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1 Preliminaries

1.1 Brief overview of continuous-domain operators

The proper mathematical context is given by Schwartz’ theory of general-
ized functions where S 0(Rd) is the space of tempered distributions. It is
arguably the most comprehensive theory for continuous-domain signals and
linear operators acting on such signals because:

• it provides a complete characterization of linear operators in terms
of some generalized “integral” equation (see Schwartz’ kernel theorem,
which is explained next);

• it supports the use of the Fourier transform in its full generality (i.e.,
the generalized Fourier transform F is a continuous reversible map
S 0(Rd) ! S 0(Rd) that coincides with the usual definition for functions
that are absolutely integrable).

Formally, a tempered distribution f : ' 7! hf, 'i is a linear (and contin-
uous) functional that associates a real number denoted by hf, 'i to each test
function ' 2 S(Rd) (Schwartz’s space of smooth and rapidly decaying func-
tions). For instance, the Dirac impulse at location x

0

2 Rd is the generalized
function �(· � x

0

) 2 S 0(Rd) defined as

' 7! h�(· � x

0

), 'i = '(x
0

)

Here, the dot “·” is used as placeholder for the domain variable (i.e., ', '(x),
or '(·) are equivalent notations for the same object which is a function
' : Rd ! R), while x

0

is a fixed offset that indicates the location of the
impulse. In the case where f is an ordinary function of the variable x 2 Rd,
the so-called “duality product” is given by

hf, 'i =

Z

Rd
f(x)'(x)dx, (1)

which is a conventional integral.
The fundamental result for our purpose is Schwartz’ kernel theorem,

which states that any continuous linear operator G : S(Rd) ! S 0(Rd) admits
an “integral” representation as

G{'}(x) = hg(x, ·), 'i =

Z

Rd
g(x, y)'(y)dy (2)

4



M. Unser (EPFL) RKHS, Splines, and Gaussian Processes

for all ' 2 S(Rd) with g(x, y) 2 S 0(Rd ⇥ Rd). In essence, g(·, ·) is the
continuous-domain analog of the matrix that specifies a finite-dimensional
linear operator. The kernel of G is identified by formally applying the oper-
ator to a shifted Dirac impulse

g(x, y) = G{�(· � y)}(x), (3)

which is the reason why g(x, y) is also called the generalized impulse response
of the operator. Note, however, that the kernel g(·, ·) is not always an “ordi-
nary” bivariate function Rd ⇥Rd ! R, but rather a tempered distribution in
the cross-product space S 0(Rd⇥Rd). The truly powerful aspect of the kernel
theorem is that the implication also goes the other way around: Any kernel
g(·, ·) 2 S 0(Rd ⇥ Rd) specifies a continuous operator G : S(Rd) ! S 0(Rd)
via equation (2). Moreover, two operators are identical if and only if their
kernels are equal (in the sense of distributions).

To take us back to a more classical setting where signals and kernels
are ordinary functions of the index variables x, y 2 Rd, we invoke an ex-
tended version of the kernel theorem, due to the famous mathematician
Grothendieck, that guarantees the existence of two Hilbert spaces H and H

0

S(Rd) ✓ H, H
0

✓ S 0(Rd)

such that the operator has a continuous extension G : H ! H
0

, which is
also defined by (2), but with ' 2 H. This is equivalent to the existence of a
constant C

0

> 0 such that

kG{f}kH
0

 C
0

kfkH.

From a pragmatic point of view, this means that, given any kernel g(x, y),
it is always possible to specify a Hilbert space on which the corresponding
operator is well defined. Among those spaces, the reproducing kernel Hilbert
spaces (RKHS) are the ones with the strongest practical appeal because
their members are conventional functions of the variable x, although not
necessarily square integrable (see Theorem 7).

1.2 Inner products versus duality product

Having a good grasp of the distinction between the two parallel notions of
“inner product” and “duality product” is essential since it is driving the whole
formulation. The duality product, on the one hand, is unique (and universal)
as it expresses the pairing of a function space to its topological dual. An
inner product, on the other hand, specifies a Hilbert space and is typically
tied to a given problem, an operator, or a positive-definite kernel. There is
no single inner product—the variations on the theme are essentially limitless.
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1.2.1 Hilbert spaces and inner products

We briefly recall the defining properties of an inner product. For simplicity,
all (generalized) functions are assumed to be real-valued.

Definition 1 (Inner product). Let H be a linear (or vector) space. A real-
valued inner product on H is a bilinear form that associates to each pair f, g 2
H a real number denoted by hf, giH that satisfies the following properties for
all f, g, h 2 H and ↵ 2 R.

• Linearity: h↵f, giH = ↵hf, giH and hf + g, hiH = hf, hiH + hg, hiH.

• Symmetry: hf, giH = hg, fiH.

• Non-negativity: hf, fiH � 0.

• Unicity: hf, fiH = 0 , f = 0.

If all conditions except the last are met, then hf, giH is called a semi-inner
product.

An inner product automatically determines a norm by the formula kfkH =
phf, fiH. A Hilbert space is a complete (i.e., closed) normed space whose
norm is induced by an inner product; it is separable if it admits a countable
basis. The classical example of a separable Hilbert space is Lebesgue’s space
of square-integrable functions L

2

(Rd).

1.2.2 Duality product

The canonical duality product h·, ·i is the continuous bilinear form S 0(Rd) ⇥
S(Rd) ! R that represents the action of a linear functional f 2 S 0(Rd) on a
test function ' 2 S(Rd):

f : ' 7! hf, 'i. (4)

One then extends the notion to any dual pair of Banach spaces (X 0, X ) in
S 0(Rd) (see Definition 5) by writing the action of f 2 X 0 on a function g 2 X
as

f : g 7! hf, gi.
The implicit understanding here is that the bilinear form remains continuous
in both arguments because of the bound

|hf, gi|  kfkX 0kgkX
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for all f 2 X 0 and g 2 X , which actually defines duality. This extension,
which is compatible with the canonical form (4) when ' 2 S(Rd), is sup-
ported by the Hahn-Banach theorem.

In particular when X 0 = H0 and X = H are a dual pair of Hilbert spaces,
we have that

hf, gi = hR{f}, giH = hf, R�1{g}iH0 (5)

where the unitary pair of operators R : H0 ! H and R�1 = RH : H0 ! H
are the Riesz maps that are encoding the isometric isomorphism between the
two spaces (see Theorem 4).

1.2.3 Hilbert-conjugate vs. adjoint operators

Two distinct notions are also required to describe the interaction of opera-
tors with inner products versus the duality product: the Hilbert conjugate
(which is dependent upon the inner product) vs. the adjoint operator (whose
definition is universal). The fact that the two concepts are often represented
using the same symbol “⇤” can be a source of confusion.

Let (H0, H) be a dual pair of Hilbert spaces and G a continuous operator
G : H ! H0. Since we are dealing with normed spaces, the continuity
assumption is equivalent to the existence of a constant (the induced norm of
the operator) denoted by kGk such that

kGfkH0  kGk kfkH
for all f 2 H.

The Hilbert (or Hermitian) conjugate of G is then defined as the (unique)
operator GH : H0 ! H that satisfies

hGf, giH0 = hf, GHgiH
for all f 2 H and g 2 H0.

Since S(Rd) ✓ H and H0 ✓ S 0(Rd), the operator G : H ! H0 is repre-
sented by its kernel via (2) (Schwartz’ kernel theorem), while its restriction
to S(Rd) is guaranteed to be continuous. One then defines the adjoint of
G : H ! H0 as the unique operator G⇤ : H0 ! H such that

hG{'
1

}, '
2

i = hG⇤{'
2

}, '
1

i = h'
1

, G⇤{'
2

}i,

for all '
1

, '
2

2 S(Rd). Note that the right-hand side of the above identity
(which is easier to remember) uses an extended interpretation of the duality
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product for H0 ⇥ H ! R, which is supported by the Hahn-Banach theorem
with the bound

|hG{'
1

}, '
2

i| = |h'
1

, G⇤{'
2

}i|  kGk k'
1

kHk'
2

kH.

The (unique) kernel representation of G⇤ is

G⇤{'}(x) = hg(·, x), 'i =

Z

Rd
g(y, x)'(y)dy (6)

which is the “transposed” version of (2) where the index variables x and y

have been simply interchanged.
By applying the above definitions, we have that

hG{'
1

}, '
2

i = hG{'
1

}, R�1{'
2

}iH0 = h'
1

, GHR�1{'
2

}iH
= hRGHR�1{�

2

}, '
1

i = hG⇤{'
2

}, '
1

i

which shows that G⇤ = RGHR�1 with R�1 : H ! H0, GH : H0 ! H and
R : H ! H0. In other words, the Hilbert conjugate and adjoint operators of
G : H ! H0 are equivalent iff. the Riesz map R is the identity; that is, when
H = H0 = L

2

(Rd).

1.3 Self-adjoint operators and positive-definite kernels

Equation (6) implies that the kernel of a self-adjoint operator is symmetric;
i.e.,

H = H⇤ , h(x, y) = h(y, x) for all x, y 2 Rd.

Among the class of self-adjoint operators, the most favorable ones are
those whose kernel is positive-definite.

Definition 2. A kernel function h : Rd ⇥ Rd ! R such that

h(x, y) = h(y, x)

for all x, y 2 Rd is said to be symmetric. Moreover, it is positive semi-
definite (or positive definite, for short) if

N
X

m=1

N
X

n=1

zmh(xm, xn)zn � 0

for any N 2 N, x

1

, . . . , xN 2 Rd, and z
1

, . . . , zN 2 R.
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Remarkably, there is a formal equivalence between positive-definite ker-
nels and inner products.

Theorem 1 (Moore-Aronszajn [?]). The kernel function h : Rd ⇥ Rd ! R
is symmetric positive (semi-)definite if and only if there exists some Hilbert
space H and a families of elements {f

x

}
x2Rd in H such that

h(x, y) = hf
x

, f
y

iH. (7)

In particular, there is a unique Hilbert space H
rep

—the reproducing kernel
Hilbert space of h—such that (7) holds with f

x

= h(·, x).

Proof. We shall only prove the (easy) direct part of the statement. To that
end, we use the announced form of h(·, ·) to evaluate

N
X

m=1

N
X

n=1

zmh(xm, xn)zn =
N
X

m=1

N
X

n=1

zmhf
xm , f

xniHzn

= h
n
X

i=1

zmf
xm ,

n
X

j=1

znf
xniH (bilinearity of h·, ·i)

= k
n
X

i=1

zmf
xmk2H � 0

The remainder of the proof is more technical—we refer to [, Section 1.3, pp.
13-23] for a comprehensive exposition.

The fundamental outcome of Theorem 1 is that there is a perfect equiv-
alence between positive-definite kernels and RKHS, which are defined in
Section 2.
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1.4 Schwartz’s space of test function: density properties

As complement, we now present some important topological properties of
Schwartz’ space of test functions S(Rd), which will be invoked in some of
our derivations. Since the content of this section is of more abstract nature,
it may be skipped on first reading.

The notion of a locally-convex topological space is a generalization of the
idea of normed space that retains the key topological properties associated
with a norm (or, rather, a countable sequence of (semi-)norms). For our
purpose, it is sufficient to know that this family includes all Banach spaces
(such as Lp(Rd) for p � 1), Fréchet spaces such as S(Rd), as well as their
duals—e.g., S 0(Rd): Schwartz’ space of tempered distributions.

Definition 3 (Continuous embedding). Let X and Y be two locally-convex
topological spaces such that X ⇢ Y (set inclusion). X is said to be con-
tinuously embedded in Y, which is denoted by X ✓ Y, if the inclusion map
i : X ! Y : x 7! x is continuous. In particular, if X and Y are two Banach
spaces with respective norms k ·kX and k ·kY , it is equivalent to the existence
of a constant C

0

such that

kxkY  C
0

kxkX ,

for all x 2 X .

Definition 4. Let X and Y be two locally-convex topological vector spaces
so that X is continuous embedded in Y; i.e., X ✓ Y. We say that X is
dense in Y if for any y 2 Y, there exists some sequence (xk) in X such that
limk!1 xk = y in the topology of Y.

Theorem 2 (Denseness of S(Rd)). Let X be any locally-convex topological
vector space such that S(Rd) ✓ X ✓ S 0(Rd) where the embedding is continu-
ous. Then, S(Rd) is dense in X .

Proof. The method is constructive: any f 2 X can be approached as closely
as desired by the sequence of functions 'k = (f ⇤ ûk)uk 2 S(Rd) ✓ X where
(uk) is a series of window functions in S(Rd) such that limk!1 uk = 1 (e.g.,
uk(x) = e�(kxk/k)2). The enabling property for this construction is that the
convolution of any tempered distribution

�

e.g., f 2 X ✓ S 0(Rd)
�

with a
test function

�

here ûk 2 S(Rd)
�

necessarily yields a function that is infinity
differentiable but still possibly of slow growth. The subsequent multiplication
with uk imposes the rapid descent property, which ensures that 'k 2 S(Rd)
for any k 2 N+. As k ! 1, the test function ûk converges to the Dirac
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impulse, which then acts as the convolution identity. The powerful aspect of
the argument is that the reasoning holds for any X ✓ S 0(Rd), including the
limit case X = S 0(Rd).

In the sequel, we shall often exploit this property to establish algebraic
properties of functionals and operators (such boundary conditions and pos-
itivity). The practical advantage of considering test functions first is that it
allows us to split sums or take limits without having to worry about tech-
nicalities. Once the desired property is established over S(Rd), it is then
readily transferred to some larger topological vector space X that is of in-
terest to us.

Corollary 1. We now consider some Banach space X equipped with the
norm k · kX with the property that S(Rd) is dense in X ✓ S 0(Rd). Then, the
following holds true.

• The map ' 7! k'kX specifies a continuous functional on S(Rd) that
fullfills the defining properties of a norm; i.e., k↵'kX = ↵k'kX , k' +
�kX  k'kX + k�kX and k'kX = 0 , ' = 0, for any ↵ 2 R and
', � 2 S(Rd). Then, the closure of S(Rd) with respect to the norm
k · kX is precisely the Banach space (X , k · kX ).

• Transfer of boundary condition: Let � 2 X 0 with S(Rd) ✓ X ✓ S 0(Rd).
Then,

8' 2 S(Rd), h�, 'i = 0 ) 8f 2 X , h�, fi = 0

• Extension of the domain of an operator T : S(Rd) ! S 0(Rd). Let X
and Y be two Banach space such that S(Rd) ✓ X , Y ✓ S 0(Rd). If

kT'kY  Ck'kX
for all ' 2 S(Rd), then the operator has a continuous extension T :
X ! Y.

The first and second statements are immediate consequences of the dense-
ness of S(Rd) in X . The third condition ensures that the operator is bounded
in the k · kY norm; we then invoke the Hahn-Banach theorem to justify the
extension of its domain.

Proposition 1. Let L be a continuous linear operator S(Rd) ! X where
(X , k · kX ) is a Banach subspace of S 0(Rd). Then:

• The closure of the S(Rd) with respect to the semi-norm ' 7! kL'kX M
=

k'k
L,X is a semi-normed subspace of S 0(Rd) denoted by X

L,ext.

11
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• The (extended) null space of L, N
L

= {x
0

2 X
L,ext : Lx

0

= 0}, is a
closed subspace of S 0(Rd) (???).

• The quotient space X
L,ext

�N
L

equipped with the norm k · k
L,X is a

Banach space.

• If N
L

equipped with the norm k ·kN
L

is a Banach space, then the direct
sum (X

L,ext

�N
L

) � N
L

is a Banach space that is isometrically isomor-
phic to X

L,ext.

Theorem 3. Let (X , k · kX ) be a Banach space such that S(Rd) ✓ X ✓
S 0(Rd). Then, its continuous dual (X 0, k · kX 0) has the same property—i.e.,
S(Rd) ✓ X 0 ✓ S 0(Rd)—so that both spaces are dense in S 0(Rd).

Proof. Due to the nuclear-Fréchet structure of S(Rd) (see Appendix D),
the continuous embedding S(Rd) ✓ X ✓ S 0(Rd) implies the existence of a
Hilbert space H = Sm(Rd) for some m 2 N such that S(Rd) ✓ H ✓ X ✓
H0 ✓ S 0(Rd). This is equivalent to the existence of two constants C 0

m, Cm > 0
such that

1

C 0
m

k'kH0  k'kX  Cmk'kH (8)

for all ' 2 H.
Since S(Rd) is dense in X (by Theorem 2), we can expressed the (dual)

norm of X 0 (see Definition 5) as

kfkX 0 = sup
'2S(Rd

)\{0}

✓hf, 'i
k'kX

◆

for any f 2 X 0.
Let us now take f 2 S(Rd). Since the space H and H0 are duals of each

other, we have that |hf, 'i|  kfkHk'kH0 , which, for ' 6= 0, implies that

kfkX 0  kfkHk'kH0

k'kX  C 0
mkfkH < +1.

Moreover, we clearly have that k'kX 0 = 0 , ' = 0, which shows that k ·kX 0

is a valid norm over S(Rd). In other words, we can view X 0 as the completion
of S(Rd) with respect to the k · kX 0 norm.

Likewise, by interchanging the role of X 0 and H0, we use the same argu-
ment to show that

kfkH0 = sup
'2S(Rd

)\{0}

✓hf, 'i
k'kH

◆

 kfkX 0k'kX
k'kH  CmkfkX 0 ,

12
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for all f 2 S(Rd) and, by extension, for all f 2 X 0. The final outcome is
1

Cm
kfkH0  kfkX 0  C 0

mkfkH,

which is the dual counterpart of (8). The statement on density then follows
from Theorem 2.

In view of Theorem 3, the norm for the Banach space X ◆ S(Rd) admits
the following equivalent form

kfkX = sup
'2S(Rd

)\{0}

✓ hf, 'i
k'kX 0

◆

where the supremum is taken over S(Rd), rather than X 0 ◆ S(Rd). This
yields a meaning to the alternative definition of X as

X =
�

v 2 S 0(Rd) : kvkX < 1 .

2 Reproducing kernel Hilbert spaces (RKHS)

In essence, any Hilbert space H = {f : Rd ! R : kfkH =
phf, fiH < 1} ✓

S 0(Rd) whose members f are “ordinary”—but, not necessarily bounded—
functions on Rd is a RKHS and vice versa. In other words, f(x) is well-
defined for any x 2 Rd in contrast with the elements of S 0(Rd) (generalized
functions) that do not necessarily have a pointwise interpretation. This
will be made explicit by relating the abstract definition (Definition 6) and
the properties of the reproducing kernel (Proposition 2) to the functional
characteristics (continuity, rate of decay or growth) of the RKHS (Theorem
7).

2.1 Definition of RKHS

Let us start by recalling a few standard definitions from functional analysis.

Definition 5 (Dual of a Banach space). The dual of the Banach space X ◆
S(Rd) is the vector space X 0 ✓ S 0(Rd) that consists of all continuous linear
functional on X . It is can be specified as the completion of S(Rd) in the dual
norm

kvkX 0
M
= sup

u2X\{0}

✓hv, ui
kukX

◆

(9)

where h·, ·i : X 0 ⇥ X ! R is the duality pairing that represents the action of
the linear functional v : u 7! v(u) = hv, ui.

13
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To keep the notation simple, we shall write

X = {u 2 S 0(Rd) : kukX < 1}
X 0 = {v 2 S 0(Rd) : kvkX 0 < 1}

with the implicit understanding that the rigorous specification of these spaces
involves a completion/density argument (see Theorem 3 and accompanying
explanations).

In particular, the dual of a Hilbert space H = X is another Hilbert space
H0 with the following remarkable property.

Theorem 4 (Riesz representation theorem). Let (H, H0) be a dual pair of
Hilbert spaces. Then, for any continuous linear functional v 2 H0, there is a
unique element v⇤ = R{v} 2 H (the so-called conjugate of v) such that

v(u) = hv⇤, uiH (10)

for all u 2 H. Conversely, for any v⇤ 2 H, the linear functional v : H ! R
defined by (10) is continuous with kvk = kvkH0 = kv⇤kH = kRvkH, and
hence included in H0. The linear isometric map R : H0 ! H that associates
any element v 2 H0 to its conjugate v⇤ 2 H is called the Riesz map.

The existence of the Riesz map implies that hv
1

, v
2

iH0 = hv⇤
1

, v⇤
2

iH =
hRv

1

, Rv
2

iH for any v
1

, v
2

2 H0. This specifies the inner product for H0,
while it also shows that the two spaces are isometrically isomorphic.

Definition 6 (RKHS). The Hilbert space H ✓ S 0(Rd) is said to be a repro-
ducing kernel Hilbert space (RKHS) if the shifted Dirac impulse �(· � x

0

) 2
H0 for any x

0

2 Rd.

Let us momentarily denote the Dirac “sampling” functional �(· � x

0

) by
�
x

0

. By the Riesz representation theorem, the RKHS condition �
x

0

2 H0

implies the existence and uniqueness of the conjugate element �⇤
x

0

2 H such
that

f(x
0

) = �
x

0

(f) = h�(· � x

0

), fi = h�⇤
x

0

, fiH, (11)

for all f 2 H and for any x

0

2 Rd. This brings us to the concept of repro-
ducing kernel, which is a reformulation of (11) with the change of notation
�⇤
x

0

(x) = h(x
0

, x).

Definition 7 (Reproducing kernel). The reproducing kernel of a RKHS on
Rd is the function h : Rd ⇥ Rd ! R such that

(i) h(x
0

, ·) 2 H for all x

0

2 Rd

(ii) f(x
0

) = hh(x
0

, ·), fiH for all f 2 H and x

0

2 Rd. (12)

14
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Proposition 2. Let H be a RKHS on Rd. Then, its reproducing kernel
h : Rd ⇥ Rd ! R has the following properties.

1. It is unique.

2. h(x, y) = hh(x, ·), h(·, y)iH
3. Symmetry: h(x, y) = h(y, x) for all x, y 2 Rd

4. Positive (semi-)definiteness.

5. The linear span of {h(x, ·), x 2 Rd} is dense in H.

6. Link with the Riesz map: The operator

R : ' 7! R{'} =

Z

Rd
h(·, y)'(y)dy (13)

is a unitary mapping H0 ! H with the property that hu, Rui = kuk2H0
for all u 2 H0 (the dual space of H).

7. Invertibility: The operator specified by (13) admits a unique inverse
R�1 : H ! H0 with the property that hR�1f, fi = kfk2H for all f 2 H.

Proof. The reproducing kernel is obtained from (11) by setting h(x
0

, y) =
�⇤
x

0

(y); it is unique and included in H as a consequence of the Riesz repre-
sentation theorem.

Property 2 is derived by applying the reproduction formula (12) to the
kernel itself: hh(x, ·), h(·, y)iH = h(x, y). The symmetry follows from the
symmetry of the inner product: h(x, y) = hh(x, ·), h(y, ·)iH = hh(y, ·), h(x, ·)iH =
h(y, x).

The positive definiteness is a consequence of Property 3 where h(x, y) is
expressed as an inner product (see also Theorem 1).

To establish Property 5, we consider a function g 2 H that is orthogonal
to the linear span of {h(x, ·)}

x2Rd . Then, hg, h(x, ·)i = 0 for every x 2 Rd,
which, by the reproducing kernel property, is equivalent to g = 0.

As for Properties 6 and 7, we refer once more to Theorem 4, which
guarantees the existence and unicity of an invertible pair of operators R :
H0 ! H and R�1 : H ! H0 (the Riesz maps of H0 and H, respectively) such
that

hv, ui = hv⇤, uiH = hRv, uiH = hv, R�1uiH0 = hv, u⇤iH (14)

15
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for all v 2 H0 and u 2 H. Next, we rephrase the definition of the reproducing
kernel as

�⇤
y

(x) = R{�(· � y)}(x) = h(y, x) = h(x, y),

which shows that h(·, ·) is the generalized impulse reponse of the Riesz map
R. This is precisely what is indicated by Eq. (6) (see (3) and accompanying
explanations). Finally, we set v = R�1u (resp., u = Rv) in (14), which yields

hR�1u, ui = hu, uiH = kuk2H
hv, Rvi = hv, viH0 = kvk2H0 .

There is a striking parallel in (11) between the central equation (the defin-
ing property of the shifted Dirac impulse) and the right-hand side, which
specifies �⇤

x

0

. The crucial difference, of course, is that �⇤
x

0

= h(x
0

, ·) is an or-
dinary function whose action is tied to the inner product of H, whereas
�(· � x

0

) is a tempered distribution whose definition involves the dual-
ity product for

�S 0(Rd), S(Rd)
�

. While it would be tempting to interpret
�(x � y) as the reproducing kernel for the canonical Hilbert space L

2

(Rd)
for which f⇤ = f (because L

2

(Rd) is its own dual), there are two reasons
why the RKHS property cannot apply there: i) most functions f 2 L

2

(Rd)
are not continuous which makes the sampling operation ill-defined, and, (ii)
�(x

0

� ·) /2 L
2

(Rd), which would contradict the first requirement in Defini-
tion 7.

We shall therefore focus our attention on the Hilbert spaces whose mem-
bers are continuous functions.

Supplementary material: For completeness, we also list some higher-
level topological properties of reproducing kernel Hilbert spaces that are
given here without proof; see for the details.

Theorem 5. Let h : Rd ⇥ Rd ! R be the reproducing kernel of some RKHS
H. Then, the following properties hold.

1. Any converging (or Cauchy) sequence of functions (fn) in H also con-
verges pointwise to the same limit; i.e.,

lim
n!1 kfn � fkH = 0 ) lim

n!1 |fn(x) � f(x)| = 0 for every x 2 Rd.

2. The set H
pre

=
�

PN
n=1

anh(·, yn) : N 2 N, an 2 R, yn 2 Rd
 

is dense
in H. In other words, we can represent any function f 2 H as closely
as desired by a linear combination of the form f̃ =

PN
n=1

anh(·, yn)
with a finite number N of terms.

16
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2.2 Decay and continuity properties

We shall monitor the algebraic rate of decay/growth of functions of the
variable x 2 Rd via their inclusion in “weighted” function spaces. To that
end, we first define

L1,↵(Rd) =
n

f 2 S 0(Rd) : kfk1,↵ < +1
o

with ↵ 2 R, where

kfk1,↵ = ess sup
x2Rd

(|f(x)|(1 + kxk)↵) .

Note that

f 2 L1,↵(Rd) , |f(x)|  kfk1,↵

(1 + kxk)↵
almost everywhere, (15)

meaning that f(x) decays at least (or growth at most) as 1/kxk↵ at infin-
ity. To constrain the setting to “classical” functions that are well defined
pointwise, we introduce the function space

C
b,↵(Rd) =

n

f : Rd ! R continuous and s.t. kfk1,↵ < +1
o

.

The main difference there is that the upper bound on the rhs of (15) becomes
valid everywhere; this allows for the substitution of the “essential supremum”
in the definition of the weighted L1 norm by the simpler supremum (i.e.,
sup

x2Rd).
It can be checked that C

b,↵(Rd) equipped with the k · k1,↵ norm is
complete and hence a Banach space. In particular, C

b,0(Rd) = C
b

(Rd), which
is the classical space of bounded continuous functions. Clearly, kfk1,↵

1


kfk1,↵

2

for any f 2 C
b,↵

2

(Rd) with ↵
2

� ↵
1

, which implies that C
b,↵

2

(Rd) is
continuously embedded in C

b,↵
1

(Rd) (see Definition 3 below) and, a fortiori,
in L1,↵

1

(Rd). This functional embedding is summarized as

S(Rd) ✓ C
b,↵+�(Rd) ✓ C

b,↵(Rd) ✓ L1,↵(Rd) ✓ S 0(Rd),

for any � � 0.
A standard result from the theory of tempered distributions is that, for

any continuous function f 2 S 0(Rd), there exists some (critical) exponent
↵
0

2 R such that f 2 C
b,↵(Rd) for all ↵  ↵

0

. This exponent qualifies the
rate of algebraic decay of f . The function is said to be of slow growth if

17
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↵
0

 0. On the contrary, it has a rapid decay if the inclusion holds for all
↵ 2 R.

The same considerations apply for continuous kernel functions h : Rd ⇥
Rd ! R which are then described in terms of the cross-product extension of
these spaces; namely, S 0(Rd ⇥ Rd), L1,↵(Rd ⇥ Rd) and C

b,↵(Rd ⇥ Rd) with

kh(·, ·)k1,↵ = sup
x,y2Rd

|h(x, y)|(1 + kxk)↵(1 + kyk)↵.

To emphasize the central role of continuity in the characterization of
RKHS, let us consider some Hilbert space H that is composed of continuous
functions with an algebraic rate of decay no worse than ↵; that is, H ✓
C
b,↵(Rd) for some ↵ 2 R. This embedding implies the existence of a constant

C > 0 such that
kfk1,↵  CkfkH, for all f 2 H.

The condition f 2 C
b,↵(Rd) then gives that

|f(x
0

)| = |�
x

0

(f)|  (1 + kx

0

k)�↵kfk1,↵  C
x

0

kfkH,

which shows that �
x

0

: H ! R is continuous or, equivalently, �(· � x

0

) 2 H0

for any x

0

2 Rd. This proves that continuity together with some form
of boundedness is sufficient to ensure the reproducing kernel property (see
Definition 6). What is more remarkable is that the implication also goes the
other way around in the sense that one can tightly control the continuity and
rate of decay of f 2 H based on the properties of the reproducing kernel.

The first element of this equivalence is the transfer of continuity between
h and the members of H, which is covered by the following theorem, the
proof of which can be found in [?, Theorem 17, p. 34].

Theorem 6 (RKHS of continuous functions). Let H be a RKHS of functions
on Rd with reproducing kernel h : Rd ⇥ Rd ! Rd. Then, any element of H
is continuous if and only if

1. the map x 7! h(x, y) is continuous for all y 2 Rd;

2. for every x 2 Rd, there exist ✏ > 0 such that the function y 7! h(y, y)
is bounded on the open ball B(x, ✏) = {y 2 Rd : ky � xk < ✏}.

We now show that in the present setting where H ✓ S 0(Rd), the local
boundedness constraint (Condition 2) in Theorem 6 can be substituted by a
simpler and more intuitive slow-growth constraint; that is, the existence of
a critical rate of decay/growth ↵ 2 R such that h 2 L1,↵(Rd ⇥ Rd).

18
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Theorem 7 (Characterization of RKHS in C
b,↵(Rd)). A bivariate function

h : Rd ⇥ Rd ! R is the reproducing kernel of a RKHS H ✓ C
b,↵(Rd) with

↵ 2 R if and only if it is positive-definite, separately continuous in each
variable, and such that h(·, ·) 2 L1,↵(Rd ⇥ Rd). In particular, this implies
that

1. h(x
0

, ·) 2 C
b,↵(Rd) for any x

0

2 Rd

2. kh(·, ·)k1,↵ = sup
x,y2Rd |h(x, y)| (1 + kxk)↵(1 + kyk)↵ < 1

3. A↵,h = sup
x2Rd h(x, x) (1 + kxk)2↵ < 1

with Conditions 2 and 3 being equivalent.

An interesting outcome of Theorem 7 is that Condition 1—the minimalis-
tic choice dictated by Definition 7—is not sufficient on its own. The natural
extension is h(·, ·) 2 C

b,↵(Rd ⇥ Rd), which is sufficient for the inclusion
H ✓ C

b,↵(Rd), but slightly too conservative. Indeed, the joint continuity
of h over Rd ⇥ Rd is stronger than the separate continuity—a topic that is
further developed in Proposition 3.

Proof of Theorem 7. We recall that the positive-definiteness of h is equiva-
lent to the RKHS property (see Theorem 1). Likewise, the necessity of Condi-
tion 1 (which implies the continuity of h in each argument) for H ✓ C

b,↵(Rd)
is obvious since h(x

0

, ·) 2 H from the definition of a reproducing kernel. The
remainder of the proof is divided in three parts.

Part I: H ✓ C
b,↵(Rd) ) Condition 3.

By applying the reproducing property twice, we get

|f(x)| = |hh(x, ·), fiH| 
p

hh(x, ·), h(·, x)iH kfkH (Cauchy-Schwarz)


p

h(x, x) kfkH,

from which we deduce that

kfk1,↵ = sup
x2Rd

(1 + kxk)↵|f(x)|  C
0

kfkH (16)

where
C
0

= sup
x2Rd

(1 + kxk)↵
p

h(x, x).

By defining x

0

= arg sup
x2Rd(1 + kxk)↵

p

h(x, x) and taking f = h(·, x
0

),
we then verify that the inequality (16) is sharp. This allows us to identify
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C
0

=
p

A↵,h as the operator norm of the identity map i : H ! C
b,↵(Rd),

which is bounded by hypothesis.

Part II: Equivalence of Conditions 2 and 3.
The connection between reproducing kernels and inner products yields

|h(x, y)|2  h(x, x)h(y, y),

which is the kernel equivalent of the Cauchy-Schwarz inequality. Accordingly,

sup
x,y2Rd

|(1 + kxk)↵h(x, y)(1 + kyk)↵|2

 sup
x,y2Rd

(1 + kxk)2↵h(x, x)(1 + kyk)2↵h(y, y) = A2

h,↵,

which implies that
kh(·, ·)k1,↵  Ah,↵.

Conversely,

(1 + kxk)↵h(x, y)(1 + kyk)↵  kh(·, ·)k1,↵

so that

Ah,↵ = sup
x2Rd

(1 + kxk)↵h(x, x)(1 + kxk)↵  kh(·, ·)k1,↵,

from which we deduce that Ah,↵ = kh(·, ·)k1,↵.

Part III: Condition 3 and continuity of h(x
0

, ·) ) H ✓ C
b,↵(Rd).

The boundedness of kfk1,↵ for all f 2 H follows directly from (16) with C
0

=
p

Ah,↵. We then prove that H ✓ C
b,↵(Rd) ✓ L1,↵(Rd) by invoking Theorem

6, which ensures that all the members of H are continuous functions. The
two required hypotheses are: (i) the separate continuity of h(x, y) in x and
y, and, (ii) the local boundedness of h along its diagonal, which is met,
thanks to Condition 3. Specifically, for any ✏ > 0, we have that

h(y, y)  A↵,h(1 + kyk)�2↵  A↵,h(1 + ✏ + kxk)min(0,�2↵) = M
x

< 1
for all y 2 B(x, ✏).

All the Hilbert spaces H that will be considered in the sequel are implic-
itly assumed to meet this minimal requirement for a RKHS; i.e., the existence
of a critical exponent ↵

0

2 R such that H ✓ C
b,↵(Rd) for all ↵  ↵

0

, the
classical scenario being ↵

0

= 0 (continuity and boundedness).
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The intuitive explanation for the identity Ah,↵ = kh(·, ·)k1,↵ is that
a positive-definite matrix is dominated on the diagonal (by the Cauchy-
Schwarz inequality) so that the max norm of the matrix is equal to the max
norm of its diagonal.

The Cauchy-Schwarz inequality also helps us get a clearer understanding
of the transfer of continuity from h to H. The relevant estimate there is

|f(x) � f(x
0

)|2 = |hh(x, ·) � h(x
0

, ·), fiH|2
 kh(x, ·) � h(x

0

, ·)k2H kfk2H (Cauchy-Schwarz)
=
�

h(x, x) + h(x
0

, x
0

) � 2h(x, x
0

)
� kfk2H. (17)

This implies that one can achieve the continuity of any f 2 H by imposing
that

lim
x!x

0

h(x, x) + h(x
0

, x
0

) � 2h(x, x
0

) = 0 (18)

for all x

0

2 Rd. This latter condition amounts to the continuity of h(x, y)
along the diagonal—i.e., in the neighbourhood of the points (x, y) = (x

0

, x
0

)
for x

0

2 Rd—which is not the same as the (separate) continuity of x 7!
h(x, y) and y 7! h(x, y) required in Theorem 7. There is no contradic-
tion, however, because the former condition implies the latter, as stated in
Proposition 3 below. In fact, (18) is equivalent to the continuity of h over its
whole domain Rd ⇥ Rd. This also means that the combination of (18) and
the boundedness requirement h 2 L1,↵(Rd ⇥Rd) in Theorem 7 is equivalent
to the simpler-looking condition h 2 C

b,↵(Rd ⇥ Rd)

Proposition 3. Let h : Rd ⇥ Rd ! Rd be a positive-definite kernel. Then,
the following conditions are equivalent:

1. continuity of h over Rd ⇥ Rd:

lim
(x,y)!(x

0

,y
0

)

|h(x, y) � h(x
0

, y
0

)| = 0

2. (joint) continuity of h along the diagonal:

lim
x!x

0

|h(x, x
0

) � h(x
0

, x
0

)| = 0

lim
x!x

0

|h(x, x) � h(x
0

, x
0

)| = 0

3. continuity of h in the norm across rows or columns

lim
x!x

0

kh(x, ·) � h(x
0

, ·)kH = lim
y!y

0

kh(·, y) � h(·, y
0

)kH = 0
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for all x

0

, y
0

2 Rd.

Proof. First, we observe that the positive-definiteness of h implies the sym-
metry of the kernel (see Appendix A). It is also known from Theorem 1
that h uniquely specifies a Hilbert space H with the property that h(x, y) =
hh(x, ·), h(·, y)iH. The latter implies that

kh(x, ·) � h(x
0

, ·)k2H = h(x, x) + h(x
0

, x
0

) � 2h(x, x
0

),

which shows the equivalence between Properties 2 and 3. By applying (17)
to f(x) = h(x, y) with y fixed and by taking the squareroot, we find that

|h(x, y) � h(x
0

, y)| 
p

h(y, y)
⇥

h(x, x) + h(x
0

, x
0

) � 2h(x, x
0

)
⇤

1

2 ,

which proves that Property 2 implies the separate continuity of h in each
variable. By using this inequality twice, we get

|h(x, y) � h(x
0

, y
0

)|  |h(x, y) � h(x, y
0

)| + |h(x, y
0

) � h(x
0

, y
0

)|

p

h(x, x)
⇥

h(y, y) + h(y
0

, y
0

) � 2h(y, y
0

)
⇤

1

2

+
p

h(y
0

, y
0

)
⇥

h(x, x) + h(x
0

, x
0

) � 2h(x, x
0

)
⇤

1

2 ,

which proves that h(x, y) tends to h(x
0

, y
0

) as (x, y) ! (x
0

, y
0

).

While we have already pointed out that L
2

(Rd) is not an RKHS, there
is a simple generative mechanism for turning it into one by applying a re-
versible smoothing operator—typically, some kind of integrator—to it. We
now provide a sufficient condition on the generalized impulse response of the
operator for controlling the rate of decay/growth of the output.

Proposition 4. Let g : Rd ⇥ Rd ! R be a kernel such that g(x, ·) 2 L
2

(Rd)
for any fixed x 2 Rd. Then, the output of the corresponding linear operator
G : w 7! f =

R

Rd g(·, y)w(y)dy is well defined pointwise for any w 2 L
2

(Rd).
If, in addition, there is some ↵ 2 R such that

sup
x2Rd

(1 + kxk)↵kg(x, ·)kL
2

(Rd
)

< 1, (19)

then G is bounded from L
2

(Rd) ! L1,↵(Rd).
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Proof. By invoking the Cauchy-Schwarz inequality, we obtain

|f(x)| =

�

�

�

�

Z

Rd
g(x, y)w(y)dy

�

�

�

�


Z

Rd

�

�g(x, y)w(y)
�

�dy  kg(x, ·)kL
2

(Rd
)

kwkL
2

(Rd
)

.

This shows that f(x) is well-defined pointwise provided that kg(x, ·)kL
2

(Rd
)

<
1. Based on this estimate, we also get

kG{w}k1,↵ = ess sup
x2Rd

|f(x)|(1 + kxk)↵


 

sup
x2Rd

(1 + kxk)↵kg(x, ·)kL
2

(Rd
)

!

kwkL
2

(Rd
)

,

which proves that (72) implies the boundedness of G : L
2

(Rd) ! L1,↵(Rd).

2.3 RKHS: the simplified finite-dimensional story

To get a hands-on understanding of RKHS, a helpful exercise is to transpose
the concept to RN , the standard vector space of linear algebra. We recall
that RN is endowed with the Euclidean inner product:

hx,yi =
N
X

n=1

xnyn,

for any pair of vector x = (x
1

, . . . , xN ), y = (y
1

, . . . , yN ) 2 RN . We can
also interpret x as a linear functional acting on the vector y, meaning that
RN coincides with its own dual (i.e., (RN )0 = RN ). This duality pairing
(RN )0 ⇥ RN ! RN : (x,y) 7! hx,yi is continuous and controlled by the
Cauchy-Schwarz inequality

|hx,yi|  kxk
2

kyk
2

with kxk
2

=
phx,xi.

Linear algebra is founded on the property that every continuous lin-
ear operator G : RN ! RN can be represented by a square matrix G 2
RN⇥N whose entries are denoted by [G]m,n = G[m, n]. (This is the finite-
dimensional equivalent of Schwartz’ kernel theorem.) Specifically, we have
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that G : x 7! y = Gx with

ym =
N
X

n=1

G[m, n]xn = hG[m, ·],xi

where the array G[·, ·] constitutes the “discrete” kernel of the operator G.
The finite-dimensional equivalent of a reproducing kernel is a symmetric

positive-definite matrix R 2 RN⇥N , which is such that hRx,xi � 0 for all
x 2 RN (see Appendix A). The defining property of such matrices is that
their eigenvalues are non-negative: �

1

� · · · � �N � 0. The corresponding
eigenvectors are denoted by {un}Nn=1

and are such that

Run = �nun with kunk
2

= 1. (20)

They specify the orthonormal transformation matrix U = [u
1

u
2

. . . uN ].
This results in the eigen-decomposition of R as

R =

N
X

n=1

�nunu
T
n = U diag(�

1

, . . . , �N ) UT (21)

which comes as a direct consequence of (20) and the orthonormality property
UTU = I.

The rank of the matrix R is given the number N 0 of its non-zero eigen-
values. Clearly, the inverse matrix R�1 is well defined only when R is of full
rank; that is, when R is strictly positive-definite. Otherwise, when N 0 < N ,
we need to consider the generalized (Moore-Penrose) inverse of R,

R† = U diag(1/�
1

, . . . , 1/�N 0 , 0, . . . , 0)UT , (22)

which satisfies the pseudo-inverse property RR†R = R. We also note that
R† = R�1 when N = N 0.

Proposition 5. Let R 2 RN⇥N be a positive-definite matrix of rank N 0 
N . Then, the RKHS induced by R is the space H ✓ RN spanned by its
primary1 eigenvectors {un}N 0

n=1

equipped with the inner product

hx,yiH = xTR†y = hx,R†yi.
Proof. By restricting the eigen-decomposition of R to its primary part

R =
N 0
X

n=1

�nunu
T
n = [r

1

. . . rN ],

1The term primary refers to the components associated with non-zero eigenvalues.
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we find that rm =
PN 0

n=1

ynun with yn = �n[un]m, which shows that the
column vectors of R, rm, are included in H = span{un}N 0

n=1

. Consequently,
we have

Property (i) : rm = R[·, m] 2 H, (m = 1, . . . , N)

(or, equivalently, rTm = R[m, ·] since the matrix R is symmetric), which is the
first requirement for a finite-dimensional reproducing kernel R : E ⇥ E ! R
with E = {1, . . . , N}, in direct analogy with Definition 7.

Next, we use the explicit form of R† in (23) to calculate

u⇤
n = R†un =

⇢

un/�n, if n  N 0

0 otherwise, (23)

which, when combined with (20), yields

RR†un =

⇢

un, if n  N 0

0 otherwise.

Since {un}Nn=1

is an orthonormal basis of RN , this allows us to identify
RR† as the orthogonal projector RN ! H. In fact, we have the direct
sum decomposition RN = H � N where N = span{un}Nn=N 0

+1

, meaning
that every vector x 2 RN has a unique decomposition as x = ProjH{x} +
ProjN {x} with

ProjH{x} = RR†x and ProjN {x} = (I � RR†)x.

In particular, if f = (f
1

, . . . , fN ) 2 H, then f = ProjH{f} = RR†f . The
latter identity is equivalent to

Property (ii) : fn = hrn, fiH = hR[n, ·], fiH, for all f 2 H,

which is the finite-dimensional counterpart of the second property in Defini-
tion 7.

With this interpretation, the matrix R† is the Riesz map H ! H0 =
span{u⇤

m}N 0
n=1

where the dual space H0 is equipped with the inner product

hx,yiH0 = hx,Ryi.

The conjugate basis u⇤
n = R†un 2 H0 is given by (23), which shows that the

dual space is actually spanned by the same eigenvectors as H, although the
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underlying norms are different. Moreover, H0 also happens to be the RKHS
associated with the positive-definite matrix R†.

Likewise, the positive-definite matrix R is the Riesz map H0 ! H and is
(isometrically) invertible over H. In other words, we have that

R†Rx = x and RR†y = y.

for all x 2 H0 and y 2 H. Since both R and R† are symmetric and the
(Riesz) conjugate of a vector x 2 H0 is given by x⇤ = Rx 2 H, the above
projection identities are equivalent to

hx,yi = hx⇤,yiH = hRx,yiH = hx,R†yiH0 = hx,y⇤iH0

for all x 2 H0 and y 2 H, which summarizes the Riesz isomorphism between
H and H0.

These various identities suggest that we can also proceed the other way
around and define H based on the symmetric positive-definite matrix R†.
Instead of considering R† directly, it is usually more convenient to work
with the factorized form

R† = LTL

where the matrix L 2 RN⇥N specifies a linear operator RN ! RN whose null
space is N = span{un}Nn=N 0

+1

, corresponding to the vanishing eigenvalues
of R† (or R). This allows us to rewrite the inner product associated with
the RKHS H in the simpler form

hx,yiH = hR†x,yiH = hLx,Lyi,
where L is our finite-dimensional analog of the regularization operator. While
this form can be more attractive computationally, two remarks are in order:
First, the factorization is non-unique: there are many equivalent solutions
such as the positive square-root of R† and the Cholesky decomposition where
LT and L are lower and upper triangular, respectively. The second point
is that hLx,Lyi does not define a valid inner product over the whole space
RN unless L is invertible, which only happens when N 0 = N . Concretely,
this means that one needs to impose additional constraints to factor out
the null space N ; for instance, the orthogonally conditions hx,uni = 0 for
n = N 0 + 1, . . . , N .

We shall now develop similar schemes in the continuous domain start-
ing with the simplest case where the regularization operator is invertible.
The main difficulty with the extended theory is that there is no infinite-
dimensional counterpart of the eigen-decomposition (21) unless the underly-
ing operator R is compact, which is usually not the case.
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2.4 RKHS associated with an invertible operator

As first constructive example of a RKHS that is a “regularized” version of
L
2

(Rd), we consider the space

H
L

= {f 2 S 0(Rd) : kLfkL
2

(Rd
)

< 1} (24)

where L : H
L

! L
2

(R) is a coercive linear operator such that

ckfkL
2

(Rd
)

 kLfkL
2

(Rd
)

(25)

for all f 2 L
2

(Rd) and some constant c > 0. The effect of L in (24) is to
induce some smoothing on f , which is the reason why it is often called the
regularization operator of the RKHS.

One then easily shows that the bilinear form

hf, giH
L

= hLf, Lgi

is a valid inner product for H
L

. In addition, the coercivity property
�

lower
bound in (25)

�

implies that H
L

is continuously embedded in L
2

(Rd), with
the two Hilbert spaces being isometric. In other words, L is a unitary map
H

L

! L
2

(Rd) that admits a well-defined (i.e., continuous) inverse G = L�1 :
L
2

(Rd) ! H
L

. It is important here to emphasize that it is the coercivity
property (25) that makes the mapping bijective. In particular, (25) ensures
that the null space of L is empty.

The space H0
L

is the continuous dual of H
L

as well as the range (resp.,
domain) of the adjoint operator L⇤ : L

2

(Rd) ! H0
L

(resp. G⇤ : H0
L

!
L
2

(Rd)). It is also easy to see that G⇤ and L⇤ are inverse of each other.
Under the implicit assumption of continuity (i.e., H

L

✓ C
b,0(Rd)), H

L

is a RKHS whose reproducing kernel is the impulse response of the Riesz
map R from H0

L

! H
L

(see Property 6 in Proposition 2). Moreover, R is
the inverse of R�1 : H

L

! H0
L

(the Riesz map from H
L

! H0
L

). From the
definition of H

L

and Property 7 in Proposition 2, we have the isometry

kfk2H
L

= kLfk2L
2

(Rd
)

= hL⇤Lf, fi = hR�1f, fi

for all f 2 H
L

, which implies that R�1 = L⇤L. It then follows that

h(x, y) = R{�(· � y)}(x)

with R = (L⇤L)�1 : H0
L

! H
L

where we are taking advantage of the fact
that both L and L⇤ are invertible.
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In the special case where L is LSI, we obtain the simplified form

h(x, y) = ⇢
L

⇤
L

(x � y)

where ⇢
L

⇤
L

is the (unique) symmetric Green’s function of L⇤L. This function
can be conveniently obtained by inverse Fourier transformation:

⇢
L

⇤
L

(x) = F�1

(

1

|bL(!)|2

)

(x)

where bL(!) is the Fourier symbol of L.
Some useful example: Exponential, Bessel potentials.

2.5 Factorization of a reproducing kernel

In the example from the previous section, the Riesz map from H0
L

to H
L

can
be written as R = GG⇤ where the inverse operator G = L�1 continuously
maps L

2

(Rd) ! H
L

. This implies that the reproducing kernel of H
L

has a
factorized representation as

h(x, y) =

Z

Rd
g(x, z)g(y, z)dz

where g(x, y) = G{�(· � y)}(x) is the generalized impulse response of G.
We shall now drop the coercivity requirement and prove that this factor-
ization property extends for RKHS that are linked to a much broader class
of regularization operators. The idea is that one can always identify an in-
termediate Hilbert space H

0

✓ L
2

(Rd) (the actual range of the operator
L : H

L

! H
0

) and an operator L�1 : H
0

! H
L

that is a proper inverse of L
on H

0

= Im(H
L

). While the domain of L�1 can also be extended to L
2

(Rd),
the extended operator is generally only a left inverse of L with the property
that

L�1Lf = f

for all f 2 H
L

. On the other hand, there is no guarantee a priori that
LL�1w = w for all w 2 L

2

(Rd) (right inverse property) unless H
0

= L
2

(Rd).

Theorem 8 (Factorization of reproducing kernel). Let H ✓ C
b,↵

0

(Rd) be a
RKHS with regularization operator L : H ! L

2

(R) such that

hf, giH = hLf, Lgi (26)
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for all f 2 H. Then, there exits a unique continuous operator L�1 :
L
2

(Rd) ! L1,↵
0

(Rd) and a Hilbert space H
0

✓ L
2

(Rd) such that the Riesz
map from H0 ! H factors though H

0

as R = L�1L�1⇤ : H0 ! H
0

! H.
The Schwartz kernel of the inverse operator L�1 denoted by g(·, ·) satisfies
the estimate

sup
x2Rd

(1 + kxk)↵0kg(x, ·)kL
2

(Rd
)

< 1 (27)

and is linked to the reproducing kernel h(·, ·) of H by

h(x, y) =

Z

Rd
g(x, z)g(y, z)dz (28)

g(y, x) = L{h(·, y)}(x). (29)

Proof. By using the definition of the inverse Riesz map R�1 : H ! H0 and
pluging f = g in (26), we get

kfk2H = hLf, Lfi = hL⇤Lf, fi = hR�1f, fi,
which implies that R�1 = (L⇤L). Moreover, the fact that hLf, Lgi specifies a
valid inner product is equivalent to the existence of an “intermediate” Hilbert
space H

0

✓ L
2

(Rd) such that L is a unitary mapping H ! H
0

with

hf, giH = hLf, LgiH
0

= hLf, Lgi = hR�1f, gi
for all f, g 2 H. Another way to put it is that R�1 has a unitary factorization
through H

0

as R�1 = (L⇤L) : H ! H
0

! H0. Since all these mapping are
unitary, there exists some corresponding (unique) inverse operators L�1

⇤
:

H0 ! H
0

, L�1 : H
0

! H and R = (L�1L�1

⇤
) : H0 ! H

0

! H such that

hu, viH0 = hL�1⇤u, L�1⇤viH
0

= hu, L�1L�1⇤vi = hu, Rvi (30)

for all u, v 2 H0. In particular, this implies that the operator L�1 : H
0

! H
(resp., L�1⇤ : H0 ! H

0

) is unitary and a proper inverse of L : H ! H
0

(resp., L⇤ : H
0

! H0).
Next, we recall that the reproducing kernel is the generalized impulse

response of the Riesz map, so that

h(x, y) = R{�(· � y)}(x)

= L�1L�1⇤{�(· � y)}(x)

= L�1{g(y, ·)}(x) (31)

=

Z

Rd
g(x, z)g(y, z)dz
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The fact that H is a RKHS implies that �(·�y) 2 H0 for any y 2 Rd, which
allows us to infer that g(y, ·) = L�1⇤{�(· � y)} 2 H

0

. We then invoke (31)
and the inverse property of L�1 on H

0

to show that

L{h(·, y)}(x) = LL�1{g(y, ·)}(x) = g(y, x).

Finally, to reveal the boundedness of L�1 : L
2

(Rd) ! L1,↵
0

(Rd), we use the
hypothesis H ✓ C

b,↵
0

(Rd), which, by Theorem 7, is equivalent to

Ah,↵ = sup
x2Rd

|h(x, x)| (1 + kxk)2↵ < 1.

Based on (28), we then rewrite this condition as

sup
x2Rd

(1 + kxk)↵0kg(x, ·)kL
2

(Rd
)

=
p

Ah,↵ < 1,

which is precisely the bound in Proposition 4 that ensures the continuity of
L�1 : L

2

(Rd) ! L1,↵
0

(Rd). Hence, we can safely extend the domain of the
operator from H

0

to L
2

(Rd) (by the Hahn-Banach theorem).

Corollary 2. Let H
L

✓ C
b,↵

0

(Rd) be the RKHS associated with the regular-
ization operator L : H ! H

0

✓ L
2

(Rd) and the inner product hLf, Lgi.
Then, the unique inverse operator L�1 identified in Theorem 8 continu-
ously maps L

2

(Rd) ! S 0(Rd), while its adjoint L�1⇤ continuously maps
S(Rd) ! L

2

(Rd).

Proof. The bound in Theorem 8 ensures that the inverse operator L�1 :
H

0

! H
L

has a proper extension L
2

(Rd) ! L1,↵
0

(Rd). The result then
follows from the fact that L1,↵

0

(Rd) ✓ S 0(Rd) and the property that L
2

(Rd)
is its own dual.

Since the factorization result in Theorem 8 is stated in terms of the
regularization operator L, it raises the issue of the existence of such an
operator for an arbitrary RKHS.

Let us first address the simpler related question of unicity. If L : H !
H

0

✓ L
2

(Rd) is a regularization operator for the RKHS as stated in Theorem
8, then the same holds true for L̃ = UL where U : L

2

(Rd) ! L
2

(Rd) is an
arbitrary L

2

-isometry with UU⇤ = U⇤U = Id. This obviously leaves the
reproducing kernel unchanged since R�1 = L̃⇤L̃ = LU⇤UL = L⇤L. Likewise,
we have that L̃�1 = L�1U and R = L̃�1L̃�1⇤ = L�1UU⇤L�1⇤ = L�1L�1⇤.

We can also guarantee the existence of L when H ✓ L
2

(Rd). The simplest
solution is provided by the natural embedding (or identity map) i : L

2

(Rd) !
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H (see Definition 3), which can usually be translated into an orthogonal
projection operator ProjH : L

2

(Rd) ! H. We also note that the coercivity
condition (25) in Section 2.4 implies that H

L

is embedded in L
2

(Rd).
Before considering the more challenging cases where H is not embedded

in L
2

(Rd), we shall review three basic examples.

Example 1 (RKHS generated by an orthonormal system). Let {�n}n2N
with �n 2 C

b

(Rd) be an orthonormal system with h�m, �ni = �m,n. Then,
one easily checks that V = span{�n}n2Z equipped with the inner product

hf, giV =
X

n2N
h�n, fih�n, gi

is a Hilbert space. Its reproducing kernel has the generic form

hV(x, y) =
X

n2N
�n(x)�n(y). (32)

This kernel can also be used to specify the orthogonal projector ProjV :
L
2

(Rd) ! V as

ProjV{f}(x) = hf, hV(x, ·)i =
X

n2N
�n(x)hf, �ni,

which is obviously also self-adjoint. Finally, we have the factorization

hV(x, y) = hhV(x, ·), hV(·, y)i, (33)

which follows from the property that ProjV = ProjVProj⇤V . While (33) re-
minds us of the reproducing kernel Property 2 in Proposition 2, it is struc-
turally not the same because it involves the “duality product” rather than the
“inner product” of V.

We like to think of Example 1 as the simplest possible scenario covered
by Theorem 8 with L�1 = ProjV = Proj⇤V = L. However, there are many
other interesting configurations where the factors are not self-adjoint (in the
spirit of the LU decomposition of a symmetric matrix).

Our next example is of great significance for communication engineering
and information sciences. It is interesting structurally because it is a cross
between the previous example and the LSI regularization operators of Section
2.4, but without the coercivity property (because the null space is non-
trivial).
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Example 2 (RKHS of bandlimited functions). The subspace of bandlimited
functions in L

2

(R) with Nyquist frequency !
max

= ⇡ can be defined as

H
sinc

=
�

f 2 S 0(R) : (sinc ⇤ f) 2 L
2

(R)
 

.

The underlying regularization operation L
sinc

: ' 7! sinc ⇤ ' is linear shift-
invariant since it is a convolution with the sinus cardinalis:

sinc(x) =
sin(⇡x)

(⇡x)
= F�1{

[�⇡,⇡]}(x).

The sinc function is endowed with the remarkable reproduction property sinc(x) =
(sinc ⇤ sinc)(x), and, more generally,

(sinc ⇤ f)(x) =

Z

R
sinc(x � y)f(y)dy = f(x), for all f 2 H

sinc

.

This immediately leads to the conclusion that the reproduction kernel for
H

sinc

is sinc(x � y). On the other hand, it is also well known that the set of
functions {sinc(· � k)}k2Z is an orthonormal basis of H

sinc

. By applying the
result of Example 2, we obtain the equivalent representation

h
sinc

(x, y) = sinc(x � y) =
X

k2Z
sinc(x � k)sinc(y � k).

This translates into the reproduction formula

f(x) = (sinc ⇤ f)(x) =
X

k2Z
hf, sinc(· � k)i sinc(x � k)

=
X

k2Z
f(k) sinc(x � k)

for all f 2 H
sinc

, which is the RKHS restatement of Shannon’s celebrated
Sampling theorem.

The last example of this section illustrates the point that, in contrast with
matrices, the factorization of a symmetric operator is not always feasible.
Moreover, it is an instance of a RKHL that is not embedded in L

2

(R) and
that does not admit a regularization operator.

Example 3 (Subspace of polynomials). We now take N = span{p
1

} with
p
1

(x) = 1 as the simplest (one-dimensional) polynomial subspace of C
b,↵(R)

with ↵  0. It is easy to verify that N equipped with the inner product

hf, giN = f(0)g(0) = h�, fih�, gi
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is a RKHS and that its reproducing kernel is given by hN (x, y) = p
1

(x)p
1

(y) =
1, which is similar to (32). Since (�, p

1

) form a biorthogonal pair, we can
define the corresponding projection operator C

b,↵(R) ! N as

ProjN {f} = h�, fip
1

,

which is such that ProjN
1

{p} = p for all p 2 N . However, we are not able
to find a factor g(x, y) such that

h(x, y) = hg(x, ·), g(y, ·)i,

the fundamental reason being that p
1

/2 L
2

(R) so that it cannot be orthonor-
malized.

We can also use this last example to gain more insight on the abstract
notion of dual space. Since N is one-dimensional, the same hold true for its
continuous dual N 0, which is spanned by the Dirac functional p = c

1

p
1

7!
h�, pi = c

1

. However, since N 0 is embedded in S 0(Rd), the dual functional
of p

1

is actually the equivalence class of all (generalized) functions �
1

2
S 0(R) such that h�

1

, p
1

i =
R

R �
1

(x)dx = 1. The Dirac impulse � is just one
representer among an infinity of possibilities. In other words, we could as
well have used any other biorthogonal function �

1

, which changes the form
of the projector ProjN , but leaves the reproducing kernel unchanged. This
is a possibility that will be exploited in the subsequent sections.

2.6 RKHS associated with the derivative operator

As next step in the progression, it is instructive to investigate the derivative
operator D = d

dx , which is the simplest differential operator that has a non-
trivial null space. The functional characteristics that are relevant for our
purpose are:

• The causal Green’s function of D (or Heaviside function):
+

(x). The
defining property is D{

+

} = �, which is equivalent to D{
+

(·�y)} =
�(· � y), due to the shift-invariance of D.

• The null space of dimension N
0

= 1:

N
D

= {q 2 S 0(R) : D{q} = 0} = span{p
1

} (34)

where p
1

(x) = 1 is the constant function.
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Let us also recall that any function of the form ⇢
D

(x) =
+

(x) + c
0

is a
Green’s function of D. The so-called canonical solution is

1

2

sign(x) = F
⇢

1

j!

�

(x) =
+

(x) � 1

2

.

The adjoint of D is D⇤ = �D. We shall also need the canonical Green’s
function of (D⇤D) = �D2, which is given by

⇢
D

⇤
D

(x) = F
⇢

1

!2

�

(x) = �1

2

|x|.

Since the null space of D is non-trivial, the operator D : H
D

! L
2

(R)
does not fall in the coercive category of Section 2.4. Yet, we will now see
that the function space

H
D

= {f : R ! R s.t. Df 2 L
2

(R)}
can still be identified as a RKHS. To ensure unicity, we have to impose
some additional boundary condition: for example, fixing the value of f(x)
at x = 0.

Hence, our first claim is that H
D

equipped with the inner product

hf, giH
D

= hDf, Dgi + f(0)g(0) (35)

is a RKHS with critical rate of growth �↵
0

= 1; that is, H
D

✓ C
b,�1

(R). It is
obvious that h·, ·iH

D

satisfies the three first properties of an inner product in
Definition 1. As for the unicity, we observe that kfk2H

D

= kDfk2L
2

(R)

+|f(0)|2
so that kfk2H

D

= 0 implies that: (i) kDfkL
2

(R)

= 0, and (ii) f(0) = 0.
Condition (i) is equivalent to f 2 N

D

, while (ii) removes the ambiguity by
forcing the constant to be zero, which proves our assertion.

Next, we claim that the corresponding reproducing kernel is

h
D

(x, y) =
1

2

�|x| + |y| � |x � y|�+ 1. (36)

While there is a constructive mechanism for obtaining this formula (see
Proposition 7), we shall first convince ourselves of its correctness by checking
that it fulfils the required conditions. To that end, we first evaluate

D{h
D

(·, y)}(x) = 1

2

�

sign(x) � sign(x � y)
�

D⇤D{h
D

(·, y)}(x) = �D{1

2

�

sign(·) � sign(· � y)
�}(x) = ��(x) + �(x � y)

h
D

(0, y) = 1

2

(|0| + |y| � |0 � y|) + 1 = 1
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Hence, for all f 2 H
D

,

hf, h
D

(·, y)iH
D

= hDf, D{h
D

(·, y)}i + f(0) ⇥ 1

= hf, D⇤D{h
D

(·, y)}i + f(0)

=
�� f(0) + f(y)

�

+ f(0) = f(y),

which proves that the kernel satisfies the reproduction property. What is
less obvious is that h

D

(·, x
0

) 2 H
D

for any x
0

2 R. The explanation is
that D{h

D

(·, x
0

)}(x) =
[0,x

0

)

(x) is actually compactly supported of size x
0

(thanks to some convenient cancellation mechanism) so that is included in
L
2

(R).

Supplementary material: To gain a deeper understanding of this
construction, we now pick a generic biorthogonal analysis function � 2 H0

D

such that h�, p
1

i = 1 and define the space

H
D,� = {f 2 H

D

: h�, fi = 0} . (37)

We shall now show that H
D,� and N

D

are two complementary Hilbert spaces
associated with the inner products hf, giH

D,� = hDf, Dgi and hp, qiN
D

=
h�, pih�, qi, respectively. The proposed characterization of N

D

is a slight
generalization of Example 3 in Section 2.5 where � is substituted by the
generic analysis function �. As already mentioned, this does not affect the
form of the reproducing kernel, which is still given by

p
1

(x)p
1

(y) = 1. (38)

The corresponding projection operation ProjN
D

: H
D

! N
D

is

ProjN
D

{f} = h�, fip
1

,

with the property that ProjN
D

{q} = q for all q = c
0

p
1

2 N
D

(due to the
biorthogonality of � and p

1

).
To prove that the semi-inner product hDf, Dgi is actually an inner prod-

uct for H
D,�, we recall that hDf, Dfi = 0 is equivalent to f 2 N

D

, so that
f = ProjN

D

{f} = h�, fip
1

. On the other hand, we have that h�, fi = 0 from
the definition of H

D,�, which gives f = 0 and hence proves unicity.
Next, we define the operator D�1

� : H
D,� ! L

2

(R) whose kernel is given
by

g�(x, y) =
+

(x � y) � p
1

(x)q
1

(y) (39)
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with q
1

(y) = h�,
+

(· � y)i and p
1

(x) = 1. Observe that the function q
1

is
bounded with |q

1

(y)|  k�k
TV

where k�k
TV

= sup|'|11

h�, 'i is the “total
variation” of � with k�k

TV

= k�kL
1

(R)

when � 2 L
1

(R). This implies that
the kernel defined by (39) is bounded—i.e, g�(·, ·) 2 L1(R⇥R)—irrespective
of the choice of �.

Based on the Green’s function property D{
+

} = � and the definition of
q
1

(y), we easily verify that

D{g�(·, y)}(x) = �(· � y) (40)
h�, g�(·, y)i = h�,

+

(· � y)i � q
1

(y) = 0. (41)

Equation (40) implies that D�1

� is a right-inverse of D, while (41) enforces
the boundary condition h�, D�1

� {w}i = 0 for all w 2 L
2

(Rd). Indeed,

⌦

�, D�1

� {w}↵ =
⌦

�,

Z

R
g�(·, y)w(y)dyi

=

Z

R
h�, g�(·, y)i
| {z }

=0

w(y)dy = 0

This allows us to redefine the Hilbert space H
D,� as

H
D,� =

n

f = D�1

� {w} : w 2 L
2

(R)
o

,

which also comes hand-in-hand with the norm-conservation properties

kD�1

� {w}k
D,� = kwkL

2

(R)

kfk
D,� = kDfkL

2

(R)

,

for all f 2 H
D,� and w 2 L

2

(R). By rewriting the inner product as
hf, gi

D,� = h(D⇤D)f, gi, we deduce that R�1 = (D⇤D) is the (inverse) Riesz
map from H

D,� ! H0
D,�. Similarly, we identify the direct Riesz map as

R = D�1

� D�1⇤
� : H0

D,� ! H
D,�, which is consistent with the property that

D�1

� : L
2

(R) ! H
D,� is an isometry.

For completeness, we also provide the explicit form of the reproducing
kernel of H

D,�.

Proposition 6. Let g�(x, z) = ⇢
D

(x � y) � h⇢
D

(· � y), �i where ⇢
D

and
� 2 H0

D

are such that D{⇢
D

} = � (Green’s function property) and h�, 1i = 1,
respectively. Then, the reproducing kernel of the space

H
D,� = {f 2 S 0(R) : Df 2 L

2

(R) and h�, fi = 0}
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is given by

h�(x, y) =

Z

R
g�(x, z)g�(y, z)dz

= ⇢
D

⇤
D

(x � y) � q
D,�(y) � q

D,�(x) + r
1,1 (42)

where

⇢
D

⇤
D

(x) = F�1

⇢

1

!2

�

(x) = �1

2

|x|

q
D,�(y) = h�, ⇢

D

⇤
D

(· � y)i = (� ⇤ ⇢
D

⇤
D

)(y)

r
1,1 =

Z

R2

�(x)⇢
D

⇤
D

(x � y)�(y)dxdy.

Proof. The direct calculation of the composed operator is in principle feasible
(either in the signal or Fourier domain), but rather technical for it involves
singular integrals. Instead, we shall take a softer route: use (42) to evaluate
D{h�(·, y)} and h�, h�(·, y)i and check that the required conditions are met.
We rely on the fact that D{⇢

D

⇤
D

}(x) = ⇢
D

⇤(x) = �1

2

sign(x). The other
key observation is that the definition of g�(x, z) is independent of the actual
choice of ⇢

D

(x) =
+

(x) + c
0

, as long as it satisfies the Green’s function
property. In particular, we have that

g�(x, y) = 1

2

sign(x � y) � h1
2

sign(· � y), �i
= 1

2

sign(x � y) � 1

2

(sign_ ⇤ �)(y)

= 1

2

sign(x � y) + 1

2

(sign ⇤ �)(y)

where f_(x) = f(�x). Using the same kind of manipulation, we show that

D{h�(·, y)} = D{⇢
D

⇤
D

}(x � y) � D{⇢
D

⇤
D

⇤ �}(x)

= �1

2

sign(x � y) + 1

2

(sign ⇤ �)(x)

= 1

2

sign(y � x) + 1

2

(sign ⇤ �)(x) = g�(y, x),

which is the transpose of the kernel, as expected. We then invoke (27) in
Theorem 8, which ensures that g�(y, ·) 2 L

2

(R) for any y 2 R. As for the
boundary condition, we have that

h�, h�(·, y)i = h�, ⇢
D

⇤
D

(· � y)i � h�, ⇢
D

⇤
D

⇤ �i � h�, ⇢
D

⇤
D

⇤ �(y)i + h�, r
1,1i

Thanks to the property that h�, 1i = 1, this simplifies to

h�, h�(·, y)i = (� ⇤ ⇢
D

⇤
D

)(y) � h�, ⇢
D

⇤
D

⇤ �i � (⇢
D

⇤
D

⇤ �)(y) + r
1,1

= �h�, ⇢
D

⇤
D

⇤ �i + r
1,1 = 0.
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Since the reproducing kernel is unique, this proves that the provided formula
is the correct one.

Now, in the particular case where � = �, the expression of the reproduc-
ing kernel (42) simplifies to

h�(x, y) = �1

2

|x � y| + 1

2

|x| + 1

2

|y| = min(|x|, |y|), (43)

which can be recognized as the correlation function of Brownian motion. We
can also easily verify that h�(·, ·) 2 C

b,↵
0

(R ⇥ R) with ↵
0

= �1. In view of
Theorem 8, this suggests that the kernel of the inverse operator D�1

� satisfies
the stability bound

sup
x2R

(1 + |x|)�1kg�(x, ·)kL
2

(R)

< 1. (44)

This is not obvious a priori from (39), especially since the condition fails
for the leading term

+

(x � ·) (standard LSI integrator) whose L
2

norm is
unbounded for all x 2 R.

We conclude the section with a summary of these findings.

Proposition 7. Let � 2 H0
D

and p
1

2 N
D

be a biorthogonal pair such that
h�, p

1

i = 1. Then, the space

H
D

= {f 2 S 0(R) : kDfkL
2

(R)

< 1}

admits a direct sum decomposition as H
D,��N

D

where the two latter Hilbert
spaces are defined by (37) and (34), respectively. Moreover, any f 2 H

D

has
a unique decomposition as

f = D�1

� w + q = f� + q

where w = Df 2 L
2

(R), f� = D�1

� w 2 H
D,�, q = hf, �ip

1

2 N
D

, and the
inverse operator D�1

� : L
2

(R) ! H
D,� is defined by (39).

Finally, H
D

equipped with the inner product

hf, giH
D

= hDf, Dgi + h�, fih�, gi,

is a RKHS and its reproducing kernel is the sum of the reproducing kernels
of H

D,� and N
D

specified by (42) and (38), respectively.
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2.7 Operators with non-trivial null spaces

There is a powerful association between splines and operators, the idea being
that the selection of an admissible operator L specifies a corresponding type
of splines [5][6, Chapter 6]. As we shall see here, we can rely on the same
class of operators to specify a corresponding family of RKHS. The procedure
is more involved as in Section 2.4 because of the greater difficulty of inverting
operators when their null space is non-empty, similar to the previous example
of the derivative. The payoff, however, is that the spaces become more
interesting with a greater range of applications in a variety of disciplines
(approximation theory, machine learning, stochastic processes, etc.).

Our first inclination is to define the native space associated with the
differential operator L as

H
L,ext = {f 2 S 0(Rd) : kLfk2L

2

(Rd
)

< 1},

while its null space is given by

N
L,ext = {q 2 H

L,ext : L{q} = 0}.

This simple definition is appropriate when N
L,ext is finite-dimensional, which

is the case for most differential operators defined on a 1D domain (d = 1).
Unfortunately, the situation tends to be more complicated for d > 1 because
the extended null space (N

L,ext) of many partial differential operators (such as
the laplacian) is infinite-dimensional. This forces us to constrain the native
space to H

L

✓ H
L,ext such as to meet the finite-dimensional constraint

N
L

= {q 2 H
L

: L{q} = 0} = span{pn}N0

n=1

✓ N
L,ext; (45)

that is, a null space N
L

that admits a finite basis p = (p
1

, . . . , pN
0

) with
pn 2 S 0(Rd). While this reduction from H

L,ext to H
L

is required to specify a
valid reproducing kernel, the actual restriction of the “extended” space only
happens on the side of the null space so that H

L

remains rich enough to
represent any function as closely as desired. In other words, we shall define
the native space H

L

in a way that leaves the quotient space HQ unchanged:

HQ = H
L,ext

�N
L,ext = H

L

�N
L

(46)

subject to the finite-dimensionality condition (45). This results in the ab-
stract specification of our native space as the direct sum of two Hilbert
spaces.
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Proposition 8. Let HQ be the quotient space defined by (46) and L :
H

L

= HQ � N
L

! L
2

(Rd) a linear operator whose null space N
L

is finite-
dimensional and endowed with some inner product h·, ·iN

L

. Then, the native
space of L, H

L

= HQ � N
L

, is a Hilbert space for the inner product

hf, giH
L

= hLf, LgiL
2

+ hProjN
L

{f}, ProjN
L

{g}iN
L

.

where ProjN
L

is a projection operator from H
L

into N
L

.

Our guiding principle will be to take N
L

as small as possible, but still
large enough for H

L

to be dense in S 0(Rd). The relevant notion to achieve
this controlled reduction of the null space is the property of conditional
positive-definiteness, which is reviewed in Section 2.7.2. The other functional
ingredient is the projection operator ProjN

L

: H
L

! N
L

, which, as we shall
see, can be defined in a rather flexible fashion.

2.7.1 Hilbert-space structure of the null space

While the abstract representation H
L

= HQ � N
L

is a first hint that our
native space for L is a RKHS, we are aiming at an explicit characterization.
This requires that we invert the operator L from the left, which is feasible,
but requires special care. The idea is to resolve the non-uniqueness problem
by imposing N

0

linear boundary conditions to fix the null-space component.

Definition 8 (Admissible boundary functionals). Let L : H
L

! L
2

(Rd)
be a linear operator with a finite-dimensional null space N

L

of dimension
N

0

equipped with some norm k · kN
L

. The linear map � : H
L

! RN
0 :

f 7! �(f) = (h�
1

, fi, . . . , h�N
0

, fi), which is composed of N
0

“boundary”
functionals {�n}N0

n=1

, is said to be admissible if there exist two constants
B � A > 0 such that

A kProjN {f}kN
L

 k�(f)k
2

 B
�kLfkL

2

+ kProjN {f}kN
L

�

, 8f 2 H
L

.
(47)

In effect, this definition imposes two kind of constraints on �: (i) the
continuity of the boundary functionals, and (ii) their completeness with re-
spect to the null space. Indeed, since kLfkL

2

+ kProjN {f}kN
L

is a valid
norm for H

L

, the upper bound in (47) implies the boundedness (and hence
the continuity) of the linear functionals �n : H

L

! R, while the converse is
also true (by the triangle inequality). Hence, the abstract equivalent of the
upper bound in (47) is �n 2 H0

L

for n = 1, . . . , N
0

where the space H0
L

is
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the continuous topological dual of H
L

. To reveal the completeness condition
(ii), we specialize the inequality for q 2 N

L

as

AkqkN  k�(q)k
2

 BkqkN , 8q 2 N
L

, (48)

which is a norm equivalence reminiscent of the definition of a frame. The
crucial point here is the existence of the lower bound that ensures the in-
vertibility of the linear map q 7! �(q) (see Proposition 9 below).

To turn these abstract considerations into a concrete characterization,
we now put an inner-product structure on the null space by selecting a
basis p = (p

1

, . . . , pN
0

) and using it to expand q 2 N
L

as q = p

Tb. The
corresponding norm is then given by kqkN

L

= kbk
2

. The most convenient
design is to choose p = p

�

such that the basis is biorthogonal to the boundary
functionals. In such a scenario, b = �(q) and we have a perfect norm
equivalence in (48) with A = B = 1.

Definition 9 (Biorthogonal system). The pair (�, p) with � = (�
1

, . . . , �N
0

)
and p = (p

1

, . . . , pN
0

) is called a biorthogonal system for the finite-dimensional
subspace N

L

= span{pn}N0

n=1

✓ S 0(Rd) if any p 2 N
L

admits a unique expan-
sion of the form

p =

N
0

X

n=1

h�n, pipn. (49)

The natural norm induced by such a system is

kpkN
L

= k�(p)k
2

=

 

N
0

X

n=1

|h�n, pi|2
!

1

2

.

The unicity of the representation in Definition 9 implies that p should be
a basis of N

L

, while the validity of (49) for p = pn implies that the underlying
functions should be biorthogonal; i.e.,

h�m, pni = �m,n =

⇢

1, m = n
0, otherwise.

The existence of a such system for any choice of basis p is backed by the
following result in functional analysis, which is closely related to the Hahn-
Banach theorem.

Theorem 9 ([?, Theorem 3.5, p. 60]). Let M be a subspace of a locally
convex space X , and x

0

be an element of X . If x
0

is not in the closure
of M, then there exists a continuous linear functional � on X such that
h�, x

0

i = 1 but h�, xi = 0 for every x 2 M.
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One then easily proves the existence of a full biorthogonal set {�n}N0

m=1

by successive exclusion of x
0

= pn with � = �n and M = spanm 6=n{pm} (the
finite dimensionality of M and the linear independence of the pm’s ensures
that pn /2 M = M).

Conversely, we may pick an admissible set of linear functionals {�n}N0

n=1

and appropriately modify the basis to meet our requirements. This results
in the specification of the corresponding projection operator.

Proposition 9 (Projector onto null space of L). Let ep = (p̃
1

, . . . , p̃N
0

) be a
basis of N

L

✓ H
L

and � = (�
1

, . . . , �N
0

) some admissible set of boundary
functionals such that (48)

�

or (47)
�

is satisfied. Let us also define the N
0

⇥N
0

cross-product matrix

C
�,ep = h�, epT i = [�(p

1

) · · · �(pN
0

)] (50)

with entry [C
�,ep]m,n = h�m, p̃ni. Then, Ce

p,� = CT
�,ep is invertible and

p = (p
1

, . . . , pN
0

) = C�1

e
p,�
e

p (51)

is the unique basis of N
L

that is biorthogonal to �. Furthermore, the projector
of H

L

onto N
L

perpendicular to N 0
L

= span{�n}N0

n=1

is specified by

ProjN
L

: f 7!
N

0

X

n=1

h�n, fipn,

with the property that kProjN
L

k = 1.

Proof. First, we observe that the matrix C
�,ep defined by (50) is well-defined,

thanks to the upper bound in (48). Since ep is a basis of N
L

, every q 2 N
L

has a unique expansion q =
PN

0

n=1

bnp̃n = e

p

T
b with kqkN = kbk

2

. Therefore,
by linearity, we have that

�(q) =

2

6

4

h�
1

, qi
...

h�N
0

, qi

3

7

5

=

2

6

4

PN
0

n=1

h�
1

, p̃nibn
...

PN
0

n=1

h�N
0

, p̃nibn

3

7

5

= C
�,ep b.

This allows us to rewrite the norm inequality (48) as

Akbk
2

 k�(q)k
2

= kC
�,ep bk

2

 Bkbk
2

,

which ensures that the singular values of C
�,ep (resp., Ce

p,� = CT
�,ep) are

bounded from above and below. Since we are dealing with a square matrix,
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Description Operator Kernel

Riesz map N 0
L

! N
L

R
p

N
0

X

n=1

pn(x)pn(y)

Riesz map N
L

! N 0
L

R
�

N
0

X

n=1

�n(x)�n(y)

Projector H
L

! N
L

ProjN
L

N
0

X

n=1

pn(x)�n(y)

Projector H0
L

! N 0
L

ProjN 0
L

N
0

X

n=1

�n(x)pn(y)

Table 1: Complete set of operators associated with the biorthogonal system
(�, p) with N

L

= span{pn}N0

n=1

and N 0
L

= span{�n}N0

n=1

.

the existence of the lower bound guarantees that C
�,ep (resp., Ce

p,�) is in-
vertible. The cross-product matrix for the new basis p defined by (51) is
then given by

C
�,p = h�, pT i = h�, (C�1

e
p,�

e

p)T i
= h�, epT iC�1

�,ep = C
�,ep C�1

�,ep = IN
0

,

which confirms that the functions {pn} and {�n} are biorthogonal. This
property also yields ProjN

L

{pn} = pn and, more generally, ProjN
L

{q} = q
for all q 2 N

L

. Likewise, we have that ProjN
L

{f} = ProjN
L

ProjN
L

{f} 2 N
L

for all f 2 H
L

, which implies that the operator is a projector from H
L

onto
N

L

.
Let us now consider the residual r = f � ProjN

L

{f}. By projecting once
more, we get ProjN

L

{r} = 0. Due to the structure of the operator, this is
equivalent to hr, �ni = 0 for all n, which translates into the projection error
being perpendicular to span{�n}N0

n=1

for all f 2 H
L

. The boundedness of
the operator simply follows from kProjN

L

{f}kN
L

= kfkN  kL{f}kL
2

+
kfkN

L

.

In the language of RKHS, this construction is characterized as follows.

Corollary 3. Let (�, p) be a biorthogonal system for N
L

✓ C
b,↵(Rd). Then,
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N
L

= span{pn}N0

n=1

equipped with the inner product

hf, giN
L

=

N
0

X

n=1

h�n, fih�n, gi, f, g 2 N
L

(52)

is a RKHS with reproducing kernel

hN
L

(x, y) =

N
0

X

n=1

pn(x)pn(y). (53)

Likewise, we can easily show that the dual of N
L

= span{pn}N0

n=1

is the
Hilbert space N 0

L

= span{�n = p⇤n}N0

n=1

equipped with the inner product

hf⇤, g⇤iN 0
L

=

N
0

X

n=1

hpn, f⇤ihpn, g⇤i = hR
p

f⇤, g⇤i, f⇤, g⇤ 2 N 0
L

where R
p

is the Riesz map N 0
L

! N
L

whose kernel is given by (53). The
complementary (or reverse) Riesz map N

L

! N 0
L

is the positive-definite
operator

R
�

: f 7! f⇤ =

N
0

X

n=1

h�n, fi�n.

In particular, we have that �n = p⇤n = R
�

{pn}, while the biorthogonality
of � and p also implies that R

p

R
�

{f} = f for all f 2 N
L

. Finally, we can
identify the projection operator ProjN 0

L

: H0
L

! N 0
L

, which happens to be
the adjoint of ProjN

L

. The complete set of these null-space-related operators
is summarized in Table 1.

2.7.2 Conditional positive-definiteness

The price to pay for considering a regularization operator L whose null space
is non-trivial is that this prevents the reproducing kernel from being strictly
positive definite. Instead, one has to settle for a weaker form of the property
that factors out the components that compromise unicity.

Definition 10 (Conditional positive-definiteness). Let N = span{pn}N0

n=1

be a finite-dimensional subspace of C
b,↵(Rd). Then, the kernel function h :

Rd ⇥ Rd ! R is said to N -conditionally positive-definite if

N
X

m=1

N
X

n=1

zmh(xm, xn)zn � 0
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for any N 2 N, x

1

, . . . , xN 2 Rd, and z
1

, . . . , zN 2 R, subject to the condition

N
X

m=1

zmpn(xm) = 0

for n = 1, . . . , N
0

. The conditional positive-definiteness is said to be strict if

N
X

m=1

N
X

n=1

zmh(xm, xn)zn > 0,

under the same conditions with (z
1

, . . . , zN ) 2 RN\{0} and the xn all being
distinct.

We shall sometimes refer to this property as p-conditional positivity
where the vector p = (p

1

, . . . , pN
0

) represents a basis of N . Not too sur-
prizingly, there is also an extended version of the property that applies to
general linear operators.

Definition 11 (Positive-definite operator). Let A be a continuous operator
S(Rd) ! S 0(Rd) and N some finite-dimensional subspace of S 0(Rd) that is
spanned by p = (p

1

, . . . , pN
0

). The operator A is said to be:

• Symmetric or self-adjoint if, for all '
1

, '
2

2 S(Rd),

hA'
1

, '
2

i = hA'
2

, '
1

i.

• Positive-definite if, for any ' 2 S(Rd),

hA', 'i � 0.

• N -conditionally positive-definite (or p-conditionally positive), if

hA', 'i � 0

for any ' 2 S
p

(Rd) = S(Rd) \ N? = {' 2 S(Rd) : p(') = 0}.
• Strictly N -conditionally positive-definite if

hA', 'i > 0

for all ' 2 S
p

(Rd)\{0}.
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We conclude our discussion of positive definiteness by showing that these
two definitions are equivalent when the Schwartz kernel of the operator is a
bivariate function that is (separately) continuous in each argument.

Theorem 10 (Kernel of a positive-definite operator). Let us consider a
symmetric operator A : ' 7! R

Rd a(·, y)'(y)dy whose Schwartz kernel a is
such that a(x

0

, ·) = a(·, x
0

) 2 C
b,↵(Rd) for any x

0

2 Rd and some ↵ 2 R.
Then, the (p-conditional) positive definiteness of A : S(Rd) ! S 0(Rd) is
equivalent to the (p-conditional) positive-definiteness of its kernel a : Rd ⇥
Rd ! R in the sense of Definition 10.

Proof. Let us start with the unconditional version of the property. For any
z
1

, · · · , zN 2 R and x

1

, · · · , xN 2 Rd, we specify the sequence of test func-
tions 'k =

PN
n=1

znuk(· � xn) 2 S(Rd) where uk(x) = kde�
1

2

kkxk2 is a
rescaled and renormalized Gaussian pulse with huk, 1i = 1. This construc-
tion is such that uk converges to the Dirac distribution as k ! 1; i.e.,

lim
k!1

hf, uk(· � xm)i = hf, lim
k!1

uk(· � xm)i = f(xm), (54)

which is valid for any continuous function f : Rd ! R of slow growth. By
invoking the continuity of A and the sampling relation (54), we then find
that

lim
k!1

hA{'k}, 'ki = hA{ lim
k!1

'k}, lim
k!1

'ki

= hA
(

N
0

X

m=1

zm�(· � xm)

)

,

N
0

X

n=1

zn�(· � xn)i

=

N
0

X

m=1

N
0

X

n=1

zmznhA{�(· � xm)}, �(· � xn)i (bilinearity)

=

N
0

X

m=1

N
0

X

n=1

zmzn A{�(· � xm)}(xn)
| {z }

a(xm,xn)

� 0,

which proves the direct part of the statement.
For the converse implication, we first consider the truncated integral

JR(') =

Z

[�R,+R]

d

Z

[�R,+R]

d
'(x)a(x, y)'(y)dxdy

where the domain of the kernel is limited to the hypercube [�R, R]d ✓ Rd

with R > 0. Since both a and ' are continuous, JR(') is a 2d-dimensional

46



M. Unser (EPFL) RKHS, Splines, and Gaussian Processes

Riemann integral, which can be expressed as JR(') = limk!1 JR,k(') where

JR,k(') =

✓

R

k

◆

2d (k,...,k)
X

m=�(k,...,k)

(k,...,k)
X

n=�(k,...,k)

'(x
m

)a(x
m

, x
n

)'(x
n

) (55)

with x

m

= mR
k 2 Rd. Now, the positive definiteness of a (Definition 10)

implies that JR,k(') � 0 for all ' 2 S(Rd) and any k 2 N+, R 2 R+. To
have this sum converge to hA', 'i, we need to let R ! 1, while ensuring
that the step size (R/k) goes to zero. This is achieved by setting R = i and
k = i2, which yields hA', 'i = limi!1 Ji,i2(') � 0 for all ' 2 S(Rd).

To extend the argument to the case of p = (p
1

, . . . , pN
0

)-conditional
positivity, we pick a set of functions in S(Rd), {�n}N0

n=1

, that satisfy the
biorthogonality condition:

hpm, �ni = �m�n,

which is always feasible (see Theorem 9 with X = S 0(Rd) and accompanying
explanations).

This allows us to express S(Rd) as the direct sum S(Rd) = S
p

(Rd) � N 0

with N 0 = span{�n}N0

n=1

✓ S(Rd). Concretely, this means that any ' 2
S(Rd) has a unique decomposition as ' = '̃ + � with

� = ProjN 0{'} =

N
0

X

m=1

hpm, 'i�m 2 N 0 ✓ S(Rd)

and
'̃ = (Id � ProjN 0){'} = ' � � 2 S

p

(Rd).

Armed with this latter projector, we then revisit the direct part of the proof
by replacing 'k by '̃k = (Id � ProjN 0){'k} 2 S

p

(Rd). In the limit, we get

lim
k!1

'̃k = lim
k!1

(Id � ProjN 0){'k}

= zn�(· � xn) �
N

0

X

m=1

N
0

X

n=1

znpm(xn)

| {z }

=0

�m = zn�(· � xn)

where the double sum vanishes as a consequence of our hypothesis on zn, so
that the conclusion remains the same.
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Conversely, in the conditional scenario of Definition 10, the positivity of
the bilinear form (55) with R = i and k = i2 only holds for the subclass of
test functions '̃ such that, for n = 1, . . . , N

0

,

(i2,...,i2)
X

m=�(i2,...,i2)

'̃(x
m

)
| {z }

zm

pn(x
m

) = 0,

with x

m

= m

i 2 Rd. As i increases to infinity, the above sum converges to
the Riemann integral

Z

Rd
'̃(x)pn(x)dx = 0,

which is equivalent to '̃ 2 S
p

(Rd).

2.7.3 Admissible regularization operators

The regularization operators that are admissible for our construction are
those that admit a Green’s function of slow growth, subject to some condi-
tional positivity constraint.

Definition 12. The kernel G
L

: Rd ⇥ Rd ! R is a Green’s function of L if
L{G

L

(·, y)} = �(· � y), or equivalently, if LL�1{'} = ' for any ' 2 S(Rd)
where L�1 : ' 7! R

Rd G
L

(·, y)'(y)dy.

In other words, knowing the Green’s function of L is equivalent to having
a right-inverse of L at our disposal. It is generally not unique as we may
construct many equivalent instances of the form eG

L

(x, y) = G
L

(x, y)+q
y

(x)
with q

y

2 N
L

for any fixed value y 2 Rd.

Definition 13 (Admissible operator). A linear operator L : H
L

! L
2

(Rd) is
called spline-admissible if there exists a symmetric kernel G

L

⇤
L

: Rd ⇥ Rd !
R, a finite-dimensional subspace N

L

= span{pn}N0

n=1

and an order ↵ 2 R of
algebraic growth such that :

1. G
L

⇤
L

is a Green’s function of (L⇤L) with the property that

L{G
L

⇤
L

(·, y)}(x) = G
L

⇤(x, y) = G
L

(y, x) (56)
L⇤L{G

L

⇤
L

(·, y)} = L⇤{G
L

⇤(·, y)} = �(· � y)

where � is the Dirac distribution and G
L

(x, y) a Green’s function of L.

2. Null-space property: L{q} = 0 for all q 2 N
L

✓ H
L

.
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3. G
L

⇤
L

is strictly N
L

-conditionally positive-definite.

4. Continuity and polynomial growth: G
L

⇤
L

(·, y
0

) 2 C
b,↵(Rd) for any

y

0

2 Rd and N
L

✓ C
b,↵(Rd).

5. Boundedness on the diagonal: sup
x2Rd |G

L

⇤
L

(x, x)| (1 + kxk)2↵ < 1.

The scenario of greatest practical interest is when the operator L is linear
shift-invariant (LSI); that is, when L{f(· � x

0

)} = L{f}(· � x

0

) for any
function f 2 H

L

. In such a case, we can determine the canonical Green’s
kernels of L in Definition 13 by (generalized) inverse Fourier transformation.
Specifically, we have that

G
L

⇤
L

(x, y) = ⇢
L

⇤
L

(x � y) with ⇢
L

⇤
L

(x) = F�1

(

1

|bL(!)|2

)

(x)

G
L

(x, y) = ⇢
L

(x � y) with ⇢
L

(x) = F�1

(

1

bL(!)

)

(x),

where bL(!) = F�L{�} (!) is the frequency response of L. Due to the
one-to-one relation between the shift-invariant kernel G

L

and ⇢
L

, we shall
therefore also refer to ⇢

L

as the Green’s function of L, with a slight abuse of
language.

Likewise, we may infer that the composition of the null space of a LSI
operator is determined by the zeros of bL(!). Specifically, each zero ! =
!

0

of order n

0

contributes a series of exponential polynomials of the form
x

mejh!0

,xi with m < n

0

. This also implies that the frequency response of
an admissible operator L can only have a finite number of zeros.

Example 4. The prototypical example of an admissible operator for d = 1
is the mth-order derivative operator Dm, which is LSI. Its Fourier symbol
(j!)m has an mth-order zero at ! = 0. Its causal Green’s function is the
one-sided power function

µm(x) =
xm�1

+

(m � 1)!

with x
+

= max(0, x), while the canonical solution is

⇢
D

m(x) = F�1

⇢

1

(j!)m

�

(x) = 1

2

sign(x)
xm�1

(m � 1)!
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The null space of Dm is the space of polynomials of degree (m � 1) with
N

0

= m; that is,

N
D

m = span{pn}N0

n=1

with pn(x) =
xn�1

(n � 1)!
.

Finally, the corresponding Green’s function in Definition 13 is

G(x, y) = ⇢(x � y) with ⇢(x) = F�1

⇢

1

|!|2m
�

(x) =
(�1)m

2

|x|2m�1

(2m � 1)!
,

which happens to be N
D

m-conditionally positive definite.
One can also specify a corresponding dual basis

{�n}N0

n=1

with �n = �(n�1),

which is such that h�n, pn0i = (�1)(n�1)D(n�1)pn0(0) = �n�n0 (biorthogonal-
ity property). While there are many other possible choices of dual bases, the
proposed one is special as it is composed of point distributions entirely located
at the origin.

2.7.4 RKHS associated with an admissible operator

Using the same biothogonal pair (�, p) as in Section 2.7.1, we define the
“orthogonal” complement of N

L

in H
L

as

H
L,� =

�

f 2 H
L

: �(f) = 0
 

, (57)

which will now be used to specify a proper right inverse of the operator
L : H

L

! L
2

(Rd). We may think of this space as a “concrete” transcription2

of the quotient space H
L,ext

�N
L,ext alluded to in the proof of Proposition 8.

Note, however, that this association is not unique: there is a whole family of
spaces H

L,� with a corresponding inverse operator L�1

�

, each instance being
associated with a specific �.

Theorem 11 (Construction of stable right-inverse operator). Let L be an ad-
missible operator and (�, p) with p = (p

1

, . . . , pN
0

) a corresponding biorthog-
onal system for N

L

. Then, H
L,� defined by (57) is a Hilbert space equipped

2While the nature of the elements of the two spaces is different—that is, functions f vs.
equivalence classes of functions (f +N

L

)—they are isometrically isomorphic, and hence,
topologically equivalent.
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with the inner product hf, gi
L

= hL{f}, L{g}i. Moreover, there exists an
isometric map L�1

�

: L
2

(Rd) ! H
L,� such that

H
L,� =

�

f = L�1

�

w : w 2 L
2

(Rd)}. (58)

The operator L�1

�

is uniquely specified through the following properties

1. Right-inverse property: LL�1

�

w = w for all w 2 L
2

(Rd)

2. Boundary conditions: h�, L�1

�

wi = 0 for all w 2 L
2

(Rd)

and its kernel is given by

g
�

(x, y) = G
L

(x, y) �
N

0

X

n=1

pn(x)qn(y), (59)

with G
L

such that L{G
L

(·, y)} = �(· � y) (Green’s function property) and

qn(y) = h�n, G
L

(·, y)i. (60)

Finally, H
L,� ✓ C

b,↵
0

(Rd) if and only if g
�

satisfies the stability condition

sup
x2Rd

(1 + kxk)↵0kg
�

(x, ·)kL
2

(Rd
)

< 1.

Proof. We start by proving that H
L,� equipped with the inner product

hf
1

, f
2

i
L

= hLf
1

, Lf
2

i is a Hilbert space. Thanks to the linearity of L,
one immediately deduces that h·, ·i

L

satisfies the easy properties of an inner
product: linearity, symmetry and non-negativity. We now show that the only
feasible solution for hLf

0

, Lf
0

i = 0 with f
0

2 H
L,� is trivial. The constraint

on the L
2

-norm is equivalent to Lf
0

= 0 (almost everywhere) which restricts
the possible solutions in H

L

to f
0

2 N
L

. We then use the condition �(f
0

) = 0
to project the solution set on H

L,�. This yields f
0

=
PN

0

n=1

h�n, f
0

ipn = 0

where {pn}N0

n=1

is the unique basis of N
L

that is biorthogonal to �, which
proves that hf

0

, f
0

i
L

= 0 , f
0

= 0.
The idea then is to first establish Properties 1) and 2) of the operator

L�1

�

on Schwartz’s space of smooth and rapidly-decreasing signals S(Rd) to
avoid any technical problems related to the splitting of the sum and the
interchange of integrals. Since the space S(Rd) equipped with the standard
Schwartz-Fréchet topology is dense in L

2

(Rd), we are then able to extend
the properties by continuity.

To that end, we introduce the operator G : ' 7! R

Rd G
L

(·, y)'(y)dy,
which is well defined over S(Rd) as long as G

L

(·, ·) 2 S 0(Rd ⇥ Rd) (by
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Schwartz’s kernel theorem). Under the hypothesis that w 2 S(Rd), we then
rewrite f = L�1

�

w as

f = L�1

�

{w} = G{w} �
N

0

X

n=1

pnhqn, wi.

Next, we apply the operator L, which yields

LL�1

�

{w} = L{f} = L

⇢

Z

Rd
w(y)G

L

(·, y)dy

�

�
N

0

X

n=1

L{pn}
| {z }

=0

hqn, wi

=

Z

Rd
w(y)L{G

L

(·, y)}dy (by linearity)

=

Z

Rd
w(y)�(· � y)dy = w

where we have used the defining property L{G
L

(·, y)} = �(· � y) of the
Green’s function and L{pn} = 0 for n = 1, . . . , N

0

. In particular, this implies
that

kL�1

�

{w}k2
L

= hL�1

�

{w}, L�1

�

{w}i
L

= kwk2L
2

(Rd
)

(61)

for all w 2 S(Rd), which shows that L�1

�

is bounded in the L
2

norm.
As for the boundary conditions, we first observe that

qn(y) = hG
L

(·, y), �ni
=

Z

Rd
G

L

(x, y)�n(x)dx = G⇤{�n}(y)

where G⇤ is the adjoint of G. We then make use of the biorthogonality
property h�m, pni = �m�n to evaluate the inner product of �m with L�1

�

w as

h�m, L�1

�

{w}i = h�m, G{w}i �
N

0

X

n=1

h�m, pnihqn, wi

= h�m, G{w}i � hq
L,m, wi

= hG⇤{�m}, wi � hG⇤{�m}, wi = 0,

which shows that the boundary conditions are satisfied. In doing so, we have
effectively shown that L�1

�

continuously maps S(Rd) into H
L,�.

Next, we invoke the Hahn-Banach theorem in conjunction with the L
2

bound (61) to extend the domain of the operator to all of L
2

(Rd). By
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L2(Rd)
LL⇤

L�1⇤
� L�1

�

Riesz map: A� = L�1
� L�1⇤

�

H0
L,� HL,�

p(f⇤) = 0 �(f) = 0

Figure 1: Factorization of the Riesz map and schematic representation of
the underlying operators and Hilbert spaces.

recalling that S(Rd) is dense in L
2

(Rd), we then extend the boundary con-
ditions for w 2 L

2

(Rd) by continuity. This establishes an isometric (and re-
versible) mapping between L

2

(Rd) and H
L,�, and allows us to conclude that

L�1

�

: L
2

(Rd) ! H
L,� is a stable inverse of the operator L : H

L,� ! L
2

(Rd).
Finally, we make the connection with Theorem 8 by identifying L�1 = L�1

�

as
the unique inverse of L that factorizes the reproducing kernel of H

L,� through
H

0

= L
2

(Rd). This together with the assumption that H
L,� ✓ C

b,↵
0

(Rd)
then yields the stability bound on g

�

(·, ·). The converse implication is sup-
ported by Theorem 7.

2.7.5 Determination of the reproducing kernel

Having characterized the relevant right-inverse operator, we can now invoke
the second part of Theorem 8 to deduce that H

L,� is a RKHS whose repro-
ducing kernel is the generalized impulse response of the composed operator
A

�

= L�1

�

L�1⇤
�

. We shall actually take the argument one step further by
expressing this kernel in terms of the symmetric Green’s function of L⇤L in
Definition 13.

Theorem 12. The reproducing kernel of the Hilbert space H
L,� specified

in Theorem 11 is a
�

(x, y) =
R

Rd g
�

(x, z)g
�

(y, z)dz where g
�

is given by
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(59). Moreover, if G
L

⇤
L

(x, y) is the symmetric Green’s function of L⇤L of
Definition 13, then the reproducing kernel can be expressed as

a
�

(x, y) = G
L

⇤
L

(x, y) �
N

0

X

n=1

pn(x)vn(y) �
N

0

X

n=1

vn(x)pn(y)

+

N
0

X

m=1

N
0

X

n=1

rm,npm(x)pn(y) (62)

with

vn(y) = h�n, G
L

⇤
L

(·, y)i =

Z

Rd
�n(z)G

L

⇤
L

(z, y)dz (63)

rm,n = h�m ⌦ �n, G
L

⇤
L

i =

Z

Rd

Z

Rd
�m(x)�n(y)G

L

⇤
L

(x, y)dxdy, (64)

where the integrals on the r.h.s. are symbolic representations of the underlying
linear functionals.

Proof. The first statement directly follows from Theorem 8 with L�1 = L�1

�

and g(·, ·) = g
�

(·, ·). Hence, we only need to establish the validity of (62). By
invoking the symmetry of G

L

⇤
L

(·, ·) and the linearity of L, we first calculate
the quantity

L{vn}(x) = L
�

Z

Rd
�n(z)G

L

⇤
L

(·, z)dz

 

(x)

=

Z

Rd
�n(z)L

�

G
L

⇤
L

(·, z)
 

(x)dz

=

Z

Rd
�n(z)G

L

⇤(x, z)dz = h�n, G
L

⇤(x, ·)i
= h�n, G

L

(·, x)i = qn(x)

where qn is defined by (60). Thanks to this identity, we then evaluate

L{a
�

(·, y)}(x) = L{G
L

⇤
L

(·, y)}(x) �
N

0

X

n=1

L{vn}(x)

= G
L

⇤(x, y) �
N

0

X

n=1

qn(x)pn(y),

= G
L

(y, x) �
N

0

X

n=1

qn(x)pn(y) = g
�

(y, x),
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which is the transposed version of (59), as expected. The additional ingredi-
ent is g

�

(y, ·) = L�1⇤
�

{�(· � y)} 2 L
2

(R) for any y 2 Rd, which follows from
the characterization of the inverse operator in Theorem 11. To verify that
a
�

(·, y) with y fixed satisfies the boundary conditions, we first observe that

h�m, vni =

Z

Rd

Z

Rd
�n(x)�n(z)G

L

⇤
L

(x, z)dzdx = rm,n

for m, n = 1, . . . , N
0

. This helps us evaluate

h�m, a
�

(·, y)}i = h�m, G
L

⇤
L

(·, y)i �
N

0

X

n=1

h�m, pnih�n, G
L

⇤
L

(·, y)i

�
N

0

X

n=1

h�m, vnipn(y) +

N
0

X

n0
=1

N
0

X

n=1

rn0,nh�m, pn0ipn(y)

= h�m, G
L

⇤
L

(·, y)i � h�m, G
L

⇤
L

(·, y)i

�
N

0

X

n=1

rm,npn(y) +

N
0

X

n=1

rm,npn(y) = 0,

where we have used the biorthogonality property h�m, pni = �m�n to simplify
the sums. Since the reproduction kernel is the unique bivariate function that
satisfies these properties, we have proved that (62) is the correct formula.

The final ingredient to complete the picture in Figure 1 is the character-
ization of the Hilbert space H0

L,�, which is the continuous dual of H
L,�. The

interesting twist is that, contrary to H
L,� which stands for a whole family

of spaces, there is actually a single space H0
L,� that is independent of �.

Proposition 10. Let L be an admissible operator and (�, p) a corresponding
biorthogonal system for N

L

. Then, the continuous dual of the RKHS H
L,�

is the Hilbert space

H0
L,� = {f⇤ = L⇤w : w 2 L

2

(Rd)}

equipped with the inner product

hf, giH0 = hL�1⇤
�

f, L�1⇤
�

giL
2

(Rd
)

= hAf⇤, g⇤i

where L�1⇤
�

is the adjoint of the stable inverse operator defined in Theorem 11
and A : ' 7! R

Rd G
L

⇤
L

(·, y)'(y)dy where is G
L

⇤
L

is the symmetric Green’s
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function of (L⇤L) specified in Definition 13. The operator (L⇤L) is the
Riesz map H

L,� ! H0
L,� so that any f⇤ = L⇤L{f} 2 H0

L,� can be viewed as
the Riesz conjugate of some corresponding f 2 H

L,�. Finally, we have the
“orthogonality” property

p(f⇤) = 0 , p

�

L⇤L{f}� = 0 (65)

for any f⇤ 2 H0
L,� and/or f 2 H

L,�.

Proof. Since L�1

�

is a right inverse of L, we immediately deduce L�1⇤
�

is a left
inverse of L⇤. This establishes the isometric isomorphism between H0

L,� and
the pivot space L

2

(Rd), which is itself isomorphic to H
L,� (see Figure 1).

The conjugate relation between f⇤ and f follows from Riesz’ representation
theorem (Theorem 4). To establish the orthogonality property, we simply
note that

hpn, f⇤i = hpn, L⇤wi = hLpn, wi = 0

where w = L�1⇤
�

f⇤ 2 L
2

(Rd). This latter property is crucial as it implies
that the inner product hf, giH0 = hL�1⇤

�

f, L�1⇤
�

giL
2

(Rd
)

is independent of �.
Indeed, under the Green’s function assumption (56), we have that

L�1⇤
�

{f⇤} =

Z

Rd
G

L

(y, ·)f⇤(y)dy �
N

0

X

n=1

qn

=0

z }| {

Z

Rd
pn(y)f⇤(y)dy

=

Z

Rd
G

L

⇤(·, y)f⇤(y)dy = G⇤{f⇤}

for all f⇤ 2 H0
L,�. Likewise, using the explicit form of the symmetric kernel

a
�

in Theorem 12, we readily verify that

L�1

�

L�1⇤
�

{f⇤} =

Z

Rd
G

L

⇤
L

(y, ·)f⇤(y)dy �
N

0

X

n=1

qn

=0

z }| {

hpn, f⇤i

�
N

0

X

n=1

pnhqn, f⇤i +

N
0

X

n=1

N
0

X

m=1

rm,npn

=0

z }| {

hpm, f⇤i

=

Z

Rd
G

L

⇤
L

(·, y)f⇤(y)dy �
N

0

X

n=1

pnhqn, f⇤i,

where the null-space component on the left-hand side of the resulting expres-
sion should be interpreted as a finite-part correction of the primary integral.
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L ⇢
L

⇢
L

⇤
L

N
0

{(pn, �n)}N0

n=1

D 1

2

sign(x) �1

2

|x| 1 {(p
1

(x) = 1, �
1

= �)}

Dm 1

2

sign(x) xm�1

(m�1)!

(�1)

m

2

|x|2m�1

(2m�1)!

m
n

( xn�1

(n�1)!

, �(n�1))
o

Table 2: Differential operators encountered in spline theory with associated
Green’s functions and biorthogonal systems.

This allows us to conclude that

hf⇤, g⇤iH0 = hAf⇤, g⇤i �
N

0

X

n=1

=0

z }| {

hpn, g⇤ihqn, f⇤i = hAf⇤, g⇤i.

where A : ' 7! R

Rd G
L

⇤
L

(·, y)'(y)dy.

Let us now briefly discuss the selection of the appropriate bivariate func-
tion G

L

⇤
L

: Rd ⇥ Rd ! Rd in Theorem 12. Since G
L

⇤
L

is a Green’s function
of (L⇤L), we have that

L{G
L

⇤
L

(·, y)} = G
L

⇤(·, y)

L⇤{G
L

⇤(·, y)} = L⇤L{G
L

⇤
L

(·, y)} = �(· � y),

which implies that G
L

⇤(x, y) = L{G
L

⇤
L

(·, y)}(x) is a Green’s function of the
adjoint operator L⇤. Besides the symmetry of G

L

⇤
L

, the enabling condition
for (62) to hold is that G

L

⇤(y, x) (the transposed version of G
L

⇤) should be a
valid Green’s function of L. While finding such an acceptable G

L

⇤
L

may not
always be easy, we can at least guarantee its existence. In particular, we note
that the condition is met by all the reproducing kernels within the family,
irrespective of the choice of �. Another way to put it is that the knowledge
of a single representative is enough to specify the whole family via equation
(62). Finally, we note that there is a systematic method of construction (by
generalized inverse Fourier transformation) in the favorable scenario where
the operator shift-invariant (see Section 2.7.3).

Thanks to the characterization of the spaces N
L

and H
L,� provided by

Proposition 3 and Theorem 12, respectively, and the fact that they are com-
plementary with N

L

\ H
L,� = {0}, we are now able to extract the direct

sum RKHS structure of the native space H
L

= H
L,� � N

L

. Again, let us
emphasize that this representation is not unique as there is one associated
with each admissible � = (�

1

, . . . , �N
0

) (see Definition 13).
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Theorem 13 (Characterization of native space). Let L be an admissible
operator and (�, p) a corresponding biorthogonal system for its null space
N

L

. Then, any f 2 H
L

has a unique representation as

f = L�1

�

w + q

where w = Lf 2 L
2

(Rd), q = ProjN
L

{f} =
PN

0

n=1

hf, �nipn 2 N
L

and
L�1

�

: L
2

(Rd) ! H
L,� is the right-inverse operator specified by Theorem 11.

Moreover, H
L

equipped with the inner product

hf, gi
L,� = hLf, Lgi +

N
0

X

n=1

h�n, fih�n, gi (66)

is a RKHS whose reproducing kernel is

h
�

(x, y) = a
�

(x, y) +

N
0

X

n=1

pn(x)pn(y) (67)

where a
�

(x, y) is given by (62).
Finally, if A (or the Green’s function G

L

⇤
L

) meets the admissibility con-
ditions in Definition 13 (strict conditional positivity and ↵-boundedness) and
the �n are such that A{�n} 2 C

b,↵(Rd), we have the continuous embedding
S(Rd) ✓ H

L

✓ C
b,↵(Rd) ✓ S 0(Rd) with the insurance that H

L

is dense in
S 0(Rd).

Proof. Under construction: The additive form of the inner product in
(66) and the global RKHS property follow directly from the representation
of the native space as the direct sum of two (reproducing kernel) Hilbert
spaces: H

L

= H
L,� � N

L

.
The novel element here is the continuous embedding S(Rd) ✓ H

L

✓
S 0(Rd). It will be established indirectly by showing that S(Rd) is dense in
H0

L

= H
L,� � N 0

L

✓ S 0(Rd). To that end, we first assume that the boundary
functionals �n are all included in S(Rd). By using the same technique as
in the proof of Theorem 10, we then decompose S(Rd) as the direct sum
S(Rd) = S

p

(Rd) � N 0
L

where

S
p

(Rd) = {'̃ 2 S(Rd) : �('̃) = 0}
and N 0

L

= span{�n}N0

n=1

✓ S(Rd). This means that every ' 2 S(Rd) has a
unique decomposition as ' = '̃ + � with � = ProjN 0

L

{'} =
PN

0

n=1

hpn, 'i�n.
Next, we recall that the inner product for H0

L

can be written as

hf, giH0
L

= h(A
�

+ R
p

)f, gi
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where the two operators A
�

and R
p

are positive-definite by construction.
Moreover, due to the direct sum decomposition, we have that

k'k2H0
L

= hA
�

{'̃}, '̃i + hR
p

{�}, �i

= hA{'̃} +

N
0

X

n=1

hA{�n}, '̃i hpn, '̃i
| {z }

=0

+

N
0

X

n=1

hpn, �ihpn, �i

= hA{'̃}, '̃i + kp(�)k2
2

where we have made use of the result in Proposition 10 to express k'k2H0
L

in
terms of A.

Since A is strictly positive-definite over S
p

(Rd) and the same obviously
holds true for R

p

over the complementary space N 0
L

, the map

' = ('̃, �) 7! k'kH0
L

= k'̃ + �kH0
L

=
q

hA{'̃}, '̃i + kp(�)k2
2

specifies a valid norm over S(Rd). Hence, we can view H0
L

as the com-
pletion of S(Rd) in the k · kH0

L

-norm, which is equivalent to the density
property. Finally, we extend the argument to the general scenario �n /2
S(Rd) by considering an appropriate sequence of test functions (�n,k) in
S(Rd) such that limk!1 �n,k = �n 2 S 0(Rd). The continuous embedding
S(Rd) ✓ H

L

✓ S 0(Rd)—and hence the denseness of H
L

in S 0(Rd)—then
follows from Theorem 3. Lastly, the hypothesis that A{�n}, pn 2 C

b,↵(Rd)
and the specific form of the kernel a

�

(x, y) in (62) allows us to deduce that
h
�

(·, y) 2 C
b,↵(Rd) for any fixed y 2 Rd. Since h

�

is positive-define and
bounded on the diagonal (as a result of our assumptions), we readily conclude
that H

L

✓ C
b,↵(Rd) by invoking Theorem 7.

Proposition 11. Let H
L

be the RKHS specified in Theorem 13 and A :
' 7! R

Rd G
L

⇤
L

(·)'(y)dy. Then, G
L

⇤
L

(·, y
0

) 2 H
L

for any y

0

2 Rd and
A{�n} 2 H

L

for all n. In particular, this implies that the set H
pre,L =

�

PK
k=1

akGL

⇤
L

(·, yk) +
PN

0

n=1

bnpn : K 2 N, ak, bn 2 R, yk 2 Rd
 

is dense
in H

L

. In other words, we can represent any function f 2 H
L

—and, by
extension, f 2 C

b,↵(Rd)—as closely as desired by using a linear combination
of the form

f̃(x) =
K
X

k=1

akGL

⇤
L

(x, yk) +

N
0

X

n=1

bnpn(x)

with a finite number K + N
0

of terms and (adaptive) centers yk 2 Rd.
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Proof. First, we observe that the projection of A{�m} onto N
L

can be writ-
ten as

ProjN
L

�

A{�m} =

N
0

X

n=1

h�m, A{�m}ipn =

N
0

X

n=1

rm,npn

where the constants rm,n are defined in (64). It then follows that

kA{�m}k2HL
= h(L⇤L)A{�m}, A{�m}i + kProjN

L

�

A{�n} k2N
L

= h�m, A{�m}i
| {z }

rm,m

+

N
0

X

n=1

r2m,n < 1

which proves that A{�m} 2 H
L

. As for G
L

⇤
L

(·, y
0

) with y

0

fixed, we use the
expression of the reproducing kernel (62) to rewrite it as

G
L

⇤
L

(·, y
0

) =a
�

(·, y
0

) +

N
0

X

n=1

pn(y
0

) A{�n}(·) +

N
0

X

n=1

A{�n}(·) pn(y
0

)

�
N

0

X

m=1

N
0

X

n=1

rm,npm(·) pn(y
0

)

Since pn(y
0

) and A{�n}(y
0

) are constants and a
�

(·, y
0

) 2 H
L,� (reproducing

kernel property), all the functions on the right-hand side are included in H
L

so that the same holds true for G
L

⇤
L

(·, y
0

) (due to the vector-space property
of H

L

).

We conclude this section by revealing the functional properties of the
operator A

�

= L�1

�

L�1⇤
�

associated with the kernel a
�

(·, y). Operationally,
the latter constitutes a regularized version of the symmetric operator A :
' 7! R

Rd G
L

⇤
L

(·, y)'(y)dy, which cannot generally be ensured to be bounded
H0

L

! H
L

. We recall that both operators are right-inverses of (L⇤L) and that
they are equivalent only when the null space of L is trivial.

Theorem 14. Let L be an admissible operator and (�, p) a corresponding
biorthogonal system for its null space N

L

. Then, the operator A
�

: ' 7!
R

Rd a
�

(·, y)'(y)dy, where a
�

(·, y) is given by (62) in Theorem 12, has the
following properties:

1. It is the Riesz map H0
L,� ! H

L,� = {f 2 H
L

: �(f) = 0}.
2. It is bounded H0

L

! H
L

= H
L,� � N

L

.
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Description Operator Kernel

Right-inverse of L G GL(x, y)

Right-inverse of (L⇤L) A = GG⇤ GL⇤L(x, y)

Stable inverse of L L�1
� GL(x, y) �

N0
X

n=1

pn(x)G⇤{�n}(y)

Riesz map H0
L,� ! HL,� A� a�(x, y)

Riesz map HL,� ! H0
L,� (L⇤L)

Riesz map H0
L ! HL A� + Rp a�(x, y) +

N0
X

n=1

pn(x)pn(y)

Riesz map HL ! H0
L (L⇤L) + R�

Table 3: Primary operators that enter the definition of the Hilbert spaces
H

L

, H
L,� and their duals H0

L

, H0
L,�.

3. It has a finite-dimensional null space N
A� = span{�n}N0

n=1

that is iso-
morphically equivalent to N

L

= span{pn}N0

n=1

. In fact, N
A� = N 0

L

is
the topological dual of N

L

equipped with the norm kqkN
L

= k�(q)k
2

.

4. It imposes the boundary conditions: �(A
�

{f⇤}) = 0 for all f⇤ 2 H0
L

.
In other words, A

�

continuously maps H0
L

! H
L,�.

5. Let A : ' 7! R

Rd G
L

⇤
L

(·, y)'(y)dy where G
L

⇤
L

is the symmetric Green’s
function of L⇤L specified in Theorem 12. Then, for any ' for which
A{'} is well-defined, there exists (dn), (cn) 2 RN

0 such that

A
�

{'} = A{'} +

N
0

X

n=1

dnpn +

N
0

X

n=1

cnA{�n}. (68)

In particular, we have that A
�

{f⇤} = A{f⇤}�PN
0

n=1

hA{�n}, f⇤ipn for
all f⇤ 2 H0

L,� and A
�

{�} = 0 for all � 2 N 0
L

.

6. A
�

= (Id � ProjN 0
L

)⇤A(Id � ProjN 0
L

) = (Id � ProjN
L

)A(Id � ProjN 0
L

)

and is the Moore-Penrose pseudoinverse of (L⇤L) : H
L

! H0
L

in
the underlying direct-sum topology; that is, it has the property that
A

�

(L⇤L){f} = f for all f 2 N?
L

= H
L,� and A

�

{�} = 0 for all
� 2 Im(L⇤L)? = N 0

L

.
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Proof. Property 1 is a restatement of the fact that a
�

(·, ·) is the reproducing
kernel of H

L,� (see Theorem 12). We then reveal N
A� by showing that

A
�

{�n} = 0 for n = 1, . . . , N
0

. To that end, we start by observing that

A{�m}(x) = hG
L

⇤
L

(x, ·), �mi = vm(x), (69)

in agreement with Definition (63). Similarly, we find that

hvn, �mi = hA{�n}, �mi =

Z

Rd

✓

Z

Rd
G

L

⇤
L

(x, y)�n(y)dy

◆

�m(x)dx = rm,n

where rm,n = rn,m is defined by (64). Based on these identifications, we get

A
�

{�m} = vm(x) �
N

0

X

n=1

pn(x)rm,n �
N

0

X

n=1

vn(x)hpn, �mi

+

N
0

X

n=1

N
0

X

n0
=1

rn,n0pn(x)hpn0 , �mi

= vm(x) �
N

0

X

n=1

pn(x)rm,n � vm(x) +

N
0

X

n=1

rn,mpn(x) = 0

where we have made use of the biorthogonality of {pn} and {�n} to reduce
the sums. Since H

L

= H
L,� � N

L

(by Corollary 13) and A
�

isometrically
maps H0

L,� ! H
L,�, we have that H0

L

= H0
L,� � N 0

L

with N 0
L

= N
A� =

span{�n}N0

n=1

. This, in turn, allows us to deduce that A
�

continuously maps
H0

L

! H
L,� ✓ H

L

, which yields Properties 2 and 4. Note that we could
have anticipated these boundary conditions based on the property that A

�

=
L�1

�

L�1⇤
�

.
As for the last property, we also rely on (69) and expand A

�

{'} as

A
�

{'} =

Z

Rd
a
�

(·, y)'(y)dy

= A{'} �
N

0

X

n=1

pnhA{�n}, 'i �
N

0

X

n=1

A{�n}h', pni

+

N
0

X

m=1

N
0

X

n=1

rm,npnhpm, 'i

= A{'} +

N
0

X

n=1

cnA{�n} +

N
0

X

n=1

dnpn
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(L⇤L)

{0}
NL

span{pn}N0
n=1

{0}
N 0

L

span{�n}N0
n=1

H0
L,� HL,�

H0
L = H0

L,� � N 0
L HL = HL,� � NL

A�

Figure 2: Schematic illustration of the mapping between the various Hilbert
spaces.

with

cn = �h', pni

dn = �hA{�n}, 'i +

N
0

X

m=1

rm,nhpm, 'i.

In particular, if ' 2 H0
L,�, then cn = h', pni = 0 (see Proposition 10). Since

A
�

{'} 2 H
L

for any ' 2 H0
L

(Rd), it suffices that A{'} be well-defined for
the splitting (68) to be legitimate.

The complete picture of those functional mappings is given in Figure 2,
while the relevant operators are summarized in Table 3.
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