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Fig.  5. Rate versus  distortion for various  transforms  for  a  second-order Gauss- 
Markov process ( p  = 0.95, N = 256). 
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20th century statistical signal processing
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Karhunen-Loève transform (KLT) is optimal for compression

Hypothesis: Signal = stationary Gaussian process

(Pearl et al., IEEE Trans. Com 1972)

DCT asymptotically equivalent to KLT
(Ahmed-Rao, 1975; U., 1984)

20th century statistical signal processing 
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Wiener filter is optimal for restoration/denoising

Hypothesis: Signal = Gaussian process

Signal covariance: Cs = E{s · sT }
y = Hs+ n

sMAP = argmins
1

�2
ky �Hsk22

| {z }
Data Log likelihood

+ kC�1/2
s sk22| {z }

Gaussian prior likelihood

Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

Noise: i.i.d. Gaussian with variance �2

sLMMSE = CsH
T
�
HCsH

T + �2I
��1

y = FWiener y

, quadratic regularization (Tikhonov)

m L = C�1/2
s : Whitening filter



Then came wavelets ...
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Fact 1: Wavelets can outperform Wiener filter
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�

2

w̃ = T�(w)
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Fact 2: Wavelet coding can outperform jpeg
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Wavelet transform

Inverse wavelet transform

Discarding “small coefficients”

f(x) =
X

i,k

�i,k(x)wi,k

(Shapiro, IEEE-IP 1993)

Fact 3: l1 schemes can outperform l2 
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`1 regularization (Total variation)

R(s) = kLsk`1 with L: gradient

Iterative reweighted least squares (IRLS) or FISTA

s? = argmin ky �Hsk22| {z }
data consistency

+ �R(s)| {z }
regularization

Wavelet-domain regularization

Wavelet expansion: s = Wv (typically, sparse)

Wavelet-domain sparsity-constraint: R(s) = kvk`1 with v = W�1s

Iterated shrinkage-thresholding algorithm (ISTA, FISTA)

(Figuereido et al., Daubechies et al. 2004)

(Rudin-Osher, 1992)



Unser: Image processing

1.2 SPARSE STOCHASTIC MODELS: 
                                The step beyond Gaussianity
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Requirements for a comprehensive statistical framework

Backward compatibility

Continuous-domain formulation

piecewise-smooth signals, translation and scale-invariance, sampling . . .

Predictive power

Can wavelets really outperform sinusoidal transforms (KLT) ?

Statistical justification and refinement of current algorithms

Sparsity-promoting regularization, `1 norm minimization

Ease of use

Random spline: archetype of sparse signal
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Anti-derivative operators

Shift-invariant solution: D�1'(t) = ( + ⇤ ')(t) =
Z t

�1
'(⌧)d⌧

Scale-invariant solution: D�1
0 '(t) =

Z t

0
'(⌧)d⌧

non-uniform

cardinal

Ds(t) =
X

n

an�(t� tn) = w(t)

Random weights {an} i.i.d. and random knots {tn} (Poisson with rate �)



B-spline and derivative operator
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1 2 3 4 5

1

�0
+(t) = +(t)� +(t� 1)

�0
+(t) = DdD

�1�(t) = Dd +(t)

Finite difference operator

B-spline of degree 0

Derivative Df(t) =
df(t)

dt
D

F ! j!

Ddf(t) = f(t)� f(t� 1) Dd
F ! 1� e�j!

= (�0
+ ⇤Df)(t)

�̂0
+(!) =

1� e�j!

j!

l

Compound Poisson process
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Stochastic differential equation

Ds(t) = w(t)

with boundary condition s(0) = 0

Formal solution

Innovation: w(t) =
X

n

an�(t� tn)

s(t) = D�1w(t) =
X

n

anD
�1{�(·� tn)}(t)

=
X

n

an +(t� tn)



Impulse response 

Translation invariance 

Linearity 

Innovation-based synthesis
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L�1{·}

L�1{·}

L�1{·}

⇢ = L�1�

L = d
dt = D ) L�1

: integrator

�(t)

�(t� t0)

X

n

an�(t� tn)

⇢(t� t0)

s(t) =
X

n

an⇢(t� tn)

Compound Poisson process
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0 2 4 6 8 10

Stochastic differential equation

Ds(t) = w(t)

with boundary condition s(0) = 0

Innovation: w(t) =
X

n

an�(t� tn)

s(t) = D�1
0 w(t) =

X

n

anD
�1
0 {�(·� tn)}(t)

=
X

n

an
�

+(t� tn)� +(�tn)
�

(impose boundary condition)

Formal solution



Lévy processes: all admissible brands of innovations

15

(perfect decoupling!)

0.0 0.2 0.4 0.6 0.8 1.0

0 0

0.0 0.2 0.4 0.6 0.8 1.0
0 0

0.0 0.2 0.4 0.6 0.8 1.0

0 0

Compound Poisson

Brownian motion

Integrator

Gaussian 

Impulsive Z t

0
d⌧

Lévy flight

s(t)w(t)

White noise (innovation) Lévy process

S↵S (Cauchy)

(Paul Lévy circa 1930)

(Wiener 1923)

Generalized innovations : white Lévy noise with E{w(t)w(t0)} = �2
w�(t� t0)

Ds = w

Decoupling Lévy processes: increments

16

u(t) = Dds(t) = DdD
�1
0 w(t) = (�0

+ ⇤ w)(t).

Increment process is stationary with autocorrelation function

Discrete increments

h , i
u[k] are i.i.d. because

{�0
+(·� k)} are non-overlapping

w is independent at every point (white noise)

*
⇤ ⇥� ⌅

Increment process:

u[k] = s(k)� s(k � 1) = hw, [k,k+1)i = hw, (�0
+)

_(·� k)i.

Ru(⌧) = E{u(t+ ⌧)u(t)} =
�
�0
+ ⇤ (�0

+)
_ ⇤Rw

�
(⌧)

= �2
w�

1
+(⌧ � 1)

with (�0
+)

_(t) = �0
+(�t)



Wavelet analysis of Lévy processes
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Haar wavelets

 Haar(t) =

8
><

>:

1, for 0  t < 1
2

�1, for 1
2  t < 1

0, otherwise.

 i,k(t) = 2�i/2 Haar

✓
t� 2ik

2i

◆

8
><

>:

 2,0

 1,0

 0,0  0,2

i = 0

i = 1

i = 2

8
><

>:

(

Wavelets as multi-scale derivatives
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 i,k = 2i/2�1D�i,k

D�1
0  i,k = 2i/2�1�i,k.

Yi,k = hs, i,ki / hs,D�i,ki

/ hD⇤s,�i,ki = �hw,�i,ki

8
><

>:

 2,0

 1,0
�1,0

 0,0  0,2 �0,2�0,0

i = 0

i = 1
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8
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(
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i = 0
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8
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(
�2,0

Wavelet coefficients of Lévy process
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Brownian motion

Compound Poisson

Lévy flight (Cauchy)
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M-term approximation: wavelets vs. KLT

Gaussian

Finite rate of innovation

Even sparser ...
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Continuous-domain innovation model
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Main outcome: non-Gaussian solutions are necessarily 
sparse (infinitely divisible)

w(x)

Generalized white noise Stochastic process

L{·}

Shaping filter

(appropriate boundary conditions)

Whitening operator

L�1{·}

s(x),x 2 Rd

Why? ... as will explained in next chapters ...
(invoking powerful theorems in functional analysis:

Bochner-Minlos, Gelfand, Schoenberg & Lévy-Khinchine)

Short primer on probability theory

22

Random variable X

Probability measure and density function (pdf)

Prob(X 2 E) = PX(E) =

Z

E
pX(x)dx

l F

Example: Gaussian

Expectation: E{f(X)} =

Z

R
f(x)PX(dx) =

Z

R
f(x)pX(x)dx

p

X

(x) = 1p
2⇡

e�x

2
/2

Characteristic function

p̂

X

(!) = E{ej!X} =

Z

R
ej!x

p

X

(x)dx

Bochner’s theorem

Let bp
X

: R ! C be a continuous, positive-definite function such that bp
X

(0) = 1.

Then, there exists a unique Borel probability measure P
X

on R, such that

p̂

X

(!) =

Z

R
ej!xP

X

(dx) =

Z

R
ej!x

p

X

(x)dx

p̂X(!) = e�!2/2



Generalized innovation process

23

X1 = h , i

X2 = h , i

Difficulty 1: w 6= w(x) is too rough to have a pointwise interpretation

Difficulty 2: w is an infinite-dimensional random entity;

its “pdf” can be formally specified by a measure Pw(E) where E ✓ S 0(Rd)

Axiomatic definition

(Gelfand-Vilenkin 1964)

( ! ! ' )
Characteristic functional

dPw(') = E{ejh',wi} =

Z

S0
ejh',giPw(dg)

1. Observability : X = h', wi is a well-defined random variable for any test

function ' 2 S(Rd).

2. Stationarity : X
x0 = h'(·� x0), wi is identically distributed for all x0 2 Rd

.

3. Independent atoms : X1 = h'1, wi and X2 = h'2, wi are independent

whenever '1 and '2 have non-intersecting support.

w is a generalized innovation process (or continuous-domain white noise) in S 0(Rd) if

26 Mathematical context and background

finite-dimensional theory (linear algebra) infinite-dimensional theory (functional
analysis)

Euclidean space RN , complexification CN function spaces such as the Lebesgue space
Lp (Rd ) and the space of tempered distribu-

tions S 0(Rd ), among others.

vector x = (x1, . . . , xN ) in RN or CN function f (r ) in S 0(Rd ), Lp (Rd ), etc.

bilinear scalar product
hx , yi=PN

n=1 xn yn h', g i=
R

'(r )g (r ) dr

' 2S (Rd ) (test function), g 2S 0(Rd ) (gen-
eralized function), or
' 2 Lp (Rd ), g 2 Lq (Rd ) with 1

p + 1
q = 1, for

instance.

equality: x = y () xn = yn various notions of equality (depends on the
space), such as

() hu, xi= hu, yi, 8u 2RN weak equality of distributions: f = g 2
S 0(Rd ) () h', f i = h', g i for all ' 2
S (Rd ),

() kx ° yk2 = 0 almost-everywhere equality: f = g 2
Lp (Rd ) ()

R

Rd | f (r )° g (r )|p dr = 0.

linear operators RN !RM continuous linear operators S (Rd ) !
S 0(Rd )

y = Ax ) ym =PN
n=1 amn xn g = A') g (r ) =

R

Rd a(r , s)'(s) ds for some

a 2S 0(Rd£Rd ) (Schwartz’ kernel theorem)

transpose adjoint
hx ,Ayi= hAT

x , yi h',Ag i= hA§', g i

Table 3.1 Comparison of notions of linear algebra with those of functional analysis and the

theory of distributions (generalized functions). See Sections 3.1-3.3 for an explanation.

finite-dimensional infinite-dimensional

random variable X in RN generalized stochastic process s in S 0

probability measure PX on RN probability measure Ps on S 0

PX (E) = Prob(X 2 E) =
R

E pX (x) dx (pX is
a generalized [i.e., hybrid] pdf)

Ps (E) = Prob(s 2 E) =
R

E Ps (dg )

for suitable subsets E ΩRN for suitable subsets E ΩS 0

characteristic function characteristic functional
cPX (!) = E{ejh!,X i} =

R

RN ejh!,xipX (x) dx ,
! 2RN

cPs (') = E{ejh',si} =
R

S 0 ejh',g iPs (dg ),
' 2S

Table 3.2 Comparison of notions of finite-dimensional statistical calculus with the theory

of generalized stochastic processes. See Sections 3.4 for an explanation.

S: Schwartz’ space of smooth (infinitely differentiable) and rapidly decaying functions

S 0
: Schwartz’ space of tempered distributions (generalized functions)
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Defining Gaussian noise: discrete vs. continuous
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Lévy exponent: log p̂X(!) = f(!) = � 1
2!

2

Characteristic functional:

dPw(') = E{ejh',wi} = e

� 1
2k'k2

L2
= exp

✓Z

R
f

�
'(x)

�
dx

◆

Continuous-domain white Gaussian noise

Infinite-dimensional entity w with generic observations Xn = h'n, wi

Characteristic function: p̂X(!) = E{ejh!,Xi
) = exp

� NX

n=1

f(!n)
�
= e

� 1
2k!k2

Discrete white Gaussian noise

X = (X1, . . . , XN ) with Xn i.i.d standardized Gaussian

p̂Xn(!) = E{ej!h'n,wi} = E{ejh!'n,wi} = cPw(!'n) = e�
1
2!

2k'nk2
L2

Infinite divisibility and Lévy exponents

26

Rectangular test function

1
n

1
n

1

Bottom line: There is a one-to-one correspondence between Lévy exponents and infinitely

divisible distributions and, by extension, innovation processes.

i.i.d.

Definition: A random variable X with generic pdf pid(x) is infinitely divisible (id) iff., for

any N 2 Z+
, there exist i.i.d. random variables X1, . . . , XN such that X

d

= X1+ · · ·+XN .

Xid = hw, recti = h , i
= h , i+ · · ·+ h , i

Proposition

The random variable Xid = hw, recti where w is a generalized innovation process is

infinitely divisible. It is uniquely characterized by its Lévy exponent f(!) = log p̂id(!).



Examples of infinitely divisible laws
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5
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5

2000

�5

5

Sparser

pid(x)

pCauchy(x) =
1

⇡ (x2 + 1)

pGauss(x) =
1p
2⇡�2

e�
x

2

2�2

pLaplace(x) =
�

2
e��|x|

p

Poisson

(x) = F�1{e�(p̂A(!)�1)}

Characteristic function: bpid(!) =
Z

R
pid(x)e

j!xdx = ef(!)

Canonical Lévy-Khintchine representation
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Definition

A (positive) measure µv on R\{0} is called a Lévy measure if it satisfies

Z

R
min(a2, 1)µv(da) =

Z

R
min(a2, 1)v(a)da < 1.

The corresponding Lévy density v : R ! R+
is such that µv(da) = v(a)da.

Theorem (Lévy-Khintchine)

A probability distribution pid is infinitely divisible (id) iff. its characteristic function can

be written as

bpid(!) =
Z

R
pid(x)e

j!x

dx = exp

�
f(!)

�

with

f(!) = log bpid(!) = jb

0
1! � b2!

2

2

+

Z

R\{0}

�
e

ja! � 1� ja! |a|<1(a)
�
v(a)da

where b

0
1 2 R and b2 2 R+

are some arbitrary constants, and where v is an admissible

Lévy density. The function f is called the Lévy exponent of pid.



Examples of infinitely divisible laws
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f(�) = log

⇣
1

1+!2

⌘

pid(x)

Characteristic function: bpid(!) =
Z

R
pid(x)e

j!xdx = ef(!)

f(!) = �s0|!|

f(!) = ��2
0
2 |!|2

f(!) = �

R
R(e

jx! � 1)p
A

(x)dx

Characterization of generalized innovation
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X' = hw,'i = h , i , lim
n!1

h , i

= lim
n!1

h , i+ · · ·+ h , i

(Gelfand-Vilenkin 1964; Amini-U. IEEE-IT 2014)

Theorem

Let w be a generalized stochastic process such that Xid = hw, recti is well-

defined. Then, w is a generalized innovation (white noise) in S 0
(Rd

) if and

only if its characteristic form is given by

dPw(') = E{ejhw,'i} = exp

✓Z

Rd

f
�
'(r)

�
dr

◆

where f(!) is a valid Lévy exponent (in fact, the Lévy exponent of Xid).

Moreover, the random variables X' = hw,'i are all infinitely divisible with

modified Lévy exponent

f'(!) =

Z

Rd

f
�
!'(r)

�
dr
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Steps 2 + 3: Characterization of sparse process

White noise

Whitening operator

L�1

L

s = L�1w

w

Abstract formulation of innovation model

s = L�1w � ⇤� ⇥ S, ⌅�, s⇧ = ⌅�,L�1w⇧ = ⌅L�1⇤�| {z }, w⇧

) cPs(') = E{ejhs,'i} =

dPw(L
�1⇤') = exp

✓Z

Rd

f
�
L

�1⇤'(x)
�
dx

◆

Sufficient condition for existence:

L�1⇤
continuous operator: S(Rd) ! Lp(Rd)

(U.-Tafti-Sun, IEEE-IT 2014)

� Probability laws of sparse processes are id
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) pY (y) = F�1{ef�(!)}(y) =
Z

R
ef�(!)�j!y d!

2⇡

=  explicit form of pdf
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Analysis: go back to innovation process: w = Ls

Generic random observation: X = h', wi with ' 2 S(Rd) or ' 2 Lp(Rd) (by extension)

Linear functional: Y = h , si = h ,L�1wi = h
z }| {
L�1⇤ , wi

If � = L�1⇤ 2 Lp(Rd) then Y = h , si = h�, wi is infinitely divisible
with L

´

evy exponent f�(!) =
R
Rd f

�
!�(x)

�
dx



Operators: fundamental invariance properties
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Definition

An operator T is shift-invariant iff., for any function ' in its domain and any r0 2 Rd
,

T{'(·� r0)}(r) = T{'}(r � r0).

Definition

An operator T is scale-invariant of order � iff., for any function ' in its domain,

T{'}(r/a) = |a|�T{'(·/a)}(r),

where a 2 R+
is the dilation factor.

Definition

An operator T is scalarly rotation-invariant iff., for any function ' in its domain,

T{'}(RTr) = T{'(RT ·)}(r),

where R is any orthogonal matrix in Rd⇥d
.

T{'(a·)}(r) = |a|�T{'}(ar)

Fractional-order operators

34

Liouville’s fractional derivative

D�'(r) =

Z

R
(j!)�'̂(!)ej!r d!

2⇡

Proposition [U.-Blu, 2007]

The complete family of 1-D scale-invariant convolution operators of order � 2 R
reduces to the fractional derivative @�

⌧ whose Fourier-based definition is

@�
⌧ '(r) =

Z

R
(j!)

�
2 +⌧ (�j!)

�
2 �⌧ '̂(!)ej!r d!

2⇡

Special cases: D� = @�
�/2, H⌧ = @0

⌧ (fractional Hilbert transform)

Order of differentiation: � Phase factor: ⌧ 2 R

Semi-group property

@�
⌧ @

�0

⌧ 0 = @�+�0

⌧+⌧ 0 , for �0, � + �0 2 (�1,+1) and ⌧, ⌧ 0 2 R



Invariance properties: definitions
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for any ' 2 S(Rd)

A generalized stochastic process s is stationary if it has the same probability laws as its

translated version s(·� r0) for any r0 2 Rd
.

, cPs(') = cPs

�
'(·+ r0)

�

A generalized stochastic process s is self-similar of scaling order H if it has the same

probability laws as any of its scaled and renormalized version aHs(·/a).

, cPs(') = cPs

�
aH+d'(a·)

�

H : Hurst exponent

Translation of � 2 S 0(Rd) by r0: h',�(·� r0)i = h'(·+ r0),�i

Affine transformation of � 2 S 0(Rd): h',�(T�1·)i = | det(T)| h'(T·),�i

A generalized stochastic process s is isotropic if it has the same probability laws as its

rotated version s(RT ·) for any (d⇥ d) rotation matrix R.

, cPs(') = cPs

�
'(R·)

�

Duality relation: h', aHs(·/ai = haH+d'(a·), si

Invariance properties of innovation model
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Theorem

The high-level statistical properties of s = L�1w are tightly linked to the invariance

properties of L�1 (or, equivalently, L�1⇤) described by its generalized impulse response

h(·, r0) = L�1{�(·� r0)} 2 S 0(Rd ⇥ Rd).

1. If L�1 is linear shift-invariant, then s is stationary and h(r, r0) = h(r�r0, 0) =

⇢L(r � r0) where ⇢L = L�1{�} is the Green’s function of L.

2. If L�1 is translation- and rotation-invariant, then s is stationary isotropic and

h(r, r0) = ⇢L(|r � r0|) where ⇢L(|r|) = L�1{�}(r) is a purely radial function.

3. If L�1⇤ is scale-invariant of order (��) and �2
w = �f 00(0) < 1, then s is

wide-sense self-similar with Hurst exponent H = � � d/2.

4. If L�1⇤ is scale-invariant of order (��) and f is homogeneous of degree 0 < ↵  2,

then s is self-similar with Hurst exponent H = � � d+ d/↵.
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7.4 Lévy processes and extensions

) W (t) = h (0,t], wi =
Z t

0
w(⌧)d⌧ =

Z t

0
dW (⌧)

Equivalent generalized process: solution of unstable SDE

DW = Ẇ = w subject to boundary condition W (0) = 0

Classical definition

The stochastic process W = {W (t) : t 2 R+} is a Lévy process if it fulfills the following

requirements:

1. W (0) = 0 almost surely.

2. Given 0  t1 < t2 < . . . < tn, the increments W (t2)�W (t1), W (t3)�W (t2),

. . . , W (tn)�W (tn�1) are mutually independent.

3. For any given step T , the increment process �TW (t), where �T is the operator

that associates W (t) to

�
W (t)�W (t� T )

�
, is stationary.

�(t)

t

D�1⇥(t) =

Z t

�1
⇥(�)d�D�1⇤�(t)

t

I0⇥(t) =

Z t

0
⇥(�)d�

I⇤0�(t)

t

D: scale-invariant operator with � = 1

... but the system is no longer BIBO stable

Adjoint inverse operator (LSI):

D�1⇤'(t) =

Z +1

t
'(⌧)d⌧ = ( _

+ ⇤ ')(t)

Stabilizing the anti-derivative operator

38

/2 Lp(R)

I0: imposes vanishing boundary condition at t = 0

Modified anti-derivative operators:

I⇤0'(t) = D�1⇤'(t)� (D�1⇤')(�1) _
+(t)

I⇤0: continuous operator S(R) ! R(R)



(a): Gaussian

(b): Laplace

(c): Compound Poisson

(d): Cauchy

From Brownian motion to Lévy flights

Nobert Wiener

Paul Lévy

Ordinary differential systems
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First-order operator: P↵ = D� ↵Id with Re(↵) 6= 0

Inverse operator: S(R) ! S(R)

P�1
↵ ' = ⇢↵ ⇤ '

Adjoint: P⇤
↵ = �P�↵

) P�1⇤
↵ ' = �⇢�↵ ⇤ ' = ⇢_↵ ⇤ '

P↵1 · · ·P↵N {s}(r) = qM (D){w}(r)

Higher-order operators with Re(↵n) 6= 0 and N > M

Inverse operator L�1 : S(R) ! S(R)

L�1 = P�1
↵N

· · ·P�1
↵1

qM (D)

L�1⇤ : S(R) ! S(R)

⇢↵(r) = F�1

⇢
1

j! � ↵

�
(r) =

8
<

:
e↵r [0,1)(r) if Re(↵) < 0,

�e↵r (�1,0](r) if Re(↵) > 0.

L�1' = ⇢L ⇤ ' with ⇢L 2 R(R) (exponential decay)



Application: signal modeling (Audio)

41

Sparse, bandpass processes

cPs
mix

(') =
MY

m=1

cPsm(') = exp

 Z

R

MX

m=1

fm
�
L

�1⇤
m '(t)

�
dt

!

Mixed sparse processes: s
mix

= s
1

+ · · ·+ sM

L =
dn

dtn
+ an�1

dn�1

dtn�1
+ · · ·+ a1

d

dt
+ a0I

(a) Gaussian (b) Alpha stable !=1.2

Gaussian (Am) generalized Lévy (Am, S!S)

(f)Brownian motion revisited
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Ds = w

s = D�1
0 w � ⇤� ⇥ S, ⌅�, s⇧ = ⌅D�1⇤

0 �, w⇧

(Blu-U., IEEE-SP 2007)

D�s = w

Characteristic form of fractional Brownian motion

cPs(') = exp

 
�1

2

Z

R

����
'̂(!)� '̂(0)

|!|�

����
2
d!

2⇡

!

(unstable SDE !)

(by Parseval)

Stabilization ⇔ non-stationary behavior

L2-stable anti-derivative: I⇤0'(t) =

Z

R

'̂(!)� '̂(0)

�j!
ej!t d!

2⇡

Characteristic form of Brownian motion (a.k.a. Wiener process)

cPW (') = exp

✓
�1

2

kI⇤0'k2L2

◆

= exp

 
�1

2

Z

R

����
'̂(!)� '̂(0)

�j!

����
2
d!

2⇡

!



Example in 1D: Self-similar processes
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fBm; H = 0.50

fBm; H = 0.75

fBm; H = 1.25

fBm; H = 1.50

Poisson; H = 0.50

Poisson; H = 0.75

Poisson; H = 1.25

Poisson; H = 1.50

H=.5
H=.75

H=1.25
H=1.5

L F ! (j!)H+ 1
2 ) L�1

: fractional integrator

Sparse (generalized Poisson)Gaussian
Fractional Brownian motion (Mandelbrot, 1968) (U.-Tafti, IEEE-SP 2010)

@

2
s(x)

@x1@x2
=

X

k

Ak�(x� xk)

Complete mathematical description (characteristic form)

where xk are Poisson distributed with rate �

and Ak i.i.d. Gaussian with characteristic function p̂A.

) s(x) = a0 +
X

k

Ak(x� xk)
0
+

Equations of a screen saver
Mondrian process

8' 2 S(R2
) (Schwartz’s space of smooth and rapidly-decaying test functions):

E{ejhs,'i} = exp

✓
�

Z 1

�1

Z 1

�1
p̂

A

✓Z 1

x1

Z 1

x2

'(x

0
1, x

0
2)dx

0
1dx

0
2

◆
dx1dx2 � �

◆

with p̂

A

(!) = e

�!2

2



L = (��)1/2
F ! k!k

Gaussian L = Dr1Dr2
F ! (j!1)(j!2)

Scale- and rotation-invariant processes
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H=.5 H=.75 H=1.25 H=1.75

Stochastic partial differential equation : (��)
H+1

2 s(x) = w(x)

Gaussian

Sparse (generalized Poisson)

(U.-Tafti, IEEE-SP 2010)



Powers of ten: from astronomy to biology
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Unser: Image processing

2.1 DECOUPLING OF SPARSE 

48

s = L�1w , w = Ls

■Discrete approximation of operator

■Operator-like wavelet analysis



Decoupling: Linear combination of samples
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Input: s(k),k 2 Zd (sampled values)

Discrete approximation of whitening operator: Ld

Ld�(x) =
X

k2Zd

dL[k]�(x� k)

Generalized B-spline:

�L(x) = LdL
�1�(x) A-to-D translator

Discrete increment process:

u[k] = Lds(x)|
x=k

= (�L ⇤ w)(x)|
x=k

= h�_
L (·� k), wi
| {z }

'

s = L�1w

Decoupling: Wavelet analysis
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Generalized operator-like wavelets:

 i(x) = L⇤�i(x)

Operator-like wavelet analysis of sparse process:

(Khalidov-U. 2006, Ward-U. ACHA 2013)

Ls = w

h i(·� x0), si =hL⇤�i(·� x0), si

=h�i(·� x0),Ls)i

=h�i(·� x0)| {z }
'

, wi = (�_i ⇤ w)(x0)
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Gaussian Sparse

Fourier analysis Wavelet analysis
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