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1 Preliminaries

1.1 Brief overview of continuous-domain operators

The proper mathematical context is given by Schwartz’ theory of general-
ized functions where S’'(RY) is the space of tempered distributions. It is
arguably the most comprehensive theory for continuous-domain signals and
linear operators acting on such signals because:

e it provides a complete characterization of linear operators in terms
of some generalized “integral” equation (see Schwartz’ kernel theorem,
which is explained next);

e it supports the use of the Fourier transform in its full generality (i.e.,
the generalized Fourier transform F is a continuous reversible map
S'(RY) — S’(R?) that coincides with the usual definition for functions
that are absolutely integrable).

Formally, a tempered distribution f : ¢+ (f, ) is a linear (and contin-
uous) functional that associates a real number denoted by (f, ¢) to each test
function ¢ € S(R?) (Schwartz’s space of smooth and rapidly decaying func-
tions). For instance, the Dirac impulse at location xy € R? is the generalized
function §(- — x) € S'(RY) defined as

¢ = (0 = o), ) = p(x0)

Here, the dot “-” is used as placeholder for the domain variable (i.e., ¢, p(x),
or () are equivalent notations for the same object which is a function
¢ : RT — R), while g is a fixed offset that indicates the location of the
impulse. In the case where f is an ordinary function of the variable & € R¢,
the so-called “duality product” is given by

(o) = [ F@etayia, (1)

which is a conventional integral.

The fundamental result for our purpose is Schwartz’ kernel theorem,
which states that any continuous linear operator G : S(R?) — &'(R?) admits
an “integral” representation as

Clek@) = o(@.)9) = [ al@v)elw)iy )
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for all p € S(RY) with g(x,y) € S'(R? x R?). In essence, g(-,-) is the
continuous-domain analog of the matrix that specifies a finite-dimensional
linear operator. The kernel of G is identified by formally applying the oper-
ator to a shifted Dirac impulse

9@, y) = G{6(- —y)} (=), (3)
which is the reason why g(x, y) is also called the generalized impulse response
of the operator. Note, however, that the kernel g(-,-) is not always an “ordi-
nary” bivariate function R? x R — R, but rather a tempered distribution in
the cross-product space S'(R? x R?). The truly powerful aspect of the kernel
theorem is that the implication also goes the other way around: Any kernel
g(-,-) € S'(R* x R?) specifies a continuous operator G : S(R?) — S'(R%)
via equation (2). Moreover, two operators are identical if and only if their
kernels are equal (in the sense of distributions).

To take us back to a more classical setting where signals and kernels
are ordinary functions of the index variables z,y € R¢, we invoke an ex-
tended version of the kernel theorem, due to the famous mathematician
Grothendieck, that guarantees the existence of two Hilbert spaces H and Hg

S(RY CH,Ho C S'(RY)

such that the operator has a continuous extension G : H — Hy, which is
also defined by (2), but with ¢ € H. This is equivalent to the existence of a
constant Cy > 0 such that

IG{f Hi#o < Collflln-

From a pragmatic point of view, this means that, given any kernel g(x,y),
it is always possible to specify a Hilbert space on which the corresponding
operator is well defined. Among those spaces, the reproducing kernel Hilbert
spaces (RKHS) are the ones with the strongest practical appeal because
their members are conventional functions of the variable @, although not
necessarily square integrable (see Theorem 7).

1.2 Inner products versus duality product

Having a good grasp of the distinction between the two parallel notions of
“inner product” and “duality product” is essential since it is driving the whole
formulation. The duality product, on the one hand, is unique (and universal)
as it expresses the pairing of a function space to its topological dual. An
inner product, on the other hand, specifies a Hilbert space and is typically
tied to a given problem, an operator, or a positive-definite kernel. There is
no single inner product—the variations on the theme are essentially limitless.
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1.2.1 Hilbert spaces and inner products

We briefly recall the defining properties of an inner product. For simplicity,
all (generalized) functions are assumed to be real-valued.

Definition 1 (Inner product). Let H be a linear (or vector) space. A real-
valued inner product on H is a bilinear form that associates to each pair f,g €
H a real number denoted by (f, g)y that satisfies the following properties for
all f,g,h € H and o € R.

e Linearity: (of, g)u = a(f, g)u and (f + g,h)u = (f, )z + (g, h)n.-
o Symmetry: (f,g)u = (g, [)u-

e Non-negativity: (f, f)n > 0.

o Unicity: (f, f)3=0< f=0.

If all conditions except the last are met, then (f, g)y is called a semi-inner
product.

An inner product automatically determines a norm by the formula || f||% =
V{f, fY#. A Hilbert space is a complete (i.e., closed) normed space whose
norm is induced by an inner product; it is separable if it admits a countable
basis. The classical example of a separable Hilbert space is Lebesgue’s space
of square-integrable functions Lo (R?).

1.2.2 Duality product

The canonical duality product (-,-) is the continuous bilinear form S'(R%) x
S(RY) — R that represents the action of a linear functional f € S’(R?) on a
test function ¢ € S(RY):

fro=(f o). (4)

One then extends the notion to any dual pair of Banach spaces (X’, X) in
S'(R?) (see Definition 5) by writing the action of f € &’ on a function g € X
as

frg—={f9)-

The implicit understanding here is that the bilinear form remains continuous
in both arguments because of the bound

[(F o < fllarllgllx
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for all f € X’ and g € X, which actually defines duality. This extension,
which is compatible with the canonical form (4) when ¢ € S(R?), is sup-
ported by the Hahn-Banach theorem.

In particular when X/ = H' and X = H are a dual pair of Hilbert spaces,
we have that

(f.9) = R{f}a)n = (f,R g w (5)

where the unitary pair of operators R: H' — H and R™' =R¥ : H' - H
are the Riesz maps that are encoding the isometric isomorphism between the
two spaces (see Theorem 4).

1.2.3 Hilbert-conjugate vs. adjoint operators

Two distinct notions are also required to describe the interaction of opera-
tors with inner products versus the duality product: the Hilbert conjugate
(which is dependent upon the inner product) vs. the adjoint operator (whose
definition is universal). The fact that the two concepts are often represented
using the same symbol “*” can be a source of confusion.

Let (H',H) be a dual pair of Hilbert spaces and G a continuous operator
G : H — H'. Since we are dealing with normed spaces, the continuity
assumption is equivalent to the existence of a constant (the induced norm of
the operator) denoted by |G| such that

IGfllaer < NGl

for all f € H.
The Hilbert (or Hermitian) conjugate of G is then defined as the (unique)
operator G : H' — H that satisfies

<Gf7 g>7‘[’ = <f7 GH9>H

for all f € H and g € H'.

Since S(RY) C H and H' C S'(R%), the operator G : H — H' is repre-
sented by its kernel via (2) (Schwartz’ kernel theorem), while its restriction
to S(RY) is guaranteed to be continuous. One then defines the adjoint of
G : H — H' as the unique operator G* : H' — H such that

(G{pr}, p2) = (G{wa} 1) = (01, G {2},

for all p1, 92 € S(R?). Note that the right-hand side of the above identity
(which is easier to remember) uses an extended interpretation of the duality



M. Unser (EPFL) RKHS, Splines, and Gaussian Processes

product for H' x H — R, which is supported by the Hahn-Banach theorem
with the bound

(G{p1} )| = ({1, G {2 )| < G llpallelloallz-

The (unique) kernel representation of G* is

G {ehe) = (a.2).9) = | olma)eu)dy ()

which is the “transposed” version of (2) where the index variables x and y
have been simply interchanged.
By applying the above definitions, we have that

(G{o1}, @2) = (G{p1}, R {2} = (1, G"R™ {2} )
= (RG"R™{¢2}, p1) = (G* {2}, 1)

which shows that G* = RGHR™! with R™! : H — #', G : %' — # and
R :H — H'. In other words, the Hilbert conjugate and adjoint operators of
G : H — H' are equivalent iff. the Riesz map R is the identity; that is, when
H =H = Ly(R%).

1.3 Self-adjoint operators and positive-definite kernels

Equation (6) implies that the kernel of a self-adjoint operator is symmetric;
i.e.,
H=H" < h(z,y)=h(y,z) for all z,y € RY.

Among the class of self-adjoint operators, the most favorable ones are
those whose kernel is positive-definite.

Definition 2. A kernel function h : R x R* — R such that

h(z,y) = h(y,x)

for all &,y € R? is said to be symmetric. Moreover, it is positive semi-
definite (or positive definite, for short) if

N N
Z Z Zmh (T, @) 2n >0

m=1n=1

for any N €N, x1,...,xxy € R?, and z1,...,2n € R.
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Remarkably, there is a formal equivalence between positive-definite ker-
nels and inner products.

Theorem 1 (Moore-Aronszajn [?]). The kernel function h : R* x R4 — R
is symmetric positive (semi-)definite if and only if there exists some Hilbert
space H and a families of elements { fz}yera tn H such that

W, y) = (fa, fy)u- (7)

In particular, there is a unique Hilbert space Hrep—the reproducing kernel

Hilbert space of h—such that (7) holds with fz = h(-, ).

Proof. We shall only prove the (easy) direct part of the statement. To that
end, we use the announced form of A(-,-) to evaluate

N N
Z szh(:nm?mn Zn =

m=1n=1

N
sz f:l:m?fwn HzZn

n=1

Zm S s Z Znfa, )3 (bilinearity of (-,-))
7j=1

= szfmmHg-t >0

=1

- 1

=

S H

The remainder of the proof is more technical—we refer to [, Section 1.3, pp.
13-23] for a comprehensive exposition. O

The fundamental outcome of Theorem 1 is that there is a perfect equiv-
alence between positive-definite kernels and RKHS, which are defined in
Section 2.
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1.4 Schwartz’s space of test function: density properties

As complement, we now present some important topological properties of
Schwartz’ space of test functions S(RY), which will be invoked in some of
our derivations. Since the content of this section is of more abstract nature,
it may be skipped on first reading.

The notion of a locally-convex topological space is a generalization of the
idea of normed space that retains the key topological properties associated
with a norm (or, rather, a countable sequence of (semi-)norms). For our
purpose, it is sufficient to know that this family includes all Banach spaces
(such as L,(R?) for p > 1), Fréchet spaces such as S(R?), as well as their
duals—e.g., §'(R%): Schwartz’ space of tempered distributions.

Definition 3 (Continuous embedding). Let X and Y be two locally-convex
topological spaces such that X C Y (set inclusion). X is said to be con-
tinuously embedded in Y, which is denoted by X C Y, if the inclusion map
1: X =Y :x— xis continuous. In particular, if X and Y are two Banach
spaces with respective norms ||-||x and ||-||y, it is equivalent to the existence
of a constant Cy such that

lzlly < Collx||x,
forallx € X.

Definition 4. Let X and Y be two locally-convex topological vector spaces
so that X s continuous embedded in Y; i.e., X C Y. We say that X is
dense in Y if for any y € ), there exists some sequence (xy) in X such that
limg_ o0 1 = y in the topology of ).

Theorem 2 (Denseness of S(R?)). Let X be any locally-convex topological
vector space such that S(R?) C X C S'(R%) where the embedding is continu-
ous. Then, S(R?) is dense in X.

Proof. The method is constructive: any f € X can be approached as closely
as desired by the sequence of functions ¢y, = (f * g )ur € S(R?) C X where
(uz) is a series of window functions in S(R?) such that limy_,o up = 1 (e.g.,
up(x) = e~Uzl/5)*) The enabling property for this construction is that the
convolution of any tempered distribution (e.g., fex C S’(Rd)) with a
test function (here i €S (Rd)) necessarily yields a function that is infinity
differentiable but still possibly of slow growth. The subsequent multiplication
with ug imposes the rapid descent property, which ensures that ¢ € S (Rd)
for any k € NT. As k — oo, the test function 4 converges to the Dirac

10
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impulse, which then acts as the convolution identity. The powerful aspect of
the argument is that the reasoning holds for any X C S’'(R%), including the
limit case X = S'(RY). O

In the sequel, we shall often exploit this property to establish algebraic
properties of functionals and operators (such boundary conditions and pos-
itivity). The practical advantage of considering test functions first is that it
allows us to split sums or take limits without having to worry about tech-
nicalities. Once the desired property is established over S(R?), it is then
readily transferred to some larger topological vector space X that is of in-
terest to us.

Corollary 1. We now consider some Banach space X equipped with the
norm || - ||x with the property that S(RY) is dense in X C S'(R). Then, the
following holds true.

o The map o — |||y specifies a continuous functional on S(R?) that
fullfills the defining properties of a norm; i.e., |||y = a|l¢|lx, ¢ +
Plla < llollx + ll¢llx and [lpflx =0 < ¢ =0, for any o € R and
@0, ¢ € S(RY). Then, the closure of S(R?) with respect to the norm
| - [|x is precisely the Banach space (X, || - | x)-

e Transfer of boundary condition: Let ¢ € X' with S(RY) C X C S'(RY).
Then,
Vip € S(RY), (9,0) =0 = Vf € X, (p, f) =0

e Extension of the domain of an operator T : S(R?) — S'(R?). Let X
and Y be two Banach space such that S(R?) C X,V C S'(R?). If

| Telly < Cllellx

for all p € S(R?), then the operator has a continuous extension T :
X =)

The first and second statements are immediate consequences of the dense-
ness of S(R?) in X'. The third condition ensures that the operator is bounded
in the || - ||y norm; we then invoke the Hahn-Banach theorem to justify the
extension of its domain.

Proposition 1. Let L be a continuous linear operator S(RY) — X where
(X, - |lx) is a Banach subspace of S'(R?). Then:

e The closure of the S(R%) with respect to the semi-norm ¢ — ||Lep||x =
lellL.x is a semi-normed subspace of S'(R?) denoted by X, ext-

11
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e The (extended) null space of L, N1, = {zg € Xpext : Lxo = 0}, is a
closed subspace of S'(R%) (222).

e The quotient space XL,ext/NL equipped with the norm || - ||L.x is a
Banach space.

o If N1, equipped with the norm || -||n; is a Banach space, then the direct
sum (XL,ext/NL) ® N1, is a Banach space that is isometrically isomor-
phic to A, ext.-

Theorem 3. Let (X,] - ||x) be a Banach space such that S(RY) C X C
S'(RY). Then, its continuous dual (X', | - ||x+) has the same property—i.e.,
S(R?) C X' C S'(R%)—s0 that both spaces are dense in S'(RY).

Proof. Due to the nuclear-Fréchet structure of S(RY) (see Appendix D),
the continuous embedding S(R%) C X C &'(R?) implies the existence of a
Hilbert space H = S,,,(R?) for some m € N such that S(R¥) C H C & C
H' C S'(RY). This is equivalent to the existence of two constants C’,, Cy,, > 0
such that

1
cr el < lielle < Callelln (8)
m

for all p € H.
Since S(RY) is dense in X (by Theorem 2), we can expressed the (dual)
norm of X’ (see Definition 5) as

ees@in{oy \ lellx

for any f e X”.
Let us now take f € S(R?). Since the space H and H’ are duals of each
other, we have that |(f, ¢)| < || fllxll¢l|l%, which, for ¢ # 0, implies that

Al el

[ fllar <
Moreover, we clearly have that ||¢||x = 0 < ¢ = 0, which shows that || - || 4+
is a valid norm over S(R?). In other words, we can view X’ as the completion
of S(R?) with respect to the || - || x+ norm.
Likewise, by interchanging the role of X’ and H', we use the same argu-
ment to show that

[fll2r = sup < Cnlfllar

PES(RY)\{0}

<<f,so>) < Il llellx
el ) = lleelln

12
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for all f € S(R?) and, by extension, for all f € X’. The final outcome is

1
e < 110 < Clull Sl

which is the dual counterpart of (8). The statement on density then follows
from Theorem 2. O

In view of Theorem 3, the norm for the Banach space X O S(RY) admits
the following equivalent form

Iflle=  sup (<f’ “0>)

pes®\ (o} \ llellxr

where the supremum is taken over S(RY), rather than X’ D S(RY). This
yields a meaning to the alternative definition of X as

X={ve S'(RY) : o)l < 00}

2 Reproducing kernel Hilbert spaces (RKHS)

In essence, any Hilbert space H = {f : R? — R : ||f|lx = V/{f, /i < o0} C
S'(R?) whose members f are “ordinary”—but, not necessarily bounded—
functions on R? is a RKHS and vice versa. In other words, f(x) is well-
defined for any & € R? in contrast with the elements of S’(R?) (generalized
functions) that do not necessarily have a pointwise interpretation. This
will be made explicit by relating the abstract definition (Definition 6) and
the properties of the reproducing kernel (Proposition 2) to the functional
characteristics (continuity, rate of decay or growth) of the RKHS (Theorem
7).

2.1 Definition of RKHS

Let us start by recalling a few standard definitions from functional analysis.

Definition 5 (Dual of a Banach space). The dual of the Banach space X 2
S(RY) is the vector space X' C S'(RY) that consists of all continuous linear
functional on X. It is can be specified as the completion of S(R?) in the dual

ol 2 sup <<“’“>> (9)

uex\{oy \ llullx

where (-,+) : X' x X — R is the duality pairing that represents the action of
the linear functional v : u v v(u) = (v,u).

13
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To keep the notation simple, we shall write
X ={ueSRY:|ulr < oo}
X' ={veSRY:|v|r < oo}

with the implicit understanding that the rigorous specification of these spaces
involves a completion/density argument (see Theorem 3 and accompanying
explanations).

In particular, the dual of a Hilbert space H = X is another Hilbert space
‘H’ with the following remarkable property.

Theorem 4 (Riesz representation theorem). Let (H,H') be a dual pair of
Hilbert spaces. Then, for any continuous linear functional v € H', there is a
unique element v* = R{v} € H (the so-called conjugate of v) such that

v(u) = (v", u)n (10)
for all w e H. Conversely, for any v* € H, the linear functional v: H — R
defined by (10) is continuous with ||[v|| = ||v|l = [|[v*]|x = ||Rv||x, and

hence included in H'. The linear isometric map R : H' — H that associates
any element v € H' to its conjugate v* € H is called the Riesz map.

The existence of the Riesz map implies that (vi,v2)y = (v],v5)y =
(Rvy, Rug)y for any vi,ve € H'. This specifies the inner product for H’,
while it also shows that the two spaces are isometrically isomorphic.

Definition 6 (RKHS). The Hilbert space H C S'(R?) is said to be a repro-
ducing kernel Hilbert space (RKHS) if the shifted Dirac impulse §(- — xg) €
H' for any ¢ € RY.

Let us momentarily denote the Dirac “sampling” functional §(- — @) by
dz,- By the Riesz representation theorem, the RKHS condition 0., € H’
implies the existence and uniqueness of the conjugate element 5 € H such
that

f(@0) = 0ay(f) = (6(- — @0), f) = (024, )1t (11)

for all f € H and for any 2o € R?. This brings us to the concept of repro-
ducing kernel, which is a reformulation of (11) with the change of notation
Oz () = (o, ).

Definition 7 (Reproducing kernel). The reproducing kernel of a RKHS on
R? is the function h : R x R — R such that

(i) h(xzo,-) € H for all xy € R?
(1) f(xo) = (h(xo,-), f)a for all f € H and xy € RY (12)

14
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Proposition 2. Let H be a RKHS on R®. Then, its reproducing kernel
h:R% x R* - R has the following properties.

1. It is unique.

We,y) = (M), h( ¥))n

Symmetry: h(x,y) = h(y, ) for all x,y € R?
Positive (semi-)definiteness.

The linear span of {h(zx,-),z € R} is dense in H.

S & e

Link with the Riesz map: The operator
R:o— R{p} = /Rd h(-,y)e(y)dy (13)

is a unitary mapping H' — H with the property that (u,Ru) = |lu||3,
for allw € H' (the dual space of H).

7. Invertibility: The operator specified by (13) admits a unique inverse
R~!: H — H' with the property that (R™1f, f) = ||f|]3_[ forall f € H.

Proof. The reproducing kernel is obtained from (11) by setting h(xo,y) =
03, (y); it is unique and included in H as a consequence of the Riesz repre-
sentation theorem.

Property 2 is derived by applying the reproduction formula (12) to the
kernel itself: (h(z,-),h(-,y))n = h(z,y). The symmetry follows from the
symmetry of the inner product: h(x,y) = (h(x,-), h(y, ))n = (h(y,-), h(x, )y =
hy,x).

The positive definiteness is a consequence of Property 3 where h(x,y) is
expressed as an inner product (see also Theorem 1).

To establish Property 5, we consider a function g € H that is orthogonal
to the linear span of {h(z,)},cge. Then, (g, h(z,-)) = 0 for every x € R?,
which, by the reproducing kernel property, is equivalent to g = 0.

As for Properties 6 and 7, we refer once more to Theorem 4, which
guarantees the existence and unicity of an invertible pair of operators R :
H' — H and R™! : H — H’' (the Riesz maps of H' and H, respectively) such
that

<U7u> - <U*,’U,>H = <RU7U>H = <U7R71U>H’ - <7}7U*>’H (14)

15
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for all v € H' and u € H. Next, we rephrase the definition of the reproducing
kernel as

oy(x) = R{6(- —y)}(z) = h(y, z) = h(z,y),
which shows that A(-,-) is the generalized impulse reponse of the Riesz map
R. This is precisely what is indicated by Eq. (6) (see (3) and accompanying
explanations). Finally, we set v = R™!u (resp., u = Rv) in (14), which yields

(R, u) = (u, u)pg = [ull3
<U7RU> = <U>U>'H’ = ||’UH%-L’
O

There is a striking parallel in (11) between the central equation (the defin-
ing property of the shifted Dirac impulse) and the right-hand side, which
specifies 03, . The crucial difference, of course, is that d;, = h(xo,-) is an or-
dinary function whose action is tied to the inner product of H, whereas
d(- — xp) is a tempered distribution whose definition involves the dual-
ity product for (§'(R%), S(R?)). While it would be tempting to interpret
§(x — y) as the reproducing kernel for the canonical Hilbert space La(R?)
for which f* = f (because Lo(R?) is its own dual), there are two reasons
why the RKHS property cannot apply there: i) most functions f € Lo(R?)
are not continuous which makes the sampling operation ill-defined, and, (ii)
§(xo — ) ¢ Lo(R?), which would contradict the first requirement in Defini-
tion 7.

We shall therefore focus our attention on the Hilbert spaces whose mem-
bers are continuous functions.

Supplementary material: For completeness, we also list some higher-
level topological properties of reproducing kernel Hilbert spaces that are
given here without proof; see for the details.

Theorem 5. Let h: R x R — R be the reproducing kernel of some RKHS
H. Then, the following properties hold.

1. Any converging (or Cauchy) sequence of functions (fn) in H also con-

verges pointwise to the same limit; i.e.,

lim || fo— fllu=0 = lim |fu(x) — f(z)] =0 for every x € R%.
n—o0 n—oo
2. The set Hpre = {27]7\,/:1 aph(-,yn) : N € Nya, € Ry, € Rd} s dense
i H. In other words, we can represent any function f € H as closely
. . . . ~ N
as desired by a linear combination of the form f = Y " | anh(-,yn)
with a finite number N of terms.
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2.2 Decay and continuity properties

We shall monitor the algebraic rate of decay/growth of functions of the
variable & € R? via their inclusion in “weighted” function spaces. To that
end, we first define

Loca(®?Y) = {f € SR : | floea < +0}
with a € R, where

[flloo.a = esssup (| f(z)[(1 + [[=])%) .

xreRI
Note that

1/ lloc.a

d T _ N e,
f€Lloa(RY) & [f(z)] < 1+ [z

almost everywhere, (15)

meaning that f(x) decays at least (or growth at most) as 1/||«||“ at infin-
ity. To constrain the setting to “classical” functions that are well defined
pointwise, we introduce the function space

Cho(RY) = {f : R? — R continuous and s.t. || f|lcc.a < +oo} .

The main difference there is that the upper bound on the rhs of (15) becomes
valid everywhere; this allows for the substitution of the “essential supremum”
in the definition of the weighted Lo, norm by the simpler supremum (i.e.,
SUD o).

It can be checked that Cj, o(R?) equipped with the || - oo norm is
complete and hence a Banach space. In particular, Cy, o (]Rd) =Ch (]Rd), which
is the classical space of bounded continuous functions. Clearly, || f|lco,ar <
| flloo.as for any f € Ch a, (R?) with ag > g, which implies that Cy, o, (R?) is
continuously embedded in Cj, 4, (R?) (see Definition 3 below) and, a fortiori,
in Loo o, (R?). This functional embedding is summarized as

S(Rd) C Cb,a+ﬂ(Rd) - Cb,a(Rd) - LOO,a(Rd) - S/(Rd)7

for any 5 > 0.

A standard result from the theory of tempered distributions is that, for
any continuous function f € S’(R?), there exists some (critical) exponent
ag € R such that f € C’b@(Rd) for all & < ag. This exponent qualifies the
rate of algebraic decay of f. The function is said to be of slow growth if
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ag < 0. On the contrary, it has a rapid decay if the inclusion holds for all
a e R

The same considerations apply for continuous kernel functions h : R? x
R? — R which are then described in terms of the cross-product extension of
these spaces; namely, S'(R? x RY), Lo o(R? x RY) and C, o(R? x RY) with

[h(, loc,a = sup |h(z, y)[(1 + [[z|)*(1 + [yl
x,ycRd

To emphasize the central role of continuity in the characterization of
RKHS, let us consider some Hilbert space ‘H that is composed of continuous
functions with an algebraic rate of decay no worse than «; that is, H C
Ch o (RY) for some o € R. This embedding implies the existence of a constant
C > 0 such that

1flloo < Cllll, for all f € H.

The condition f € C, o(R?) then gives that

[f(@0)| = 100 (/)] < (14 [J@ol)) ™| flloc.a < Co | £l

which shows that 0, : H — R is continuous or, equivalently, 6(- — xg) € H’
for any &g € R% This proves that continuity together with some form
of boundedness is sufficient to ensure the reproducing kernel property (see
Definition 6). What is more remarkable is that the implication also goes the
other way around in the sense that one can tightly control the continuity and
rate of decay of f € H based on the properties of the reproducing kernel.

The first element of this equivalence is the transfer of continuity between
h and the members of H, which is covered by the following theorem, the
proof of which can be found in [?, Theorem 17, p. 34].

Theorem 6 (RKHS of continuous functions). Let H be a RKHS of functions
on R with reproducing kernel h : R x R® — R, Then, any element of H
s continuous if and only if

1. the map x — h(x,y) is continuous for all y € RY;

2. for every x € RY, there exist € > 0 such that the function y — h(y,y)
is bounded on the open ball B(x,¢) = {y € R?: ||y — || < €}.

We now show that in the present setting where H C S'(R%), the local
boundedness constraint (Condition 2) in Theorem 6 can be substituted by a
simpler and more intuitive slow-growth constraint; that is, the existence of
a critical rate of decay/growth a € R such that h € Ly, o(R? x RY).
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Theorem 7 (Characterization of RKHS in C}, o(R%)). A bivariate function
h:R?x RY — R is the reproducing kernel of a RKHS H C C'b@(]Rd) with
a € R if and only if it is positive-definite, separately continuous in each
variable, and such that h(-,-) € Loo@(Rd x RY). In particular, this implies
that

1. h(zo,") € Cho(RY) for any xy € RY
2. 1h( ) loo.a = P yeges [(@, )| (1+ |21 + [y)* < o0
3. Aa = SUDgems hl@, @) (1+ [2])2 < oo

with Conditions 2 and 3 being equivalent.

An interesting outcome of Theorem 7 is that Condition 1—the minimalis-
tic choice dictated by Definition 7—is not sufficient on its own. The natural
extension is h(-,-) € Chq(R? x RY), which is sufficient for the inclusion
H C Cho(R?), but slightly too conservative. Indeed, the joint continuity
of h over R? x R? is stronger than the separate continuity—a topic that is
further developed in Proposition 3.

Proof of Theorem 7. We recall that the positive-definiteness of h is equiva-
lent to the RKHS property (see Theorem 1). Likewise, the necessity of Condi-
tion 1 (which implies the continuity of i in each argument) for H C Cy, o (R?)
is obvious since h(xo,-) € H from the definition of a reproducing kernel. The
remainder of the proof is divided in three parts.

Part I. H C Cy, (R?) = Condition 3.
By applying the reproducing property twice, we get

[f(@)] = [(h(=, ), Ful < V/(h(x,),h( @) | fln (Cauchy-Schwarz)

< Vh(z, @) |[flln,

from which we deduce that

[flloo.a = sup (1 + [[z[)*|f (@) < Co [[f]l« (16)

xcR4

where

Co = sup (1 + [[=])* v/ h(z,z).

xER4

By defining x¢ = argsup,era(l + ||z|)“/h(x, ) and taking f = h(-, xo),
we then verify that the inequality (16) is sharp. This allows us to identify
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Co = /Aq, as the operator norm of the identity map ¢ : H — C’b,a(Rd),
which is bounded by hypothesis.

Part II: Equivalence of Conditions 2 and 3.
The connection between reproducing kernels and inner products yields

Ih(z, y)|> < h(z, z)h(y, y),

which is the kernel equivalent of the Cauchy-Schwarz inequality. Accordingly,

sup |(1+ [|lz])*h(z, y)(1 + [ly])*
x,ycRd

< sup (14 [|lz[)** bz, 2)(1 + |ly])**h(y,y) = 47 4,
x,ycRd

which implies that
Hh(a ')Hoo,a < Ah,a-

Conversely,
(L [le])* (e, y) (L + [yl < A )lloo,a
so that

Apo = sup (14 [lz]))*h(z, ) (1 + |2])* < A, )]loo.as
xR

from which we deduce that Aj, o = ||h(-, )| 0,0

Part III: Condition 3 and continuity of h(x,-) = H C Cj, o(R?).
The boundedness of || f||oc,q for all f € H follows directly from (16) with Cp =
\/Ah.o. We then prove that H C C}, 4 (RY) C Loo,a(Rd) by invoking Theorem
6, which ensures that all the members of H are continuous functions. The
two required hypotheses are: (i) the separate continuity of h(x,y) in  and
y, and, (ii) the local boundedness of h along its diagonal, which is met,
thanks to Condition 3. Specifically, for any € > 0, we have that

h(y.y) < Aan(L+ yl) 7> < Aap(L + e+ )™ = M < 0o
for all y € B(x, €). O

All the Hilbert spaces H that will be considered in the sequel are implic-
itly assumed to meet this minimal requirement for a RKHS; i.e., the existence
of a critical exponent oy € R such that H C Cb,a(Rd) for all @ < «g, the
classical scenario being oy = 0 (continuity and boundedness).
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The intuitive explanation for the identity Apo = ||A(:;-)]|oo,a is that
a positive-definite matrix is dominated on the diagonal (by the Cauchy-
Schwarz inequality) so that the max norm of the matrix is equal to the max
norm of its diagonal.

The Cauchy-Schwarz inequality also helps us get a clearer understanding
of the transfer of continuity from h to H. The relevant estimate there is

|f(@) = f(@0)l” = |{h(z, ) = h(o,-), )ul’
< |k, ) — h(@o, 3 I 1% (Cauchy-Schwarz)
= (W@, @) + h(zo, xo) — 2h(x, @0)) || f|3- (17)

This implies that one can achieve the continuity of any f € H by imposing
that

lim h(x,x) + h(xo, o) — 2h(x, o) =0 (18)

T—xQ
for all g € RY. This latter condition amounts to the continuity of h(x,y)
along the diagonal—i.e., in the neighbourhood of the points (z,y) = (o, o)
for &y € R4 which is not the same as the (separate) continuity of @
h(xz,y) and y — h(x,y) required in Theorem 7. There is no contradic-
tion, however, because the former condition implies the latter, as stated in
Proposition 3 below. In fact, (18) is equivalent to the continuity of h over its
whole domain R? x RY. This also means that the combination of (18) and
the boundedness requirement h € Lo o(R? x RY) in Theorem 7 is equivalent
to the simpler-looking condition h € Oy, o(R? x R?)

Proposition 3. Let h : R x R* — R be a positive-definite kernel. Then,
the following conditions are equivalent:

1. continuity of h over R% x R®:

(z,y)—(0,Y0)

2. (joint) continuity of h along the diagonal:
lim |h(x,xo) — h(xo,20)] =0
Tr—x0
lim |h(x,z) — h(xo, zo)| =0
T—T0

3. continuity of h in the norm across rows or columns

Y—Yo

T—TQ
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for all xgy,yo € RY.

Proof. First, we observe that the positive-definiteness of A implies the sym-
metry of the kernel (see Appendix A). It is also known from Theorem 1
that h uniquely specifies a Hilbert space H with the property that h(x,y) =
(h(x,-),h(-,y))n. The latter implies that

Hh(.’l}, ) - h(:l)o, )Hg-t = h(w7w) + h(w()?w()) - 2h(:13, w()),

which shows the equivalence between Properties 2 and 3. By applying (17)
to f(x) = h(x,y) with y fixed and by taking the squareroot, we find that

\h(x,y) — h(zo,y)| < (Y, y) [h(x, ) + h(zo, o) — 2h(x, x0)] %7

which proves that Property 2 implies the separate continuity of A in each
variable. By using this inequality twice, we get

(2, y) — h(zo,y0)| < [h(®,y) = h(z,yo)| + [~(2,Y0) — h(zo, Yo)]

< Vi@, [h(y. ) + hlyo. w0) — 2h(y.y0)]?
+ V' h(yo, yo) [h(x, ) + h(zo, o) — 2h(, T0)] 2,

NI

which proves that h(x,y) tends to h(xo,yo) as (x,y) — (xo,Yo)-
O

While we have already pointed out that Lo(RY) is not an RKHS, there
is a simple generative mechanism for turning it into one by applying a re-
versible smoothing operator—typically, some kind of integrator—to it. We
now provide a sufficient condition on the generalized impulse response of the
operator for controlling the rate of decay/growth of the output.

Proposition 4. Let g : R? x RY — R be a kernel such that g(zx,-) € La(R?)
for any fized x € R?. Then, the output of the corresponding linear operator
G:wwr f= [pag(-,y)w(y)dy is well defined pointwise for any w € Ly(RY).
If, in addition, there is some o € R such that

Sué}d(l + llzl)*(lg(z, ) 1, ray < o0, (19)
xTe

then G is bounded from La(RY) — Lo o(R9).
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Proof. By invoking the Cauchy-Schwarz inequality, we obtain

[f ()] =

/ g(fv,y)w(y)dy|
Rd
< [ lot@wyutwldy < ot e loleo

This shows that f(z) is well-defined pointwise provided that [|g(z, -)| 1, ®e) <
0o. Based on this estimate, we also get

[G{w}|oc,a = esssup [ f(z)[(1 + [l[)*
z€RY

< (SUP (1 +[lz])*/|g(, ‘)’LQ(Rd)> [wl| £, (rey

xcRd

which proves that (72) implies the boundedness of G : La(RY) — Log o (RY).
O

2.3 RKHS: the simplified finite-dimensional story

To get a hands-on understanding of RKHS, a helpful exercise is to transpose
the concept to RY, the standard vector space of linear algebra. We recall
that RY is endowed with the Euclidean inner product:

N
<Xa Y> = Z TnYn,
n=1

for any pair of vector x = (z1,...,2n),y = (y1,...,yn) € RY. We can
also interpret x as a linear functional acting on the vector y, meaning that
RY coincides with its own dual (i.e., (RY) = RY). This duality pairing
RV x RN — RN : (x,y) = (x,y) is continuous and controlled by the
Cauchy-Schwarz inequality

6y < llxll2llyll2

with [|x]2 = /(X,X).

Linear algebra is founded on the property that every continuous lin-
ear operator G : RV — RY can be represented by a square matrix G €
RN¥*N whose entries are denoted by [Glm, = G[m,n]. (This is the finite-
dimensional equivalent of Schwartz’ kernel theorem.) Specifically, we have
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that G : x — y = Gx with

where the array G[-, -] constitutes the “discrete” kernel of the operator G.

The finite-dimensional equivalent of a reproducing kernel is a symmetric
positive-definite matriz R € RY*N | which is such that (Rx,x) > 0 for all
x € RV (see Appendix A). The defining property of such matrices is that
their eigenvalues are non-negative: A\; > --- > Any > 0. The corresponding
eigenvectors are denoted by {u,,}_; and are such that

Ru, = \yu,,  with |[ju,ll2 =1 (20)

They specify the orthonormal transformation matrix U = [u; ug ... uyl.
This results in the eigen-decomposition of R as

N
R =) Xuyul = Udiag(\r,...,\y) UT (21)
n=1

which comes as a direct consequence of (20) and the orthonormality property
vf'u =1

The rank of the matrix R is given the number N’ of its non-zero eigen-
values. Clearly, the inverse matrix R™! is well defined only when R is of full
rank; that is, when R is strictly positive-definite. Otherwise, when N/ < N,
we need to consider the generalized (Moore-Penrose) inverse of R,

R' = Udiag(1/A1,...,1/An7,0,...,0)UT, (22)

which satisfies the pseudo-inverse property RRIR = R. We also note that
R =R"! when N = N’

Proposition 5. Let R € RN*N be a positive-definite matriz of rank N’ <
N. Then, the RKHS induced by R is the space H C RN spanned by its
primaryt eigenvectors {un}ﬁil equipped with the inner product

<X7 y>7‘l = XTRTy = <X, RTy>

Proof. By restricting the eigen-decomposition of R to its primary part

N,
R = Z)\nunuz =[r; ... ryl,
n=1

!The term primary refers to the components associated with non-zero eigenvalues.
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we find that r,, = Zﬁil YnUy, With y, = Ap[un)m, which shows that the
column vectors of R, ry,, are included in H = span{un}fyél. Consequently,
we have

Property (i): r,=R[,m/eH, (m=1,...,N)

(or, equivalently, rl, = R[m, -] since the matrix R is symmetric), which is the
first requirement for a finite-dimensional reproducing kernel R : £ x E — R
with £ = {1,..., N}, in direct analogy with Definition 7.

Next, we use the explicit form of RT in (23) to calculate

ot _ u, /N, ifn<N
u, = Ru, = { 0 otherwise, (23)

which, when combined with (20), yields

u,, ifn<N’

T _
RR'u, = { 0 otherwise.

Since {u,})_; is an orthonormal basis of RY, this allows us to identify
RR' as the orthogonal projector RN — #. In fact, we have the direct
sum decomposition RY = H & N where N = span{un}ivz N/41, Ineaning
that every vector x € RY has a unique decomposition as x = Proj {x} +
Projy{x} with

Proj; {x} = RR'x and Projy{x} = (I- RR)x.

In particular, if £ = (f1,..., fn) € H, then f = Proj,{f} = RR'f. The
latter identity is equivalent to

Property (i7) :  fn = (rn, )5 = (R[n, |, )y, for all f € H,

which is the finite-dimensional counterpart of the second property in Defini-
tion 7. ]

With this interpretation, the matrix R is the Riesz map H — H' =
span{u:‘n}gél where the dual space H' is equipped with the inner product

<X, Y>'H’ = <X7 RY>

The conjugate basis u* = Rfu,, € H’ is given by (23), which shows that the
dual space is actually spanned by the same eigenvectors as H, although the
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underlying norms are different. Moreover, H' also happens to be the RKHS
associated with the positive-definite matrix RT.

Likewise, the positive-definite matrix R is the Riesz map H' — H and is
(isometrically) invertible over H. In other words, we have that

R’ Rx=x and RR'y=y.

for all x € H' and y € H. Since both R and R are symmetric and the
(Riesz) conjugate of a vector x € H' is given by x* = Rx € H, the above
projection identities are equivalent to

(x,y) = (x*,y)n = (BRx, y)n = (x,Rly)w = (x,y" )

for all x € H' and y € H, which summarizes the Riesz isomorphism between
H and H'.

These various identities suggest that we can also proceed the other way
around and define H based on the symmetric positive-definite matrix R,
Instead of considering R directly, it is usually more convenient to work
with the factorized form

R'=L"L

where the matrix L € specifies a linear operator R — RY whose null
space is N = span{un},]y: N741» corresponding to the vanishing eigenvalues

RNXN

of Rt (or R). This allows us to rewrite the inner product associated with
the RKHS H in the simpler form

<X7y>7'[ = <RTXay>'H = <LX7 Ly>7

where L is our finite-dimensional analog of the regularization operator. While
this form can be more attractive computationally, two remarks are in order:
First, the factorization is non-unique: there are many equivalent solutions
such as the positive square-root of R and the Cholesky decomposition where
LT and L are lower and upper triangular, respectively. The second point
is that (Lx, Ly) does not define a valid inner product over the whole space
RY unless L is invertible, which only happens when N’ = N. Concretely,
this means that one needs to impose additional constraints to factor out
the null space N; for instance, the orthogonally conditions (x,u,) = 0 for
n=N+1,...,N.

We shall now develop similar schemes in the continuous domain start-
ing with the simplest case where the regularization operator is invertible.
The main difficulty with the extended theory is that there is no infinite-
dimensional counterpart of the eigen-decomposition (21) unless the underly-
ing operator R is compact, which is usually not the case.

26



M. Unser (EPFL) RKHS, Splines, and Gaussian Processes

2.4 RKHS associated with an invertible operator

As first constructive example of a RKHS that is a “regularized” version of
Ly(R%), we consider the space

H = {f € S'(RY) : |Lfl|,ga) < o0} (24)
where L : Hy, — La(R) is a coercive linear operator such that
cllfllpymey < NLfllpy ey (25)

for all f € Ly(R?) and some constant ¢ > 0. The effect of L in (24) is to
induce some smoothing on f, which is the reason why it is often called the
reqularization operator of the RKHS.

One then easily shows that the bilinear form

{f;9)m, = (L, Lg)

is a valid inner product for Hy,. In addition, the coercivity property (lower
bound in (25)) implies that Hy, is continuously embedded in Ly(R?), with
the two Hilbert spaces being isometric. In other words, L is a unitary map
H1, — Lo(RY) that admits a well-defined (i.e., continuous) inverse G = L™! :
Ly(R%) — Hy,. It is important here to emphasize that it is the coercivity
property (25) that makes the mapping bijective. In particular, (25) ensures
that the null space of L is empty.

The space Hj is the continuous dual of Hj, as well as the range (resp.,
domain) of the adjoint operator L* : La(R%) — H{ (resp. G* : Hj —
Ly(R%)). Tt is also easy to see that G* and L* are inverse of each other.

Under the implicit assumption of continuity (i.e., Hy, € Cpo(R%)), HL
is a RKHS whose reproducing kernel is the impulse response of the Riesz
map R from H| — Hp, (see Property 6 in Proposition 2). Moreover, R is
the inverse of R™! : Hy, — H} (the Riesz map from Hy, — H}). From the
definition of Hp, and Property 7 in Proposition 2, we have the isometry

£, = ILAI7, ey = (LLE, f) = RTUF, f)
for all f € Hy,, which implies that R™' = L*L. It then follows that

Wz, y) = R{6(- — y)}(z)

with R = (L*L)~! : H} — Hy where we are taking advantage of the fact
that both L and L* are invertible.
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In the special case where L is LSI, we obtain the simplified form

h(x,y) = prL(x — y)

where pr,»1, is the (unique) symmetric Green’s function of L*L. This function
can be conveniently obtained by inverse Fourier transformation:

_ 1 1 .
PL*L(m)—}— {’E(W)P}( )

where L(w) is the Fourier symbol of L.
Some useful example: Exponential, Bessel potentials.

2.5 Factorization of a reproducing kernel

In the example from the previous section, the Riesz map from | to Hy, can
be written as R = GG* where the inverse operator G = L~! continuously
maps Lo(R?) — Hy,. This implies that the reproducing kernel of Hy, has a
factorized representation as

W) = | ol@2o(w.2)dz

where g(x,y) = G{d(- — y)}(x) is the generalized impulse response of G.
We shall now drop the coercivity requirement and prove that this factor-
ization property extends for RKHS that are linked to a much broader class
of regularization operators. The idea is that one can always identify an in-
termediate Hilbert space Ho C Lo(R?) (the actual range of the operator
L : Hy, — Ho) and an operator L=1 : Ho — Hy, that is a proper inverse of L
on Ho = Im(Hy,). While the domain of L™! can also be extended to Lo(R?),
the extended operator is generally only a left inverse of L with the property
that
L7'Lf=f

for all f € Hr. On the other hand, there is no guarantee a priori that
LL 'w = w for all w € Ly(R?) (right inverse property) unless Ho = Lo(RY).

Theorem 8 (Factorization of reproducing kernel). Let H C Ci, o, (RY) be a
RKHS with regularization operator L : H — Lo(R) such that
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for all f € H. Then, there exils a unique continuous operator L~1 :
Lo(RY) = Leo oo (RY) and a Hilbert space Ho C Lo(RY) such that the Riesz
map from H' — H factors though Ho as R = L7IL=" : H' — Ho — H.
The Schwartz kernel of the inverse operator L~ denoted by g(-,-) satisfies
the estimate

sup (1 + [lz[)*[lg(x, )| £,y < 00 (27)
xcR4

and is linked to the reproducing kernel h(-,-) of H by

W) = | ol 2g(v.2)dz (28)

9(y, ) = L{h(-, y)}(z). (29)
Proof. By using the definition of the inverse Riesz map R~ : H — H’ and
pluging f = g in (26), we get
IF1I% = (Lf.Lf) = (L'Lf, f) = BT f),

which implies that R™! = (L*L). Moreover, the fact that (Lf, Lg) specifies a
valid inner product is equivalent to the existence of an “intermediate” Hilbert
space Ho C La(R?) such that L is a unitary mapping H — Ho with

<f7g>'H - <Lfa Lg>7‘l0 = <Lf7 Lg> = <R_1fag>

for all f, g € H. Another way to put it is that R™! has a unitary factorization
through Ho as R™* = (L*L) : H — Ho — H'. Since all these mapping are
unitary, there exists some corresponding (unique) inverse operators L1
H — Ho, L7' :Ho — H and R = (L7'L™'") : H' — Ho — H such that
(u,v)qp = (L™ u, L™ ™0) gy, = (u, L7'L™™0) = (u, Rw) (30)

for all u,v € H'. In particular, this implies that the operator L™ : Ho — H
(resp., L™ : H' — H,) is unitary and a proper inverse of L : H — Ho
(resp., L* : Ho — H').

Next, we recall that the reproducing kernel is the generalized impulse
response of the Riesz map, so that

hz,y) = R{6(- —y)}(z)
=L7'L7{o( — y)}(x)
=L {g(y, )}(=) (31)

- / o, 2)9(y, 2)dz
]Rd
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The fact that H is a RKHS implies that §(- —y) € H' for any y € R?, which
allows us to infer that g(y, ) = L={6(- — y)} € Ho. We then invoke (31)
and the inverse property of L=! on Hg to show that

L{A(-,y)}(x) = LL™{g(y. ) (@) = g(y. ).

Finally, to reveal the boundedness of L™! : Ly(R%) — Log o, (R?), we use the
hypothesis H C C, o (]Rd), which, by Theorem 7, is equivalent to

Apa = sup |h(z,z)| (1+ [z])** < co.
R4

Based on (28), we then rewrite this condition as

sup (1 + [lz[))*[lg(z, )| 1, (re)y = vV Aha < 00,
xcRd

which is precisely the bound in Proposition 4 that ensures the continuity of
L7 Lo(R?) — Loo.ae(R?). Hence, we can safely extend the domain of the
operator from Hg to Lo(RY) (by the Hahn-Banach theorem). O

Corollary 2. Let Hy, C Ch g, (RY) be the RKHS associated with the reqular-
ization operator L : H — Ho C Lao(RY) and the inner product (Lf,Lg).
Then, the unique inverse operator L' identified in Theorem 8 continu-
ously maps Lo(R?) — S'(RY), while its adjoint L™ continuously maps
S(R?) — Ly(R%).

Proof. The bound in Theorem 8 ensures that the inverse operator L~! :
Ho — Hy, has a proper extension La(R?) — Lo, (RY). The result then
follows from the fact that Lo oo (R?Y) C S’'(R) and the property that Lo(R%)
is its own dual. O

Since the factorization result in Theorem 8 is stated in terms of the
regularization operator L, it raises the issue of the existence of such an
operator for an arbitrary RKHS.

Let us first address the simpler related question of unicity. If L : H —
Ho C Lo(R?) is a regularization operator for the RKHS as stated in Theorem
8, then the same holds true for L = UL where U : Ly(R?) — Ly(R%) is an
arbitrary Lo-isometry with UU* = U*U = Id. This obviously leaves the
reproducing kernel unchanged since R~! = L*L, = LU*UL = L*L. Likewise,
we have that L™! = L7'U and R = L™'L~" = L'UU*L " = L',

We can also guarantee the existence of L when H C Lg(Rd). The simplest
solution is provided by the natural embedding (or identity map) i : La(R%) —
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H (see Definition 3), which can usually be translated into an orthogonal
projection operator Proj,, : Lo(RY) — H. We also note that the coercivity
condition (25) in Section 2.4 implies that Ay, is embedded in Lg(R?).

Before considering the more challenging cases where H is not embedded
in Ly(RY), we shall review three basic examples.

Example 1 (RKHS generated by an orthonormal system). Let {¢y,}nen
with ¢, € Cb(RY) be an orthonormal system with (¢, bp) = Omn- Then,

one easily checks that V = span{¢, } equipped with the inner product

nez

(F,9v = {dn, ) (¢n: 9)

neN

is a Hilbert space. Its reproducing kernel has the generic form

y) = Z ¢n(a")¢n(y) (32)

neN

This kernel can also be used to specify the orthogonal projector Projy, :
Ly(RY) — V as

Projy{f}@) = (. hv(@.)) = 3 éu(@)(f, éu).

neN

which is obviously also self-adjoint. Finally, we have the factorization

hV(w7y) = <hv<w7')7hV('7y)>7 (33)

which follows from the property that Projy,, = Projy,Proj},. While (33) re-
minds us of the reproducing kernel Property 2 in Proposition 2, it is struc-
turally not the same because it involves the “duality product” rather than the
“inmer product” of V.

We like to think of Example 1 as the simplest possible scenario covered
by Theorem 8 with L~! = Proj,, = Projj, = L. However, there are many
other interesting configurations where the factors are not self-adjoint (in the
spirit of the LU decomposition of a symmetric matrix).

Our next example is of great significance for communication engineering
and information sciences. It is interesting structurally because it is a cross
between the previous example and the LSI regularization operators of Section
2.4, but without the coercivity property (because the null space is non-
trivial).
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Example 2 (RKHS of bandlimited functions). The subspace of bandlimited
functions in Lo(R) with Nyquist frequency wmax = 7 can be defined as

Hine = {f € S'(R) : (sinc * f) € Ly(R)}.
The underlying regularization operation Lgine : @ > sinc * ¢ is linear shift-
wmvariant since it is a convolution with the sinus cardinalis:

. sin(mx -

sne(a) = S0 = F (1) 0)
The sinc function is endowed with the remarkable reproduction property sinc(x) =
(sinc * sinc)(z), and, more generally,

(sinc * f)(z) = / sinc(z —y) f(y)dy = f(z), for all f € Hginc.

R

This immediately leads to the conclusion that the reproduction kernel for
Hsine 18 sinc(x — y). On the other hand, it is also well known that the set of
functions {sinc(- — k) }rez is an orthonormal basis of Heinc. By applying the
result of Example 2, we obtain the equivalent representation

hsinc(x,y) = sinc(z — y) = Z sinc(z — k)sinc(y — k).
keZ

This translates into the reproduction formula

f(x) = (sinc x f)(z) = Z(f, sinc(- — k)) sinc(z — k)

kEZ

= f(k)sinc(z — k)

keZ

for all f € Hgine, which is the RKHS restatement of Shannon’s celebrated
Sampling theorem.

The last example of this section illustrates the point that, in contrast with
matrices, the factorization of a symmetric operator is not always feasible.
Moreover, it is an instance of a RKHL that is not embedded in Ly(R) and
that does not admit a regularization operator.

Example 3 (Subspace of polynomials). We now take N = span{p;} with
p1(x) =1 as the simplest (one-dimensional) polynomial subspace of Cy, o(R)
with o < 0. It is easy to verify that N equipped with the inner product

(f:9)n = f(0)g(0) = (4, f)(d, 9)
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is a RKHS and that its reproducing kernel is given by har(z,y) = p1(x)p1(y) =
1, which is similar to (32). Since (§,p1) form a biorthogonal pair, we can
define the corresponding projection operator Cy, o(R) — N as

PFOJN{f} - <57 f>p17

which is such that Projy, {p} = p for all p € N. However, we are not able
to find a factor g(x,y) such that

h(z,y) = (9(z,-),9(y,)),

the fundamental reason being that p1 ¢ La(R) so that it cannot be orthonor-
malized.

We can also use this last example to gain more insight on the abstract
notion of dual space. Since N is one-dimensional, the same hold true for its
continuous dual A, which is spanned by the Dirac functional p = cip; —
(6,p) = c1. However, since N/ is embedded in &'(R?), the dual functional
of py is actually the equivalence class of all (generalized) functions ¢ €
S'(R) such that (¢1,p1) = [z ¢1(x)dz = 1. The Dirac impulse 0 is just one
representer among an infinity of possibilities. In other words, we could as
well have used any other biorthogonal function ¢, which changes the form
of the projector Proj,s, but leaves the reproducing kernel unchanged. This
is a possibility that will be exploited in the subsequent sections.

2.6 RKHS associated with the derivative operator

As next step in the progression, it is instructive to investigate the derivative
operator D = (%;7 which is the simplest differential operator that has a non-
trivial null space. The functional characteristics that are relevant for our
purpose are:

e The causal Green’s function of D (or Heaviside function): 14 (z). The
defining property is D{14} = 0, which is equivalent to D{14(-—y)} =
0(- — y), due to the shift-invariance of D.

e The null space of dimension Ny = 1:
Np = {q € S'(R) : D{q} = 0} = span{p1} (34)

where p1(z) = 1 is the constant function.
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Let us also recall that any function of the form pp(z) = 14 (z) + ¢ is a
Green’s function of D. The so-called canonical solution is

_ 1
1sign(z) = f{} (z) = Ly(z) — 3.
jw
The adjoint of D is D* = —D. We shall also need the canonical Green’s

function of (D*D) = —D?, which is given by

b @) = 4ol

Since the null space of D is non-trivial, the operator D : Hp — La(R)
does not fall in the coercive category of Section 2.4. Yet, we will now see
that the function space

1
w2

pp+p(T) = f{

Hp={f:R—=Rst Df € Ly(R)}

can still be identified as a RKHS. To ensure unicity, we have to impose
some additional boundary condition: for example, fixing the value of f(x)
at ¢ = 0.

Hence, our first claim is that Hp equipped with the inner product

{(f,9)mn = (Df,Dg) + f(0)g(0) (35)

is a RKHS with critical rate of growth —ayy = 1; that is, Hp € Cp, _1(R). It is
obvious that (-, )7, satisfies the three first properties of an inner product in
Definition 1. As for the unicity, we observe that || f[|7,, = HDfH%Q(R) +|£(0)]?
so that | f]|3,, = O implies that: (i) [|Df||r,m®) = 0, and (i7) f(0) = 0.
Condition (4) is equivalent to f € Np, while (i7) removes the ambiguity by
forcing the constant to be zero, which proves our assertion.

Next, we claim that the corresponding reproducing kernel is

() = 3 (jal + ] — o~ y]) +1. (36)

While there is a constructive mechanism for obtaining this formula (see
Proposition 7), we shall first convince ourselves of its correctness by checking
that it fulfils the required conditions. To that end, we first evaluate

D{hp(-,y)}(x) = 5 (sign(z) — sign(z — y))
D*D{hp(,y)}(z) = —D{5(sign(-) —sign(- — y)) }(z) = —d(z) + d(z — y)
hp(0,y) = 5 (10| + [y [0 —yh +1=1
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Hence, for all f € Hp,

<f7 hD('aZ/))'HD = <DfaD{hD(7y)}> + f(()) x 1
= (£, D*D{hp(y)}) + f(0)
= (= f0)+ f(y) + f(0) = f(y),

which proves that the kernel satisfies the reproduction property. What is
less obvious is that hp(-,z9) € Hp for any zp € R. The explanation is
that D{hp (-, 20) }(7) = L[ 4,) () is actually compactly supported of size zg
(thanks to some convenient cancellation mechanism) so that is included in
Ly (R).

Supplementary material: To gain a deeper understanding of this
construction, we now pick a generic biorthogonal analysis function ¢ € H,
such that (¢, p1) = 1 and define the space

Hpe ={f €Hp: (¢, f) =0}. (37)

We shall now show that #p 4 and NVp are two complementary Hilbert spaces
associated with the inner products (f,g)x,, = (Df,Dg) and (p,q)n;, =
(p,p) {0, q), respectively. The proposed characterization of N is a slight
generalization of Example 3 in Section 2.5 where § is substituted by the
generic analysis function ¢. As already mentioned, this does not affect the
form of the reproducing kernel, which is still given by

p1(z)p1(y) = L. (38)

The corresponding projection operation Projy,, : Hp — Np is

PrOjND{f} = <¢7 f>p1a

with the property that Projy, {q¢} = ¢ for all ¢ = cop1 € Np (due to the
biorthogonality of ¢ and p;).

To prove that the semi-inner product (D f, Dg) is actually an inner prod-
uct for Hp 4, we recall that (Df,Df) = 0 is equivalent to f € Np, so that
f =Projp, {f} = (¢, f)p1. On the other hand, we have that (¢, f) = 0 from
the definition of Hp ¢4, which gives f = 0 and hence proves unicity.

Next, we define the operator D;l : Hp,p — L2(R) whose kernel is given
by

9p(7,y) = Li(z —y) — pr(z)q1(y) (39)
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with ¢1(y) = (¢, 14+(- — y)) and p1(z) = 1. Observe that the function ¢ is
bounded with [g1(y)| < [|¢[|rv where [[¢[|Tv = supj,_<i(¢, ) is the “total
variation” of ¢ with |[¢|lTv = [|¢[|r,®) when ¢ € L1(R). This implies that
the kernel defined by (39) is bounded—i.e, g4 (-, ) € Loo(RxR)—irrespective
of the choice of ¢.

Based on the Green’s function property D{1;} = § and the definition of
q1(y), we easily verify that

6(-—y) (40)
0. (41)

D{gy(-,y)}(x) =
(0,96, 1)) = (0, 11(- — ) — a1 (y)

Equation (40) implies that D;l is a right-inverse of D, while (41) enforces
the boundary condition (¢, D' {w}) = 0 for all w € Ly(R?). Indeed,

(6,D3{w}) = (4, /R 0o () w(z)dy)
- / (6, 90 1)) w(y)dy = 0
R N——

=0

This allows us to redefine the Hilbert space Hp 4 as

Hp = {f =D;{w}:we L)},
which also comes hand-in-hand with the norm-conservation properties

I {w} b = lwlr,m)
1flp.s = IDFll Lo

for all f € Hpg and w € Lo(R). By rewriting the inner product as
(f,9)D.» = ((D*D)f, g), we deduce that R~! = (D*D) is the (inverse) Riesz
map from Hpgy — H;D,df Similarly, we identify the direct Riesz map as
R = D;ngl* t Hp. 4 — Mp,p, which is consistent with the property that
D;l : La(R) — Hp 4 is an isometry.

For completeness, we also provide the explicit form of the reproducing
kernel of Hp .

Proposition 6. Let g4(x,z) = pp(z —y) — (pp(- — y), ¢) where pp and
¢ € Hpy are such that D{pp} = 0 (Green’s function property) and (¢,1) =1,
respectively. Then, the reproducing kernel of the space

Hp,g = {f € S (R) : Df € La(R) and (¢, f) = 0}
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15 grven by

hg(z,y) = /R 9s(@, 2)g4(y, z)dz
= po*D(T — Y) — qp,6(y) — gD p(x) + 111 (42)

where

poep(z) = F! {;2} (z) = —5lz|

a,6(y) = (¢, pp+b(- — ¥)) = (¢ * pp=D)(¥)
rg = / 6(2)ppep(x — y)é(y)dady.

Proof. The direct calculation of the composed operator is in principle feasible
(either in the signal or Fourier domain), but rather technical for it involves
singular integrals. Instead, we shall take a softer route: use (42) to evaluate
D{he(-,y)} and (¢, hg(-,y)) and check that the required conditions are met.
We rely on the fact that D{pp-p}(z) = pp-(z) = —3isign(z). The other
key observation is that the definition of g4 (z, 2) is independent of the actual
choice of pp(x) = 14(x) + co, as long as it satisfies the Green’s function
property. In particular, we have that

96(,y) = Ssign(z — y) — (3sign(- — y), ¢)

2
= 1 gn(z —y) — 5(sign” x ¢)(y)
%SIgn(w —y) + (sign = 6)(y)

rol— [\')\H —~

where fY(z) = f(—x). Using the same kind of manipulation, we show that
D{hy(- 9)} = Dipp-p} (2 — y) — D{pp-D * $}(2)
= —gsign(z —y) + 5 (sign = ¢)(x)
= gsign(y — z) + 3(sign * ¢)(x) = gy (y, 2),

which is the transpose of the kernel, as expected. We then invoke (27) in
Theorem 8, which ensures that gy (y,-) € La(R) for any y € R. As for the
boundary condition, we have that

(¢, ho(-,y)) = (&, pp-D(- = y)) — (&, pp*D * ) — (&, pp+D * D(Y)) + (&, 71,1)
Thanks to the property that (¢, 1) = 1, this simplifies to

(9,hg(-,y)) = (¢ * pp+D)(y) — (¢, pD*D * @) — (pD*D * P)(y) + 711
= —(¢,pp*D * @) + 11,1 = 0.
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Since the reproducing kernel is unique, this proves that the provided formula
is the correct one. O

Now, in the particular case where ¢ = §, the expression of the reproduc-
ing kernel (42) simplifies to

hs(z,y) = —3|z — y| + 3|z + 3|y| = min(|z|, |y|), (43)

which can be recognized as the correlation function of Brownian motion. We
can also easily verify that hs(-, ) € C} 0 (R x R) with ag = —1. In view of
Theorem 8, this suggests that the kernel of the inverse operator D;l satisfies
the stability bound

sup(l + 1) " lgo (2, )l o) < o0 (44)

This is not obvious a priori from (39), especially since the condition fails
for the leading term 14 (x — ) (standard LSI integrator) whose Lo norm is
unbounded for all z € R.

We conclude the section with a summary of these findings.

Proposition 7. Let ¢ € Hb and p1 € Np be a biorthogonal pair such that
(¢,p1) = 1. Then, the space

Hp = {f € S'(R) : IDf]|Lym) < o0}

admits a direct sum decomposition as Hp 4®Np where the two latter Hilbert
spaces are defined by (37) and (34), respectively. Moreover, any f € Hp has
a unique decomposition as

f=D,lw+q=fs+q

where w = Df € La(R), fo = D;lw € Hpp, g = (f,®)p1 € Np, and the
inverse operator D;l : Lo(R) — Hp 4 is defined by (39).
Finally, Hp equipped with the inner product

<f?g>HD = <Df7 Dg> + <¢7 f><¢7g>7

is a RKHS and its reproducing kernel is the sum of the reproducing kernels
of Hp,¢ and Np specified by (42) and (38), respectively.
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2.7 Operators with non-trivial null spaces

There is a powerful association between splines and operators, the idea being
that the selection of an admissible operator L specifies a corresponding type
of splines [5][6, Chapter 6]. As we shall see here, we can rely on the same
class of operators to specify a corresponding family of RKHS. The procedure
is more involved as in Section 2.4 because of the greater difficulty of inverting
operators when their null space is non-empty, similar to the previous example
of the derivative. The payoff, however, is that the spaces become more
interesting with a greater range of applications in a variety of disciplines
(approximation theory, machine learning, stochastic processes, etc.).

Our first inclination is to define the native space associated with the
differential operator L as

Hiext = {f € S'(RY) : |Lf|7,gay < 00},
while its null space is given by
NL,ext = {q € HL,ext : L{Q} = 0}

This simple definition is appropriate when N, ey is finite-dimensional, which
is the case for most differential operators defined on a 1D domain (d = 1).
Unfortunately, the situation tends to be more complicated for d > 1 because
the extended null space (M, ext) of many partial differential operators (such as
the laplacian) is infinite-dimensional. This forces us to constrain the native
space to Hy, € Hi,ext such as to meet the finite-dimensional constraint

M. = {q € Hy. : L{g} = 0} = span{p,}"°, C M. ext; (45)

that is, a null space Nj, that admits a finite basis p = (p1,...,pn,) with
Pn € 5'(Rd). While this reduction from Hi, ext to Hy, is required to specify a
valid reproducing kernel, the actual restriction of the “extended” space only
happens on the side of the null space so that Hj, remains rich enough to
represent any function as closely as desired. In other words, we shall define
the native space Hj, in a way that leaves the quotient space H¢g unchanged:

Ho = Hiext /Niext = Hi /N1 (46)

subject to the finite-dimensionality condition (45). This results in the ab-
stract specification of our native space as the direct sum of two Hilbert
spaces.
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Proposition 8. Let Hg be the quotient space defined by (46) and L :
Hi, = Hg ®NL — La(RY) a linear operator whose null space Ni, is finite-
dimensional and endowed with some inner product (-,-)nr . Then, the native
space of L, Hi, = Hg ® Ny, is a Hilbert space for the inner product

(£:9)my, = (L, Lg) L, + (Projus {f}, Projas {91)ag-

where Proj s is a projection operator from Hy, into Ny.

Our guiding principle will be to take N, as small as possible, but still
large enough for Hy, to be dense in S’'(R?). The relevant notion to achieve
this controlled reduction of the null space is the property of conditional
positive-definiteness, which is reviewed in Section 2.7.2. The other functional
ingredient is the projection operator Projy, : Hy — N1, which, as we shall
see, can be defined in a rather flexible fashion.

2.7.1 Hilbert-space structure of the null space

While the abstract representation Hy, = Hg @ M, is a first hint that our
native space for L is a RKHS, we are aiming at an explicit characterization.
This requires that we invert the operator L from the left, which is feasible,
but requires special care. The idea is to resolve the non-uniqueness problem
by imposing Ny linear boundary conditions to fix the null-space component.

Definition 8 (Admissible boundary functionals). Let L : Hy, — La(R%)
be a linear operator with a finite-dimensional null space Ny, of dimension
No equipped with some norm || - |x,. The linear map ¢ : Hy, — RNo :
f = o(f) = (o1, £y, (dng, [)), which is composed of No “boundary”
functionals {¢n}nNi1, is said to be admissible if there exist two constants
B > A > 0 such that

AlProjpr{fHing, < llo(Hll2 < BAUILS L, + [Projar{fHns), VS € ”héL-)
47

In effect, this definition imposes two kind of constraints on ¢: (i) the
continuity of the boundary functionals, and (ii) their completeness with re-
spect to the null space. Indeed, since ||Lf||z, + |[Projy{f}|a; is a valid
norm for Hy,, the upper bound in (47) implies the boundedness (and hence
the continuity) of the linear functionals ¢, : Hy, — R, while the converse is
also true (by the triangle inequality). Hence, the abstract equivalent of the
upper bound in (47) is ¢, € H} for n = 1,..., Ny where the space H] is
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the continuous topological dual of Hy,. To reveal the completeness condition
(ii), we specialize the inequality for ¢ € NV, as

Allgllx < ll¢(@)ll2 < Bllglla, Vg € M, (48)

which is a norm equivalence reminiscent of the definition of a frame. The
crucial point here is the existence of the lower bound that ensures the in-
vertibility of the linear map g — ¢(q) (see Proposition 9 below).

To turn these abstract considerations into a concrete characterization,
we now put an inner-product structure on the null space by selecting a
basis p = (p1,...,pn,) and using it to expand ¢ € M, as ¢ = p’b. The
corresponding norm is then given by ||¢||x;, = ||b|l2. The most convenient
design is to choose p = p¢ such that the basis is biorthogonal to the boundary
functionals. In such a scenario, b = ¢(¢q) and we have a perfect norm
equivalence in (48) with A = B = 1.

Definition 9 (Biorthogonal system). The pair (¢, p) with ¢ = (¢1, ..., dnN,)
andp = (p1,...,DPN,) is called a biorthogonal system for the finite-dimensional
subspace N, = Span{pn}gil C S'(R?) if any p € N1, admits a unique expan-
sion of the form

No
p= {6nD)Pn- (49)

The natural norm induced by such a system is

No
IPllaz, = ll@()]l2 = (Z |<¢n7p>l2>
n=1

The unicity of the representation in Definition 9 implies that p should be
a basis of N1, while the validity of (49) for p = p,, implies that the underlying
functions should be biorthogonal; i.e.,

1
2

1, m=n

<¢m3pn> = 5m,n = { O,

otherwise.

The existence of a such system for any choice of basis p is backed by the
following result in functional analysis, which is closely related to the Hahn-
Banach theorem.

Theorem 9 ([?, Theorem 3.5, p. 60]). Let M be a subspace of a locally
convex space X, and xog be an element of X. If xy is not in the closure

of M, then there exists a continuous linear functional ¢ on X such that
(¢, x0) =1 but (p,x) =0 for every z € M.
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One then easily proves the existence of a full biorthogonal set {¢, %0:1

by successive exclusion of zg = p, with ¢ = ¢, and M = span,y, ., {pm} (the
finite dimensionality of M and the linear independence of the p,,’s ensures
that p, ¢ M = M).

Conversely, we may pick an admissible set of linear functionals {¢, nNil
and appropriately modify the basis to meet our requirements. This results
in the specification of the corresponding projection operator.

Proposition 9 (Projector onto null space of L). Let p = (p1,...,Pn,) be a
basis of N1, C Hy, and ¢ = (¢1,...,¢n,) some admissible set of boundary
functionals such that (48) (or (47)) is satisfied. Let us also define the Nox Ny
cross-product matriz

Cop = (#,0") = [p(p1) -~ ¢(pn,)] (50)

with entry [Cg 5lmm = (Pm,Pn). Then, Cz 4 = Cgﬁ is invertible and

p=(pr....on0) = C5 45 P (51)

is the unique basis of N, that is biorthogonal to ¢. Furthermore, the projector
of Hr, onto N1, perpendicular to N{ = span{¢, T]:[il is specified by

No
PrOjNL 2 f e Z<¢na f>pm

n=1
with the property that |[Projy, || = 1.

Proof. First, we observe that the matrix Cgy 5 defined by (50) is well-defined,
thanks to the upper bound in (48). Since p is a basis of Ny, every g € Ny,
has a unique expansion ¢ = 22[21 bupn = P’ b with ||q||a- = ||b||2. Therefore,
by linearity, we have that

<¢17 Q> qumvil <¢1aﬁn>bn
¢(Q) = = = Cd%ﬁ b.
(60, 9) S22 (Sgs B b

This allows us to rewrite the norm inequality (48) as
Allblla < l¢(9)llz = [[Copbll2 < Bb]l2,

which ensures that the singular values of Cg 5 (resp., Cpq = Cg ﬁ) are
bounded from above and below. Since we are dealing with a square matrix,
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Description Operator Kernel

Riesz map N — N, Rp an(w)pn(y)
Riesz map Ni, — N/ Rg Z Pn(x)Pn(y)
Projector Hp, — M, Projx, an(w)¢n(y)

Projector Hi — N{ Projy, Z On(x)pn(y)

n=1

Table 1: Complete set of operators associated with the biorthogonal system
(¢, p) with N, = span{pn}flvi1 and N] = span{¢y, nNil.

the existence of the lower bound guarantees that Cg 5 (resp., Cp ) is in-
vertible. The cross-product matrix for the new basis p defined by (51) is
then given by

C¢7P = <¢7pT> = <¢7 (CI:’ib @T>
= <¢71~)T>C;7lﬁ - qu),ﬁ C;}ﬁ = IN07

which confirms that the functions {p,} and {¢,} are biorthogonal. This
property also yields Projy. {pn} = pn and, more generally, Proj. {q¢} = ¢
for all ¢ € N1. Likewise, we have that Projy, {f} = Projy, Projy, {f} € ML
for all f € Hj,, which implies that the operator is a projector from Hi, onto
NL.

Let us now consider the residual r = f —Proj: {f}. By projecting once
more, we get Projy. {r} = 0. Due to the structure of the operator, this is
equivalent to (r, ¢,) = 0 for all n, which translates into the projection error
being perpendicular to span{¢, ;Vil for all f € Hy. The boundedness of
the operator simply follows from |[Proju, {f}Iar = IIflln < IL{f}Iz, +
£l 0

In the language of RKHS, this construction is characterized as follows.

Corollary 3. Let (¢, p) be a biorthogonal system for Ni, C Cy, o(RY). Then,
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Ny = span{jto,ﬁb}nj\fi1 equipped with the inner product

No

(f9n =Y (bn, [)bnr9),  fg9 €My (52)

n=1

is a RKHS with reproducing kernel
No
has, (z,y) = an(w)pn(y)' (53)
n=1

Likewise, we can easily show that the dual of N, = Spam{pn}nNi1 is the
Hilbert space N = span{¢, = p;;}fyil equipped with the inner product

No

<f*7g*>./\f£ = Z(pnvf*><pn7g*> = <Rpf*7g*>a f*7g* € NI/J

n=1

where Ry, is the Riesz map N/ — Ni, whose kernel is given by (53). The
complementary (or reverse) Riesz map Ni, — M| is the positive-definite

operator
No

Ry : [ f* = (¢n [)on.
n=1
In particular, we have that ¢, = p;, = Rg{pn}, while the biorthogonality
of ¢ and p also implies that R,Re{f} = f for all f € Ny,. Finally, we can
identify the projection operator ProjNﬁ : Hy, — N, which happens to be
the adjoint of Proj,s . The complete set of these null-space-related operators
is summarized in Table 1.

2.7.2 Conditional positive-definiteness

The price to pay for considering a regularization operator L whose null space
is non-trivial is that this prevents the reproducing kernel from being strictly
positive definite. Instead, one has to settle for a weaker form of the property
that factors out the components that compromise unicity.

Definition 10 (Conditional positive-definiteness). Let N' = spalrl{pn}nNi1
be a finite-dimensional subspace of Cb@(Rd). Then, the kernel function h :
R? x R? — R is said to N -conditionally positive-definite if

N N

Z Z Zm (T, Tn)2zn >0

m=1n=1
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forany N €N, x1,...,xzxy € R?, and 21, ..., zx € R, subject to the condition
N
Zmpn(xm) =0
m=1
form=1,..., Ny. The conditional positive-definiteness is said to be strict if
N N
Z Z 2 (T, Tr)2n > 0,
m=1n=1
under the same conditions with (21, ...,zy) € RV\{0} and the x,, all being
distinct.

We shall sometimes refer to this property as p-conditional positivity
where the vector p = (p1,...,pn,) represents a basis of . Not too sur-
prizingly, there is also an extended version of the property that applies to
general linear operators.

Definition 11 (Positive-definite operator). Let A be a continuous operator
S(R?) — S'(RY) and N some finite-dimensional subspace of S'(R?) that is
spanned by p = (p1,...,pN,). The operator A is said to be:

o Symmetric or self-adjoint if, for all p1,ps € S(R?),
(Ap1, p2) = (A2, ¢1).
e Positive-definite if, for any ¢ € S(R?),
{(Ap, ) 2 0.
o N -conditionally positive-definite (or p-conditionally positive), if
(Ap, ) 20
for any ¢ € Sp(R?) = S(R) NN = {p € S(R?) : p(p) = 0}.
e Strictly N -conditionally positive-definite if
(Ap, ) >0

for all ¢ € Sp(R)\{0}.
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We conclude our discussion of positive definiteness by showing that these
two definitions are equivalent when the Schwartz kernel of the operator is a
bivariate function that is (separately) continuous in each argument.

Theorem 10 (Kernel of a positive-definite operator). Let us consider a
symmetric operator A : ¢ = [paa(-,y)p(y)dy whose Schwartz kernel a is
such that a(xg,-) = a(-,x¢) € Cpo(RY) for any o € RY and some a € R.
Then, the (p-conditional) positive definiteness of A : S(R?) — S'(RY) is
equivalent to the (p-conditional) positive-definiteness of its kernel a : R% x
R? — R in the sense of Definition 10.

Proof. Let us start with the unconditional version of the property. For any
21,---,z2y € Rand @, -,y € R?, we specify the sequence of1 test func-
. Lieel?
tions ¢ = Egzl znup(- — @) € S(RY) where ug(x) = ke 21kl i5 a
rescaled and renormalized Gaussian pulse with (ug, 1) = 1. This construc-
tion is such that u; converges to the Dirac distribution as k& — oo; i.e.,
Hm (f, up(- — xm)) = (f, Im ug(- — zm)) = fzm), (54)
k—o00 k—o00
which is valid for any continuous function f : R¢ — R of slow growth. By
invoking the continuity of A and the sampling relation (54), we then find
that

(Aort, or) = (A{ lim @}, im @)
k—o0 k—oo

No No
A { S o wm>} S bl - )
!

- Z Z Zmzn(A{0(- — @)}, 0(- — xy))  (bilinearity)

m=1n=1
No No

=3z AL — @) @) > 0,

m=1n=1

lim
k—o00

a(Tm,xn)

which proves the direct part of the statement.
For the converse implication, we first consider the truncated integral

Jr(p) = /[R#R}d /[R&R]d p(x)a(z, y)p(y)dzdy

where the domain of the kernel is limited to the hypercube [—R, R]? C R?
with R > 0. Since both a and ¢ are continuous, Jr(y) is a 2d-dimensional
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Riemann integral, which can be expressed as Jr(¢) = limy_,oc Jp (@) where

k,....k)
-

Tri(p) = (]]j) ; m_(

(k,....k)
Z (P(wm)a(xm7xn)‘ﬁ(mn) (55)
= oy ) n=— (o k)

)n=

with &, = 28 € R% Now, the positive definiteness of a (Definition 10)
implies that Jg k() > 0 for all ¢ € S(R?) and any k € NT, R € R*. To
have this sum converge to (A, ¢), we need to let R — oo, while ensuring
that the step size (R/k) goes to zero. This is achieved by setting R = i and
k = %, which yields (Ap, @) = lim;_o0 J; ;2(p) > 0 for all p € S(RY).

To extend the argument to the case of p = (pi,...,pn,)-conditional
positivity, we pick a set of functions in S(R?), {qbn}gil, that satisfy the
biorthogonality condition:

<pm7 ¢n> = 5m—n7

which is always feasible (see Theorem 9 with X = S’(R?) and accompanying
explanations).

This allows us to express S(R?) as the direct sum S(RY) = Sp(R?) & N’
with A7 = span{¢,} 2, C S(RY). Concretely, this means that any ¢ €

n=1

S(RY) has a unique decomposition as ¢ = ¢ + ¢ with

No

¢ =Projpr{e} =D (Pm. @)bm € N' C S(RY)

m=1
and
¢ = (Id — Proju){} = ¢ — ¢ € Sp(RY).

Armed with this latter projector, we then revisit the direct part of the proof
by replacing o by @k = (Id — Projp){¢r} € Sp(R?). In the limit, we get

lim ¢ = lim (Id — Proja-){¢x}
k—o0 k—o0
No No

= 28— @a) = D D zbm(@n) b = 28(- — )

m=1n=1

=0

where the double sum vanishes as a consequence of our hypothesis on z,, so
that the conclusion remains the same.
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Conversely, in the conditional scenario of Definition 10, the positivity of
the bilinear form (55) with R = i and k = i? only holds for the subclass of
test functions ¢ such that, for n =1,..., Ny,

(i27~"77;2)

Z &(Tm) pn(Tm) = 0,

m=—(i%,..5%)

with &y, = 7+ € R?. As i increases to infinity, the above sum converges to
the Riemann integral

@(w)pn(‘r)dw =0,
R4

which is equivalent to ¢ € Sp(R?).

2.7.3 Admissible regularization operators

The regularization operators that are admissible for our construction are
those that admit a Green’s function of slow growth, subject to some condi-
tional positivity constraint.

Definition 12. The kernel Gy, : R* x R* — R is a Green’s function of L if
L{GL(-,y)} = 6(- —y), or equivalently, if LL='{p} = ¢ for any ¢ € S(R?)
where L1 ¢ = [oa GL(, y)o(y)dy.

In other words, knowing the Green’s function of L is equivalent to having
a right-inverse of L at our disposal. It is generally not unique as we may

construct many equivalent instances of the form Gi, (z,y) = GL(®,y)+qy(x)
with gy € M, for any fixed value y € R%

Definition 13 (Admissible operator). A linear operator L : Hy, — La(R?) is
called spline-admissible if there exists a symmetric kernel Gp-1, : R* x R? —
R, a finite-dimensional subspace N1, = span{pn}gil and an order a € R of
algebraic growth such that :

1. Gp+1 is a Green’s function of (L*L) with the property that

L{GLL(y)Hz) = Gu(z,y) = GL(y, ) (56)
L'L{GL1(y)} = L{GL(,y)} = 0(- — v)

where § is the Dirac distribution and Gp,(x,y) a Green’s function of L.

2. Null-space property: L{q} =0 for all ¢ € Ny, C Hr.
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3. Gy, 1s strictly Ni,-conditionally positive-definite.

4. Continuity and polynomial growth: Gr-L(-,y0) € Cpo(R?) for any
Yo € R? and J\/L - Cb’a(]Rd).

5. Boundedness on the diagonal: supgepa |GreL(z, )| (1 + ||z]))?* < oo.

The scenario of greatest practical interest is when the operator L is linear
shift-invariant (LSI); that is, when L{f(- — x¢)} = L{f}(- — xo) for any
function f € Hy. In such a case, we can determine the canonical Green’s
kernels of L in Definition 13 by (generalized) inverse Fourier transformation.
Specifically, we have that

Gr(x,y) = poL(x —y) with pLL(T) = F! { ’E(L)P } (x)

GL(z,y) = pL(x —y) with pr(w) = F ! {Al} ()

where L(w) = F{L{6}}(w) is the frequency response of L. Due to the
one-to-one relation between the shift-invariant kernel Gy, and py,, we shall
therefore also refer to pr, as the Green’s function of L, with a slight abuse of
language.

Likewise, we may infer that the composition of the null space of a LSI
operator is determined by the zeros of Z(w) Specifically, each zero w =
wo of order ng contributes a series of exponential polynomials of the form
x™@0®) with m < mg. This also implies that the frequency response of
an admissible operator L can only have a finite number of zeros.

Example 4. The prototypical example of an admissible operator for d = 1
is the mth-order derivative operator D™, which is LSI. Its Fourier symbol
(jw)™ has an mth-order zero at w = 0. Its causal Green’s function is the
one-sided power function

xﬁf*l

pm () = m

with x4 = max(0,x), while the canonical solution is

xmfl

o) = dstent)

(jo)™

pom(x) = F {
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The null space of D™ 1is the space of polynomials of degree (m — 1) with
Ny = m; that 1is,
n—1

X

Nom = span{p} )2, with py(z) = CEE

Finally, the corresponding Green’s function in Definition 13 is

LY U e
|w|2m}(x>_ 2 (2m— 1)

Glo) = plo ) with pla) =7 {

which happens to be Npm-conditionally positive definite.
One can also specify a corresponding dual basis

{pn}0, with ¢, =601,

which is such that (¢, pp) = (—1)~DDO=Np 1 (0) = 6, (biorthogonal-
ity property). While there are many other possible choices of dual bases, the
proposed one is special as it is composed of point distributions entirely located
at the origin.

2.7.4 RKHS associated with an admissible operator

Using the same biothogonal pair (¢, p) as in Section 2.7.1, we define the
“orthogonal” complement of NV, in Hy, as

Hige = {f € HL: ¢(f) =0}, (57)

which will now be used to specify a proper right inverse of the operator
L:Hy — Lo (Rd). We may think of this space as a “concrete” transcription?
of the quotient space Hr, ext /NL,ext alluded to in the proof of Proposition 8.
Note, however, that this association is not unique: there is a whole family of
spaces Hp, ¢ with a corresponding inverse operator L;l, each instance being
associated with a specific ¢.

Theorem 11 (Construction of stable right-inverse operator). Let L be an ad-
missible operator and (¢, p) with p = (p1,...,pN,) a corresponding biorthog-
onal system for Ni,. Then, Hi, g defined by (57) is a Hilbert space equipped

2While the nature of the elements of the two spaces is different—that is, functions f vs.
equivalence classes of functions (f + N1 )—they are isometrically isomorphic, and hence,
topologically equivalent.
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with the inner product (f,g)1, = (L{f},L{g}). Moreover, there exists an
isometric map L;l : Ly(RY) — Hy, ¢ such that

Hig = {f =L 'w:we Ly(R}. (58)
The operator Lgl 18 uniquely specified through the following properties
1. Right-inverse property: LLglw =w for all w € Ly(RY)

2. Boundary conditions: (¢, L;1w> =0 for all w € Ly(R%)

and its kernel is given by

No
n=1

with Gy, such that L{GL(-,y)} = 0(- —y) (Green’s function property) and

Qn(y) = <¢naGL(‘7y)>' (60)

Finally, Hi,.¢ € Ch ay (RY) if and only if ge satisfies the stability condition

sup (1+ 2] g0, ) ) < .
zER4

Proof. We start by proving that Hi, 4 equipped with the inner product
(f1, fo) = (Lf1,Lf2) is a Hilbert space. Thanks to the linearity of L,
one immediately deduces that (-, )1, satisfies the easy properties of an inner
product: linearity, symmetry and non-negativity. We now show that the only
feasible solution for (L fo,Lfo) = 0 with fo € Hp, ¢ is trivial. The constraint
on the Ly-norm is equivalent to Lfy = 0 (almost everywhere) which restricts
the possible solutions in Hy, to fo € Np,. We then use the condition ¢(fy) = 0
to project the solution set on Hi, 4. This yields fy = Zgilwn, fo)pn =0
where {p, 717\,[21 is the unique basis of Ny, that is biorthogonal to ¢, which
proves that (fo, fo). =0 < fo = 0.

The idea then is to first establish Properties 1) and 2) of the operator
Lgl on Schwartz’s space of smooth and rapidly-decreasing signals S(R%) to
avoid any technical problems related to the splitting of the sum and the
interchange of integrals. Since the space S(RY) equipped with the standard
Schwartz-Fréchet topology is dense in La(R%), we are then able to extend
the properties by continuity.

To that end, we introduce the operator G : ¢ — [pa GL(-,y)p(y)dy,
which is well defined over S(R?) as long as GL(-,-) € S'(R? x R?) (by
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Schwartz’s kernel theorem). Under the hypothesis that w € S(R?), we then
rewrite f = L;lw as

No
f =Lz ) = Glw} = palgn w).

n=1

Next, we apply the operator L, which yields

No
i, b =107} =L [ o)y} - YL )
n=1 -0

= /Rd w(y)L{GL(-,y)}dy (by linearity)
— [ ww)it -~ y)dy = w
Rd

where we have used the defining property L{GL(-,y)} = (- — y) of the
Green’s function and L{p,} = 0 for n = 1,..., Np. In particular, this implies
that

L {whE = Ly {w}, LgH{why = [wl, g, (61)

for all w € S(R?), which shows that L;l is bounded in the Ls norm.
As for the boundary conditions, we first observe that

Qn(y) = <GL('a y)7 ¢n>
- [ Gulawon(e)de = G o) w)

where G* is the adjoint of G. We then make use of the biorthogonality
property (¢m, Pn) = Om—n to evaluate the inner product of ¢,, with L;lw as

No

<¢m7 L;I{w}> = <¢m7 G{w}> - Z<¢mapn> <qn7 w)

n=1

= (Pm, G{w}) — (qLm, w)

= (GH{om}, w) = (G {pm}, w) =0,
which shows that the boundary conditions are satisfied. In doing so, we have
effectively shown that L;l continuously maps S(R?) into Hy, 4.

Next, we invoke the Hahn-Banach theorem in conjunction with the Lo
bound (61) to extend the domain of the operator to all of Ly(R?). By
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Riesz map: Ay = L;ngl*

p(f") =0 ¢(f) =0

Figure 1: Factorization of the Riesz map and schematic representation of
the underlying operators and Hilbert spaces.

recalling that S(R?) is dense in Ly(R?), we then extend the boundary con-
ditions for w € La(R?) by continuity. This establishes an isometric (and re-
versible) mapping between Lo(R?) and Hy, ¢, and allows us to conclude that
L(;l : Ly(R?) — Hy, 4 is a stable inverse of the operator L : Hy, 4 — L2(RY).
Finally, we make the connection with Theorem 8 by identifying L~! = L;l as
the unique inverse of L that factorizes the reproducing kernel of Hj, ¢ through
Ho = Ly(RY). This together with the assumption that Hy, o C Ch a0 (RY)
then yields the stability bound on gg(-,-). The converse implication is sup-
ported by Theorem 7. O

2.7.5 Determination of the reproducing kernel

Having characterized the relevant right-inverse operator, we can now invoke
the second part of Theorem 8 to deduce that Hy, 4 is a RKHS whose repro-
ducing kernel is the generalized impulse response of the composed operator
Ay = L;lL;*. We shall actually take the argument one step further by
expressing this kernel in terms of the symmetric Green’s function of L*L in
Definition 13.

Theorem 12. The reproducing kernel of the Hilbert space Hi, g specified
in Theorem 11 is ag(x,y) = [pa 9o(%, 2)96(y, z)dz where gg is given by
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(59). Moreover, if Gr=1(x,y) is the symmetric Green’s function of L*L of
Definition 13, then the reproducing kernel can be expressed as

No
ag(w,y) = Gr-L(x,y) an vn(y) = Y val(@)p
n=1

No No
+ 2D rmapm()pa(y) (62)
m=1n=1
with
un(y) = (&n, Grer(-,y)) = /Rd Pn(2)GLeL(2, y)dz (63)

= (00 @00 Gt = [ [ ou(@on()Gusla.y)dady. (64

where the integrals on the r.h.s. are symbolic representations of the underlying
linear functionals.

Proof. The first statement directly follows from Theorem 8 with L= = L !
and g(-,-) = ge(-,-). Hence, we only need to establish the validity of (62). By
invoking the symmetry of Gp-1,(+, ) and the linearity of L, we first calculate
the quantity

L{v,}(x L{/ ¢n(2)GreL(+, z)dz} (x
= /[Rd qﬁn(z)L{GL*L(-,z)}(m)dz
R (bn(z)GL* (a:,z)dz = <¢n7GL* (.’13, ))

= (¢n, GL(- T)) = qn()
where ¢, is defined by (60). Thanks to this identity, we then evaluate

L{ag(-, )} (@) = L{Gre1(,, ZL{vn}
= GL* :B y ZQn
) — Z i (T)pn(Y) = 9o (y, T),
n=1
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which is the transposed version of (59), as expected. The additional ingredi-
ent is gy (y, ) = L;l*{(S(- —1y)} € La(R) for any y € R?, which follows from
the characterization of the inverse operator in Theorem 11. To verify that
ag(-,y) with y fixed satisfies the boundary conditions, we first observe that

<¢m,’l)n> = /]Rd i ¢n($)¢n(Z)GL*L(ZIJ, z)dzdw = Tm,n

for m,n=1,..., Ng. This helps us evaluate
No
<¢m7 CL¢(', y)}> = <¢m, GL*L('a y)> - Z<¢’mapn><¢m GL*L('a y)>
n=1
No No No
= {bm o)) + D> TS P )P (Y)
n=1 n'=1n=1

— (Yo Grn(+9) — By Cror(, )

N() NO
- Z Tm,npn(y) + Z rm,npn(y) =0,
n=1 n=1

where we have used the biorthogonality property (¢, Pn) = 0m—n to simplify
the sums. Since the reproduction kernel is the unique bivariate function that
satisfies these properties, we have proved that (62) is the correct formula.

O

The final ingredient to complete the picture in Figure 1 is the character-
ization of the Hilbert space ’H’L e which is the continuous dual of Hy, 4. The
interesting twist is that, contrary to Hy, 4 which stands for a whole family
of spaces, there is actually a single space HL ® that is independent of ¢.

Proposition 10. Let L be an admissible operator and (¢, p) a corresponding
biorthogonal system for Ni,. Then, the continuous dual of the RKHS Hr, ¢
is the Hilbert space

Hip={f"=L'w:we Ly(R%)}
equipped with the inner product
{9y = (L [, Ly 9) pymay = (AS*,97)

where L(;l* 1s the adjoint of the stable inverse operator defined in Theorem 11
and A : ¢ = [pa GLL(-, Y)e(y)dy where is Gre1, is the symmetric Green'’s
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function of (L*L) specified in Definition 13. The operator (L*L) is the
Riesz map Hy,p — My, 4 so that any f* = L*'L{f} € Hy , can be viewed as
the Riesz conjugate of some corresponding f € Hr, . Finally, we have the
“orthogonality” property

p(f)=0 < pL*L{f}) =0 (65)
for any f* € 7—[1#) and/or f € Hi, 4.

Proof. Since L;l is a right inverse of L, we immediately deduce L;l* is a left
inverse of L*. This establishes the isometric isomorphism between 7—[{47 ® and
the pivot space Lo(R?), which is itself isomorphic to Hp, g (see Figure 1).
The conjugate relation between f* and f follows from Riesz’ representation
theorem (Theorem 4). To establish the orthogonality property, we simply
note that

<pn’f*> = <pn7L*w> = <Lpn7w> =0
where w = L(_bl* f* € Ly(R%). This latter property is crucial as it implies

that the inner product (f,g)y = (L(;l*f, L:bl*g)LQ(Rd) is independent of ¢.
Indeed, under the Green’s function assumption (56), we have that

=0

L7 = [ Gulw ) ()i - an [ potw)s* @)y

= [ Gu(y)f"(y)dy = G{f"}

Rd

for all f* € HL - Likewise, using the explicit form of the symmetric kernel
ag in Theorem 12, we readily verify that

No :,\0
1L—1*{f } / GL*L y7 (y)dy— ZQn <pn7f*>
n=1

=0

Ny No No
——
- an<Qna f*> + Z Z TmnPn <pma f*>
n=1 n=1m=1

No
= [ Grntw) @y =3 palan. 1)

where the null-space component on the left-hand side of the resulting expres-
sion should be interpreted as a finite-part correction of the primary integral.
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L oL PLAL No  {(pn. én)}22,

D Lsign(x) — 3|z 1 {(p1(z) =1,01 =10)}
. xm71 —_1\m 2m—1 xn,1 n—

D™ gsign(z) (m—1)! ( é) (lglnq)! m {(4(%1)! 0 1))}

Table 2: Differential operators encountered in spline theory with associated
Green’s functions and biorthogonal systems.

This allows us to conclude that

Ny 59
(500 = (AF %) =D (onr 9" (an, 1*) = (Af*, g%).
n=1
where A : @ 5 [p0 GLoL( y)o(y)dy. =

Let us now briefly discuss the selection of the appropriate bivariate func-
tion Gr-1, : R x R — R? in Theorem 12. Since G-y, is a Green’s function
of (L*L), we have that

L{GLwL(y)} =G (., y)
L{Gr ()} = L'L{GL-L(-,y)} = (- — v),

which implies that G+ (x,y) = L{GL-L(-, y) } (x) is a Green’s function of the
adjoint operator L*. Besides the symmetry of Gy+1,, the enabling condition
for (62) to hold is that Gr«(y, ) (the transposed version of Gp,~) should be a
valid Green’s function of L. While finding such an acceptable G+, may not
always be easy, we can at least guarantee its existence. In particular, we note
that the condition is met by all the reproducing kernels within the family,
irrespective of the choice of ¢. Another way to put it is that the knowledge
of a single representative is enough to specify the whole family via equation
(62). Finally, we note that there is a systematic method of construction (by
generalized inverse Fourier transformation) in the favorable scenario where
the operator shift-invariant (see Section 2.7.3).

Thanks to the characterization of the spaces Ni, and Hy, 4 provided by
Proposition 3 and Theorem 12, respectively, and the fact that they are com-
plementary with N, N Hy, e = {0}, we are now able to extract the direct
sum RKHS structure of the native space Hy, = Hy, 4 ® Ni. Again, let us
emphasize that this representation is not unique as there is one associated
with each admissible ¢ = (¢1,...,¢n,) (see Definition 13).
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Theorem 13 (Characterization of native space). Let L be an admissible
operator and (¢,p) a corresponding biorthogonal system for its null space
NL. Then, any f € Hy, has a unique representation as

f:L;Iw—Fq

where w = L € La(RY), q = Proju {f} = S0, (f, 6u)pn € N, and
L;l : Ly(RY) — Hi,4 is the right-inverse operator specified by Theorem 11.
Moreover, Hy, equipped with the inner product

No
(f.9)L.¢ = (LELg) + > ($n, [){¢n.9) (66)

n=1
is a RKHS whose reproducing kernel is

No
he(x,y) = ag(@,y) + > _ pn(z)pn(y) (67)

n=1

where ag(x,y) is given by (62).

Finally, if A (or the Green’s function Gi=1,) meets the admissibility con-
ditions in Definition 18 (strict conditional positivity and a-boundedness) and
the ¢n are such that A{¢,} € Cpo(R?), we have the continuous embedding
S(RY) C Hy, C Cpo(RY) C S'(RY) with the insurance that Hy, is dense in
S'(R9).

Proof. Under construction: The additive form of the inner product in
(66) and the global RKHS property follow directly from the representation
of the native space as the direct sum of two (reproducing kernel) Hilbert
spaces: Hi, = Hi, o & NL.
The novel element here is the continuous embedding S(RY) C Hy, C
S'(RY). Tt will be established indirectly by showing that S(R?) is dense in
I =Hpe®N] CS'(RY). To that end, we first assume that the boundary
functionals ¢, are all included in S(RY). By using the same technique as
in the proof of Theorem 10, we then decompose S(R?) as the direct sum
S(RY) = Sp(R%) @ N where

Sp(RY) = {¢ € S(RY) : () = 0}
and NV = span{¢,}°, C S(R?). This means that every ¢ € S(R?) has a

unique decomposition as ¢ = @ + ¢ with ¢ = ProjNﬁ{go} = Zr]:fil<pn, ©) P
Next, we recall that the inner product for | can be written as

(f,9)3; = (Ag +Rp)f.9)
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where the two operators Ay and Ry, are positive-definite by construction.
Moreover, due to the direct sum decomposition, we have that

lellzy, = (Ag{2}, ”>+<Rp{¢} ¢)

A{SO} + Z A{¢n} 90 pna "‘Z Dy @ pnv

n=1 0
= (A{g},9) + [Ip()I13

where we have made use of the result in Proposition 10 to express ngH?_[,L in
terms of A.

Since A is strictly positive-definite over Sp(Rd) and the same obviously
holds true for Ry, over the complementary space N, the map

= (0,¢) = el = lI6+ dllay, = \/(A{sb},@) +p(9)l3

specifies a valid norm over S(R?). Hence, we can view H| as the com-
pletion of S(R?) in the || - |3 -norm, which is equivalent to the density
property. Finally, we extend the argument to the general scenario ¢, ¢
S(R?) by considering an appropriate sequence of test functions (¢, ) in
S(RY) such that limg_ e b = ¢n €S (RY). The continuous embedding
S(R?) C Hy, C S'(R%)-—and hence the denseness of Hy, in S’'(RY)—then
follows from Theorem 3. Lastly, the hypothesis that A{¢y,}, pn € Cp o(R?)
and the specific form of the kernel ag(x,y) in (62) allows us to deduce that
ho(,y) € Cpa(RY) for any fixed y € R Since hy is positive-define and
bounded on the diagonal (as a result of our assumptions), we readily conclude
that Hi, C Cp, o(RY) by invoking Theorem 7.

O

Proposition 11. Let Hy, be the RKHS specified in Theorem 13 and A :
¢ = Jpa GLL()e(y)dy. Then, Gr-1(-,y0) € Hy for any yo € R? and
A{o,} € Hi, for all n. In particular, this implies that the set Hpre1, =
{Zle arGr-1L(-, yx) + ZnNil bupn : K € Nyag, b, € R,y € Rd} 15 dense
in Hy,. In other words, we can represent any function f € Hp—and, by

extension, f € Cy q (RY)—as closely as desired by using a linear combination
of the form

K No
:B) = Z akGL*L(:L', yk) + Z bnpn(m)
k=1 n=1
with a finite number K + Ny of terms and (adaptive) centers y, € R%.
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Proof. First, we observe that the projection of A{¢,,} onto N, can be writ-
ten as

No No
PrOjNL{A{¢M}} = Z<¢mv A{¢m}>pn = Z T'mnPn
n=1 n=1

where the constants r, , are defined in (64). It then follows that

1A {@m} I3, = (L L)A{dm}, A{om}) + [Projn; {A{en}}IRs,

No
= G A+ S, <o
N————— —

which proves that A{¢,,} € Hy. As for Gr+1(+, yo) with yo fixed, we use the
expression of the reproducing kernel (62) to rewrite it as

N() NU
GreL(, y0) =ag(, yo) + an(yo) A{on}(-) + ZA{%}(‘)Pn(yo)
n=1

n=1
No Ny

- Z Z rm,npm(') pn(yO)

m=1n=1

Since py(yo) and A{¢n}(yo) are constants and ag(-, yo) € Hr, ¢ (reproducing
kernel property), all the functions on the right-hand side are included in Hy,
so that the same holds true for G+, (-, yo) (due to the vector-space property
of Hy,). O

We conclude this section by revealing the functional properties of the
operator Ay = L;ngl* associated with the kernel a4 (-,y). Operationally,
the latter constitutes a regularized version of the symmetric operator A :
© — [pa GLL(-, ¥)¢(y)dy, which cannot generally be ensured to be bounded
Hi — Hi. We recall that both operators are right-inverses of (L*L) and that
they are equivalent only when the null space of L is trivial.

Theorem 14. Let L be an admissible operator and (¢, p) a corresponding
biorthogonal system for its null space Ni,. Then, the operator Ay : ¢ —
Jraas(-,y)o(y)dy, where ag(-,y) is given by (62) in Theorem 12, has the
following properties:

1. It is the Riesz map HL(]& — Hiu e ={f € Hi: ¢(f) = 0}.
2. It is bounded Hj, — Hi, = Hr, ¢ S N
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Description Operator Kernel
Right-inverse of L G Gr(z,y)
Right-inverse of (L*L) A =GG* Gr(z,vy)
Stable inverse of L L;l Gr(z,y) — %pn(w)(}*{gbn}(y)
Riesz map Hi,d) - Hue Agp ag(T,y) "
Riesz map Hr s — Hy 4 (L*L)
No
Riesz map Hi — Hi Ay +Rp ag(x,y) + an(:v)pn(y)
Riesz map Hy, — Hj, (L*L) + R "~

Table 3: Primary operators that enter the definition of the Hilbert spaces
Hi,, Hi, ¢ and their duals Hj , H], &

8. It has a finite-dimensional null space Ny, = span{gbn}rjygl that is iso-

morphically equivalent to Ny, = span{pn}gil, In fact, NAqs =N is
the topological dual of Ny, equipped with the norm ||q||n; = || (q)]|2-

4. It imposes the boundary conditions: ¢p(Agp{f*}) = 0 for all f* € Hy.
In other words, Ag continuously maps Hi, — M, ¢

5. Let A : o [pa GLL(-,y)e(y)dy where Gy, is the symmetric Green'’s
function of L*L specified in Theorem 12. Then, for any ¢ for which
A{p} is well-defined, there exists (dy), (c,) € RN such that

No No
A¢{(p} = A{p} + Z dnpn + Z cnA{¢n}. (68)
n=1 n=1

In particular, we have that Ag{f*} = A{f*} - Zgil<A{¢n}, I pn for
all f* € Hy, , and Ag{d} =0 for all ¢ € Nf..

_ B NS B . . B . B .
Ay = (Id PI‘OJNI:) A(ld PrOJNﬁ) = (Id — Projp; )A(Id PrOJNﬁ)
and is the Moore-Penrose pseudoinverse of (L*L) : Hi, — Hp in
the underlying direct-sum topology; that is, it has the property that

Ap(L*L){f} = f for all f € N& = Hrp and Ap{o} = 0 for all
¢ € Im(L*L)Lt = M.
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Proof. Property 1 is a restatement of the fact that ag(-, -) is the reproducing
kernel of Hy, ¢ (see Theorem 12). We then reveal N, by showing that
Ap{opn} =0forn=1,..., Ny. To that end, we start by observing that

Af{om}(x) = (GLoL(®; ), dm) = vm(@), (69)

in agreement with Definition (63). Similarly, we find that

(o) = afoom = [ ([ Gronte)on @ity ) om(@lie = o,

where 7, 5, = 7m is defined by (64). Based on these identifications, we get

No
A¢{¢m} = Um(m) - an( 7a’m n Z UTL pnv ¢m
n=1

No Ng
+Z Z Tn n’pn pn 7¢m>
n=1n'=1
N() NO
(@) = 3 (@) — V(@) + S Pampa(@) = 0
n=1 n=1

where we have made use of the biorthogonality of {p,} and {¢,} to reduce
the sums. Since Hy, = Hr, ¢ ® N1, (by Corollary 13) and Ay isometrically
maps 7—[£¢ — Hy,p, we have that Hy = Hy , ® N with V], = Ny, =
span{q{)n . This, in turn, allows us to deduce that Ay continuously maps
Hi — HL,(,g C Hp, which yields Properties 2 and 4. Note that we could
have anticipated these boundary conditions based on the property that Ag =
Ly'L,t.
As for the last property, we also rely on (69) and expand Ag{¢} as

Aplp} = /Rd ag (-, y)e(y)dy

No No
= A{(p} — an<A{¢n}, 90> - Z A{¢n}<gp7pn>
n=1 n=1
No Ny

+ Z Z Tm,nPn <pm7 90>

m=1n=1

NO NO
= A} + > cal{dn} + Y dupn
n=1 n=1
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7{£:=7{£#,@%NZ 7{L::}ﬁh¢GBAﬂJ

Agp

2

Hi o Hi,ep

(L°L)

{0} 10}
M M.

N,
Span{ﬁbn}nil Spaﬂ{pn}gil

Figure 2: Schematic illustration of the mapping between the various Hilbert

spaces.
with
Cn = _<90¢pn>
No
dp = —(A{¢n}, ) + Z Tm,n{Pms @)
m=1

In particular, if ¢ € Hi,(b’ then ¢, = (¢, pn) = 0 (see Proposition 10). Since
Ap{p} € Hy for any ¢ € H (RY), it suffices that A{p} be well-defined for
the splitting (68) to be legitimate. O

The complete picture of those functional mappings is given in Figure 2,
while the relevant operators are summarized in Table 3.
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