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Geometric Deep Learning

* An attempt to unify deep learning architectures under a common
mathematical framework

What is the one true architecture?
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All architectures derive from geometric
priors

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

CNNs:
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Prior 1: Symmetries

e Symmetry is a transformation that leaves an object invariant
Images should be processed independently of shifts
Spherical data should be processed independently of rotation
Graph data should be processed independently of isomorphism

Original Image

Augmented Iimages
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Prior 2: Scale separation

* \We can extract sufficient statistics at a lower spatial resolution by
downsampling demodulated localized filter responses

* Long range dependencies can be broken into multi-scale local
interaction terms
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Geometric deep learning blueprint

 We can apply a sequence of equivariant layers that preserve the
symmetries of the domain

e Local pooling defines a hierarchy of domains
* |nvariant global pooling aggregates features into a single output
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Graph neural networks

 They can be considered a specific instance of geometric deep
learning
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Examples of architectures and their
priors

Architecture Domain Symmetry group &

CNN Grid Translation

Spherical CNN Sphere / SO(3)  Rotation SO(3)

Intrinsic /| Mesh CNN Manifold Isometry Iso(£2) /
Gauge symmetry SO(2)

GNN Graph Permutation X,

Deep Sets Set Permutation 3,

Transformer Complete Graph Permutation 3,

LSTM 1D Grid Time warping
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For a deeper understanding
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Neuroscience: learn to compare brain
networks

Network input

labelled graph |

[Ktena et al., Metric learning with spectral graph convolutions on brain connectivity networks, Neurolmage, 2018]
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Protein-protein interactions

* Predicting interactions between proteins and other biomolecules
solely based on structure remains a challenge in biology

e Exploit GNNs to learn interaction fingerprints in protein molecular
surfaces that determine protein interactions

Approach, systematic
Protein molecular surface Interaction fingerprint extraction of patches

Hydrophobic
Electron donor
Pocket
Knob

Positive charge

» Patch center points
== Patch radius

[Gainza et al, Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning, Nature methods, 2019]
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Protein-protein interactions

* Predicting interactions between proteins and other biomolecules
solely based on structure remains a challenge in biology

e Exploit GNNs to learn interaction fingerprints in protein molecular
surfaces that determine protein interactions

Geometric features ~N Chemical features
~ f
> , : .
—> ) i'
N . l..' ‘./‘ ‘ H\ “
Shape Distance-dependent Hydropathy Continuum Free electrons/
index curvature | electrostatics protons

[Gainza et al, Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning, Nature methods, 2019]
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Protein-protein interactions

* Predicting interactions between proteins and other biomolecules
solely based on structure remains a challenge in biology

e Exploit GNNs to learn interaction fingerprints in protein molecular
surfaces that determine protein interactions

Polar u _ |
7~ coordinates T\ e MaSIF-geometric deep learning \,‘/ )
{ N filters ( ~

W

Angular coordinates| __,

é

=
65

K rotations

Map features .P
to learned |
soft grid Convolutional layers Fmgerpnnt Appll_catlon-
Radlal coordlnates L descriptor ) specific layers Y
. AN

[Gainza et al, Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning, Nature methods, 2019]

i i Network Machine Learning - EE452
== P l- I Dr Dorina Thanou 13

Prof. Pascal Frossard



Protein-protein interactions

* Predicting interactions between proteins and other biomolecules
solely based on structure remains a challenge in biology

e Exploit GNNs to learn interaction fingerprints in protein molecular
surfaces that determine protein interactions

Applications

-~

ADP |
CoA
FAD

Heme 2>
NAD

NADP
SAM

Interface e W b,

Noninterface 7

Pocket classification Interface site prediction Ultra-fast PPI search
MaSIF-ligand MaSIF-site MaSIF-search /

[Gainza et al, Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning, Nature methods, 2019]
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De novo design of protein-protein
Interactions

* Design PPIs by targeting sites using only structural information
from the target protein

a b c

Seed candidates
PPI stmcture DB Surface features > ey
MaSIF-site t {
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O Fingerprint patch Chem-cal Sha Seed selection
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Structural
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] &x. Lok fingerprnt space Rl -
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[Gainza et al, De novo design of protein interactions with learned surface fingerprints, Nature, 2023]
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Medical imaging

e Digital pathology: Graph based representations provide a flexible

tool for modelling complex dependencies at different levels of
hierarchy (e.g., cells, tissues)

Input ima
'",',:. -’t:.zy
V7

> o
-
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Preprocessing

 Stain normalization |

Tissue detection

Nuclei detection

Entity detection

Tissue graph

O\ ey
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/ \ ot 7/
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‘ “:[gcf \

A N

Hierarchies

Cell graph

Graph construction

[Pati et al, “Hierarchical graph representation in digital pathology,” MEDIA, 2022]

Tissue GNN Embedding
>
v
y
— 1' ) H H

C1C2C3C4

Cell GNN Prediction

Hierarchical GNN Classification

[Li et al, Representation learning for networks in biology and medicine: Advancements, challenges, and opportunities, arXiv, 2021]
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Geometric deep learning models
cellular microenvironment

-
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[Wu et al, Graph deep learning for the characterization of tumour microenvironments from spatial protein profiles in tissue specimens,
Nature Biomedical Engineering, 2022]
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Spherical imaging

» Spherical data has specific spatial and statistical properties that cannot
be captured by regular CNN models

-0.00025 0.00025

Cosmic microwave
background temperature

Brain activity (MEG) Omnidirectional images

« Sphere is modelled as a graph and classical operation (convolution,
translation, pooling...) are performed on the graph

[Perraudin et al., “DeepSphere”, Astronomy and Computing, 2019]
[Bidgoli et al, OSLO: On-the-Sphere Learning for Omnidirectional images and its application to 360-degree image compression, arXiv, 2021]

[ Network Machine Learning - EE452
== P F I Dr Dorina Thanou
B Prof. Pascal Frossard

17



Point cloud semantic segmentation

* Graph attention convolution are successful in capturing specific
shapes that adapt to the structure of an object

C O F

&

c

K
- o~ ™ feature concat g5
— EdgeConv — & |- EdgeConv —| & |— EdgeC — 8 |~ & —| S %
© ) © multi-layer perceptron g °
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v

[Wang et al., Graph Attention Convolution for Point Cloud Semantic Segmentation, CVPR, 2019]
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oint clouds semantic segmentation

Ground Truth PlainGCN-28 ResGCN-28 DenseGCN-28

Floor

[Li et al., DeepGCNs: Can GCNs Go as Deep as CNNs?, ICCV 2019]
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Recommender systems

click
- - -» collect

Gender: male

Age: 23
Location: Beijing

Price: $1000
Brand: Lenovo

Gender: female

Age: 26 Price: $800
Location: Bangalore Brand:Apple
Gender: male oy
rice:
A.ge. 2 Brand: Nike
Location: Boston

users items
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Recommender systems: Aligraph

 The system is currently deployed at Alibaba to support product
recommendation and personalized search at Alibaba’s E-
Commerce platform

. Algorithm

[ e \ ™

|

System

lmportant Storage of

[Zhu et al., AliGraph: A Comprehensive Graph Neural Network Platform, 2019]
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Self driving cars

GNNs provide probabilistic estimates of future trajectories
- A CNN detects objects

- A GNN captures interactions between objects and predicts behaviors

LiDAR point cloud

o e g . . Spatially-Aware

S Fused features and c:bject detections  RRol pooled features Graph Neural Marginal distribution
i l,t _ \‘ y = Network over future trajectories
\ .a‘ - oy ‘ )

. - |} ’

— / e - o

. o ,.,! - .n‘ »
>
~ A e =0 g

[Casas et al, Spatially aware graph neural networks for relational behaviour forecasting for sensor data, ICRA, 2020]

Network Machine Learning - EE452
e P = L
= 1

Dr Dorina Thanou
Prof. Pascal Frossard

22



Learning cooperative perception

e GNNs can learn to guide the robot to its target under the guidance
of a visual sensor network

- _ Obstacle
Target in 3 i/
Line-of-Sight

e Shortest Path

e—
.lu 1
TSl

:]‘\ Moveable Wireless

. PR
Sensor Nodes <

Communication Links

[Blumenkamp et al, See What the Robot Can’t See: Learning Cooperative Perception for Visual Navigation, arXiv 2023]

Network Machine Learning - EE452
E P F I Dr Dorina Thanou 23
Prof. Pascal Frossard



Traffic prediction

e As the road network is naturally modelled by a graph of road
segments and intersections, ETA prediction can be improved with
graph representation learning

Google Maps ETA Improvements Around the World

o 27% io% i
16%
26%
l '. éi% lllllll Osoka
San Jose . H . Washington, DC oo . o
22% ! - Orlandao 29% 21/ 37/0
340/ - Taichung City
° o
Las Vegas Chennai ® 5 1 /O
220/0 200/0 Singapare
31%
Sao Paulo <22hc;/o
23%
e)
43%
[Derrow-Pinion et al., ETA Prediction with Graph Neural Networks in Google Maps, 2021]
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Traffic prediction

e As the road network is naturally modelled by a graph of road
segments and intersections, ETA prediction can be improved with
graph representation learning

4' | .. =y ; L
R Predictions
Anonymlsed ; Supersegments ; Graph neural : Google Maps

travel data Analysed Training network API
data

/N

%Surfaced

A\

Google.Maps Candidate Google Maps
routing user routes SBE
system A-B

[Derrow-Pinion et al., ETA Prediction with Graph Neural Networks in Google Maps, 2021]
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Drug repurposing for COVID-19

 Deep GNN approaches have been used to derive the candidate
drug’s representation based on the biological interactions

[Hsieh et al, Drug repurposing for COVID-19 using graph neural network and harmonizing multiple evidence, Nature Sc. Rep., 2021]
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Learning physical simulations

* Mesh-based simulations are central to modeling complex physical
systems

* High-dimensional scientific simulations are very expensive

e GNNSs have been used to learn mesh-based simulations and
predict the dynamics of physical systems

(a) Xtt) X~¢K

Learned simulator, sy

_
d

0

ENCODER 1 PROCESSOR aNM DECODER

® = (T4
X — G° G! -e. GM! H—cM Y
(c) Construct graph W0 (d) Pass messages (¢) Extract dynamics info
J
- e() : \teuy \tef_n_-H b
(- ® — i,J < ® i,J . [ ® i,J ® — [ ®
¢ ¢ X (™ V? ¢ v o6 V:n+1 Vi“ ¢ © yi
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[Sanchez-Gonzales et al, Learning to Simulate Complex Physics with Graph Networks, ICML 2020]
[Pfaff et al, Learning mesh-based simulation with Graph Networks, ICML 2021]
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Learning physical simulations

e Some examples:

https://sites.google.com/view/learning-to-simulate

https://sites.google.com/view/meshgraphnets
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Molecular graph generation
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[Simonovsky et al, 2017, De Cao et al 2018, Stokes et al 2020]
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Towards more expressive GNNs

e How can we go beyond the message passing framework?
- Higher order structures (simplicial /cell complexes)

sHIRZICANEN
/

7 0 Q\p

Y
1-GNN 2-GNN 3-GNN

Learning higher-order graph properties -
[Morris et al., Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks, AAAI 2019]

- Use notions from spectral theory/graph signal processing

Examples of eig ctor-based directions Examples of inductive bias based directions
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[Beanini et al., Directional graph networks, PMLR, 2021]

i i Network Machine Learning - EE452
= P I— I Dr Dorina Thanou

Prof. Pascal Frossard 30



A neural PDE viewpoint of GNNs

e GNNSs can be seen as discretised diffusion PDEs

Instead of several layers of message passing, we consider a continuous -time
physical process

 Deep links to differential geometry
F(t H, O)

R (%)

\ Newkon's \aw oF uo\]vg

Q
t

—
TIME

TEMPERATURE

Fourier's ‘\u& ('.\—uy\s‘&_p law

h = —avX

\/\

[Poli et al., Graph Neural Ordinary Differential Equations, AAAI 2021]

[Chamberlain et al., GRAND: Graph Neural Diffusion, NeurlPS 2021]
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Generative models: denoising diffusion

* Diffusion models have gained significant interest

T
4. -7 %) = gz 10 [ | 9l 7o)
t=2

Noise model Denoising network

Generate diffusion trajectories by recursively adding Train a network to predict the inverse diffusion iterations.

noise to a data point.
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Generative models: denoising diffusion
for molecules and proteins

e Diffusion models on graphs generate sets and graphs that look
like the objects in a training set (e.g., DiGress, GeoDiff)

How can we improve performance (faster sampling, efficient solvers)
How can we achieve conditional generation?
How can we apply diffusion in real world applications (e.g., data augmentation)?

SBM Planar Guacamol Moses QM9
Zb.} % N —0
o, 5
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What is the right graph for my data?

 Graph rewiring: Data versus computational graph

® o
...
—_— B oo o
. ® ®
. ° ..: :
®
— — [ 1 2
(
O ..
¢ New graph

Graph diffusion Density defines edges Sparsify edges

[Gasteiger et al., Diffusion improves graph learning, NeurlPS 2019]

e Graph learning

Ongmal graph structure A Refined graph structure A* Node embeddmgs Z  Leaming objective £
» Q
— % ___________
g = e
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e 5 I | -
3 £ | @ I
s : cee.
& / 2 | RS | U

[Zhu et al., Deep Graph Structure Learning for Robust Representations: A Survey, arXiv, 2021]
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Knowledge graphs

e Graphs often consist of nodes/edges of different types

 Reasoning and generalization in heterogenous graphs is an open
guestion

Cellular 'Y Molecular

Compone Function
Treat  has_symptom . &

has_symptom Pharma-
cologic
Class
has_symptom
Diagnose @

1

k—uplequlales

xpresses
Nowmequlales

ECEEEE  resembles

D Entity
() Attribute

. . Side Effect
—> Relationship

[Ji et al., A Survey on Knowledge Graphs: Representation, Acquisition and Applications, arXiv, 2021]
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GNNs for Reinforcement Learning
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Learning model / Learning graph edge
value function weights / signal on graph
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Network data is everywhere
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Wrap up: Network analysis

Regular Small-world Random

Increasing randomness
Node centralit
y Random graph models

a.  POISSON b.

° . Highway network

C.  POWERLAW d. .

)/ PN Airline network

From [1]

Random versus scale free models

== = Network Machine Learning - EE452
= P I— I Dr Dorina Thanou

Prof. Pascal Frossard



Wrap up: Inference on networks

e How can we infer useful information from data that live on a
network or graph?

* Graphs could be weighted or unweighted
e Nodes could have attributes

TRX2

TRX1
O

‘ELR:I '6GPX1

GSH1

HYRIZ" GPX2
csi2 =GB Machine learning (ML)/ P oo
URE2 Aty - Signal processing (SP) - [
(0N o on graphs
HSP104 YD1 GLN3.
2 . .0
HSP4O HspazQ O30 supss e.g., node/graph classification,
sis1 @) o signal inpainting/denoising
OSUPC“)NAM7
PABIO
X.,¢ = f(X,0) = Y
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Why learning from graphs is hard?

e Contrary to traditional modalities:

Graphs capture complex and irregular connections
- There is no explicit notion of ordering
- Nodes can have multiple attributes

TRX2

OTRXI
GSH1 .\

@) 'SLR’ ) ‘chpm

o
HYR¥ ™
GSHz., -O ¥ 'GPXZ

Amplitude

URE2  GaT1
o 5

HSP104 YD1 GLN3

”5"46 HSP82, ¥ 1.SsA1

SuP35
O
sIs1 @ SUP45
©-— Nam?
PABI (3

Domain: line

Domain: grid

Domain: irregular graph
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Graph-structured features/embeddings:
A high level overview

Hand-crafted features: Capture some structural properties of the graph,
followed by some statistics (signatures)

Graph kernel methods: Design similarity functions in an embedding space

Spectral features: Capture the graph properties through spectral graph

theory Model-driven

Learned features: Learn graph features directly from data by designing
models based on meaningful assumptions

Unsupervised embeddings: Learn features based on different ways of
preserving information from the original graph (without node attributes)

Graph neural network features: Learn features from the data using a

well-designed family of neural networks (with node attributes)
Data-driven
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First GNN architectures
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e Recent trends

- Spectrally-inspired architectures: GraphHeat (Xu'19), GWNN (Xu’19), SIGN
(Frasca’20), DGN (Beaini’20), Framelets (Zheng'21), FAGCN (Bo'21)

- More expressive GNNs: higher order WL test (Maron’19, Morris’20), physics-
inspired GNNs (Chamberlain’21), and many more!

i i Network Machine Learning - EE452
= P I— I Dr Dorina Thanou

Prof. Pascal Frossard 43




Other topics

e |earning on dynamic graphs
e |earning connectivity matrix
e Self-supervised learning

* Applications

* Open challenges
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Today’s lecture

* Aglimpse of geometric deep learning

* Applications

 Open research questions

e Feedback on the class

cPL
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Suggestions for next year?

e Class material
* Assignments/Labs
* Organisational aspects

* Anything else....

Please share your thoughts with us!
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Thank youl!

cPL
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