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20th century statistical signal processing

Hypothesis: Signal = stationary Gaussian process

Karhunen-Loéve transform (KLT) is optimal for compression

4< Log (R(D)) in lognats

DCT asymptotically equivalent to KLT
(Ahmed-Rao, 1975; U., 1984)
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20th century statistical signal processing

Hypothesis: Signal = Gaussian process
y = Hs +n Noise: i.i.d. Gaussian with variance o>
Signal covariance: C, = E{s - s’}
Wiener filter is optimal for restoration/denoising
stvmse = C.H' (HC,H' + 021)_1 Y = Fwiener y

{ L =Cs"? Whitening filter

Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP
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Data Log likelihood Gaussian prior likelihood

& quadratic regularization (Tikhonov)




Then came wavelets ... and sparsity
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Fact 1: Wavelets can outperform Wiener filter

MAGNETIC RESONANCE IN MEDICINE 21, 288-295 (1991) ‘ A . (
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Filtering Noise from Images with Wavelet Transforms

J. B. WEAVER,* YANSUN XU,* D. M. HEALY, JR.,} AND L. D. CROMWELL*

* Department of Radiology, Dartmouth-Hitchcock Medical Center; and t Department of Mathematics,
Dartmouth College, Hanover, Neve Hampshire 03755

Received April 12, 1991 /
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A new method of filtering MR images is presented that uses wavelet transforms instead /

of Fourier transforms. The new filtering method does not reduce the sharpness of edges.
However, the new method does eliminate any small structures that are similar in size to
the noise eliminated. There are many possible extensions of the filter. & 1991 Academic
Press, Inc,




Fact 2: Wavelet coding can outperform jpeg

= Z Vi (T) Wi ke
ik

Wavelet transform

|
< Inverse wavelet transform

0.00%
Discarding “small coefficients”

(Shapiro, IEEE-IP 1993) of
et
2000alliance

Fact 3: /1 schemes can outperform I>

* = argmin ||Y—HS||§ +  AR(s)
—_———— N——

data consistency  regularization

m Wavelet-domain regularization

Wavelet expansion: s = Wv  (typically, sparse)
Wavelet-domain sparsity-constraint:  R(s) = ||v|l,, with v=W~ls

lterated shrinkage-thresholding algorithm (ISTA, FISTA)
(Figuereido et al., Daubechies et al. 2004)
m (; regularization (Total variation)

R(s) = ||Ls||¢, with L: gradient (Rudin-Osher, 1992)

Iterative reweighted least squares (IRLS) or FISTA




1.2 SPARSE STOCHASTIC MODELS.:
The step beyond Gaussianity

Requirements for a comprehensive statistical framework
m Backward compatibility

m Continuous-domain formulation

piecewise-smooth signals, translation and scale-invariance, sampling ...

m Predictive power

Can wavelets really outperform sinusoidal transforms (KLT) ?

m Ease of use

m Statistical justification and refinement of current algorithms

Sparsity-promoting regularization, £; norm minimization

Unser: Image processing 9

Random spline: archetype of sparse signal

cardinal
non-uniform
Ds(t) =Y and(t — t,) = w(t) L

0 2 4 6 8 10

Random weights {a,, } i.i.d. and random knots {#,,} (Poisson with rate \)

m Anti-derivative operators

t
Shift-invariant solution: D™ 1(t) = (14 * ¢)(t) = / o(7)dr

— 00

t
Scale-invariant solution: Dy ' (t) = / o(T)dr
0
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B-spline and derivative operator

df()
dt

f

Derivative Df(t) = D < jw

Finite difference operator
Daf(t) = f(t) — f(t—1) Dy < 1—e ¥

= (83 *Df)(1)

B-spline of degree 0 0(t) = 14(t) — 14 (t — 1)

BY(t) = DaD'6(t) = Dyl (t)

11

Compound Poisson process

m Stochastic differential equation
Ds(t) = w(t)

with boundary condition s(0) =0

Innovation: w(t) = Z and(t —tp) 4 4

m Formal solution

s(t) Zan “HO( = ta)})

:Zan]1+t—tn —
n

12




Innovation-based synthesis

L=4 =D = L~!:integrator

Tp=L"1
6(t) — LY} —
| ,

>

Impulse response

Translation invariance

- p(t —to)
‘ P — L {} — :
! : ],
| ] >
Z 0t — 1) Linearity s(t) = Z anplt — 1)
' o L_l{.} _’ : S
|t t —
I
Compound Poisson process
m Stochastic differential equation
Ds(t) = w(t) — T
with boundary condition s(0) = 0 : j : : :

Innovation: w(t) = Z ano(t —ty)

m Formal solution

s(t) Zan o {0 —ta)}(t)

= Zan Lo(t—t,) —1.(~t,))
" \
(impose boundary condition)

14




Lévy processes: all admissible brands of innovations

Generalized innovations : white Lévy noise with E{w(t)w(t')} = o26(t —t')

Ds=w (perfect decoupling!)
White noise (innovation) Lévy process
. 0 Brownian motion 0 (Wiener 1 923)
Gaussian
Integrator » ' ' ’ ’ ’
Impulsive w(t) t - s(b) Compound Poisson
— dr —— - :
O 00 02 04 06 08 10
Sa8S (Cauchy) W

(Paul Lévy circa 1930) s

Decoupling Lévy processes: increments

Increment process:  u(t) = Dgs(t) = DaDy 'w(t) = (B * w)(2).

Increment process is stationary with autocorrelation function

Ru(r) = Efu(t + T)u(t)} = (8% * (82)" * Ru)(7) 1«
=02 BL(r—1) —_—

with  (53)"(t) = BY(—t)

Discrete increments
ulk] = s(k) — s(k — 1) = (w, Ly ky1)) = (w, (BL)Y (- — k).

u[k] are i.i.d. because
= {BY(- — k)} are non-overlapping { ks , L)

= w is independent at every point (white noise)

16




Wavelet analysis of Léevy processes

m Haar wavelets

1, for0<t<1 gy [ ]
YHaar(t) = ¢ —1, for <t<1 | oo L] bo2 L]
0, otherwise. ’7
\ J J
= } ,7
' o 1,0
\
=2
12,0

17

Wavelets as multi-scale derivatives

1=0

i=0
— — '
{ 10,0 J 0,2 J 0,0 ®0,2
[ \
] L
i=1
- ,7 (
P10 Q 10

] '

i=2 " i= T $2,0

2,0

m Wavelet coefficients of Lévy process

Yir = (s,%i k) < (5,D¢j 1)
<D*S7 ¢z,k> = —<UJ, ¢z,k>

Yig =272 1De; .
Dy " x = 27271, 1.

18




M-term approximation: wavelets vs. KLT

Gaussian — Haar Brownian motion

Finite rate of innovation — KT

Even sparser ...

10°

Identity
— KLT

Identity

— H

i L R Y S | L R S S | i T S S R
10 10% 107 10°
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Continuous-domain innovation model

Shaping filter

N L_l{-} —

Generalized white noise Stochastic process

(appropriate boundary conditions)

| d
w(z) — s(xz),z e R

L L{} —

Main outcome: non-Gaussian solutions are necessarily
sparse (infinitely divisible)

Why? ... as will explained in next chapters ...

(invoking powerful theorems in functional analysis:
Bochner-Minlos, Gelfand, Schoenberg & Lévy-Khinchine)

21

Short primer on probability theory Example: Gaussian

Random variable X /\

px(x) = \/;2763_3”2/2
m Probability measure and density function (pdf) T F
E

Expectation: E{f(X)}:/Rf(x);@X(dx):/]Rf(a;)px(x)dx

m Characteristic function

Py (w) = E{e*X} = /R 7 () dx

Bochner’s theorem
Let px : R — C be a continuous, positive-definite function such that px (0) = 1.
Then, there exists a unique Borel probability measure &?x on R, such that

px@) = [ S Px(d) = [ Mpx(ado

22




Generalized innovation process
m Difficulty 1: w # w(x) is too rough to have a pointwise interpretation @

m Difficulty 2: w is an infinite-dimensional random entity;
its “pdf” can be formally specified by a measure Z,,(E) where E C S’(R9)

m Axiomatic definition

(Gelfand-Vilenkin 1964)

function € S(RY).

w is a generalized innovation process (or continuous-domain white noise) in S’ (R?) if

1. Observability : X = (p,w) is a well-defined random variable for any test

2. Stationarity : X, = (¢(- — o), w) is identically distributed for all z, € R.

3. Independent atoms : X, = (¢1,w) and Xy = (p2,w) are independent
whenever 1 and - have non-intersecting support.

X1:<WW,—§[\—>

m Characteristic functional (w — @)

(@) = E{e{»®)} = 99 2, (dg)

X2=<Mwm,f\/——> gZ\

S’

23

finite-dimensional

infinite-dimensional

random variable X in RN

generalized stochastic process s in %’

probability measure &y on RN
Px(E)=Prob(X € E) = [ppx(x) dx (px is
a generalized [i.e., hybrid] pdf)

for suitable subsets E c RV

probability measure & on .+’
Ps(E) =Prob(s€ E) = [ Ps(dg)

for suitable subsets E c .’

characteristic function
Px(w) = HP X)) = [on @ py(x) dx,
we RN

characteristic functional
Ps(p) = E P9} = [, e P8 P (dg),
peS

Table 3.2 Comparison of notions of finite-dimensional statistical calculus with the theory
of generalized stochastic processes. See Sections 3.4 for an explanation.

S: Schwartz’ space of smooth (infinitely differentiable) and rapidly decaying functions

S’: Schwartz’ space of tempered distributions (generalized functions)




Defining Gaussian noise: discrete vs. continuous

Lévy exponent:  logpx (w) = f(w) = —Fw?

m Discrete white Gaussian noise R L

X = (Xy,...,Xn) with X, i.i.d standardized Gaussian
N

Characteristic function: px (w) = E{e/“*)) = exp (Z flwn)) = o zllwl®

n=1

m Continuous-domain white Gaussian noise

Infinite-dimensional entity w with generic observations X,, = (p,,, w)
Characteristic functional: 22, () = E{e®*)) = ¢ 2191, = exp (/ f(go(x))da;)
R

px, (w) = BE{el*(#nw)} = E{eilwenw)) = 2, (wipn) = o~ Fw?llenll?,

©

25

Infinite divisibility and Lévy exponents

Definition: A random variable X with generic pdf p;q(x) is infinitely divisible (id) iff., for
any N € ZT, there exist i.i.d. random variables X1, ..., X such that X g X1+ -+ Xpy.

m Rectangular test function i.i.d.

Xiq = (w,rect) =

Proposition
The random variable X;q = (w, rect) where w is a generalized innovation process is
infinitely divisible. It is uniquely characterized by its Lévy exponent f(w) = log pia(w).

Bottom line: There is a one-to-one correspondence between Lévy exponents and infinitely
divisible distributions and, by extension, innovation processes.

26




Examples of infinitely divisible laws

pia()
(a) Gaussian
/ () 1 2
PGauss\¥) = e 202
(b) Laplace
A Al
pLaplace(x = ae

(c) Compound Poisson
A

pPOisson<$> = f_l{ek(ﬁ,q(w)—l)}

lasiedg

__./;

E) ) o 2 + -5

(d) Cauchy (stabl

1

PcCauchy (JC) = m

Characteristic function: piq(w) = /pid(x)ej“’xdx = of @)
R 27

Canonical Lévy-Khintchine representation

Definition
A (positive) measure 1, on R\{0} is called a Lévy measure if it satisfies

/Rmin(az, 1)y (da) = /Rmin(a2, lv(a)da < oo.

The corresponding Lévy density v : R — R is such that y,(da) = v(a)da.

Theorem (Lévy-Khintchine)
A probability distribution piq is infinitely divisible (id) iff. its characteristic function can
be written as

pa(w) = /Rpid(x)ej“’wdx = exp (f(w))
with

b2w2
2

f(w) =logpig(w) = jbjw — + /\{ } (ej“” —1 —jaw1|a|<1(a)) v(a)da
R\{0

where b € R and by € RT are some arbitrary constants, and where v is an admissible
Lévy density. The function f is called the Lévy exponent of piq.

28




Examples of infinitely divisible laws
pia(z)

(a) Gaussian

(b) Laplace

(c) Compound Poisson
A

lasiedg

E

(d) Cauchy (stable)

: 3

Characteristic function: piq(w) = / pia(2)e*?dz = ef @)

R

29

Characterization of generalized innovation

|I>

Xp=(w,0) = (winw,d \_)

Hm s «1»

n— oo

)

= lim (s, T——) + -+ (o ,———r )

n—oo

-
1
n

—

3=

-

Theorem

Let w be a generalized stochastic process such that X;q = (w, rect) is well-
defined. Then, w is a generalized innovation (white noise) in S’(R?) if and
only if its characteristic form is given by

Fule) =B} —exp ([ f(otr)ar)

where f(w) is a valid Lévy exponent (in fact, the Lévy exponent of Xjq).
Moreover, the random variables X, = (w, o) are all infinitely divisible with
modified Lévy exponent

fol) = [ flaptr))ar

«

(Gelfand-Vilenkin 1964; Amini-U. IEEE-IT 2014)
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Steps 2 + 3: Characterization of sparse process

— L7t
s=Llw — —

>

White noise
—
—

w
L «— L pra—

m Abstract formulation of innovation model

s=L7'w & WeS, (ps)=(p L w) =L "pw)
N——

= Pu(p) =E{e/**)} = P, (L7"¢) = exp (/R f(L‘l*w(w))dw>

d

Sufficient condition for existence:
L~1* continuous operator: S(R?) — L, (R?)

(U.-Tafti-Sun, IEEE-IT 2014)

31

X Probability laws of sparse processes are id

m Analysis: go back to innovation process: w = Ls

= Generic random observation: X = {p,w) with » € S(R?) or p € L,(R?) (by extension)

—
= Linear functional: Y = (v, s) = (1, L™ w) = (L™, w)

If o = L= € L,(R) then Y = (1), s) = (¢, w) is infinitely divisible
with Lévy exponent fy(w) = [p. f(wé(x))de

— w w)—jw dw
N py(y) = F 1{ef¢( )}(y) :/ef¢>( ) =] y2_ g
R T

= explicit form of pdf

An Introduction to CAMBRIDGE

Unser and Tafti

Sparse Stochastic Processes

32




Operators: fundamental invariance properties

Definition
An operator T is shift-invariant iff., for any function ¢ in its domain and any r, € R,

T{p(- = 7r0)}(r) = T{p}(r —ro).

Definition
An operator T is scale-invariant of order + iff., for any function ¢ in its domain,

T{p}(r/a) = |a"T{p(-/a)}(r),

where a € RT is the dilation factor.

T{p(a)}(r) = la]"T{p}(ar)

Definition
An operator T is scalarly rotation-invariant iff., for any function ¢ in its domain,

T{p}(R"r) = T{pR)}(r),

where R is any orthogonal matrix in R4x<.

33

Fractional-order operators

m Liouville’s fractional derivative

D(r) = [ () pluler 5

Proposition [U.-Blu, 2007]
The complete family of 1-D scale-invariant convolution operators of order v € R
reduces to the fractional derivative 07 whose Fourier-based definition is

00 = [ () () pw)e 5

Order of differentiation: v Phase factor: 7 € R

m Semi-group property
007, =91, fory,y+7 € (~1,+oc)and 7,7 € R

Special cases: D” = 63 /2 H., = 9° (fractional Hiloert transform)

34




Invariance properties: definitions  foranyp e s®9)

Translation of ¢ € S'(RY) by ro: (i, ¢(- — 10)) = (o(- +70), @)

A generalized stochastic process s is stationary if it has the same probability laws as its
translated version s(- — ) for any 7o € R

& Pyp) = Py +10))

Affine transformation of ¢ € S'(R%):  (p, (T~ 1)) = |det(T)| (¢(T-), $)

A generalized stochastic process s is isotropic if it has the same probability laws as its
rotated version s(R”-) for any (d x d) rotation matrix R.

s D) = Z.(4(R))

A generalized stochastic process s is self-similar of scaling order H if it has the same
probability laws as any of its scaled and renormalized version a’s(-/a).

s D) = Py(afTp(a-))

Duality relation: (¢, af s(-/a) = (a+%p(a-), s) H: Hurst exponent

Invariance properties of innovation model

Theorem
The high-level statistical properties of s = L~'w are tightly linked to the invariance
properties of L~ (or, equivalently, L~'*) described by its generalized impulse response

h(-,7) =L Ho(- — )} € S'(R? x RY).

1. If L=t is linear shift-invariant, then s is stationary and h(r,r’) = h(r—7',0) =
pL(r — r') where pr, = L=1{4} is the Green’s function of L.

2. If L' is translation- and rotation-invariant, then s is stationary isotropic and
h(r,7") = pL(|r — 7'|) where pr,(|r|) = L=1{5}(r) is a purely radial function.

3. If L~!* is scale-invariant of order (—v) and 02 = —f”(0) < oo, then s is
wide-sense self-similar with Hurst exponent H = v — d/2.

4. If L=!* is scale-invariant of order (—v) and f is homogeneous of degree 0 < o < 2,
then s is self-similar with Hurst exponent H = v — d + d/a.




7.4 Lévy processes and extensions

Classical definition
The stochastic process W = {W (¢) : t € R*} is a Lévy process if it fulfills the following

requirements:
1. W(0) = 0 almost surely.

2. Given 0 < t; <ty <...<ty, theincrements W (ty) — W(ty), W(ts) — W(ts),
., W(tn) — W(t,,—1) are mutually independent.

3. For any given step T, the increment process ;W (t), where 7 is the operator
that associates W (t) to (W (¢t) — W (t — T')), is stationary.

m Equivalent generalized process: solution of unstable SDE

DW =W = w subject to boundary condition W/ (0) = 0

~ W(t):u(o,t],w:/o w(T)dT:/O AW (r)

37
Stabilizing the anti-derivative operator
D: scale-invariant operator with v = 1 o0
... but the system is no longer BIBO stable
_t
Adjoint inverse operator (LSlI): .
» o0 , D (1) Do) = [ lrdr
D) = [ plrar = (1Y 5 )0 -
¢ Ly(R) K

Modified anti-derivative operators:
Ijp(t) = D™ p(t) — (D) (—00) 1Y.(1)

I5: continuous operator S(R) — R(R) w

Ip: imposes vanishing boundary condition at¢ = 0

To(t) = / p(r)dr
)

38




From Brownian motion to Lévy flights

W

(a): Gaussian

Nobert Wiener

(b): Laplace

e ST T

(c): Compound Poisson

ﬁj

(d): Cauchy

Paul Lévy

Ordinary differential systems

m First-order operator: P, =D — ald with Re(a) # 0

N 1 e L1000y (T) if Re(ar) <0,
) =7 { b =4 e
JWw —« —eo”"]l(_oom (T) if Re(a) > 0.
Inverse operator: S(R) — S(R) Adjoint: P = —P_,,
Polo = pa*o =Pl o= —p_axp=plxop

m Higher-order operators with Re(«,,) # 0 and N > M

Pay - Pay{s}(r) = qu(D){w}(r)

Inverse operator L™! : S(R) — S(R) L= *: S(R) — S(R)

L=h=Poy - Po) au(D)

L=l =pL*p with pp € R(R) (exponential decay)

40




Application: signal modeling (Audio)

d” dn-t d
m Sparse, bandpass processes L= g Py ey + agl
poles = [—.05 +jn/2, —.05 — jn/2], zeros =[]
(a) Gaussian (b) Alpha stable a=1.2

m Mixed sparse processes: Spix = S1 + -+ Su

M
P e ) = 11 P, () = exp </ Z fn (L (1)) dt)
m=1

e b

Gaussian (Am) generalized Lévy (Am, SasS)

41

(f)Brownian motion revisited
Ds =w (unstable SDE !) D7s = w

s:Dglw &S Ve es, <g0,s>:<D0_1*cp,w>

?(w) = B(0) o dw
—jw 2

Lo-stable anti-derivative:  Ijp(t) = /
R

m Characteristic form of Brownian motion (a.k.a. Wiener process)

ﬁw(sﬂ) — exp (__HI 90||L2) Stabilization & non-stationary behavior

B 1
= exp E/R
m Characteristic form of fractional Brownian motion

Fe) = exp (—%/

Pw) = &(0) r d_w> (by Parseval)

—jw 2w

P(w) —p(0) " dw
|w|? 2m (Blu-U., IEEE-SP 2007)
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Example in 1D: Self-similar processes

L <2 (jw)H+3 = L~ fractional integrator
%%w

[ EE—— e i

G/.'=H

g¢'I=H

H

il ,

o | |

Gaussian Sparse (generalized Poisson)
Fractional Brownian motion (Mandelbrot, 1968) (U.-Tafti, IEEE-SP 2010) 3

Equations of a screen saver

y O Mondrian process
* 0?%s(x)
8$18$2 = ; Aké(a: — :l?k)

= s(@) = ao+ »_ A(w —m)$
k

where x;, are Poisson distributed with rate A
and Ay i.i.d. Gaussian with characteristic function p 4.

Complete mathematical description (characteristic form)

Vo € S(R?) (Schwartz’s space of smooth and rapidly-decaying test functions):

E{e/**)} = exp <)\/ / Pa (/ / gp(x’l,xé)dx’ldxé) dzidzy — )\)
—0o0 J —0o0 T T2

w?
2

with pa(w) = e~




Scale- and rotation-invariant processes
Stochastic partial differential equation : (—A)%s(w) = w(x)

Gaussian

H=1.75

H=.75

Sparse (generalized Poisson)

HEAT,

(U.-Tafti, IEEE-SP 2010)
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Powers of ten: from astronomy to biology

by © 1986 Jerry Lodriguss and John Martinez
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2.1 DECOUPLING OF SPARSE

s=L"1w s w = Ls

= Discrete approximation of operator

= Operator-like wavelet analysis

Unser: Image processing 48




Decoupling: Linear combination of samples

Input: s(k),k € Z¢ (sampled values) s=L"1tw

Discrete approximation of whitening operator: Lg

Lad(x) = ) di[k]é(z — k)

kecZd

Discrete increment process:

ulk] = Las(®)|p— = (BL * w)(2)] g, = (B (- — k), w)
N——

Generalized B-spline:

Br(x) = LaL~16(x) A-to-D translator

49

Decoupling: Wavelet analysis

Ls =w

Generalized operator-like wavelets:

%‘ (m) = L*¢i (CE) (Khalidov-U. 2006, Ward-U. ACHA 2013)

Operator-like wavelet analysis of sparse process:

(Vi(- — o), 8) =(L (- — o), 5)
=(¢i(- — xo), Ls))
=(¢i(- — x0), w) = (¢; * w)(xo)
~—————

72
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