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Semiconductors and their applications
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ENIAC: first programmable, electronic, general-
purpose digital computer, 1945-1955. Based on
vacuum tubes. ~ 500 floating-point operations
persecond (Flops)

Solar cells

Today’s smartphones: ~ 100 GFlops
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Nitrides: important for energy efficient lighting
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To manufacture modern nitride electronic and optoelectronic
devices, we need to understand the behavior of electrons in nitrides and
how they interact with external inputs (voltage, light, heat, pressure).

Also, we need to understand the interactions of light and electrons
with materials in order to develop modern characterization tools to
study materials at the atomic scale.

The behavior of electrons at the atomic scale and the interactions of light
with materials cannot be described with the laws of classical mechanics
(i.e., Newton’s laws).

To understand the electrons in electronic materials and devices, we
need to apply the principles of qguantum mechanics



Wave properties of matter

Classical physics: _m

Particles: localized, indivisible Electron

Waves: extended, divisible Light X v

Quantum Physics:

| Particle | Wave

Electron v ?

Light ? v



Wave properties of matter

Classical physics: _m

Particles: localized, indivisible Electron

Waves: extended, divisible Light X v

Quantum Physics:
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Evidence: Photoelectric effect, blackbody radiation, Compton scattering, X-rays
Photon energy E = hf Photon momentum p = h/A
h = Planck’s constant=6.626x10734) s



Wave properties of matter

Classical physics: _m

Electron

Particles: localized, indivisible
Waves: extended, divisible Light X v

Electrons also have wave-like properties!
Wavelength A = h/p, frequency f = E/h

Electron v v
Light v

Quantum Physics:

«

Evidence: Photoelectric effect, blackbody radiation, Compton scattering, X-rays
Photon energy E = hf Photon momentum p = h/A
h = Planck’s constant=6.626x10734) s



Proof and application: the electron microscope

Electron gun

Transmission electron
microscope (TEM)
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Application: seeing domain walls in ferroelectric ScGaN

Vertical charge-neutral domain walls Horizontal charged domain walls, stabilized by dangling bonds
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Images from D. Wang, ..., E. Kioupakis, Z. Mi, “Electric-Field-Induced Domain Walls in Wurtzite Ferroelectrics”,

in press (https://arxiv.org/abs/2312.08645v2)


https://arxiv.org/abs/2312.08645v2

Particle waves

The electron has energy E and momentum p. Its wavelength A
and frequency f are given by:

E=hf— f=FE/h
h h
= — = A= —
P b\ D
Y = wave function = wave associated with motion of electron

(Just like the electric field is for photons)

2
P(x,t) = |‘I’(ﬂfat)| = probability of finding an
electron at (x,t) - Quantum mechanics describes
prgobabilities

/ P(x7 t)dw — / ‘\If(x, t)|2 dr — 1 Normalization

oo condition



Quantum Mechanics

It is a rigorous formalism to describe the motion of probability waves (wave
functions) associated with the motion of particles (e.g., electrons) under the
influence of an external potential (e.g., atomic nuclei or other electrons).

Also, it is a recipe of how to derive all measurable quantities of a particle
(position, momentum, energy, interaction with light, etc.) from the knowledge

of the wave function.

Key finding (1926): Schrodinger’s equation, the equation that determines the
wave function given the external potential.






Schrodinger’s equation

0 he 0?

zha\lf(m,t) ~ 2m 022

U(z,t)+ V(z,t)V(z,t)

Whatis V(x,t)? A: the potential energy that electrons experience (e.g., attraction by the nuclei,
electric field in electronic devices, oscillating electric field in optical devices)

Whatis i ? A: imaginary number j? = -1. Wave functions are complex! Cannot be measured
To fully determine W(x,t) we also need:
* Boundary conditions: Value of W at boundary (determined by the problem we need to solve)

* [nitial condition: Value of W at t=0

Once we find W(x,t), we can determine all measurable properties of the system.



Time-independent Schrodinger equation

If V(x,t)=V(x) only (independent of t) then write W as:

V(z,t) = () f(t)

Separate time-dependent Schrodinger into two equations:

() = et

— hQ d2
AV (a)b(a) = B

—

Time-independent Schrodinger equation (+ boundary conditions).
Energy eigenvalue problem, solve to find energy and (x).



Example 1: particle in an infinite square well
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potential. The potential is V = oo
everywhere except the region
0 < x<L,where V=0.



Some key observations
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Ground state energy (n=1) is not zero = zero point
motion. Electronis notatrestevenatT =0 K.

Ground-state energy (which is kinetic energy only)
increases as +1/L2 with decreasing L = Increases
more than attraction by the nucleus in atoms (~-1/L),
therefore electrons cannot fall into the nucleus.

Wave functions are oscillatory. Ground state has no
nodes (no zeros). One more node (zero of wave
function) for each increasing value of n.
Wa(;/oe functions are orthogonal to each other:
" If m=n - Integral =1
/ wm (m)wn (:B)d:l? If m#n = Integral =0
— OO

Wave functions are complete: any wave function
can be written as a linear combination of solutions
[e.e]

to Schrodinger. f@)=>" cnthn(z)

o= O:O ;Zz(rv)f(x)dx



Example 2: Quantum harmonic oscillator

1 1 koY@

Viz) = 5%1‘2 = §mw2x2, w=1\/—
m
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\ ! %o
Equilibrium! Position
position
V()
: Simple!

. ey . v mple!
Why is it important? 5 harmonic!
Every potentialis harmonic & motion

. . o
near a minimum. g
=

E.g., atomic vibrations

around equilibrium position. Diatomic!

molecule

Solution: g — (n + 1) B

2
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:<n+_>h —’n:07172,3’...
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V(x) Wave functions
1 9
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Energy levels are equally
spaced.

Hﬁyﬁm
) L Quantum of vibrational energy
BENA = phonon

o
/T Energyis absorbed and
AR RN emitted by vibrating atoms in

discrete amounts.



Example 3: Quantum tunneling

* Even if E<V,, there is a probability that the particle can make it
across the barrier 2 Tunneling (transmission probability T#0)

* Evenif E>V,, there is a probability that the particle will be
reflected at the barrier (transmission probability T#1)

V(x) (%) Quantum!
. behavior
Incident

\NNNA

|
|
NN /\ /\ IEiponcntial
NN Transmitted \\L
Reflected i /7 \\
/ \/ 0 L }/ N~
/( Sinusoidal
X Sinusoidal
0 L

What is the probability T that a particle with energy E will be
transmitted across a barrier of width L and height V,?

V2 sinhQ(mL)] - \/ o2m(Vy — E)
y R =

For Fl < Vi: T = |1
or &< Vo )

Answer:

V2 sin2(k2L)] ! \/ om(E — Vp)
) k2 = hz

For £/ > Vy: T'= |1
ot 0 T AB(E - W)




Application: scanning tunneling microscope

a) macroscopic scale:
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Smith et al., MRS Online Proceedings
Library, 482, 363 (1997)



Schrodinger’s equation for the hydrogen atom

Electron under the influence of the attractive

potential by the proton: 02
Vir) = —
4ieyr
3D Schrodinger’s equation:
v =1(z,y,2)
ﬁ? (a?lp (92170 an/I)
— +—+— |+ W=E
2m\ 9x° &yQ 0z v v
92 9r A
Vies—+ 5+ 3 ——Vi + W =E
ax= 9y 9z° 2m v v v




Schrodinger’s equation in spherical coordinates

r=\/x2—|-y2+z2

z
\\\\\\\ »
— \'| (Vye,qb) J— _15
w — w(/'a7 9’ ¢) ) : (x y, 2) 0 = cos r (Polar angle)

/
¢ = tan ! % (Azimuthal angle)

x = rsin 0 cos ¢
y = rsin 0 sin ¢
z=7rcosf

1 o( ,0 | d 1 9
2(1"21!,) + = (sin 01/’) 5 ﬁ—l—
re or or r=sin 6 00 00 r=sin” 0 d¢

2
+ ﬁ—‘;(E — V) =0
(7.3)



Three equations, one for each coordinate
b (1,0, 8) = R()/(0)g(¢)

Radial equation

1 d( ,drR\ 2u BEOE+1)] n=1234,..
2\ T e E—V—QM 2 |R=0 1=0,1,2,3,...,n—1

r? dr
my = 1, —14+1,...,—1,0.1,....01 — 1,1

Angular equation
1 d d
: (sin H—f) +
sin 6 d6 do

Azimuthal equation
ng B
dd®

Also: spin quantum number mg,=+1/2,-1/2

¢ —"”2]—
€ +1) f=0

sin” 6

_ 2
mgg

Only radial equation depends on the potential V(r)
- Angular and azimuthal equations same for all atoms



/.1 Hydrogen Atom Radial Wave Functions
€ Rn€(r)
2 —r/ag
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Solutions to radial equation

Radial Wavefunctions Plots: r R,,;(7)
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https://medium.com/modern-physics/hydrogen-atom-4ca1599e94a8



Solutions to angular equation

/.2 Normalized Spherical Harmonics Y(6, ¢)

€ myg Yvﬁm‘
1
0 0 —
2Var
1 /38
1 0 —+/—cos 0
2N
1 3 L
1 *1 = sin 0 ¢ ¢
2\ 27
1 /5
2 0 —(8cos*0 — 1)
T
1 /156
2 +1 F—/—sin 0 cos O ¢
2N 2@
1 /15
2 *2 —[—sin% 0 2
4 T
3 0 f(5cos 6 — 3cosh)
4\ 7
21 ) 9 s
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The Orbitron gallery of atomic orbitals
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Quantum mechanics of multi-electron atoms

Schrodinger’s equation for Helium atom:

2 electrons, one set of coordinates (r4, r,) for each electron

Y = (1, 72) Wave function of 2 electrons
Hy = By
g Moo Moy 1 27 1 27 1
om L 2m % dmwey rq Aeg 19 Aeg |17 — 7
K.E.ofe#1 K.E.ofe#2 P.E.ofe#1 P.E.of e #2 e—e

interaction

Impossible to solve analytically due to interaction term.
We can solve it numerically using computers.
However, we can learn a lot by analyzing the wave functions of H



Wave functions of multielectron atoms

The wave functions of multielectron atoms have the same functional
form as the wave functions of the hydrogen atom:

wn,l,ml (Ta 97 ¢) — Rn,l (T)}/l,ml ((97 q5)

The possible values of the integers n,|,m are exactly the same.

The spherical harmonics Y, are exactly the same as in the case of
hydrogen (and in general for any spherically symmetric potential).

The radial wave functions R(r) and the energies of the orbitals differ
from H. They depend on the atomic number of each element and
they are determined by the interplay of electron-nucleus and
electron-electron interactions. (we will see examples later)



Pauli exclusion principle

To understand multielectron atoms, we need one more quantum
principle: Pauli exclusion principle.

No two electrons can have the same set of quantum numbers.

For atoms, no two electrons can have the same set of (n, [,my, ms)
= Explains organization of electrons in the energy levels of atoms.

The principle is more general: applies to all particles with half-integer
spin = fermions.

As opposed to particles with integer spin = bosons (not subject to Pauli
exclusion).

Examples of fermions and bosons?
Fermions: electron, proton, neutron, ...
Bosons: photon, He* nucleus, Higgs, ...

Origin: indistinguishability of quantum particles (see Gibbs paradox)



Electronic structure of H and He

Energy H
2S

134

(n,l,m,m)=(1,0,0,%)
Electronic structure: 1s’

Labeling atomic shells:
n=1-2> K
n=2->L
n=3 > M
n=4 2> N

He

2s Electrons pair
with opposite
spins due to

13%7 Pauli exclusion

1stelectron: (n,l,m,m.)=(1,0,0,"2)
2"d electron: (n,l,m;,m,)=(1,0,0,-"%)
Electronic structure: 1s2



Electronic structure of LI

Li
Energy

A 2p
2S +
Net charge that the
1s outer electrons feel
=+3e —2e=+1e

In H, the 2s and 2p states have the same energy

An electron in H is attracted by the bare Coulomb potential of the
nucleus.

An outer electron in Li (or other multi-electron atoms) feels a
reduced (“screened”) attractive potential due to the repulsion by

the inner electrons.
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Radial distribution function in Li

Calculated data for the radial

probability distribution function
P(r):

The electron in the 2s state

— 2p penetrates more through the
= — 28 cloud of 1s electrons and
- 1s feels a stronger attraction by

the nucleus. 2s electrons

N have lower potential energy.
6 8




Orbital energies in multielectron atoms

Orbital energies in H

Energy

T 4s 4p—— 4d—— Af ——
3s 3p—— 3d——
2s 2p——
1s

Orbital energies in multielectron atoms

4f ——
4d——

S5s—— T

____________ % E---------.S_d:_____-
4s

30—
3s P
2s 2p
Reordering: 4s lower energy than 3d

: 5s lower energy than 4d

S

- Transition metals

Filling the states: How many electrons in each subshell?
s: =0 2 m ={0} x 2 (for spin) => 2 electrons

p: =1 2> m={-1,0,+1} x 2 (for spin) => 6 electrons

d: =2 2 m ={-2,-1,0,+1,+2} x 2 (for spin) = 10 electrons
f:1=8 2 m ={-3,-2,-1,0,+1,+2,+3} x 2 (for spin) 2> 14

electrons



Periodic table

Grouping of elements
based on filling of
subshells.

Vertical columns =
groups, elements with
similar chemical and
physical properties.

3d2(3d3d"3d93d43d7|3d%[3d"f3410
4d%4d44d4d%4d74d*|adladtaqr
502/5d°(5d4{5d5/5d5507|5d° 5o
P o

Horizontal rows = periods,
due to repetition in filling
of subshells




53

Li

167

Na

190

Rb

265

Cs

298

Be

112

Mg

145

Ca

194

Sr

219

253

Why does the size of the atoms decrease from left to right?

Size of the atoms

Sc

184

212

La

Ti

176

Zr

206

Hf

208

Nb

198

Ta

200

193

Metals

Semimetals

Nonmetals

Mn

Tc

183

Re

188

Fe

156

Ru

178

Os

185

Co

152

Rh

173

180

149

Pd

169

177

Cu

145
Ag

165

Au

174

Zn

142

Cd

155

Hg

156

Tl

156

C N o}
67 56 48
Si P S
m 98 88
Ge As Se
125 114 103
Sn Sb Te
145 133 123
Pb Bi Po

A: increasing Z = stronger attraction to nucleus.
Why does the size increase from top to bottom?
A: outer shells are more weakly bound to nucleus (screening by inner electrons)

https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Chemistry_-

_The_Central_Science_(Brown_et_al.)/07._Periodic_Properties_of_the_Elements/7.3%3A_Sizes_of Atoms_and_lons

143

135

42

cl

79

Br

94

115

127

31
Ne

38

Ar

n

Kr

88

Xe

108

Rn

120

. - 2 2
Radial probability r Rzp(r)

o
o

o
o)

i
~

o
)V

o

Radius r (Bohr)



lonization energy

He '
2400 | 152 filled shell

- \ filled shell 252 2p6
= S ' Ne
@ _E, 2000 half-filled :
= = ' subshell
s ] \ 2 3 \
g 2 1600 : 2s% 2p '
@ c \ N \
S o s \
= = \ filled \
" % 1200 H \ subshell |
g N '
8 c \ Mg
- ie] v
v 800 | /

B i 251 Na 3s!
0 | | | | | | | | 400 =
0 10 20 30 40 S0 60 70 g0 Q0
atomic number | | | | | | | | | | | |
© 2007 Encyclopadia Britannica, Inc. 1 2 3 4 5 6 7 8 9 10 11 12
nuclear charge Z

lonization energy = energy needed to remove outermost electron
= measure of stability of e in atoms.
What trends do you see?

* Large forinert gases, low for alkalis and alkaline earths
* Li-> Ne: overallincrease for increasing Z
 Be—>B: occupation of p orbitals. N=>0O: double occupation of p orbital



Electronegativity = tendency to attract shared electrons

B, Ga, Al, In, Sc, Y, La: metals, electropositive, tend to give electrons (cations).

N: nonmetal, electronegative, tends to attract electrons (anion).
Main group-lll elements: small

/—\ electronegativity difference with Nitrogen

Electronegativity - Primarily covalent bonding

0-1 1=1.2 12-15 16-2 2-25 25-3

. Over 3 Unknown

“pap Transition metal group-lll elements:
| large electronegativity difference with
= Nitrogen = lonic bonding

https://www.breakingatom.com/learn-the-periodic-table/electronegativity-of-the-elements



Sizeofions . - . o v

. @ @ c QO O ~
g Metals
8 s @ lons ] Semimetals 146 L 133
Na* M92+ - Nonmetals AB* | si¢t p3- 52" a
102 72 53.5 40 212 184 181
+ " 3 i -
K Ca?* Sc3t Ti*t vVt Mn?t Fe?* Co?* Ni** Cu?* zZn?* Ga*t Ge* | AsPt  se? Br
N N N XX X X XXX KK o O ke
138 100 74.5 67 79 80 83 78 74.5 69 73 74 62 53 58 198 196
Rb* Sr2* Y3+ zZr**  Nb* Mo* Tc* Ru}* Rh¥ Pd?* Agt Cd** It sn*  Sb3 | Te?” I~
¥ N X I I I I IXIIXIXIIXIIXKKK o o Xe
152 118 90 72 72 65 64.5 68 66.5 86 115 95 80 69 76 221 220
+ 24+ .
Cs Ba Hf4+ TaS+ w4+ Re4+ os4+ |r3+ Pt2+ Aut H92+ T|3+ Pb4+ B|3+
3
N I B I Y I N NI
167 135 ral 72 66 63 63 68 80 137 102 88.5 77.5 103

In ceramic materials (e.g., compound semiconductors) the elements have a partial ionic
character (e.g., Ga3*N3-). Need to consider size of ions when electrons are removed from
(cations) or added to (anions) the outer shell.

E.g., Ga3*: large size difference between size of atom and size of ion. Dense packing of
atoms enables strong orbital overlap. Explains high mobility of Ga-based semiconductors.

https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Chemistry_-
_The_Central_Science_(Brown_et_al.)/07._Periodic_Properties_of_the_Elements/7.3%3A_Sizes_of_Atoms_and_lons



Molecules and Chemical Bonding

Molecule = collection of nuclei + electrons. Need to describe
coupled motion of electrons and nuclei.

Two basic approximations:

1) Born-Oppenheimer or Adiabatic approximation: since
electrons are much lighter and move much faster than nuclei
(m,/Mp ~1/1836), they respond instantaneously to the nuclear

motion.
* Solve electronic motion assuming that the nuclei are static
* Solve nuclear motion assuming that electrons are always in
their ground state

Good approximation in general, corrections needed for lightest
elements.

2) Classical Nuclei approximation: electrons need quantum
mechanics, but the motion of the nuclei can be described by
classical physics.

+OPPENHEIMER




Molecules and Chemical Bonding

In molecules, the valence electrons do not stay in their
atomic orbitals. Instead, they join together to form bonds.

Quantum principles still apply: discrete energy levels,
electrons described by wave functions.

Wave functions in atoms =
atomic orbitals (e.g., 1s, 2p,, ...)

Wave functions in molecules =
molecular orbitals (e.g., o, 1, ...)

Need to solve Schrodinger’s equation
for molecule. Hard to do, need

approximations. http://magneticcarpet.deviantart.com
/art/Molecular-orbital-102480755



Linear Combination of Atomic Orbitals

Near an atom, molecular wave functions look like the atomic wave
functions of the atom.

Assumption: the molecular wave function can be approximated by a
Linear Combination of Atomic Orbitals (LCAO method)

wmolecule (F) — (1 watoml (77 — 771) + 62watom2 (77 — FQ)

C1, C, = numerical prefactors, chosen to satisfy Schrodinger’s equation.

Physical meaning of c,, c,: Measure how much each of 1, {2 contribute
to the molecular wave function, depend on the electronegativity of the
atoms.

|c4|? = probability that the electron in the molecular orbital is found in
state Y,



Example: LCAO for the H, molecule

W, (r)=ws(r-rq) Wy (r)=ws(r-r,)
M M < ..
4 4 > position
M Iy
Nucleus 1 Nucleus 2
Schrodinger:
meolecule (T) — Emoleculewmolecule (T)
h? 5
H=—-—"V + Vmolecule( )
2m
Potential: . . . . .
Vmolecule (7“) — Vatoml (T — T ) + VatomZ (T — TZ)
Wave function: wmolecule(_)) — Clwatoml(—) ) + C277Dzau‘com2( 772)

= c191(7) + catha(T)



Example: LCAO for the H, molecule

W4(r)=w4(r-rq) W, (r)=w4(r-ry)
@ @ > position
r r,

Nucleus 1 Nucleus 2

c1(Hr) + co(Hpa) = Eciipr + Ecatbs

Multiply both sides by y,* and integrate over r:

1 / 5 (F) o (F)dF + 5 / U () H b () —

—Eq/wl dr+Ec2/w1 Yo ()



Physical meaning of the integrals

W4(r)=d4s(r-rq) o (r)=W44(r-ry)
M M - ..
4 4 > position
I r,
Nucleus 1 Nucleus 2
C1 _))df):

2 5
H = — Vmoecue 8
2mv + lecule ()

— —

Vmolecule (77) — Vatoml (7?_ 7?1) + VatomQ (’I“ — T2)



Physical meaning of the integrals

W, (r)=gs(r-ry) W (r)=P5(r-ro)

> position

I
Nucleus 1

L)
Nucleus 2

In the neighborhood of atom 1 (where LIJ1 islarge): V. oecute = Vatorn1

= / 7 (7) Hoby (7) i / 5 (7) Haomt t (F)AF = By = €1

= Energy of the atomic orbital Y, of atom 1 = energy of 1s orbital of Hydrogen atom



Physical meaning of the integrals

W, (r)=gs(r-ry) W (r)=P5(r-ro)

> position

I
Nucleus 1

L)
Nucleus 2

Cl/wik(F)le(f))dF—F Co
—EC1/¢1 )y (7 dT+E02/¢1 7)epo (7)dr

/ 7 (F) Heb (7)dF = V.,

= a negative number. It is related to the probability that an electron can transition
from atomic orbital Y, to Y, = relates to sharing of electrons between atoms.

Interatomic matrix element:



Physical meaning of the integrals

W, (r)=gs(r-ry) W (r)=P5(r-ro)

M M
&

4 > position

I
Nucleus 1

L)
Nucleus 2

Question: whatis the value of this integral?

Answer: =1



Physical meaning of the integrals
W4(r)=w4(r-rq) W, (r)=w4(r-ry)

M
&

> position

=
<
I

L)
Nucleus 2

Nucleus 1

o / O () H by (P + ¢ / O (7) H o (7)dF =

_ Eq/wl dr+E02

Question: whatis the value of this integral?

Answer: overlap integral /wi (f’)¢2 (r,?)d/r_?): S ~(



Physical meaning of the integrals

W, (r)=gs(r-ry) W (r)=P5(r-ro)

O O > position
I
Nucleus 1

L)
Nucleus 2

—> C1€1 — CQ‘/; — ECl

One equation with 3 unknowns. Question: What to do next?

Answer: go back to Schrodinger equation, multiply by ), and integrate



Question: and now what?

C1€1 — CQVS — ECl

—c1Vs + coea = Eco

For H22€1 — €9 :Els

Hint: how many unknowns and how many equations?

Answer: determinant of coefficients must be zero. Otherwise,
the system of the two equations has a unique trivial solution:

Br=C2=0 C1 (61 — E) — CQ‘/; =\
—(31V8 —+ 02(62 — E) =




Algebra ...



Energy levels of H, molecular orbitals

Energy

Isolated H Together Isolated H

Question: Does the energy increase or decrease when the two H atoms
are brought together? What can you say about bond formation?

Answer: Energy is lowered by 2V, the molecule has a lower energy
than individual atoms > chemical bond forms between H atoms.



The wave functions of the H, molecule (molecular orbitals)

What is the wave function for E,, 4ing= E4s = V7

And what is the wave function for E, iiponding= E1s + Vs?

Antibonding y
Answer: go back to the set of equations /

and set the energy equal to the bonding

or the antibonding orbital energy, find the
ratio of c,/c,. Then, impose normalization 4
c2+cC,2=

For the bonding orbital: c1 =
(o orbital, no node)

Bonding

|

®)
o
|

For the antibonding orbital;
(o* orbital, with node) C1




Molecular orbitals of H, molecule

Constructive
interference

1s 1s l 015

+ + O1s [+ + C +

(a) Wave functions combined for o,

Destructive

interference 5

18 1s Oy Node

+ Q 01*5 3 b \ + ,Q
./ i ]
5 5 2 i
§ N H i H 5
) ® ° [} ® L ® °®
H : H : H H

(c) Wave functions combined for o (d) Antibonding probability density

http://chemwiki.ucdavis.edu/Textbook_Maps/General_Chemistry_Textbook_Maps/Map%3A_Chemistry%3A_The_Central_Science_(Br
own_et_al.)/09._Molecular_Geometry_and_Bonding_Theories/9.7%3A_Molecular_Orbitals



Follow the same steps for the He, molecule. Does
the He, molecule bind? Why or why not?

Emolecule — Els T Vts

4 Energy
‘ Antibonding
E1S # ............
‘Bonding
|solated He

Isolated He

Together
Answer: The four electrons occupy both the bonding and the antibonding

orbitals. The net energy gain is zero. 2 No bond formation.

(in reality: weak van der Waals bond, but broken by zero point motion:
Helium remains liquid even at 0 K.



In-class exercise: Li,

Follow the same steps for the Li, molecule. Does the Li, molecule
bind or not? If yes, which electrons contribute to bonding?

Energy Emolecule = Ers = Vi

... Antibonding
EZS + :::....'~ -" +
"'%”"Bonding

............ - .. (Spin labels
Eiy] — @@ _g@ T OO for1s
removed for
. ~ clarity)
Isolated Li Together Isolated Li

Answer: the filled 1s electrons (core electrons) do not contribute to
bonding. The valence 2s electrons lower the energy and bind Li,.
V, is larger for 2s electrons than 1s electrons. Why?

Answer: 2s orbital is larger, 2s electrons more easily shared than 1s.



What if the two atoms are different?

In-class: what are the energies of the molecular orbitals if &, # £,7

Answer: go back to the eigenvalue problem (determinant) and solve for €, # &,

Det =0= (e — E)(ea — E) = V2 =0

€1 + € €1 — € :
1 = b = ! ° T ! & + ‘/;2
Energy 2 2

~ Antibonding

* .
* *
. *
* 3
. .
* -
* *
. .
. *
. .
. :
: :
: :
. :
: :
: :
: :
.
* l‘-
- .
. ‘.‘
- .« ®
Bonding

|solated atom 1 Together |solated atom 2




Question

If £, > ¢€,, what is the shape of the bonding molecular orbital?

oo

Atom 1 Atom 2

D.

Answer: C: Atom 2 is more electronegative (¢,<¢,, therefore the potential well is deeper).
There is a higher probability that the electron will be nearer atom 2. However, there is
still some probability that the electron will be shared between both atoms.



Diatomic molecules with p orbitals

The p valence electrons (e.g., C, N, O) also participate in bonding

Atom 1 Atom 2
. . Key quantities: interatomic matrix
elements for each pair of atomic orbitals
_— k [/ = — —
® P /wl (7)) Hpo (7)dr
J 5

E_\é; D For a pair of s orbitals:

p Px
& F [ EOHRNG = -V, =V,

8 8 Two atomic s orbitals combine to

form o and o* molecular orbitals
p/’. p/’.



Molecular orbitals of H, molecule

Constructive
interference

1s 1s l 015

+ + O1s [+ + C +

(a) Wave functions combined for o,

Destructive

interference 5

18 1s Oy Node

+ Q 01*5 3 b \ + ,Q
./ i ]
5 5 2 i
§ N H i H 5
) ® ° [} ® L ® °®
H : H : H H

(c) Wave functions combined for o (d) Antibonding probability density

http://chemwiki.ucdavis.edu/Textbook_Maps/General_Chemistry_Textbook_Maps/Map%3A_Chemistry%3A_The_Central_Science_(Br
own_et_al.)/09._Molecular_Geometry_and_Bonding_Theories/9.7%3A_Molecular_Orbitals



Diatomic molecules with p orbitals

The p valence electrons (e.g., C, N, O) also participate in bonding
Atom 1 Atom 2 \sp6™ >0 Ngpa <O

4‘ ‘_> For the p,—s combination: ~ D
-+
D—ea ©

? Yo / VPV H () = Vepo

- D

Py One s and one p orbitals combine to form ¢ and o* orbitals:
OO f Bonding o Antibonding c*
Atomic orbitals Molecular orbital Molecular orbital

Py

! 8‘#* [ ]

Pz



Diatomic molecules with p orbitals

The p valence electrons (e.g., C, N, O) also participate in bonding

Atom 1 Atom 2

I . Forthe p,~s or p,—~s combinations:

P,-_ S

/ 7 (7) Hab (7)dF = 0

The product of the two orbitals is an odd
function with respect to z axis, integral is zero




Diatomic molecules with p orbitals

The p valence electrons (e.g., C, N, O) also participate in bonding

Atom 1 Atom 2

- o— 00—
9 ®

S S

OQD— O

g F

Py

}

Pz

Px

p-\. X
P
np,

/ 1 () Hbo () = Vo

For a pair of p orbitals that interact tip-to-tip :

— 7+
COD—=A
O
Vo 7

e v o

Two p orbitals combine to form o and ¢* orbitals

Bonding o Antibonding c*

Atomic orbitals Molecular orbital Molecular orbital

np Z 0f"Pz Onpz



Diatomic molecules with p orbitals

The p valence electrons (e.g., C, N, O) also participate in bonding

Atom 1 Atom 2

. . For a pair of p orbitals that interact side-to-side :

C\O C\O / w‘f (77) H1ps ("7) dr = Vppw

Px Px Two p orbitals combine to form 1t and ™ molecular orbitals:
OO - 00 Bonding 1t Antibonding t*
Atomic orbitals Molecular orbitals Molecular orbitals
Py Py X X X X
| | | | |
P P, |
np, np, Mhp, ";Pz



Diatomic molecules with p orbitals

The p valence electrons (e.g., C, N, O) also participate in bonding

Atom 1 Atom 2

. . 5 Forthe tip-to-side p-orbital combination:
9 9 C,\o‘—g
Px Pz

5 5

D D
Px Px / wik (F) sz (F) d,’? - O
O‘O OO The product of the two orbitals is an odd

Py Py function with respectto z, integralis zero

S

Pz Pz




Energies of molecular orbitals

For molecules Li, to N,:

Energy
N
O—*
Rs: S
E,p :
L O— P
P
m— —
0—*
E,| —oi S
o

Isolated atom Molecule Isolated atom

For O, and F,:

G*
T[*
D T P
O—
0*
S e -
o

Isolated atom Molecule Isolated atom



Exercise: occupations of the molecular orbitals of N,

For molecules Li, to N,: For O, and F,:
Energy
N
o~ o*
S TE _— ™
E2o @00 000 ;
"T900® e a—
*® "
E,| @@ e T
2S Ty Y YO S S el s
Op -
Isolated atom Molecule lsolated atom Isolated atom Molecule |solated atom

Answer



Question

For molecules |_i2 to N2: What is the nature of the bond of N,?
Enefgy A. Single
o* B. Double
C. Triple
e D. Quadruple
D of I P
"000® Answer: C. Three pairs of
electrons lower their energy by

‘%* occupying molecular orbitals

Ezs ‘-s‘ ............ " ........... ‘s‘

Isolated atom Molecule Isolated atom



In-class exercise: find the occupations
of the molecular orbitals of O,

For molecules Li, to N,: For O, and F,:
Energy
N
o~ o*
_.':Tt* o o ‘+7
E,, -; —— o009 009 o
p = ° p TOO@®:
A o9
o* ﬁ*
Bool o T 0o __ el
o .(’
Isolated atom Molecule lsolated atom Isolated atom Molecule |solated atom

Answer



Question:

What is the nature of the bond of O,?

A.

B.
C.
D.

Single
Double
Triple
Quadruple

Answer: B. The pair of electrons
occupying t* cancel out the
energy gain by one of the 1t pairs

For O, and F,:

‘@0
0*
......... o0 ..
e _ o9

Isolated atom Molecule Isolated atom



Question:

Is O, really magnetic?

Answer:
https://www.youtube.com/watch?v
=Lt4P6ctf06Q

For O, and F,:

o ¥ )
0*
......... o0

Isolated atom Molecule Isolated atom



Hybridization
Mix s and p orbitals of the same atom to create new
types of hybrid orbitals. More directional, stronger
bonding.
http://glossary.periodni.com/glossary.php?en=sp3+hybrid+orbital

sp?3 hybridization: mix all 3 p orbitals with s.
Directional orbitals: more overlap, larger interatomic matrix element, stronger bonds.

Example: CH,

»
/ / Z Z
Yy

Y HYBRIDISATION "

—




sp2 hybridization

Mix s with only two of the three p orbitals, create planar
directional molecules.

http://glossary.periodni.com/glossary.php?en=sp2+hybrid+orbital
Example: ethene C,H,

z z

y

p

/
¥y HYBRIDISATION - z y

R & F




sp hybridization

Mix s with only one p orbital, create linear bonds.

http://glossary.periodni.com/glossary.php?en=sp+hybrid+orbital

Example: acetyline (ethyne) C,H,

HYBRIDISATION ‘ /

X — —X >—/> X

1

% ?t = H—C«é C“LH
o= /
). o (Sp-sp)

X

Unhybridized 2p orhitals



http://glossary.periodni.com/glossary.php?en=sp+hybrid+orbital

Precursors for the MOCVD synthesis of nitrides

o0 o T pt Bl
N e e et Adduct Route C g1
H \\\“7 M g o © ¢ @z © S
v (S
H / s C k‘\' o LL < \
H : ~ \
N | C kL L \
C
W i N s ) l
\ u?‘ !

Trigonal pyramidal

Trimethylgallium: Ga(CH;),

-

B i T

‘\\\\C H 3

H,C—Ga.
“NCH,

©Ga@©@ CO® NC H

Szlpphirc Sll')&tl‘ilt(‘ S S SR

https://doi.org/10.1016/j.jcrysgro.201 1



https://doi.org/10.1016/j.jcrysgro.2016.09.010

Conjugation

1
o N N
' T °

H H

Alternate single-double bonds
Example: CH,=CH-CH=CH,
Example: benzene

All carbon atoms sp*®

Conjugated wave functions extend over
the entire volume of the molecule.

Applications: organic electronics.

[

Conjugated & system
(Electron density
delocalized over all
four carbon atoms)

Non-conjugated = system
(x bonds do not interact)

Wave functions of extended systems
(e.g., nitrides) are also extended over the
entire volume of the material.

https://instruct.uwo.ca/chemistry/37 3f/Nifty%20Stuff/et
hylene.htm

6 p-orbitals delocalized


https://instruct.uwo.ca/chemistry/373f/Nifty%20Stuff/ethylene.htm
https://instruct.uwo.ca/chemistry/373f/Nifty%20Stuff/ethylene.htm

Van der Waals interaction

Na+° > ‘Cl‘

Na+° — ° H,O
o@D @ "o
Ar,CH4@ ? @ Ar, CH,

For neutral, non-polar objects (Ar, CH,):

Expectation value of electric dipole moment:
(d1) =(dz) = 0

—>No static dipole-dipole interaction

But: from quantum mechanics: (dT : dj) * 0
—>Dynamic dipole-dipole interaction

The van der Waals interaction is a purely quantum

mechanical interaction. Always attractive.

A

V(T) = _7"_6

E.g.,van der Waals bonding in 2D materials
(graphite, hexagonal BN, etc.)



Binding energy and equilibrium separation

Vi)
O A /A
Binding!
energy
Equilibrium!

separation

Typical values for the equilibrium distance and for the binding
energy: R, =107"°m, E,= 1 eV



Vibrational spectra of molecules

K

Figure 10.5 A model of a di-
atomic molecule with the two

é‘

masses m; and my connected by a
massless spring with force con-

pn = mymo/ (m; + mo)
T Exercise: what is the vibrational frequency of HCI
if k=480 N/m?

My =1u, Mg =35.5U,u= 1.66054x10727 kgr

Answer:
o u=mym¢/(my+me)=1.63%x10727 kgr
— Vib l
TS W=5.43x10" rad/s, hw=0.36 eV

levels f=w/2m=8.64x10"73 Hz



Crystals

Crystal = regular periodic arrangement of atoms in a material

As opposed to amorphous materials: no long-range order

Question: give examples of crystalline materials: Answer: §alt, sugar, metals, silicon, nitrides,
all materials at low T

Question: what evidence do we have that materials are crystalline? Answer: X-ray and electron diffraction

Question: Why are materials crystalline? Answer: a crystal arrangement minimizes the energy
Question: Why? Answer: we do not know



Crystal structure = space lattice + atomic basis

o o o o
[ [ J [ ] [
LY ° ° °
o
@
o ° o °
. Basis (atoms)
Space Lattice
Q9 L ] o o
@ @ @ @
™Y ™ ™Y Y The crystal structure is formed by adding
. . . ‘ basis {atoms) to every lattice points of
L [ ) (&) [+ the lattice. The number of atoms in the
‘ ‘ ‘ ‘ basis may be one or more than one.
o L ] o [N
@O @ @ O

Crystal structure

http://scienceline.ucsb.edu/getkey.php?key=46 30

17{'{'7’12 2+Tl3€3>

Space lattice = mathematical translation of the crystal
that leaves the material unchanged.

A crystal has translational symmetry: if we perform a

displacement by a vector R, the potential is identical
V(7+R) = V()

Lattice vectors R = nya; + n,a,+nsas

nq, Ny, N3 are integers

a,,a,, a; are the basis vectors

Each point of the lattice is given by a set of integers, and
each set of integers gives a point on the lattice.



Crystal structures of semiconductors

. @
¢ 0
v\a“'

Silicon, germanium:
diamond structure

a
GaAs: zincblende (or
sphalerite) structure

|

Based on fcc lattice:

—_— a , A A
al=5(x+3’)

a, ==y +2)

Lattice vectors:

| 7 =0
Basis: T—2>:il(£+y+2)

GaN, AN, InN:
wurtzite structure

Based on hcp lattice:

a; = ax
\/_a,\
2—(‘ y)
a3—cz
Ga:7; =0

Ga: T, =§(671+a2)+5a3

N:T3 =uz

N:T; =2 (@ + 3 Hur D) @

ScN, YN, LaN:
rocksalt structure

Based on fcc lattice:

—_— a , A A
ap =X +Y)
— a , A
a; =5 +2)

a;=5@+2)

771=0
T, ==X[orT, == (% +
27 27

‘<>
_|_
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