
 
 
 

Data science pour ingénieurs 
avec Python

ENG-209

Jean-Philippe Pellet

￼1

Cours 3: 
Modules, numpy

30 septembre 2024



 
 
 

ENG-209 – automne 2024

Organisation

• 14.10.2024: Midterm, 10h15, INF3, 120 minutes (160 si temps suppl.) 

— Partie QCM (questions plutôt théoriques) 

— Partie programmation (compléter/corriger/écrire du code dans un Jupyter 
notebook, à soumettre par Moodle) 

— Travail sur machine virtuelle uniquement depuis poste INF3 

— Matériel autorisé: résumé personnel au format d’une feuille A4 recto-
verso 

— Examen blanc en ligne

2



 
 
 

Cours 3

Modules 
numpy

3



 
 
 

Cours 3

Modules 
numpy

4



 
 
 

ENG-209 – automne 2024

Modules et imports
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import math 
print(math.cos(math.pi)) 

import math as m 
print(m.cos(m.pi)) 

from math import * 
print(cos(pi)) 

from math import pi, cos as cosine 
print(cosine(pi)) 

from typing import List

Les bibliothèques Python sont organisées par module. 
Seul un petit nombre d’éléments sont préimportés. Le 
reste doit l’être explicitement avec import.

«J’utilise le module existant qui s’appelle math»

Même chose, mais en renommant le module pour le 
fichier en cours avec un import … as

Pour un usage sans préfixe, il faut un from … import. 
On peut tout importer avec *

… mais on a meilleur temps de n’importer que ce qu’on 
utilise. On peut aussi renommer des membres importés

C’est aussi valable pour les types (qui aussi sont des valeurs 
presque «normales» en Python)

Tout ce qui est dans math est utilisable avec préfixe
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Déclarer un module
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Chaque fichier .py est importable comme module.

Dans un fichier mytools.py, des fonctions, classes, 
variables et autres déclarations peuvent résider 
«normalement»

from typing import List 

def double(values: List[int]) -> List[int]: 
    return [2 * x for x in values] 

def make_string(values: List[int], separator: str = ", ") -> str: 
    return separator.join([str(x) for x in values]) 

Dans mytools.py:

from mytools import * 
print(double([1, 2, 3])) 
print(make_string([1, 2, 3], separator=" -> ")) 

from mytools import double as dbl 
print(dbl([1, 2, 3])) 

Dans un autre fichier du même dossier:

ou:

Dans un autre fichier, on peut réutiliser ce que 
mytools.py fournit avec des imports normaux

Renommer reste possible

(Attention, le code au niveau 
zéro est directement exécuté)
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numpy — Numerical Python 
• Prix des langages très flexibles et dynamiques: la performance 

✦ Exemple des listes hétérogènes 
✦ Moins bien pour: listes homogènes auxquelles on applique la même opération 

• NumPy: implémentation native (en C) d’arrays homogènes multidimensionnels 
✦ Types possibles: uint8, int8, …, [u]int64; float16, float32, float64; complex64, 

complex128 
✦ Dim. 0: scalaire; dim. 1: vecteur; dim. 2: matrice; 3+: tenseur… 
✦ Les opérations numériques à grande échelle sont rapides 
✦ Explique une partie du succès de Python dans ce qui tourne autour de Data Science! 

✴ Utilisé par nombre d’autres bibliothèques de traitement numérique 

• Documentation exhaustive: https://numpy.org/doc/stable/ 

8

https://numpy.org/doc/stable/


 
 
 

ENG-209 – automne 2024

Layout en mémoire: list vs. np.array
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Conceptuellement: un array de «void pointers» 
vers des objets de type int alloués ailleurs

class:
value: 0

class int
…
…

class:
value: 1

class:
value: 3

class:
value: 2

class:
value: 6

class:
value: 7

class:
value: 4

class:
value: 5

class:
value: 9

class:
value: 8

len: 10

Liste 
Python 
(simplifiée)

Array 
NumPy 
(simplifié)

0
1
2
3
4
5
6
7
8
9

size: 10
‘uint64’

(10,)

Plus compact; plus proche d’un vector 
C++; bien meilleure localité mémoire

list(range(10)) np.arange(10)
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Plusieurs dimensions: row-major, column-major
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row-major layout 
(à la C)

column-major layout 
(à la Fortran)
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Les bases des np.arrays
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import numpy as np 

v = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) 

print(v) # [ 1  2  3  4  5  6  7  8  9 10 11 12] 
print(f"type of each element: {v.dtype}") 
print(f"memory size: {v.size * v.itemsize} bytes") 
print(f"dimensions: {v.ndim}; shape: {v.shape}") 
                       # 1             # (12,) 

v = v.reshape((4, 3)) 

v = v.T 
print(f"new shape: {v.shape}") # (3, 4) 

v = np.arange(1, 13) 
v = np.arange(1, 13, 0.5) 

x = np.linspace(0, 2*np.pi, 100)

On importe d’habitude numpy en tant que np

Un array numpy peut se créer à partir d’une liste 
normale. La représentation sera compactée

dtype donne ici ‘int64’, le type de stockage utilisé
size est le nombre d’éléments; itemsize la taille en 
bytes de chaque élément
ndim et shape permettent de connaître la forme de

On peut changer la forme d’un array

On peut le transposer facilement (matrices)

arange est le pendant de range pour les arrays…

… mais en plus flexible: le step peut ne pas être entier
Pour avoir une borne supérieure précise et incluse, 
on a aussi linspace, avec lequel on choisit le nombre 
de points intermédiaires



 
 
 

ENG-209 – automne 2024

Layout en mémoire et reshape
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data:

size: 10
‘uint64’

(10,)

v = np.arange(10) w = v.reshape((2,5))

0
1
2
3
4
5
6
7
8
9

v ->

data:

size: 10
‘uint64’

(2,5)

[0 1 2 3 4 5 6 7 8 9] [[0 1 2 3 4] 
 [5 6 7 8 9]]

start: i*5
step: 1

n: 5
start: j
step: 5

n: 2

start: 0
step: 1

n: 10

w ->

Itération sur ligne i Itération sur colonne j
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Opérations sur des np.arrays
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v = np.arange(10) 
v = v + 2 
v = v ** 2 

v = v / 2 
print(f"new type: {v.dtype}") # float64 

def invsqrt(x: float) -> float: 
    return 1 / math.sqrt(x) 

invsqrt = np.vectorize(invsqrt) 

v = invsqrt(v) 

x = np.linspace(0, 2*np.pi, 100) 
y = np.sin(x) 

import matplotlib.pyplot as plt 
plt.plot(x, y) 

On applique directement les opérations arithmétiques de base: 
elles se font élément par élément sur tout l’array

Chaque opération retourne un nouvel array, qui peut avoir un 
autre type selon l’opération (beware linters…)

Pour rester efficace, on évite les boucles qui modifient valeur par 
valeur. On préfère «vectoriser» une fonction et l’appliquer ensuite. 
Exemple avec invsqrt ici, qui sera appliqué à chaque élément.

Il y a aussi toute une série de fonctions prédéfinie par numpy, par 
exemple sin

C’est facile de grapher des 
fonctions ainsi! 
(Davantage en 2ᵉ partie de cours)
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Fonctions de base en algèbre linéaire
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A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) 
b = np.array([1, 2, 3]) 

x = np.linalg.solve(A, b) 

z = A @ x - b 

if not np.allclose(z, 0): 
    print("error") 

np.linalg.det(A) 
np.linalg.inv(A) 

v1 = np.random.rand(3) 
v2 = np.random.rand(3) 

print(v1 * v2) 
print(np.dot(v1, v2)) 
print(np.cross(v1, v2)) 
print(np.outer(v1, v2)) 

La fonction solve(A, b) calcule x tel que Ax = b

Plus: https://numpy.org/doc/stable/reference/routines.linalg.html 

On peut vérifier la solution trouvée. L’opérateur @ dénote la 
multiplication de matrices
C’est délicat de tester si z == [0,0,0]; on utilisera plutôt la fonction 
np.allclose pour s’abstraire des erreurs d’arrondis en virgule flottante

On peut calculer le déterminant, inverser une matrice…

Attentions aux différentes manières de multiplier des non-scalaires: 
élément par élément, produit scalaire, produit vectoriel, produit 
extérieur, etc.

https://numpy.org/doc/stable/reference/routines.linalg.html
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Résumé du cours d’aujourd’hui
• Le code de fichiers externes est réutilisable après avoir fait des imports 

• numpy: Représentation compacte en mémoire 

• Création des arrays à partir de listes ou de fonctions-constructeurs 
✦ np.arange, np.linspace, np.ones, np.zeros, np.random.rand, etc. 

• Manipulations automatiquement parallèles avec les opérateurs arithmétiques 
✦ Plus toute une série de fonctions prédéfinies 
✦ np.vectorize pour appliquer sa propre fonction 
✦ On essaie d’éviter les boucles Python traditionnelles 

• Indexation et slicing toujours possibles 
✦ On utilisera M[i, j] plutôt que M[i][j] 
✦ Des notations plus avancées pour sélectionner certaines dimensions 

• Au début: difficile de prédire ce qui va être rapide et ce qui va être «lent» 
✦ Est «lente» toute opération qui doit produire des structures intermédiaires qui ne sont pas du numpy
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Exercices: Troubleshooting
• numpy n’est pas installé 

✦ Dans un terminal: pip3 install numpy 
✦ Puis redémarrez le Jupyter notebook avec le bouton en haut 

• Les erreurs de types n’apparaissent pas dans les notebook 
✦ Installez l’extension VS Code Mypy de Matan Grover 
✦ Dans un terminal: pip3 install mypy 
✦ Ajoutez-y ces lignes au fichier .vscode/settings.json:
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    "mypy.checkNotebooks": true, 
    "mypy.mypyExecutable": "${workspaceFolder}/venv/bin/mypy", 
    "mypy.dmypyExecutable": "${workspaceFolder}/venv/bin/dmypy",
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Autoévaluation — objectifs
• Je suis capable de/d’… 

✦ importer des déclarations d’autres fichiers et modules 
✦ décrire pourquoi numpy est plus performant qu’une liste Python 
✦ créer des arrays numpy, en changer la forme 
✦ appliquer des opérations sur les arrays en évitant les boucles 
✦ résoudre des problèmes d’algèbre linéaire simples avec numpy 
✦ faire la différence entre différents types de multiplication 
✦ consulter la documentation de numpy pour résoudre des tâches 

plus complexes
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