Graph neural networks:
Advanced topics

Dr Dorina Thanou
May 15, 2023

i i Network Machine Learning - EE452 //
= P = I Dr Dorina Thanou
== A Prof. Pascal Frossard




Recap: Graph neural networks (GNNs)

o A different way of obtaining ‘deeper’ embeddings inspired by deep
learning

 They generalize to graphs with node attributes

Node classification

’ 4 ’ ‘

—> | | ) —> ‘ Graph classification
4
.:l I ‘ Link prediction ‘
Transformed graph End tasks
Graph and node attributes (node/edge embeddings) (node, edge, graph level)
/
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GNN blocks

(graph convolution, pooling, nonlinearity) Classification layer
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From graphs to rooted subtrees

 Each subgraph can be mapped to a rooted subtree or a subtree

pattern
 The maximum depth of the subtree is defined by the number of layers
D—
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hP) @ Embeddings at layer 2
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Embeddings at layer 1
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Initial embeddings

Rooted subtree of node 2 at layer 1 9 9 9 0 ” 9

Rooted subtree of node 2 at layer 2

Different rooted subtrees should be assigned different node embeddings!
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Recap: First GNN architectures

;i Spectral ,
G graph CNN  PAICHY TIGraNet
Gori et al. GNN Bruna et al. Niepert ChebNet Khasanova et al. MoNet SGN GIN
Scarselli et al. Defferrard et al. MPNN  Monti et al. Wu et al. Xu at al.
et al. Gilmer at al.
2005 2009 2015 2016 2016 2016 2017 2017 2017 2017 2018 2019 2019 2019
A A A A A
Spatial-based methods
Gated-GNN 1stChebNet ~ GraphSAGE . GAT CansGNN
Spectral-based methods |, ;. Kipf et al. Hamilton atal.  Velickovic at al. Xinl;i ol

e Recent trends

- Spectrally-inspired architectures: GraphHeat (Xu'19), GWNN (Xu’19), SIGN
(Frasca’20), DGN (Beaini’20), Framelets (Zheng'21), FAGCN (Bo'21)

- More expressive GNNs: higher order WL test (Maron’19, Morris’20), physics-
inspired GNNs (Chamberlain’21), and many more!
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Outline

e Expressive power of GNNs

* |nferring the graph topology

 Dynamic graph models

e |earning with sparse labels
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Representation power of MPNNs

e Typically done by analysing how expressive a GNN is in learning

to represent and distinguish between different graph
structures

* This implies solving the graph isomorphism problem:

Two graphs are isomorphic if there exists an index permutation between the
nodes that preserve node adjacencies (NP hard)

Isomorphic graphs should be mapped to the same representation and non-
iIsomorphic ones to different representations

Example of two isomorphic graphs
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Recall the WL kernel
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Recall the WL kernel
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Recall the WL kernel
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Recall the WL kernel

4 3 3

Hash table
—/ 4 (L) = 2
’ 5 1) 3
\ (1,111) — 4
O O O (1,1111) —» 5
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Recall the WL kernel

3 4

! : Hash table
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Recall the WL kernel

: > Hash table
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Recall the WL kernel

: > Hash table
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Recall the WL kernel

o After K iterations, the WL kernel computes the histogram of colors

1,2,3,4,.5,6,7,8,9,10,11,12,13
=) $(G1) =16,2,1,2,1,0,2,1,0,0,2,1,0]

N\

1,2,3,4,5,6,7,8,9,10,11,12,13
) »(G2) =16,2,1,2,1,1,1,0,1,1,1,0,1]

O ‘ WL kernel

K(G1,G2) =< ¢(G1), 9(G2) >
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Strong connections with 1-WL test (1)

* 1-Weisfeiler-Lenman (WL) is a classical algorithm for graph isomorphism

* |t tells you if two graphs are not isomorphic, but it does not allow you to
conclude if they are isomorphic (necessary but not sufficient condition)

ot

Graph 1 Step 1 Step 2 Step 3 Step 4
Graph 2 Step 1 Step 2 Step 3 Step 4

* By construction, GNNs can only be as powerful as the 1-WL test

[Illustrative example from X. Bresson]
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Strong connections with 1-WL test (1)

* 1-Weisfeiler-Lenman (WL) is a classical algorithm for graph isomorphism

* |t tells you if two graphs are not isomorphic, but it does not allow you to
conclude if they are isomorphic (necessary but not sufficient condition)

No new colors created,

ﬂ' i algorithm stops.
E (O g ® l Isom(frphls lgr)a.phs .x:'
© |—l-—u-l-— l—l-—-l-l-l-—
H

Graph 1 Histogram of colors Graph 2 Histogram of colors

* By construction, GNNs can only be as powerful as the 1-WL test

[Illustrative example from X. Bresson]
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Strong connections with 1-WL test (2)

* MPNNSs are equivalent to (at most as powerful as) the 1-WL isomorphism
test
WL function should be injective: different inputs are mapped to different outputs
GINs are as powerful as the 1-WL test

1-WL test MPNN
Input: agraph G =V, &, W) - Input: agraph G = (V,E, W)
Assign an initial color o (e.g., node degree) to each - Assign an initial embedding A{ (e.g., node attribute) to
node ¢ of V each node i of
For each iteration [ + 1 refine node colors as - Foreach layer [+ 1 refine node embeddings as
l I+1 ! I opl
At = HASH({C%, {cg-}jej\/i}) hi™ = Ul<hi7j§?\[iMl(hja h;))
Until stable node coloring is reached - Until maximum number of layers is reached
Output: The node colors {c.™** bi={1,2,..,N} - Output: The node embeddings{him“w bim{1,2,.. N}

e Over discrete features, GNNs can only be as powerful as the 1-WL test

[Xu et al., How powerful are graph neural networks, ICLR 2019]
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Strong connections with 1-WL test (2)

* MPNNSs are equivalent to (at most as powerful as) the 1-WL isomorphism
test
WL function should be injective: different inputs are mapped to different outputs
GINs are as powerful as the 1-WL test
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Limitations of MPNNs

* A lot of works have shown that MPNNs have some limitations, e.g.,
[Morris’19, Xu’18, Chen'20]

- They fail to capture long run interactions

GOO ............... O

- They fail to distinguish higher-order structures (similar to WL)

L1 D>
00 G0

* There are non-isomorphic subgraphs that are considered equivalent by
MPNNSs
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Improvements of expressiveness of MPNNs

 Intuition: Design algorithms inspired from higher-dimensional isomorphism
tests (k-WL induced GNNs)

MPNNSs MPSN

\g‘r’:"ﬁgA%NEs GIN 3-WL GNNs k-GNNs
e GNNML1 RingGNNs CW Network
GatedGCNs GNNML3 UniGNN
< powerful XDrOSS .
than 1-WL < 1-WL/ 2-WL < 3-WL < k-WL o WL teste
| | | l o
1 | 1 1 -
Capture higher-order
graph properties
[Adapted from Xavier Bresson’s slides]

G = (V,E)

v These models are more expressive
- They (often) loose the advantage of locality and linear complexity of MPNNs
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Improvements of expressiveness of MPNNs

* Intuition: Exploit the identity of each node or a neighborhood around
it to increase the expressive power of MPNNs

- Augment nodes with randomized/positional features or local context (positional
encoding)

Examples: [Loukas’20, Vignac’20, Sato’21, Abboud’21]

ggsi?

Input same
o layer color.
7}
wv
1hP 2 o]
P
2hp [¢]
©
g3hp

) Identical Features.

input graph
input graph

at GNNs

(b) Random Features.

v These models are more expressive

- They are either not permutation equivariant or computationally costly
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Improvements of expressiveness of MPNNs

* Intuition: If the network cannot detect a pattern, we can count
this pattern and add the extra count as an additional feature

- Augment nodes with handcrafted subgraph-based features (structural encoding)
- Examples: [Bouritsas’20]

o

v These models are at least as expressive as 1-WL and they can
distinguish some non-isomorphic graphs that 1-WL fails

- They require expert knowledge on what features are relevant for a
task
Still MPNNs remain the most widely-used framework in practice!
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Outline

e Expressive power of GNNs

* Inferring the graph topology

 Dynamic graph models

e |earning with sparse labels

cPL
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What if the graph is not given

e All techniques so far require a graph to be provided as input

* In many applications, the graph is not given

e A fully connected graph could be designed, but:
It does not capture important interactions between nodes
It does not scale

How can we learn a graph from data in a GNN?
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Graph attention can be considered as
an example of graph inference

* For a given connectivity matrix, attentional GNNs learn the
weights of each edge

- Different weights are attributed to different nodes in a neighbourhood
- Dependence on the global graph structure can be removed

Updated embedding
\ hit! = o(al,60h. + ) ol 61ht)
_ . concat/avg
hs > '~'W@ J EN

| Output features |

[Velickovic et al., Graph Attention Networks, ICLR 2018]
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Graph attention can be considered as
an example of graph inference

* For a given connectivity matrix, attentional GNNs learn the
weights of each edge

- Different weights are attributed to different nodes in a neighbourhood
- Dependence on the global graph structure can be removed

| Attention weights | Updated embedding

[+1 [ nl 1.l [ nl 1.l
Comparison of hZ _ O-(a’i’ie()hi + 2 : a’ijelhj)

input features FJEN;

oy = a(fo(hi™), fo(hi™))

Updated edge attention

softmax;

l

[Velickovic et al., Graph Attention Networks, ICLR 2018]
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Learning the connectivity

 We can infer simultaneously the graph structure and the node
representations by optimising a downstream task

Ongmal graph structure A Refined graph structure A* Node embeddings Z  Leammng objective £
- o
2 E e
= I I
2 i ! .
= = @ I
5 { 2 000
= / 8,. :__!_______:
wn
Leaming parameters of the refined graph structure Learming GNN model parameters

[Zhu et al., Deep Graph Structure Learning for Robust Representations: A Survey, arXiv, 2021]
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Example: Neural relational inference

* Objective: Infer the interaction graph from observed dynamics
without knowing structure of interactions

* |ntuition: Use a downstream task to drive graph construction
Infer the graph through an encoder
Use the graph to make predictions
Optimize the entire system end-to-end

[Kipf et al., Neural relational inference for interacting systems, ICML 2018]

i i Network Machine Learning - EE452
= P l- I Dr Dorina Thanou

Prof. Pascal Frossard 21



Example: Neural relational inference

@ ® ®
¢ O 9
y_ GNN P GNN y_
Z;j
o ® o
Observe dynamics Interaction graph proposal Reconstruct dynamics”
x = (x,...,x7) z ~ 4y (z|x) po(x|z)

VAE Objective (ELBO) L = K, (,x)|log ps(x|z)] — KL|q¢(z|x)||p(2)]

Reconstruction Regularization
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Example: Differential graph module

 DGM projects nodes to a latent space and uses a Gaussian
kernel to obtain a probability for each node pair

* The learnable function predicting the probability is optimized for a
downstream task

,,' =] ‘.‘\ : Tteaeees - K " 1 + ¢ HAXX;)-T) o
X 3 : e i e co Fully connected weighted
» ® a '\ i ' graph
fo > S =
B A, Ceefeel ) /" Fully connected Graph sampling
. probabilistic graph emmmmmsscessssmssaceeenee. .o
N ; o : o
Graph embedding space AR Vo
Graph feature - i W — Gumbel Top-k Trick —>

i aoem | il B
E a,_.:'_ --------- , \“ ': :

R A | Sparse graph with

S . unweighted edges

[Kazi et al., Differentiable graph module for graph convolutional networks, ICML, 2020]
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Outline

e Expressive power of GNNs

* |nferring the graph topology

* Dynamic graph models

e |earning with sparse labels

cPL
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Spatial-temporal GNNs

 Dynamic networks are graphs where over time links and nodes

may appear and disappear, and features may change

Degrees of freedom

=

Static

Discrete

P<seudo dyv\amic

Continuous

e
67 O\ &
x1a \/\ )(1 /O O
. o \/

2 %:i::Ned \/ ©

7,

\

[Slide from W. Cappelletti]

Tme

cPL
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Temporal GNNs follow two paradigms

e Ho

| 1 — | [ P

gean \O/\\ '—| GNN —*é" ! 1 O\ /(?\ —>| RGNN |—>y
e © _. H, e o

r—————-———- 1 Emmmmmm—— = 1 1
| X QG"‘O E Ha ' ’ | A v
N e | | RNN it AR | RN |—»§
| H O\Q | | | O\\ : L/:l
| O\é) | [ O O |
L | l - |
LT CTTTTTTTo e Hy
E 6’3 II HS (it : )< 2 |I 7 l
:thSj O—? \— | GNN | > g‘ : > O——Cf | —b> LRG-M/A/ —>y
I| Crm O< /O : : WEREE O /O : ' S
- o B = A e
\4
Spatial then temporal: Spatio-temporal:
Node embeddings for each time step are A single model for embedding spatial and
fed to a temporal model temporal information

[Skarding et al., Foundations and Modeling of Dynamic Networks Using Dynamic Graph Neural Networks: A Survey, IEEE Access, 2021]
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Outline

e Expressive power of GNNs

* |nferring the graph topology

 Dynamic graph models

* Learning with sparse labels

cPL
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Unsupervised/self-supervised learning
with GNNs

e So far, we have assumed that labels are available
They are used to design a loss function

e \What if the labels are not available or limited?

Loss function should depend on the information provided by the graph itself:
e.g., input features, graph topology

Some examples: DeepWalk, node2vec, SDNE (they consider only the graph
structure)

e |n self-supervised learning (SSL), models are learned by solving a
series of hand-crafted auxiliary tasks (so-called pretext tasks)

Supervision signals are acquired from data itself, without the need for
annotation
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lllustrative examples of pretext tasks

Computer vision Natural Language Processing Graph machine learning

| [MASK] is impossible. l (9.0 )
Nothing is impossible. ' | oo 9
. —i

I'm going outside.

| 4 o
I'll be back soon. }4 \7‘/ NG

| g
I got up late. |
A. Image colorisation A. Masked language modelling A. Masked graph generation
B. Image contrastive learning B. Next sentence prediction B. Node contrastive learning

[Liu et al., Graph Self-Supervised learning: A survey, IEEE TKDE 2023]
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Generation-based SSL

* Pretext tasks are defined as a graph data reconstruction problem
of either the graph structure or the node attributes

 GNNs are typically used to encode nodes in the graph (encoder)

* The decoder reconstructs the adjacency matrix or the node
attributes (pretext task)

* The loss is defined to measure the difference between the
reconstructed and the original graph data (e.g., GAE)

Input Graph Reconstructed Graph

o/ 17 \ ) Reconstruction Loss N :-#f ¥\
» o
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Auxiliary property-based SSL

* Pretext tasks are defined as auxiliary properties of the data (e.qg.,
graph partition, node degree, cluster index)

* |t often requires domain knowledge

 The loss is defined to measure the difference between the
estimated and the original auxiliary property (e.g., mean square

error, cross-entropy)

Auxiliary Properties

Prediction Loss

Predicted Properties

>

<

——

" Property
t Extraction T
an~) | Pretext
\ ) A g Encoder J-’ -+  Decoder
/ \, fo Dy
- - , o
Input Graph Representations
i i Network Machir)e Learning - EE452
= = Dr Dorina Thanou 31
B A Prof. Pascal Frossard



Contrastive-based SSL

* Pretext tasks are defined based on the concepts of mutual
information (MI) maximization

 The loss is defined by maximizing the estimated M| between
augmented instances of the same object (e.g., node, subgraph,

graph)

Augmented Graph Representations
{ ."'..AI-\ ;. .l |
L g || Encoder | Ll s
\ /_ (sam fe .
o 60— , :
It s Y .
\4
Augmentation
1 Ed : are l Learned Target

Agreements Agreements

- \ : ; V |

g 4 o/ \ Input Pretext ' ontrastive

\ AN Graph Decoder | Loss
w — P¢

> (Positive/

Negative)
4 Augmentation A
i — Encoder :
* * --------------------------
\ / \ (. fe
Augmem‘ed Graph Representations
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Hybrid methods for SSL

* Pretext tasks are defined based on a combination of multiple
objective

e Balancing the different pretext tasks is often challenging

-

“, N

Input Graph Representations  Pretext Tasks

..... \ p¢1 " —J#
/ \ EncoderJ_’ o —'J
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How do | use my labels in SSL?

 |f labelled data are available, they can be combined with the
pretext task(s) to improve the models:

.............................................................................................

Graph for Pre-training 551’096 1: Pre-training

\ Pretext
» ‘>.é\ ) \ Enc;der‘ e L Decoder = Bl
Graph for Fine-tuning ¢ =2) Py v - B
~7 N\ ek Param Trangfer T
\ Downstream °
/ _> \ Enc;;der -> -> Decoder - > 2|
e q ol
1OVDODOD) | ———r —_— 9 9
Label £5109€ 2 FINE-TUNING  oeeeeeeeeeeeeeeeeeesemeesseseeseessemeeesseeesees
Stage 1: Pre-training on pretext
Stage 2: Fine-tuning on labeled data
Input Graph
—
17( /\
—
POoPLO0L0 1)'
Label

.............................................................................................

: Stage 1: Unsupervised Learning

Input Graph

10110101)

Encoder Pretext
/ F —> —> Decoder - | >
e : o P

7\ I —— & + J & &
N7 cereerenen ke PACGM TLANSEL e
- ; ‘ %
N\¢i| Encoder Downstream Sk
. o -> -> Decoder |=»> |e=> 2|:
(Freeze Param) qy §

—d — -

Label

.............................................................................................

Stage 1: Pre-training on pretext
Stage 2: Fine-tuning on labeled data with frozen decoder

Encoder
fo J_’J

Pretext

/ Decoder —
P¢

\ Downstream -
Decoder — <> °
qQy o

i P

Multitask learning: Learn jointly pretext and downstream task
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Summary

 The expressive power of GNN architectures has strong
connections with the WL kernel

* Building more expressive architectures is still a challenge

e Self-supervised learning on graphs is a promising learning
paradigm when labels are limited

 The choice of the pretext task is crucial; It needs to be correlated
with the main task
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Recall: Useful resources

* Toolboxes
- https://github.com/rusty1s/pytorch _geometric
- https://github.com/dmic/dg|
- https://github.com/deepmind/jraph
- https://github.com/tensorflow/gnn

 Datasets
- DGL datasets: https://docs.dgl.ai/api/python/dgl.data.html

- PyG datasets: https://pytorch-geometric.readthedocs.io/en/latest/modules/
datasets.html

- OGB datasets: https://ogb.stanford.edu
- https://chrsmrrs.github.io/datasets/

- https://chrsmrrs.github.io/datasets/
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