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Semiconductors and their applications

ENIAC: first programmable, electronic, general-
purpose digital computer, 1945-1955. Based on 
vacuum tubes. ~ 500 floating-point operations 
per second (Flops)

Today’s state of the art 
supercomputers: 
~4 PFlops

Today’s smartphones: ~ 100 GFlops

Solar cells

Efficient light emitters

Indoor agriculture

Thermoelectric electricity 
production from heat



Nitrides: important for energy efficient lighting

Incandescent

Fluorescent

LED



• To manufacture modern nitride electronic and optoelectronic 
devices, we need to understand the behavior of electrons in nitrides and 
how they interact with external inputs (voltage, light, heat, pressure).

• Also, we need to understand the interactions of light and electrons 
with materials in order to develop modern characterization tools to 
study materials at the atomic scale.

• The behavior of electrons at the atomic scale and the interactions of light 
with materials cannot be described with the laws of classical mechanics 
(i.e., Newton’s laws).

• To understand the  electrons in electronic materials and devices, we 
need to apply the principles of quantum mechanics



Wave properties of matter

Classical physics:

Quantum Physics:

Particle Wave

Electron

Light

Particle Wave

Electron ?

Light ?

Particles: localized, indivisible
Waves: extended, divisible
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Evidence: Photoelectric effect, blackbody radiation, Compton scattering, X-rays
Photon energy E = hf Photon momentum p = h/λ

h = Planck’s constant = 6.626×10−34 J s

Particles: localized, indivisible
Waves: extended, divisible

Wave properties of matter



Classical physics:

Quantum Physics:

Particle Wave

Electron

Light

Particle Wave

Electron

Light

Electrons also have wave-like properties!
Wavelength λ = h/p, frequency f = E/h

Particles: localized, indivisible
Waves: extended, divisible

Wave properties of matter

Evidence: Photoelectric effect, blackbody radiation, Compton scattering, X-rays
Photon energy E = hf Photon momentum p = h/λ

h = Planck’s constant = 6.626×10−34 J s



Proof and application: the electron microscope

Transmission electron 
microscope (TEM)

Uses electron waves to 
image materials

Wavelength of electrons 
shorter than wavelength 
of light, can image 
materials with sub-
atomic resolution

mc2.engin.umich.edu



Application: seeing domain walls in ferroelectric ScGaN

8 

Fig. 2. Electric-field-induced vertical domain walls in ScGaN. a, Schematic, and b, atomic 

model of the vertical domain wall, with atoms represented by spheres (red for metal, blue for 

nitrogen). c, High magnification HAADF-STEM image and d, corresponding in-plane distance 

map of a vertical domain wall in ScGaN. e, High magnification iDPC-STEM images, and f, 

corresponding dumbbell angle map for the same region shown in c and d. Scale bar for c-f: 1 nm. 

Vertical charge-neutral domain walls
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Fig. 3. Electric-field-induced horizontal domain walls in ScGaN. a, Schematic, and b, atomic 

model of the horizontal domain wall, with atoms represented by spheres (red for metal, blue for 

nitrogen). c, High magnification HAADF-STEM image and d, corresponding out-of-plane 

distance map of a horizontal domain wall in ScGaN. e, High magnification iDPC image, and f, 

corresponding dumbbell angle map for the same region shown in c and d. Scale bar for (c-f): 1 nm. 

Horizontal charged domain walls, stabilized by dangling bonds 

Images from D. Wang, …, E. Kioupakis, Z. Mi, “Electric-Field-Induced Domain Walls in Wurtzite Ferroelectrics”, 
in press (https://arxiv.org/abs/2312.08645v2)

https://arxiv.org/abs/2312.08645v2


The electron has energy E and momentum p. Its wavelength λ
and frequency f are given by:

Ψ = wave function = wave associated with motion of electron
(just like the electric field is for photons)

                          = probability of finding an 
electron at (x,t)  → Quantum mechanics describes 
probabilities

Particle waves

Normalization 
condition



Quantum Mechanics

It is a rigorous formalism to describe the motion of probability waves (wave 
functions) associated with the motion of particles (e.g., electrons) under the 
influence of an external potential (e.g., atomic nuclei or other electrons).

Also, it is a recipe of how to derive all measurable quantities of a particle 
(position, momentum, energy, interaction with light, etc.) from the knowledge 
of the wave function.

Key finding (1926): Schrödinger’s equation, the equation that determines the 
wave function given the external potential. 





Schrödinger’s equation

What is V(x,t)? A: the potential energy that electrons experience (e.g., attraction by the nuclei, 
electric field in electronic devices, oscillating electric field in optical devices)

What is i ? A: imaginary number i2 = –1. Wave functions are complex! Cannot be measured

To fully determine Ψ(x,t) we also need:
• Boundary conditions: Value of Ψ at boundary (determined by the problem we need to solve)
• Initial condition: Value of Ψ at t=0

Once we find Ψ(x,t), we can determine all measurable properties of the system.



Time-independent Schrödinger equation
If V(x,t)=V(x) only (independent of t) then write Ψ as:

Separate time-dependent Schrödinger into two equations:

Time-independent Schrödinger equation (+ boundary conditions).
Energy eigenvalue problem, solve to find energy and ψ(x).



Example 1: particle in an infinite square well



Some key observations:
- Ground state energy (n=1) is not zero → zero point 

motion. Electron is not at rest even at T = 0 K.

- Ground-state energy (which is kinetic energy only) 
increases as +1/L2 with decreasing L → Increases 
more than attraction by the nucleus in atoms (~–1/L), 
therefore electrons cannot fall into the nucleus.

- Wave functions are oscillatory. Ground state has no 
nodes (no zeros). One more node (zero of wave 
function) for each increasing value of n.

- Wave functions are orthogonal to each other:

- Wave functions are complete: any wave function 
can be written as a linear combination of solutions 
to Schrödinger.

If m=n → Integral = 1
If m≠n → Integral = 0



Example 2: Quantum harmonic oscillator

Why is it important?
Every potential is harmonic 
near a minimum.

E.g., atomic vibrations 
around equilibrium position.

Solution:

Energy levels are equally 
spaced.

Quantum of vibrational energy 
= phonon

∆𝐸 =  ℏ𝜔 = ℎ𝑓
Energy is absorbed and 
emitted by vibrating atoms in 
discrete amounts.



Example 3: Quantum tunneling
• Even if E < V0, there is a probability that the particle can make it 

across the barrier → Tunneling (transmission probability T≠0)
• Even if E > V0, there is a probability that the particle will be 

reflected at the barrier (transmission probability T≠1)

What is the probability T that a particle with energy E will be 
transmitted across a barrier of width L and height V0?

Answer:



Application: scanning tunneling microscope

Smith et al., MRS Online Proceedings 
Library, 482, 363 (1997)

Surface reconstruction of GaN



Schrödinger’s equation for the hydrogen atom

Electron under the influence of the attractive 
potential by the proton:

3D Schrödinger’s equation: 



Schrödinger’s equation in spherical coordinates



Three equations, one for each coordinate

Radial equation

Angular equation

Azimuthal equation

Only radial equation depends on the potential V(r)
→ Angular and azimuthal equations same for all atoms

Also: spin quantum number ms = +1/2, –1/2 



Solutions to radial equation

https://medium.com/modern-physics/hydrogen-atom-4ca1599e94a8



Solutions to angular equation



http://www.webelements.com/shop/product/orbitron-atomic-orbitals-poster/



Quantum mechanics of multi-electron atoms

Schrödinger’s equation for Helium atom:
2 electrons, one set of coordinates (r1, r2) for each electron

Wave function of 2 electrons 

K.E. of e #1 K.E. of e #2 P.E. of e #1 P.E. of e #2 e–e 
interaction

Impossible to solve analytically due to interaction term.
We can solve it numerically using computers.
However, we can learn a lot by analyzing the wave functions of H



Wave functions of multielectron atoms

The wave functions of multielectron atoms have the same functional 
form as the wave functions of the hydrogen atom:

The possible values of the integers n,l,ml are exactly the same.

The spherical harmonics Ylml are exactly the same as in the case of 
hydrogen (and in general for any spherically symmetric potential).

The radial wave functions R(r) and the energies of the orbitals differ 
from H. They depend on the atomic number of each element and 
they are determined by the interplay of electron-nucleus and 
electron-electron interactions. (we will see examples later)



Pauli exclusion principle
To understand multielectron atoms, we need one more quantum 
principle: Pauli exclusion principle.

No two electrons can have the same set of quantum numbers.
For atoms, no two electrons can have the same set of
→Explains organization of electrons in the energy levels of atoms.
The principle is more general: applies to all particles with half-integer 
spin = fermions.
As opposed to particles with integer spin  = bosons (not subject to Pauli 
exclusion).
Examples of fermions and bosons?
Fermions: electron, proton, neutron, …
Bosons: photon, He4 nucleus, Higgs, …
Origin: indistinguishability of quantum particles (see Gibbs paradox)



Electronic structure of H and He

Labeling atomic shells: 
n=1 → K
n=2 → L
n=3 → M
n=4 → N
…

Energy H

1s

2s

He

1s

2s

(n,l,ml,ms)=(1,0,0,½)
Electronic structure: 1s1

1st electron: (n,l,ml,ms)=(1,0,0,½)
2nd electron: (n,l,ml,ms)=(1,0,0,–½)
Electronic structure: 1s2

Electrons pair 
with opposite 
spins due to 
Pauli exclusion



Electronic structure of Li

In H, the 2s and 2p states have the same energy
An electron in H is attracted by the bare Coulomb potential of the 
nucleus.
An outer electron in Li (or other multi-electron atoms) feels a 
reduced (“screened”) attractive potential due to the repulsion by 
the inner electrons.

Li

1s

2s

Energy
2p

+3
e

1s

2s

Net charge that the 
outer electrons feel =
= +3e –2e=+1e



Calculated data for the radial 
probability distribution function 
P(r):

Radial distribution function in Li

The electron in the 2s state 
penetrates more through the 
cloud of 1s electrons and 
feels a stronger attraction by 
the nucleus. 2s electrons 
have lower potential energy. 



Orbital energies in multielectron atoms

Filling the states: How many electrons in each subshell?
s: l=0 → ml = {0} × 2 (for spin) → 2 electrons
p: l=1 → ml = {–1,0,+1} × 2 (for spin) → 6 electrons
d: l=2 → ml = {–2,–1,0,+1,+2} × 2 (for spin) → 10 electrons
f: l=3 → ml = {–3,–2,–1,0,+1,+2,+3} × 2 (for spin) → 14 
electrons

Orbital energies in H

1s

2s 2p
3s 3p 3d
4s 4p 4d 4f

Orbital energies in multielectron atoms

1s

2s 2p
3s

3p

3d
4s

4p
4d

4f

5s

Reordering: 4s lower energy than 3d
5s lower energy than 4d
→ Transition metals

Energy



Periodic table

Grouping of elements 
based on filling of 
subshells.

Vertical columns = 
groups, elements with 
similar chemical and 
physical properties.

Horizontal rows = periods, 
due to repetition in filling 
of subshells



Size of the atoms

Why does the size of the atoms decrease from left to right?
A: increasing Z → stronger attraction to nucleus.
Why does the size increase from top to bottom?
A: outer shells are more weakly bound to nucleus (screening by inner electrons)

https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Chemistry_-
_The_Central_Science_(Brown_et_al.)/07._Periodic_Properties_of_the_Elements/7.3%3A_Sizes_of_Atoms_and_Ions



Ionization energy

Ionization energy = energy needed to remove outermost electron 
= measure of stability of e in atoms.
What trends do you see?

• Large for inert gases, low for alkalis and  alkaline earths
• Li→ Ne: overall increase for increasing Z
• Be→B: occupation of p orbitals. N→O: double occupation of p orbital



https://www.breakingatom.com/learn-the-periodic-table/electronegativity-of-the-elements

Electronegativity = tendency to attract shared electrons

Main group-III elements: small 
electronegativity difference with Nitrogen
 → Primarily covalent bonding  

B, Ga, Al, In, Sc, Y, La: metals, electropositive, tend to give electrons (cations).
N: nonmetal, electronegative, tends to attract electrons (anion).

Transition metal group-III elements: 
large electronegativity difference with 
Nitrogen → Ionic bonding  



Size of ions

In ceramic materials (e.g., compound semiconductors) the elements have a partial ionic 
character (e.g., Ga3+N3–). Need to consider size of ions when electrons are removed from 
(cations) or added to (anions) the outer shell.
E.g., Ga3+: large size difference between size of atom and size of ion. Dense packing of 
atoms enables strong orbital overlap. Explains high mobility of Ga-based semiconductors.

https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Chemistry_-
_The_Central_Science_(Brown_et_al.)/07._Periodic_Properties_of_the_Elements/7.3%3A_Sizes_of_Atoms_and_Ions



Molecules and Chemical Bonding
Molecule  = collection of nuclei + electrons. Need to describe 
coupled motion of electrons and nuclei.
Two basic approximations:
1) Born-Oppenheimer or Adiabatic approximation: since 

electrons are much lighter and move much faster than nuclei 
(me/Mp ~1/1836), they respond instantaneously to the nuclear 
motion.
• Solve electronic motion assuming that the nuclei are static
• Solve nuclear motion assuming that electrons are always in 

their ground state
Good approximation in general, corrections needed for lightest 
elements.

2) Classical Nuclei approximation: electrons need quantum 
mechanics, but the motion of the nuclei can be described by 
classical physics.



Molecules and Chemical Bonding
In molecules, the valence electrons do not stay in their 
atomic orbitals. Instead, they join together to form bonds.

Quantum principles still apply: discrete energy levels, 
electrons described by wave functions.

Wave functions in atoms = 
atomic orbitals (e.g., 1s, 2px, …)

Wave functions in molecules = 
molecular orbitals (e.g., σ, π, ...)

Need to solve Schrödinger’s equation 
for molecule. Hard to do, need 
approximations. http://magneticcarpet.deviantart.com

/art/Molecular-orbital-102480755



Linear Combination of Atomic Orbitals
Near an atom, molecular wave functions look like the atomic wave 
functions of the atom.
Assumption: the molecular wave function can be approximated by a 
Linear Combination of Atomic Orbitals (LCAO method)

c1, c2 = numerical prefactors, chosen to satisfy Schrodinger’s equation.

Physical meaning of c1, c2: Measure how much each of ψ1, ψ2 contribute 
to the molecular wave function, depend on the electronegativity of the 
atoms.
|c1|2 = probability that the electron in the molecular orbital is found in 
state ψ1



Example: LCAO for the H2 molecule

Nucleus 1 Nucleus 2
r1 r2

position

ψ1(r)=ψ1s(r-r1) ψ2(r)=ψ1s(r-r2)

Schrodinger:

Potential:

Wave function:



Example: LCAO for the H2 molecule

Nucleus 1 Nucleus 2
r1 r2

position

ψ1(r)=ψ1s(r-r1) ψ2(r)=ψ1s(r-r2)

Multiply both sides by ψ1* and integrate over r:



Physical meaning of the integrals

Nucleus 1 Nucleus 2
r1 r2

position

ψ1(r)=ψ1s(r-r1) ψ2(r)=ψ1s(r-r2)



Physical meaning of the integrals

Nucleus 1 Nucleus 2
r1 r2

position

ψ1(r)=ψ1s(r-r1) ψ2(r)=ψ1s(r-r2)

In the neighborhood of atom 1 (where ψ1 is large): Vmolecule ≅ Vatom1

= Energy of the atomic orbital ψ1 of atom 1 = energy of 1s orbital of Hydrogen atom



Physical meaning of the integrals

Nucleus 1 Nucleus 2
r1 r2

position

ψ1(r)=ψ1s(r-r1) ψ2(r)=ψ1s(r-r2)

Interatomic matrix element: 

= a negative number. It is related to the probability that an electron can transition 
from atomic orbital ψ1 to ψ2 = relates to sharing of electrons between atoms.



Physical meaning of the integrals

Nucleus 1 Nucleus 2
r1 r2

position

ψ1(r)=ψ1s(r-r1) ψ2(r)=ψ1s(r-r2)

Question: what is the value of this integral?

Answer: = 1



Physical meaning of the integrals

Nucleus 1 Nucleus 2
r1 r2

position

ψ1(r)=ψ1s(r-r1) ψ2(r)=ψ1s(r-r2)

Question: what is the value of this integral?

Answer: overlap integral



Physical meaning of the integrals

Nucleus 1 Nucleus 2
r1 r2

position

ψ1(r)=ψ1s(r-r1) ψ2(r)=ψ1s(r-r2)

One equation with 3 unknowns. Question: What to do next?

Answer: go back to Schrodinger equation, multiply by ψ2 and integrate



Question: and now what?

Answer: determinant of coefficients must be zero. Otherwise, 
the system of the two equations has a unique trivial solution: 
c1=c2=0

Hint: how many unknowns and how many equations?



Algebra …



Energy levels of H2 molecular orbitals

Isolated H Isolated HTogether

Energy

E1s

Vs

Vs

Question: Does the energy increase or decrease when the two H atoms 
are brought together? What can you say about bond formation?

Answer: Energy is lowered by 2Vs, the molecule has a lower energy 
than individual atoms → chemical bond forms between H atoms.



The wave functions of the H2 molecule (molecular orbitals)
What is the wave function for Ebonding = E1s – Vs?
And what is the wave function for Eantibonding = E1s + Vs?

Answer: go back to the set of equations 
and set the energy equal to the bonding 
or the antibonding orbital energy, find the 
ratio of c1/c2. Then, impose normalization 
c1

2 + c2
2 = 1

For the bonding orbital: 
(σ orbital, no node)

For the antibonding orbital:
(σ* orbital, with node)



Molecular orbitals of H2 molecule

http://chemwiki.ucdavis.edu/Textbook_Maps/General_Chemistry_Textbook_Maps/Map%3A_Chemistry%3A_The_Central_Science_(Br
own_et_al.)/09._Molecular_Geometry_and_Bonding_Theories/9.7%3A_Molecular_Orbitals



Follow the same steps for the He2 molecule. Does 
the He2 molecule bind? Why or why not?

Isolated He Isolated He
Together

Energy

E1s

Vs

Vs

Answer: The four electrons occupy both the bonding and the antibonding 
orbitals. The net energy gain is zero. → No bond formation. 
(in reality: weak van der Waals bond, but broken by zero point motion: 
Helium remains liquid even at 0 K.

Bonding

Antibonding



In-class exercise: Li2
Follow the same steps for the Li2 molecule. Does the Li2 molecule 
bind or not? If yes, which electrons contribute to bonding?

Isolated Li Isolated LiTogether

Energy

E1s

Answer: the filled 1s electrons (core electrons) do not contribute to 
bonding. The valence 2s electrons lower the energy and bind Li2.
Vs is larger for 2s electrons than 1s electrons. Why?

Bonding

Antibonding

E2s

Answer: 2s orbital is larger, 2s electrons more easily shared than 1s. 

(Spin labels 
for 1s 
removed for 
clarity)



What if the two atoms are different?
In-class: what are the energies of the molecular orbitals if ε1 ≠ ε2?

Answer: go back to the eigenvalue problem (determinant) and solve for ε1 ≠ ε2. 

Isolated atom 1 Isolated atom 2Together

Energy

ε1

Bonding

Antibonding

ε2



Question
If ε1 > ε2, what is the shape of the bonding molecular orbital?

Atom 1 Atom 2

A.

B.

C.

D.

Answer: C: Atom 2 is more electronegative (ε2<ε1, therefore the potential well is deeper). 
There is a higher probability that the electron will be nearer atom 2. However, there is 
still some probability that the electron will be shared between both atoms.



Diatomic molecules with p orbitals
The p valence electrons (e.g., C, N, O) also participate in bonding

Atom 1 Atom 2
Key quantities: interatomic matrix 
elements for each pair of atomic orbitals

For a pair of s orbitals:

Two atomic s orbitals combine to 
form σ and σ* molecular orbitals



Molecular orbitals of H2 molecule

http://chemwiki.ucdavis.edu/Textbook_Maps/General_Chemistry_Textbook_Maps/Map%3A_Chemistry%3A_The_Central_Science_(Br
own_et_al.)/09._Molecular_Geometry_and_Bonding_Theories/9.7%3A_Molecular_Orbitals



Diatomic molecules with p orbitals
The p valence electrons (e.g., C, N, O) also participate in bonding

Atom 1 Atom 2
For the px–s combination:

One s and one p orbitals combine to form σ and σ* orbitals:

Bonding σ Antibonding σ*



Diatomic molecules with p orbitals
The p valence electrons (e.g., C, N, O) also participate in bonding

Atom 1 Atom 2
For the py–s or pz–s combinations:

The product of the two orbitals is an odd 
function with respect to z axis, integral is zero



Diatomic molecules with p orbitals
The p valence electrons (e.g., C, N, O) also participate in bonding

Atom 1 Atom 2 For a pair of p orbitals that interact tip-to-tip :

Two p orbitals combine to form σ and σ* orbitals
Bonding σ Antibonding σ*



Diatomic molecules with p orbitals
The p valence electrons (e.g., C, N, O) also participate in bonding

Atom 1 Atom 2

Two p orbitals combine to form π and π* molecular orbitals:

For a pair of p orbitals that interact side-to-side :

Bonding π Antibonding π*



Diatomic molecules with p orbitals
The p valence electrons (e.g., C, N, O) also participate in bonding

Atom 1 Atom 2

For the tip-to-side p-orbital combination:

The product of the two orbitals is an odd 
function with respect to z, integral is zero



Energies of molecular orbitals

Isolated atom Isolated atom

For molecules Li2 to N2:

E2s

Molecule

s s

p p

σ

σ*

σ

σ*

π

π*
E2p

Energy

Isolated atom Isolated atom

For O2 and F2:

Molecule

s s

p p

σ

σ*

σ

σ*

π

π*



Exercise: occupations of the molecular orbitals of N2

Isolated atom Isolated atom

For molecules Li2 to N2:

E2s

Molecule

s s

p p

σ

σ*

σ

σ*

π

π*
E2p

Energy

Isolated atom Isolated atom

For O2 and F2:

Molecule

s s

p p

σ

σ*

σ

σ*

π

π*

Answer



Question

Isolated atom Isolated atom

For molecules Li2 to N2:

E2s

Molecule

s s

p p

σ

σ*

σ

σ*

π

π*
E2p

Energy

Answer: C. Three pairs of 
electrons lower their energy by 
occupying molecular orbitals

What is the nature of the bond of N2?
A. Single
B. Double
C. Triple
D. Quadruple



In-class exercise: find the occupations 
of the molecular orbitals of O2

Isolated atom Isolated atom

For molecules Li2 to N2:

E2s

Molecule

s s

p p

σ

σ*

σ

σ*

π

π*
E2p

Energy

Isolated atom Isolated atom

For O2 and F2:

Molecule

s s

p p

σ

σ*

σ

σ*

π

π*

Answer



Question:

Isolated atom Isolated atom

For O2 and F2:

Molecule

s s

p p

σ

σ*

σ

σ*

π

π*

Answer: B. The pair of electrons 
occupying π* cancel out the 
energy gain by one of the π pairs

What is the nature of the bond of O2?
A. Single
B. Double
C. Triple
D. Quadruple



Question:

Isolated atom Isolated atom

For O2 and F2:

Molecule

s s

p p

σ

σ*

σ

σ*

π

π*

Answer: 
https://www.youtube.com/watch?v
=Lt4P6ctf06Q

Is O2 really magnetic?



Hybridization
Mix s and p orbitals of the same atom to create new 
types of hybrid orbitals. More directional, stronger 
bonding. 
http://glossary.periodni.com/glossary.php?en=sp3+hybrid+orbital

sp3 hybridization: mix all 3 p orbitals with s.
Directional orbitals: more overlap, larger interatomic matrix element, stronger bonds. 
Example: CH4



sp2 hybridization
Mix s with only two of the three p orbitals, create planar 
directional molecules. 
http://glossary.periodni.com/glossary.php?en=sp2+hybrid+orbital

Example: ethene C2H4 



sp hybridization
Mix s with only one p orbital, create linear bonds. 
http://glossary.periodni.com/glossary.php?en=sp+hybrid+orbital

Example: acetyline (ethyne) C2H2 

http://glossary.periodni.com/glossary.php?en=sp+hybrid+orbital


Precursors for the MOCVD synthesis of nitrides

https://doi.org/10.1016/j.jcrysgro.2016.09.010

Ammonia: NH3

Trimethylgallium: Ga(CH3)3

NH3 + Ga(CH3)3 → GaN(s) + 3CH4

https://doi.org/10.1016/j.jcrysgro.2016.09.010


Conjugation

Alternate single-double bonds
Example: CH2=CH–CH=CH2

Example: benzene
Conjugated wave functions extend over 
the entire volume of the molecule.
Applications: organic electronics.

Wave functions of extended systems 
(e.g., nitrides) are also extended over the 
entire volume of the material.

https://instruct.uwo.ca/chemistry/373f/Nifty%20Stuff/et
hylene.htm

https://instruct.uwo.ca/chemistry/373f/Nifty%20Stuff/ethylene.htm
https://instruct.uwo.ca/chemistry/373f/Nifty%20Stuff/ethylene.htm


Van der Waals interaction

–+

+

+  –

+  – +  –

0

Na+ Cl–

Na+ H2O

H2OH2O

0Ar, CH4 Ar, CH4?

For neutral, non-polar objects (Ar, CH4):

Expectation value of electric dipole moment:
𝑑1 = 𝑑2 =  0

→No static dipole-dipole interaction

But: from quantum mechanics: 𝑑1 ∙ 𝑑2 ≠ 0
→Dynamic dipole-dipole interaction

The van der Waals interaction is a purely quantum 
mechanical interaction. Always attractive.

𝑉 𝑟 = −
𝐴
𝑟6

E.g., van der Waals bonding in 2D materials 
(graphite, hexagonal BN, etc.)



Binding energy and equilibrium separation

Typical values for the equilibrium distance and for the binding 
energy: R0 ≅ 10–10 m, E0 ≅ 1 eV



Vibrational spectra of molecules

Exercise: what is the vibrational frequency of HCl 
if k = 480 N/m?
mH = 1 u, mCl = 35.5 u, u =  1.66054×10−27 kgr

Vibrational 
energy 
levels

Answer:
μ=mHmCl/(mH+mCl)=1.63×10−27 kgr
ω=5.43×1014 rad/s,  ħω=0.36 eV
f = ω/2π = 8.64×1013 Hz



Crystals
Crystal = regular periodic arrangement of atoms in a material
As opposed to amorphous materials: no long-range order

Question: give examples of crystalline materials: Answer: salt, sugar, metals, silicon, nitrides, 
all materials at low T

Question: what evidence do we have that materials are crystalline? Answer: X-ray and electron diffraction

Question: Why are materials crystalline? Answer: a crystal arrangement minimizes the energy
Question: Why? Answer: we do not know



Crystal structure = space lattice + atomic basis

http://scienceline.ucsb.edu/getkey.php?key=4630

Space lattice = mathematical translation of the crystal 
that leaves the material unchanged.

A crystal has translational symmetry: if we perform a 
displacement by a vector R, the potential is identical

𝑉 Ԧ𝑟 + 𝑅 = 𝑉( Ԧ𝑟)
Lattice vectors 𝑅 =  𝑛1𝑎1 + 𝑛2𝑎2+ 𝑛3𝑎3
𝑛1, 𝑛2, 𝑛3 are integers
𝑎1, 𝑎2, 𝑎3 are the basis vectors
Each point of the lattice is given by a set of integers, and 
each set of integers gives a point on the lattice.

𝑅 = 𝑛1 𝑎1 + 𝑛2 𝑎2 + 𝑛3𝑎3

𝑎1

𝑎2



Crystal structures of semiconductors

Silicon, germanium:
diamond structure

GaAs: zincblende (or 
sphalerite) structure GaN, AlN, InN: 

wurtzite structure

ScN, YN, LaN: 
rocksalt structure

𝑎1 = 𝑎
2

( ො𝑥 + ො𝑦)

𝑎2 = 𝑎
2

( ො𝑦 + Ƹ𝑧)
𝑎3 = 𝑎

2
( ො𝑥 + Ƹ𝑧)

𝜏1 = 0
𝜏2 = 𝑎

4
( ො𝑥 + ො𝑦 + Ƹ𝑧)

Lattice vectors:

Basis:

a
a

a
a

c

𝑎1 = 𝑎
2

( ො𝑥 + ො𝑦)

𝑎2 = 𝑎
2

( ො𝑦 + Ƹ𝑧)
𝑎3 = 𝑎

2
( ො𝑥 + Ƹ𝑧)

a

𝜏1 = 0
𝜏2 = 𝑎

2
ො𝑥 [or 𝜏2 = 𝑎

2
( ො𝑥 + ො𝑦 + Ƹ𝑧)]

𝑎1 = 𝑎 ො𝑥

𝑎2 =  (𝑎
2

ො𝑥 + 3𝑎
2

ො𝑦)
𝑎3 = 𝑐 Ƹ𝑧

Based on fcc lattice: Based on hcp lattice: Based on fcc lattice:

Ga: 𝜏1 = 0
Ga: 𝜏2 = 1

3
(𝑎1 + 𝑎2) + 1

2
𝑎3

N: 𝜏3 = 𝑢 Ƹ𝑧
N: 𝜏4 = 1

3
(𝑎1 + 𝑎2) +(u+ 1

2
) 𝑎3
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