and high wind speed. On average, the time taken
by the MAV to reach a source located 10.72 m away is about
two minutes. The results in [18] indicate that the algorithm
seemed to be negatively affected the most by low wind speed,
while in this scenario it seems that a low release rate has
a greater negative impact. This could be explained by the
considerable sensing difficulties faced by the MAV, which are
enhanced by the lower presence of particles in the air. Slight
changes in the setup, such as higher release rate and different
wind speeds, that were made to improve the sensing strategy
of the CF2, do not allow a direct quantitative comparison
between the results presented in this paper and those in [18].
The same odor threshold was used for all the experiments.
In the future, it would be interesting to explore what impact
a lower odor threshold has with lower wind speed and low
source release rate.

The biggest limitation of this setup is the accuracy of the
UWB-based localization system on which the MAV mainly
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Fig. 4. Distance overhead for the performance evaluation experiments
using a UWB localization system and in different setups as presented in
Table I.

relies on for navigation. In particular, accuracy seemed to
drop closer to the ground and the oscillations on the Z-axis
were sometimes affecting the performance of the algorithm.
For this reason, the second set of experiments was repeated
using a MCS for localization. All runs gave a successful
outcome, except for one with setup D, in which the robot
timed out before reaching the source. This can be explained
by the fact that this setup is the hardest one for sensing
and it was challenging for the MAV to reacquire the plume.
Figure 5 shows a comparison between the two localization
systems in the different scenarios presented in Table I. It can
be observed that the results from the two localization systems
seem to follow similar trends, with performance degradation
in case of scenarios C and D, where the source release rate
is low. This confirms that the source release rate parameter
seems to have the highest impact on the performance when
sensing with a MAV. In all cases, using a MCS lowers the
distance overhead and decreases the variability of the results,
highlighting the impact that a very accurate localization has
on the performance. In this case, the average time taken to
find the source was one minute and fifteen seconds. However,
the results using an UWB localization system indicate that,
despite being slower, the algorithm is effective in the four
scenarios depicted, and that this cheaper and easier to deploy
system is a valuable alternative to the MCS.

Figure 6 shows the movement of the MAV as it was logged
by the UWB system during a successful run with the sensor
placed at the bottom. Two spiral movements can be seen, one
closer to the source, marked with a red cross, and one at the
beginning, as well as the initial Lévy Walk. Additionally,
the figure shows that the drone is capable of following the
plume for several meters and reacquire it in case of loss.
Figure 7 shows the movement of the MAV logged by the
MCS localization system during a successful run. It can be
seen that the path is much smoother compared to the UWB
one portrayed in Figure 6, especially corresponding to the
spiral movements.

Fig. 5. Distance overhead for the performance evaluation experiments with
an UWB and MCS localization strategy in different setups as presented in
Table I (UWB in blue and MCS in red).

Fig. 6. Example of a successful run using the UWB localization system.
The picture shows two spiral movements, one at the beginning and one at
the end of the run, as well as the initial Lévy Walk.

V. CONCLUSIONS AND OUTLOOK

The work presented in this paper focuses on the adaptation
of a 3D bio-inspired algorithm for odor source localization
for deployment on a MAV in a controlled physical envi-
ronment represented by a wind tunnel, and the evaluation
of its performance. The algorithm used in this paper was
previously validated in the very same environment with a
wheeled robot mounted on a traversing system (a 3-axis
robotic manipulator present in many wind tunnels), but it did
not take into account the peculiar challenges of implementing
such an algorithm on a flying platform, which would be more
suited for real-world deployment. Initially, an evaluation of
the best sensor placement between top and bottom of the
MAV’s body is conducted. Experimental results show that
the bottom sensor placement gives a higher success rate and
a shorter distance overhead. After appropriate adaptations of
the algorithm to be run on a MAV, a performance evalua-
tion in different, repeatable environmental conditions is per-
formed. It is shown that the adapted algorithm implemented
on the MAV is robust to different environmental conditions,
although a lower source release rate increases the distance
overhead, and lower wind speeds affect the variability of the
results. Finally, a comparison between an UWB-based and
a more accurate MCS-based localization system is carried
out to quantify the impact of the localization accuracy on
the algorithm performance. Results showed that a more
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Fig. 7. Example of a successful run using the MCS localization system.
The picture shows four spiral movements and a short Lévy Walk.

accurate localization system has a significant impact on
the performance of the algorithm. Thus, since the UWB
approach offers a cheap and easy to deploy alternative to
MCS and is still able to yield good results, its accuracy could
be improved by integrating a time-of-flight laser sensor at the
bottom of the drone as proposed in [5]. The next step in this
work will also focus on improving the navigation strategy
and embedding wind sensing capabilities in the MAV.
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