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Energy levels of H2 molecular orbitals
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Question: Does the energy increase or decrease when the two H atoms 
are brought together? What can you say about bond formation?

Answer: Energy is lowered by 2Vs, the molecule has a lower energy 
than individual atoms → chemical bond forms between H atoms.



Crystals

Crystal = regular periodic arrangement of atoms in a material
As opposed to amorphous materials: no long-range order



Crystal structure = space lattice + atomic basis

http://scienceline.ucsb.edu/getkey.php?key=4630

Space lattice = mathematical translation of the crystal 
that leaves the material unchanged.

A crystal has translational symmetry: if we perform a 
displacement by a vector R, the potential is identical

𝑉 Ԧ𝑟 + 𝑅 = 𝑉( Ԧ𝑟)
Lattice vectors 𝑅 =  𝑛1𝑎1 + 𝑛2𝑎2+ 𝑛3𝑎3
𝑛1, 𝑛2, 𝑛3 are integers
𝑎1, 𝑎2, 𝑎3 are the basis vectors
Each point of the lattice is given by a set of integers, and 
each set of integers gives a point on the lattice.

𝑅 = 𝑛1 𝑎1 + 𝑛2 𝑎2 + 𝑛3𝑎3
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Crystal structures of semiconductors

Silicon, germanium:
diamond structure

GaAs: zincblende (or 
sphalerite) structure GaN, AlN, InN: 

wurtzite structure

ScN, YN, LaN: 
rocksalt structure
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Diamond (Si, Ge)

Kittel, solid state physics
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Crystal structures of semiconductors: diamond



Zincblence (GaAs)

From Wikipedia

𝑎1 = 𝑎
2

( ො𝑥 + ො𝑦)

𝑎2 = 𝑎
2

( ො𝑦 + Ƹ𝑧)
𝑎3 = 𝑎

2
( ො𝑥 + Ƹ𝑧)

𝜏1 = 0
𝜏2 = 𝑎

4
( ො𝑥 + ො𝑦 + Ƹ𝑧)

Crystal structures of semiconductors: zincblende



Wurtzite (GaN)

From Wikipedia

Three parameters: a, c, u

http://onlinelibrary.wiley.com/doi/10.1002
/9781118551462.ch8/summary 
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Crystal structures of semiconductors: wurtzite



Lattice constants of common semiconductors

• Trends:
• What happens for heavier atoms?
• What happens as the cations size 

increases? (e.g., Al → Ga → In)
• What happens as the anion size 

increases? (e.g., N → P → As → Sb)

Molecular weight

Adachi, Properties of group-IV, III-V and II-VI semiconductors



Connecting atomic/molecular orbitals to bands and gaps
Energy

1 atom 2 atoms 4 atoms N atoms + periodic boundary conditions



Band theory
Electron levels in materials are organized in bands separated by gaps.

Classification of solids based on their band gap.
• Zero gap: metals
• Gap ~< 3 eV: semiconductors
• Gap ~> 3 eV: insulators
• Overlapping valence and conduction bands: semimetals

Metal (e.g., Ag) Semimetal (e.g., Sn) Insulator (e.g., NaCl) Semiconductor 
(e.g., Si, GaN)

Energy



Bloch’s theorem

The solution of Schrödinger’s equation in a periodic potential is 
a wave (Bloch wave)

u(x) is a periodic function with the same period as the potential 
(i.e., the period of the crystal).
In contrast: for empty space: 

→ Explains long mean-free paths of electrons in metals.



Periodicity of band structure E(k)
The bands are periodic in k with a period equal to 2π/a:

For each band:

Three ways to represent the periodic band structure: 
Extended zone scheme Repeated zone scheme Reduced zone scheme: this 

one used in practice



Tight binding method = LCAO for crystals

Positions of atoms: 𝑅𝑖 + Ԧ𝜏𝑗 = Ԧ𝑟𝑖𝑗, 𝑖 = 1,2, … 𝑁 unit cells,

 𝑗 = 1,2, … atoms in unit cell

𝜙𝑚𝑖 Ԧ𝑟 − 𝑟𝑖𝑗  : m-th atomic orbital in unit cell i on atom j.
Write wave function of electrons in crystals as a periodic linear combination of atomic orbitals

𝜓𝑘 = ෍
𝑚,𝑗

𝑐𝑚𝑗 ෍
𝑖

𝑒𝑖 𝑟𝑖𝑗∙𝑘 𝜙𝑚𝑖(Ԧ𝑟 − 𝑟𝑖𝑗)

(satisfies Bloch theorem).
Number of unknown coefficients= one for each orbital in the unit cell



Tight binding recipe
• Find how many orbitals are in the unit cell (M). Each orbital in the unit cell will give rise to one 

band in the crystal.
• Create an M×M matrix. For each matrix element, write down the interaction matrix element 

between an orbital and itself or its neighbors.
• If it is a diagonal matrix element and the interaction is between an atom and itself in the 

same unit cell, use εi = energy of atomic orbital i.
• If it is a diagonal matrix element and the interaction is between an atom and itself in a 

different unit cell that differs by 𝑅, use the interatomic matrix element (Vs, Vppσ, etc.) and 
multiply by the factor 𝑒𝑖𝑘∙𝑅

• If it is an off-diagonal matrix element between atoms that differ by ∆𝑟, use the interatomic 
matrix element and multiply by the factor 𝑒𝑖𝑘∙∆𝑟

• Diagonalize the matrix. The M eigenvalues as a function of 𝑘 are the M bands of the crystal.



Example: 1D crystal with one atom/cell, one orbital/atom



For 3D semiconductor crystals (e.g., Si):
2 atoms x (one s + three p orbitals per atom) = 8 unknown coefficients, 8 bands. 

Details and values of parameters for various semiconductors in D. Jena, Quantum Physics of Semiconductor Materials and Devices 



3D: Brillouin zone of fcc and bcc lattice

https://en.wikipedia.org/wiki/Brillouin_zone

Simple cubic FCC (diamond, zincblende) BCC HCP (wurtzite)

10.48550/arXiv.1807.10054

http://dx.doi.org/10.48550/arXiv.1807.10054


Band structures of zincblende semiconductors

What features do you notice in the 
band structure of each material?



Band structures of AlN, GaN, InN

Relative band alignment

https://urn.fi/URN:NBN:fi:aalto-201412043135

(Energies referenced to highest occupied state) 

D. Jena, Quantum Physics of Semiconductor Materials and Devices 

https://urn.fi/URN:NBN:fi:aalto-201412043135
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