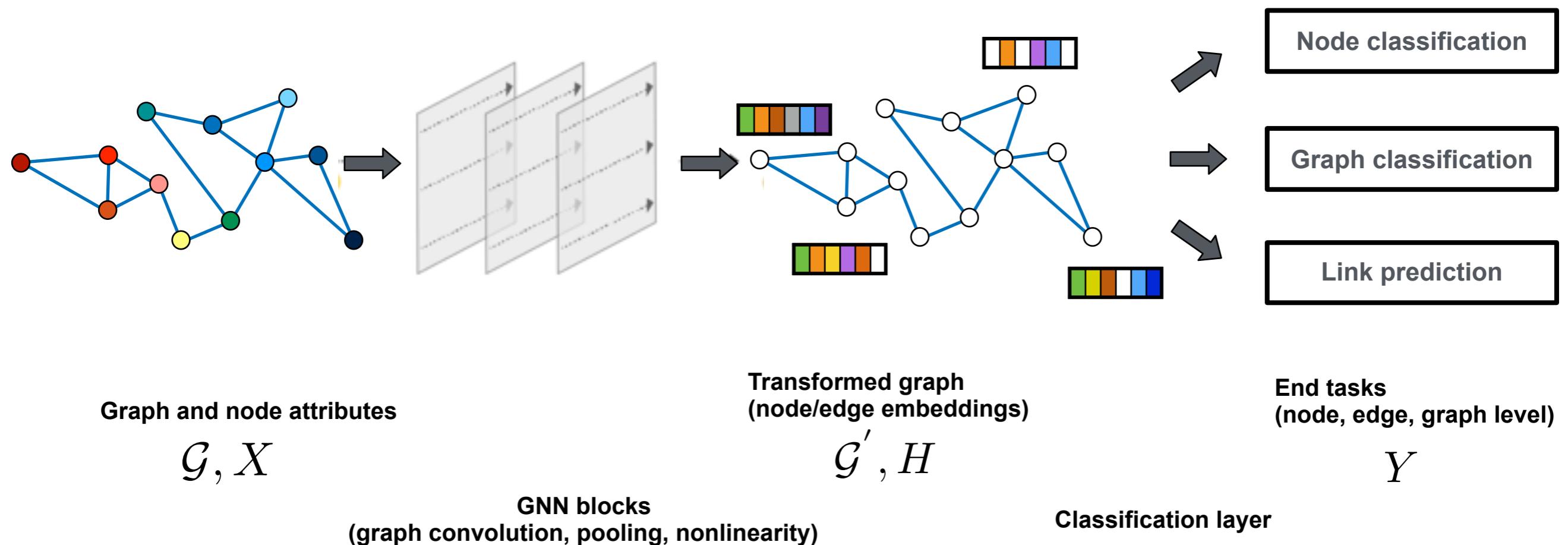


Graph neural networks: Advanced topics

Dr Dorina Thanou
May 15, 2023

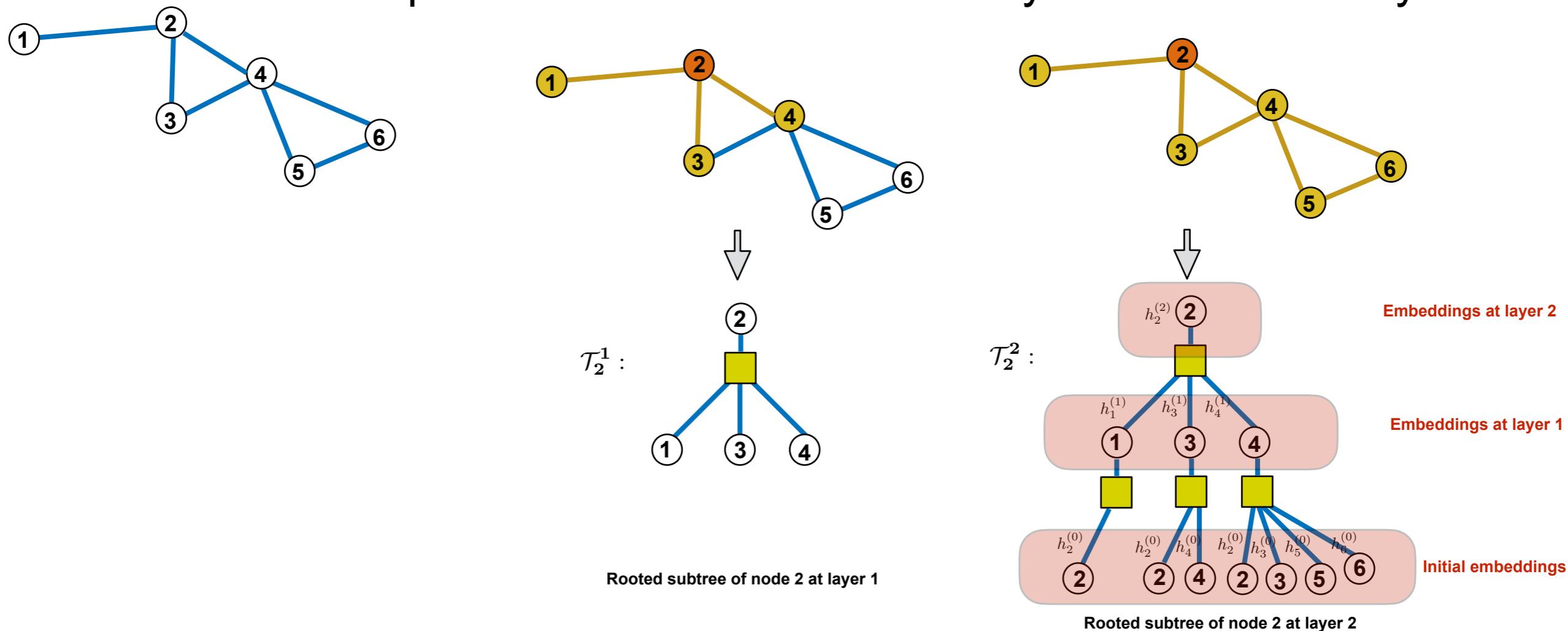
Recap: Graph neural networks (GNNs)

- A different way of obtaining ‘deeper’ embeddings inspired by deep learning
- They generalize to graphs with node attributes



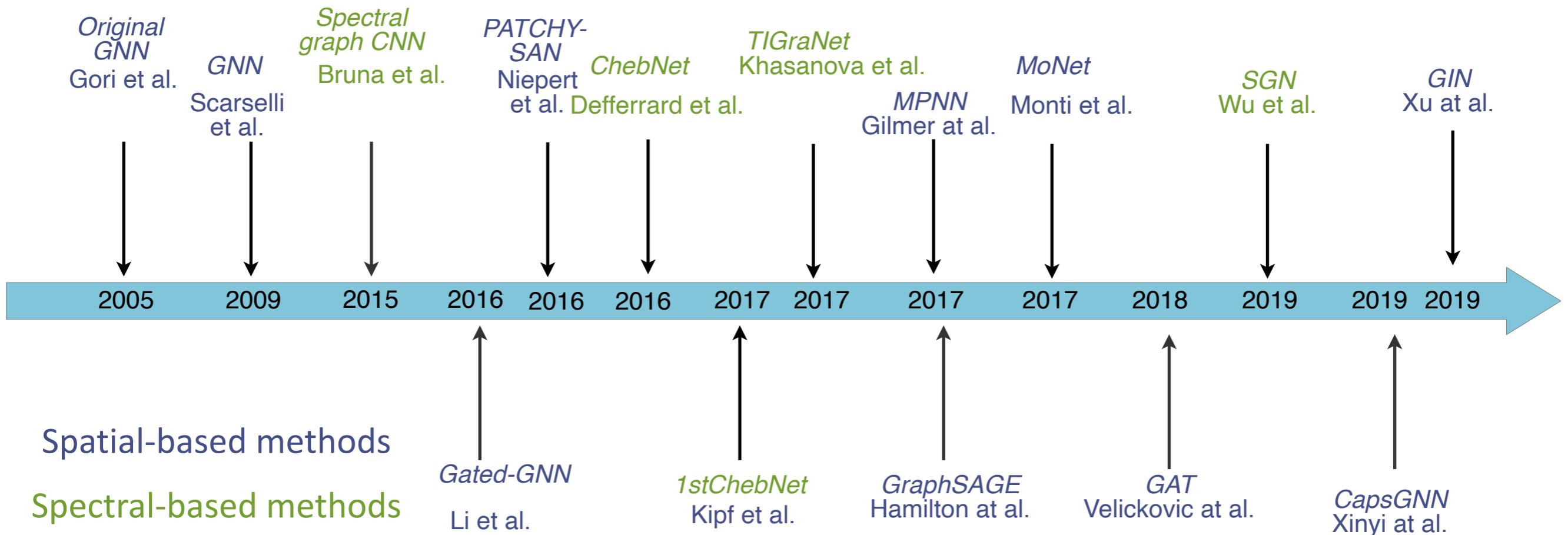
From graphs to rooted subtrees

- Each subgraph can be mapped to a rooted subtree or a subtree pattern
- The maximum depth of the subtree is defined by the number of layers



Different rooted subtrees should be assigned different node embeddings!

Recap: First GNN architectures



- Recent trends
 - Spectrally-inspired architectures: GraphHeat (Xu'19), GWNN (Xu'19), SIGN (Frasca'20), DGN (Beaini'20), Framelets (Zheng'21), FAGCN (Bo'21)
 - More expressive GNNs: higher order WL test (Maron'19, Morris'20), physics-inspired GNNs (Chamberlain'21), and many more!

Outline

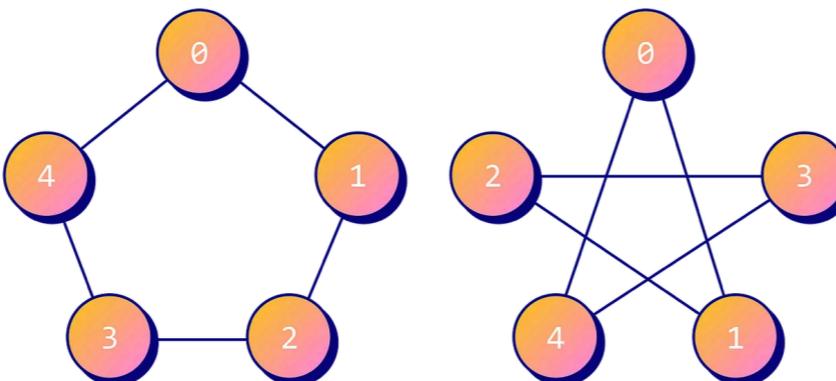
- Expressive power of GNNs
- Inferring the graph topology
- Dynamic graph models
- Learning with sparse labels

Outline

- Expressive power of GNNs
- Inferring the graph topology
- Dynamic graph models
- Learning with sparse labels

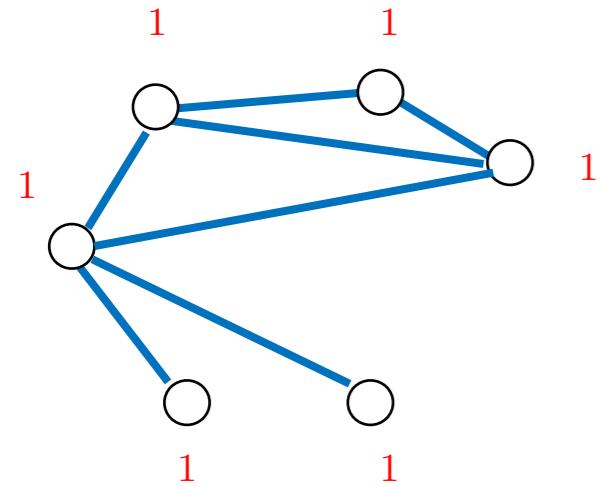
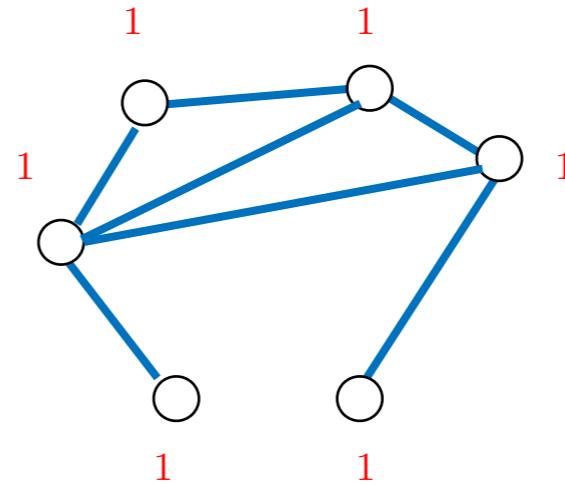
Representation power of MPNNs

- Typically done by analysing how expressive a GNN is in learning to represent and **distinguish between different graph structures**
- This implies solving the graph isomorphism problem:
 - Two graphs are isomorphic if there exists an index permutation between the nodes that preserve node adjacencies (NP hard)
 - Isomorphic graphs should be mapped to the same representation and non-isomorphic ones to different representations



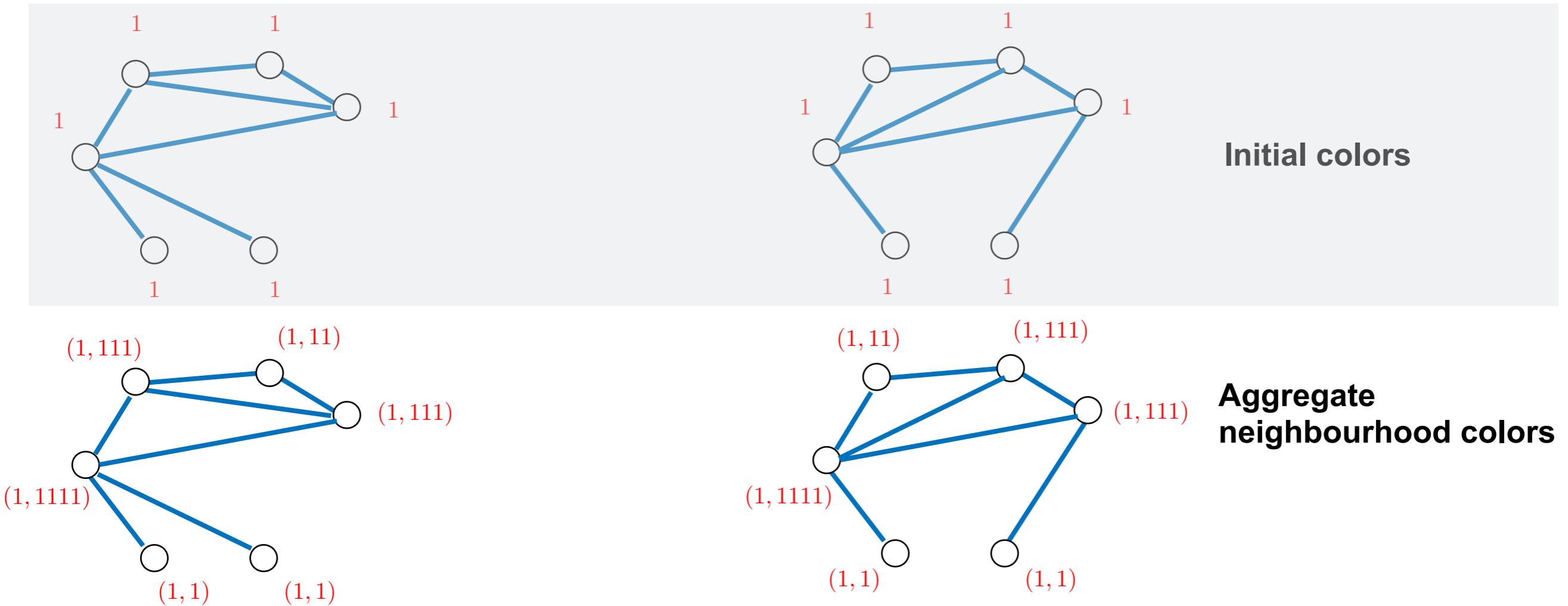
Example of two isomorphic graphs

Recall the WL kernel

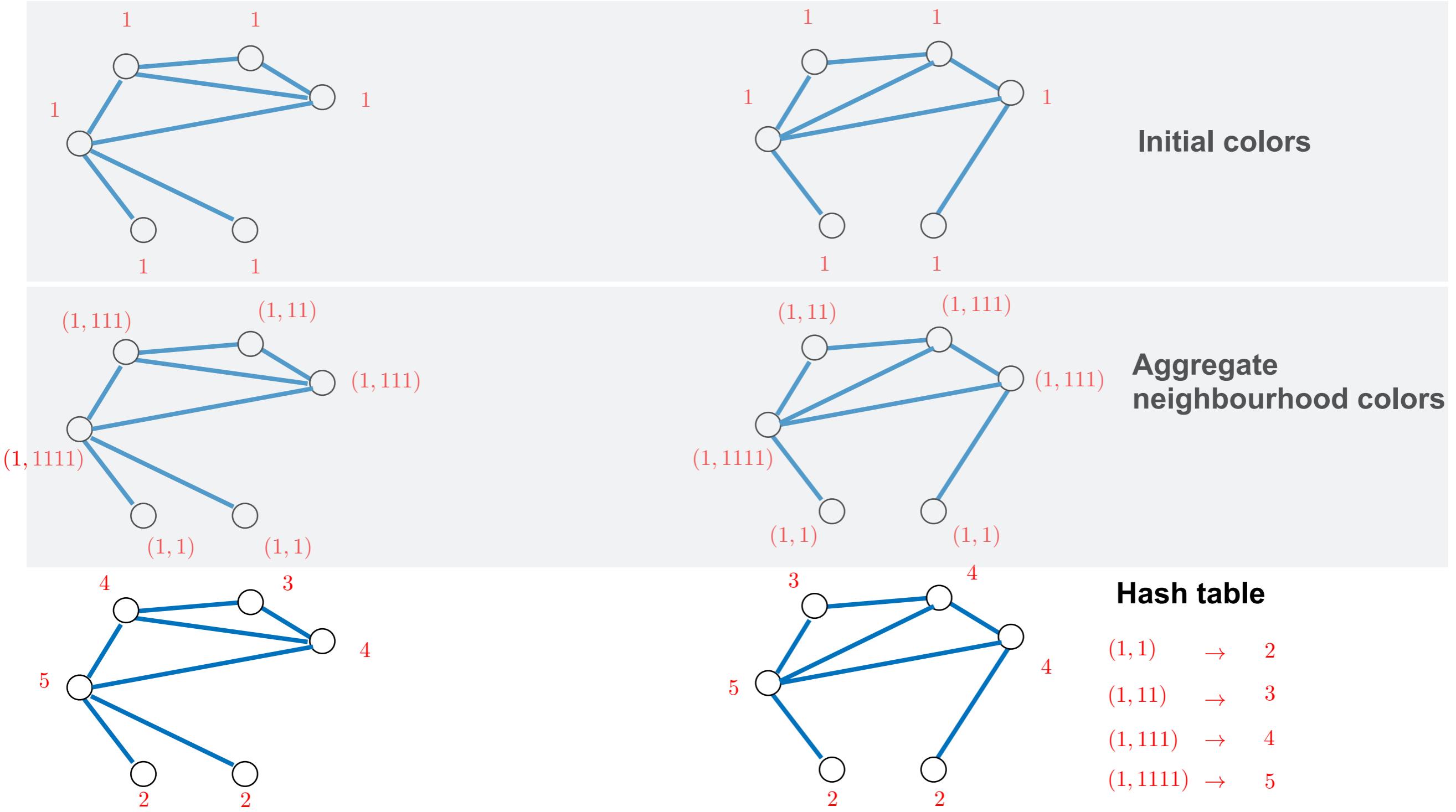


Initial colors

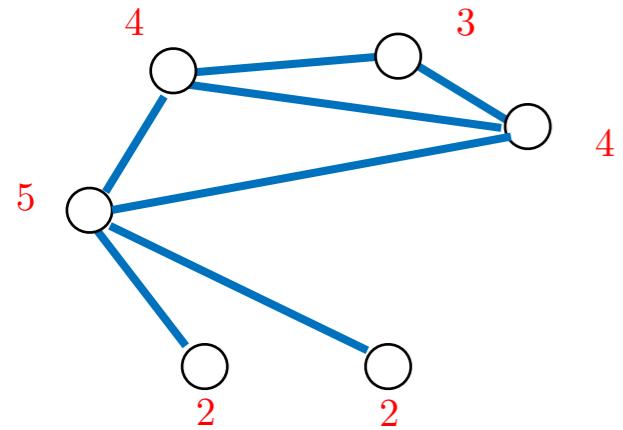
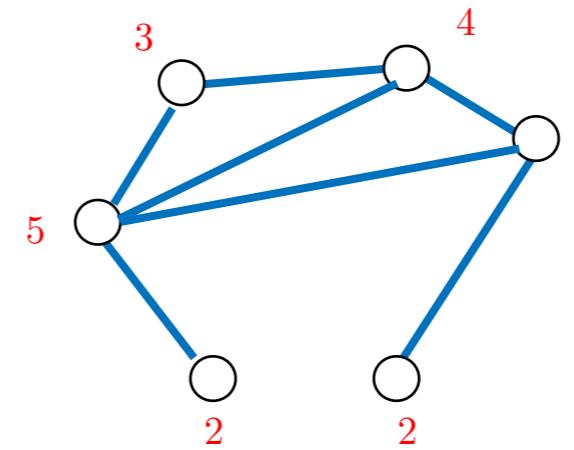
Recall the WL kernel



Recall the WL kernel



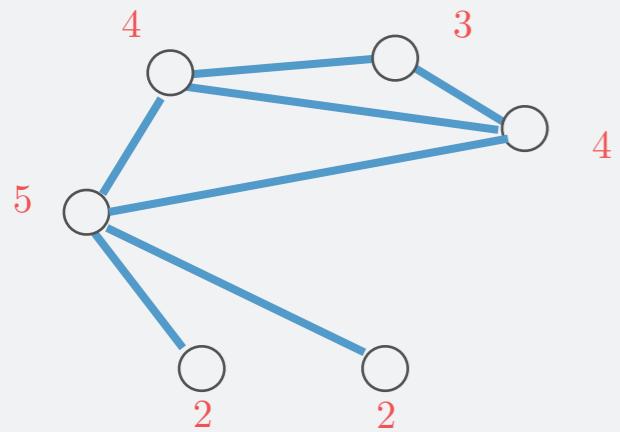
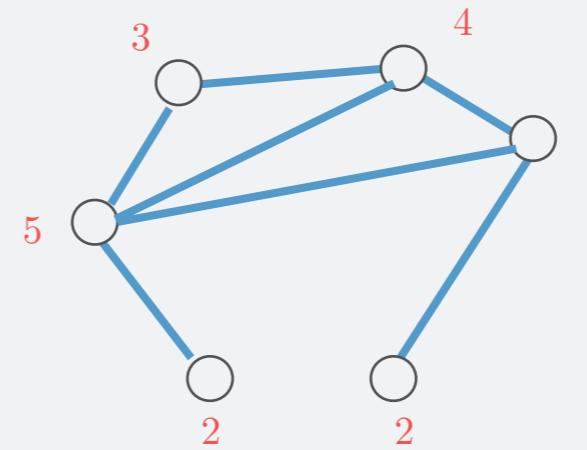
Recall the WL kernel



Hash table

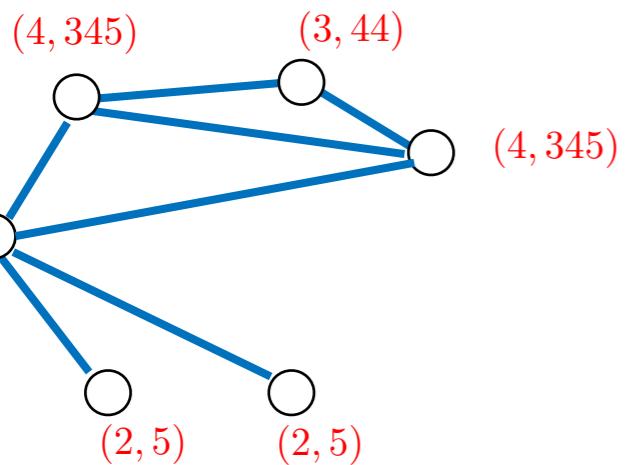
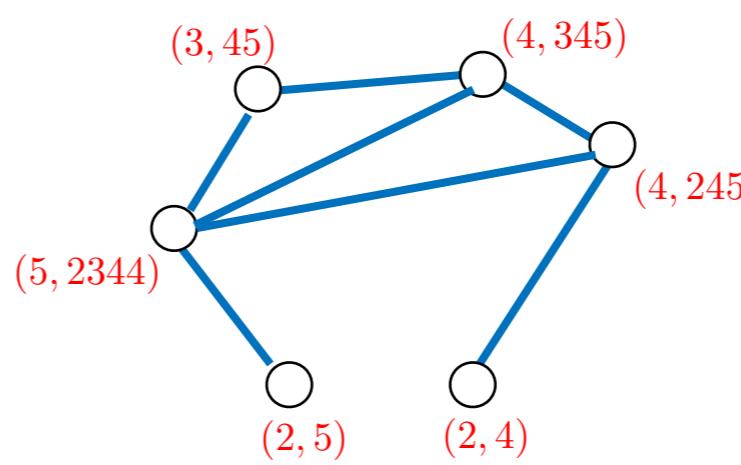
$(1, 1)$	\rightarrow	2
$(1, 11)$	\rightarrow	3
$(1, 111)$	\rightarrow	4
$(1, 1111)$	\rightarrow	5

Recall the WL kernel



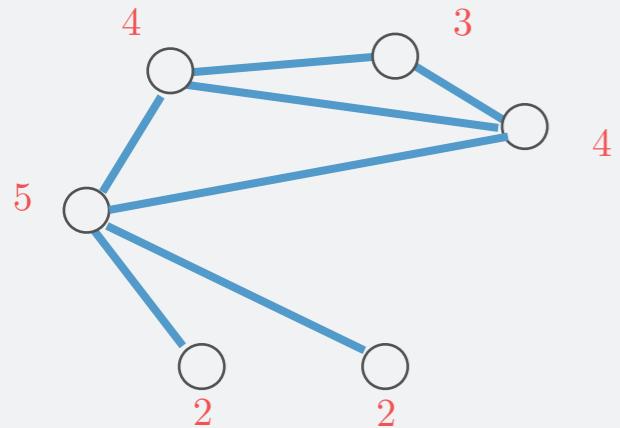
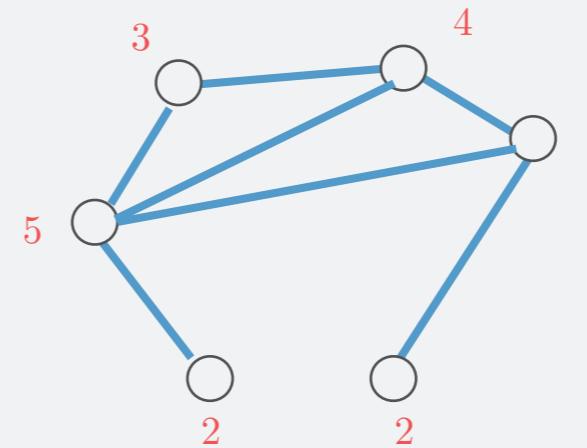
Hash table

(1, 1)	→	2
(1, 11)	→	3
(1, 111)	→	4
(1, 1111)	→	5



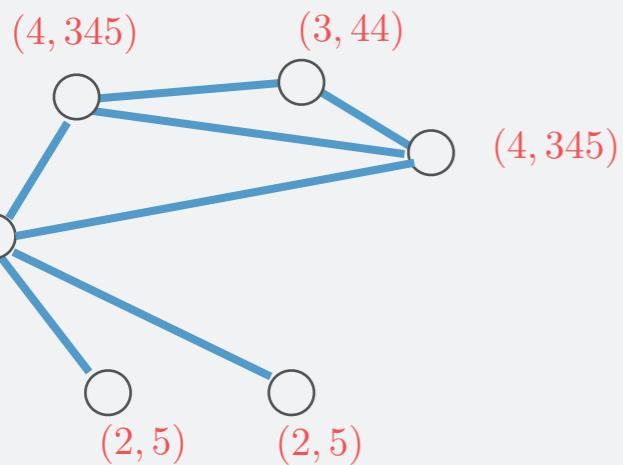
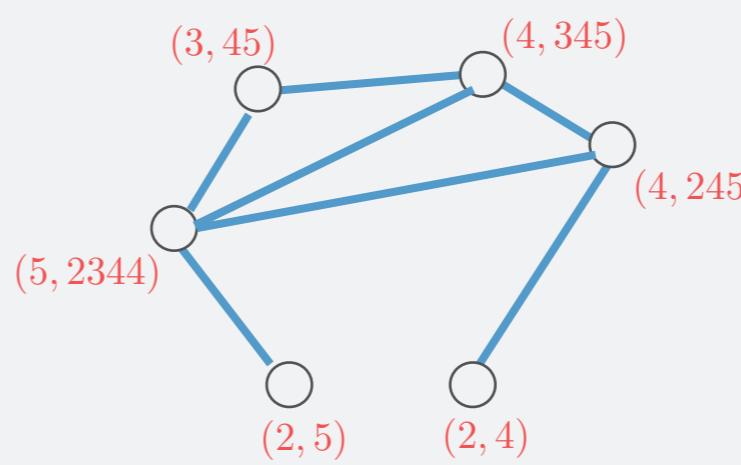
Aggregate neighbourhood colors

Recall the WL kernel



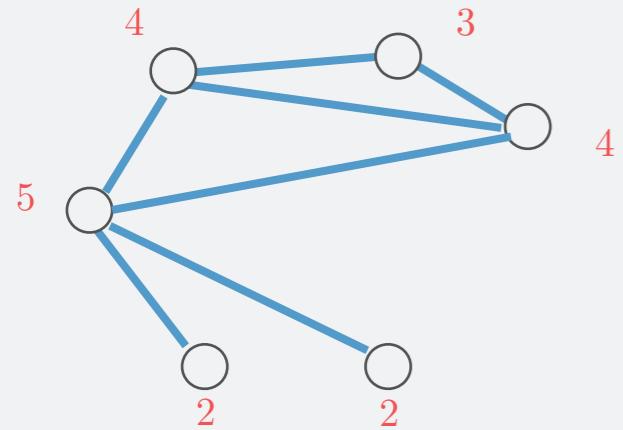
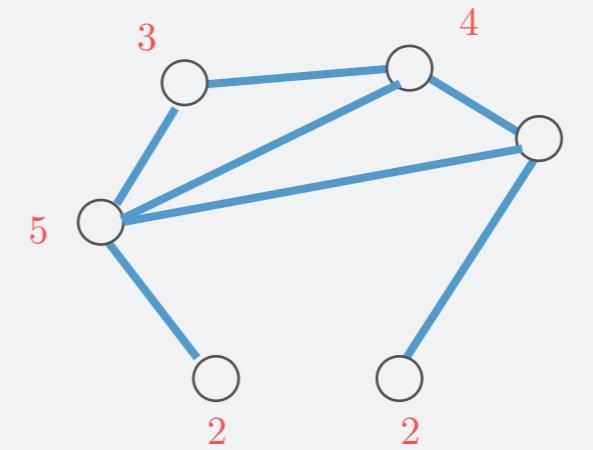
Hash table

(1, 1)	→	2
(1, 11)	→	3
(1, 111)	→	4
(1, 1111)	→	5

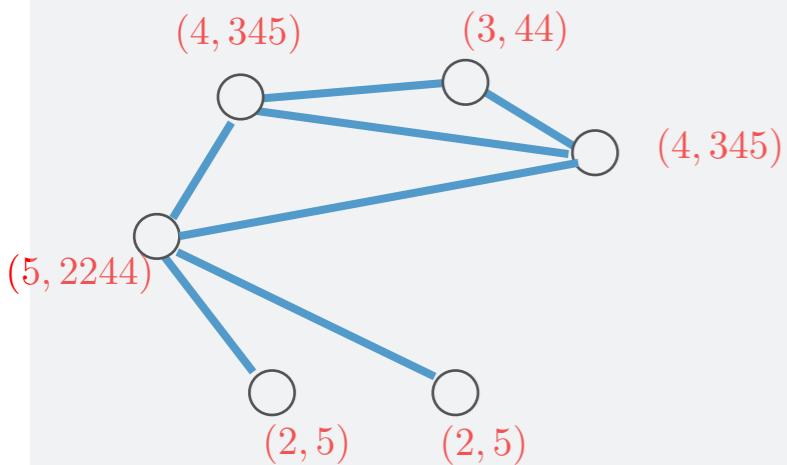
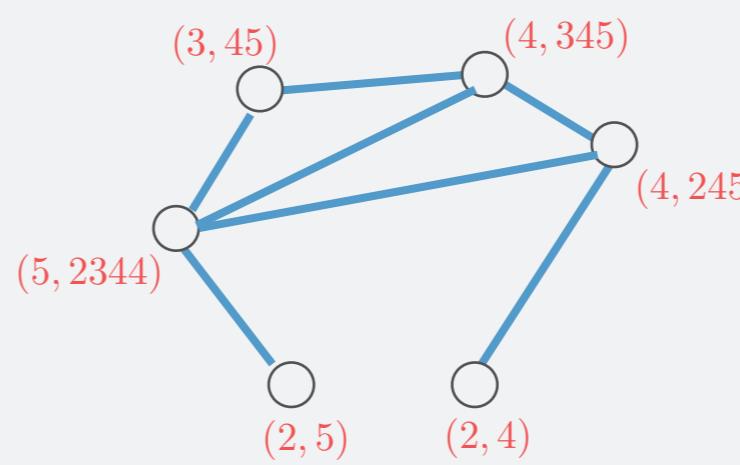


Aggregate neighbourhood colors

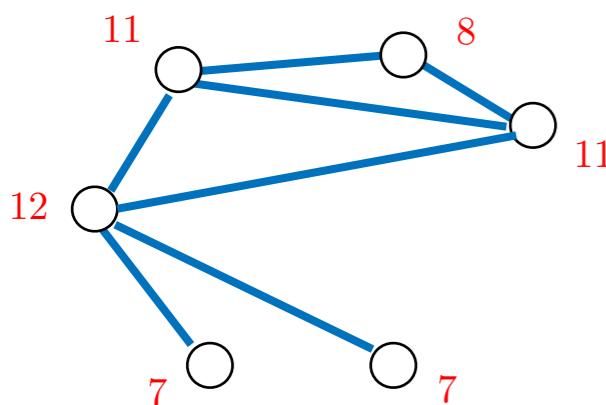
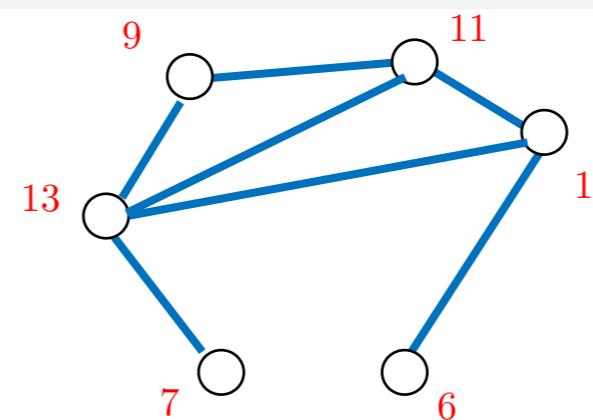
Recall the WL kernel



Hash table	
(1, 1)	→ 2
(1, 11)	→ 3
(1, 111)	→ 4
(1, 1111)	→ 5



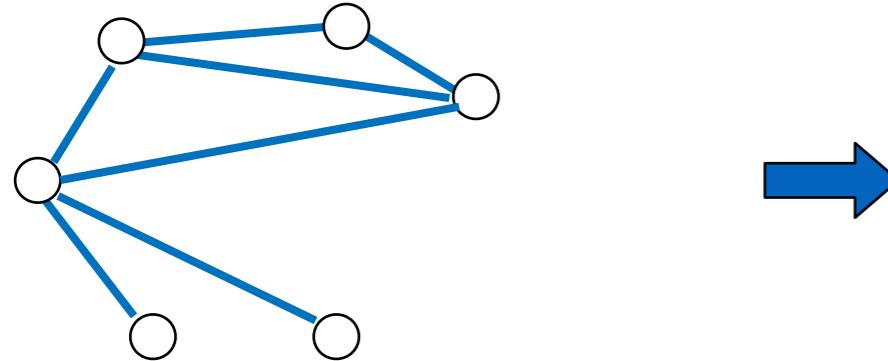
Aggregate neighbourhood colors



Hash table	
(2, 4)	→ 6
(2, 5)	→ 7
(3, 44)	→ 8
(3, 45)	→ 9
(4, 245)	→ 10
(4, 345)	→ 11
(5, 2244)	→ 12
(5, 2344)	→ 13

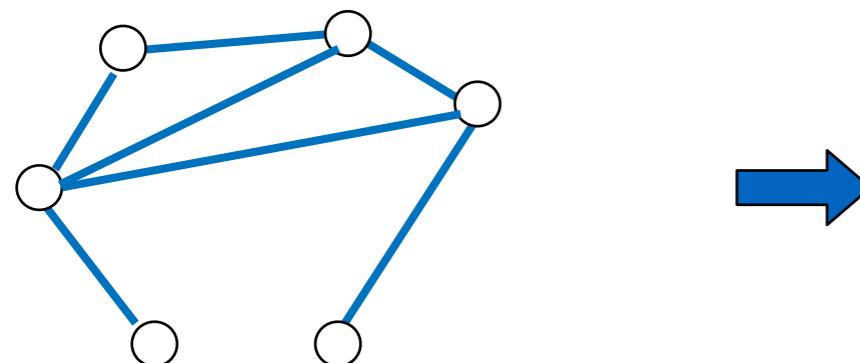
Recall the WL kernel

- After K iterations, the WL kernel computes the histogram of colors



1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

$$\phi(\mathcal{G}_1) = [6, 2, 1, 2, 1, 0, 2, 1, 0, 0, 2, 1, 0]$$



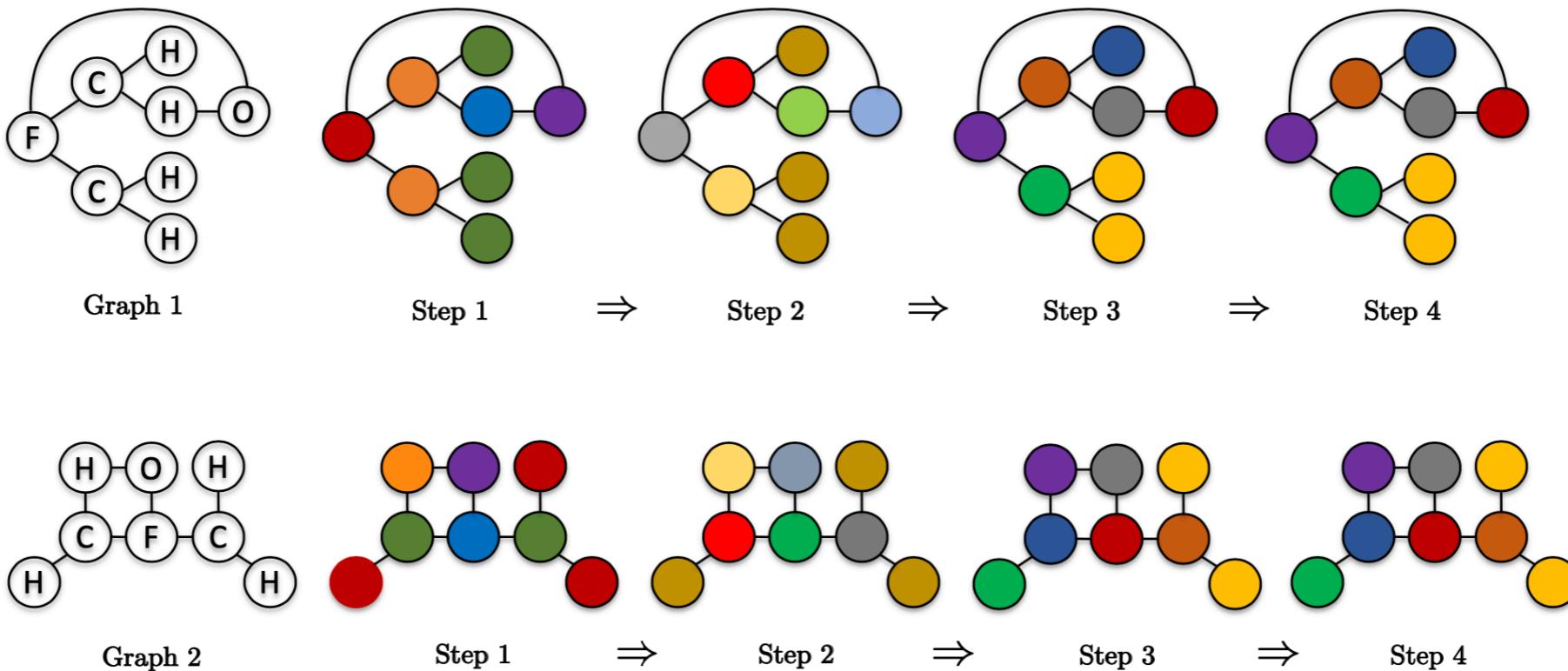
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

$$\phi(\mathcal{G}_2) = [6, 2, 1, 2, 1, 1, 1, 0, 1, 1, 1, 0, 1]$$

$$K(\mathcal{G}_1, \mathcal{G}_2) = \langle \phi(\mathcal{G}_1), \phi(\mathcal{G}_2) \rangle$$

Strong connections with 1-WL test (1)

- 1-Weisfeiler-Lehman (WL) is a classical algorithm for graph isomorphism
- It tells you if two graphs are not isomorphic, but it does not allow you to conclude if they are isomorphic (necessary but not sufficient condition)

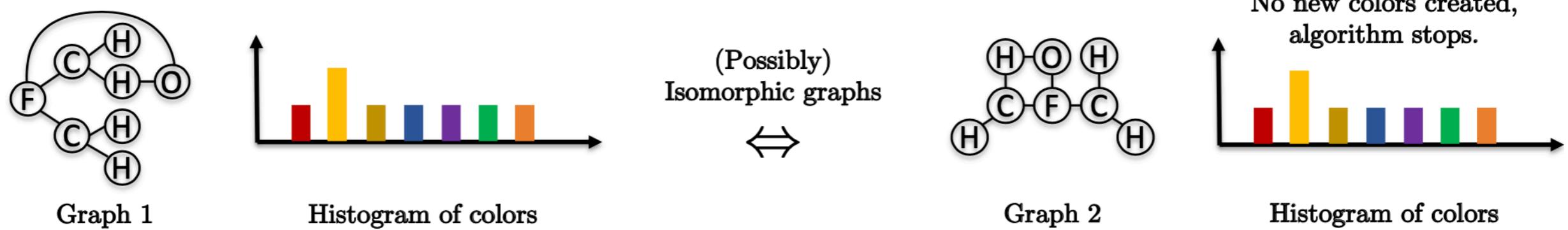


- By construction, GNNs can only be as powerful as the 1-WL test

[Illustrative example from X. Bresson]

Strong connections with 1-WL test (1)

- 1-Weisfeiler-Lehman (WL) is a classical algorithm for graph isomorphism
- It tells you if two graphs are not isomorphic, but it does not allow you to conclude if they are isomorphic (necessary but not sufficient condition)



- By construction, GNNs can only be as powerful as the 1-WL test

[Illustrative example from X. Bresson]

Strong connections with 1-WL test (2)

- MPNNs are equivalent to (at most as powerful as) the 1-WL isomorphism test
 - WL function should be injective: different inputs are mapped to different outputs
 - GINs are as powerful as the 1-WL test

1-WL test

- **Input:** a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$
- Assign an initial color c_i^0 (e.g., node degree) to each node i of \mathcal{V}
- For each iteration $l + 1$ refine node colors as
$$c_i^{l+1} = \text{HASH}(\{c_i^l, \{c_j^l\}_{j \in \mathcal{N}_i}\})$$
- Until stable node coloring is reached
- **Output:** The node colors $\{c_i^{l_{max}}\}_{i=\{1,2,\dots,N\}}$

MPNN

- **Input:** a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$
- Assign an initial embedding h_i^0 (e.g., node attribute) to each node i of \mathcal{V}
- For each layer $l + 1$ refine node embeddings as
$$h_i^{l+1} = U_l(h_i^l, \bigoplus_{j \in \mathcal{N}_i} M_l(h_j^l, h_i^l))$$
- Until maximum number of layers is reached
- **Output:** The node embeddings $\{h_i^{l_{max}}\}_{i=\{1,2,\dots,N\}}$

- Over discrete features, GNNs can only be as powerful as the 1-WL test

[Xu et al., How powerful are graph neural networks, ICLR 2019]

Strong connections with 1-WL test (2)

- MPNNs are equivalent to (at most as powerful as) the 1-WL isomorphism test
 - WL function should be injective: different inputs are mapped to different outputs
 - GINs are as powerful as the 1-WL test

1-WL test

- **Input:** a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$
- Assign an initial color c_i^0 (e.g., node degree) to each node i of \mathcal{V}
- For each iteration $l + 1$ refine node colors as
$$c_i^{l+1} = \text{HASH}(\{c_i^l, \{c_j^l\}_{j \in \mathcal{N}_i}\})$$
- Until stable node coloring is reached
- **Output:** The node colors $\{c_i^{l_{max}}\}_{i=\{1,2,\dots,N\}}$

MPNN

- **Input:** a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$
- Assign an initial embedding h_i^0 (e.g., node attribute) to each node i of \mathcal{V}
- For each layer $l + 1$ refine node embeddings as
$$h_i^{l+1} = U_l(h_i^l, \bigoplus_{j \in \mathcal{N}_i} M_l(h_j^l, h_i^l))$$
- Until maximum number of layers is reached
- **Output:** The node embeddings $\{h_i^{l_{max}}\}_{i=\{1,2,\dots,N\}}$

- Over discrete features, GNNs can only be as powerful as the 1-WL test

[Xu et al., How powerful are graph neural networks, ICLR 2019]

Strong connections with 1-WL test (2)

- MPNNs are equivalent to (at most as powerful as) the 1-WL isomorphism test
 - WL function should be injective: different inputs are mapped to different outputs
 - GINs are as powerful as the 1-WL test

1-WL test

- **Input:** a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$
- Assign an initial color c_i^0 (e.g., node degree) to each node i of \mathcal{V}
- For each iteration $l + 1$ refine node colors as
$$c_i^{l+1} = \text{HASH}(\{c_i^l, \{c_j^l\}_{j \in \mathcal{N}_i}\})$$
- Until stable node coloring is reached
- **Output:** The node colors $\{c_i^{l_{max}}\}_{i=\{1,2,\dots,N\}}$

MPNN

- **Input:** a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$
- Assign an initial embedding h_i^0 (e.g., node attribute) to each node i of \mathcal{V}
- For each layer $l + 1$ refine node embeddings as
$$h_i^{l+1} = U_l(h_i^l, \bigoplus_{j \in \mathcal{N}_i} M_l(h_j^l, h_i^l))$$
- Until maximum number of layers is reached
- **Output:** The node embeddings $\{h_i^{l_{max}}\}_{i=\{1,2,\dots,N\}}$

- Over discrete features, GNNs can only be as powerful as the 1-WL test

[Xu et al., How powerful are graph neural networks, ICLR 2019]

Strong connections with 1-WL test (2)

- MPNNs are equivalent to (at most as powerful as) the 1-WL isomorphism test
 - WL function should be injective: different inputs are mapped to different outputs
 - GINs are as powerful as the 1-WL test

1-WL test

- **Input:** a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$
- Assign an initial color c_i^0 (e.g., node degree) to each node i of \mathcal{V}
- For each iteration $l + 1$ refine node colors as
$$c_i^{l+1} = \text{HASH}(\{c_i^l, \{c_j^l\}_{j \in \mathcal{N}_i}\})$$
- Until stable node coloring is reached
- **Output:** The node colors $\{c_i^{l_{max}}\}_{i=\{1,2,\dots,N\}}$

MPNN

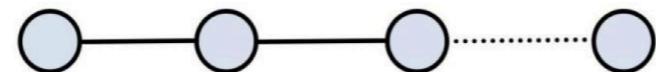
- **Input:** a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$
- Assign an initial embedding h_i^0 (e.g., node attribute) to each node i of \mathcal{V}
- For each layer $l + 1$ refine node embeddings as
$$h_i^{l+1} = U_l(h_i^l, \bigoplus_{j \in \mathcal{N}_i} M_l(h_j^l, h_i^l))$$
- Until maximum number of layers is reached
- **Output:** The node embeddings $\{h_i^{l_{max}}\}_{i=\{1,2,\dots,N\}}$

- Over discrete features, GNNs can only be as powerful as the 1-WL test

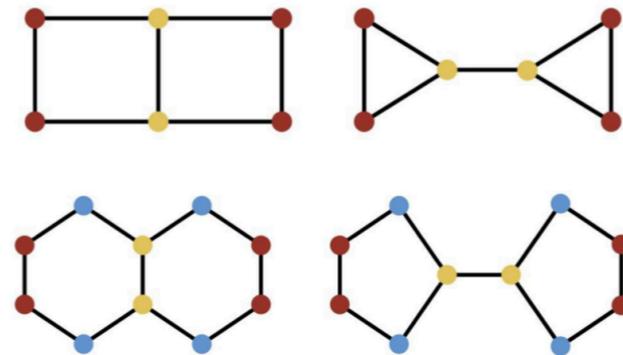
[Xu et al., How powerful are graph neural networks, ICLR 2019]

Limitations of MPNNs

- A lot of works have shown that MPNNs have some limitations, e.g., [Morris'19, Xu'18, Chen'20]
 - They fail to capture long run interactions



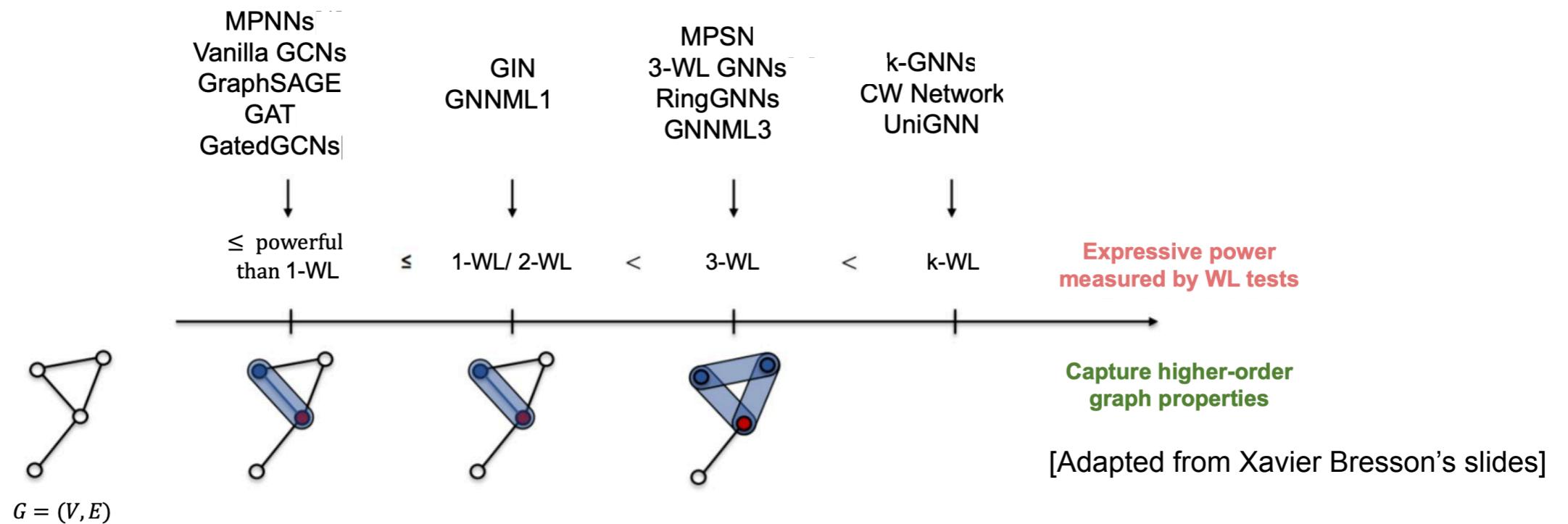
- They fail to distinguish higher-order structures (similar to WL)



- There are non-isomorphic subgraphs that are considered equivalent by MPNNs

Improvements of expressiveness of MPNNs

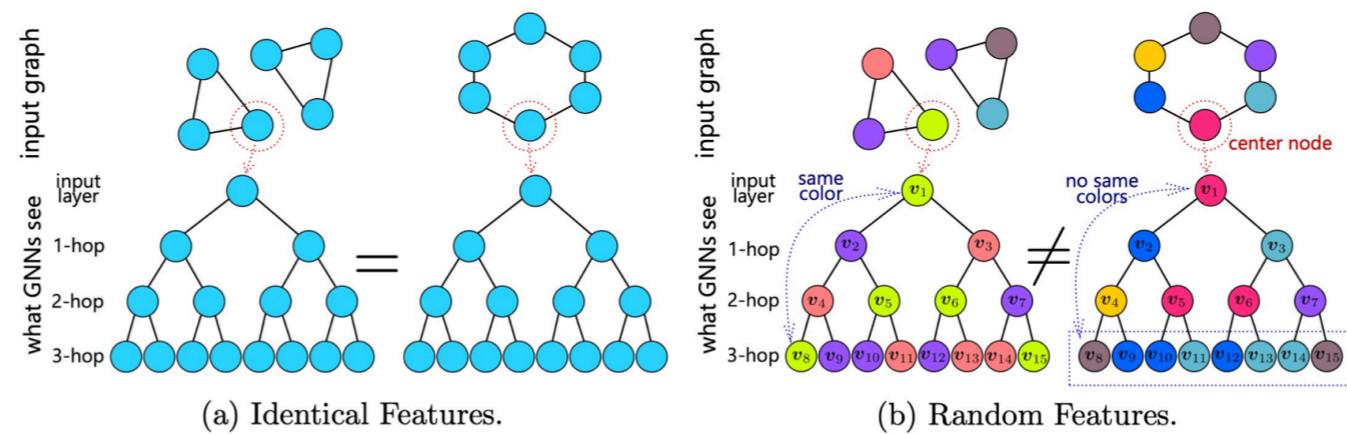
- **Intuition:** Design algorithms inspired from higher-dimensional isomorphism tests (k-WL induced GNNs)



- ✓ These models are more expressive
- They (often) loose the advantage of locality and linear complexity of MPNNs

Improvements of expressiveness of MPNNs

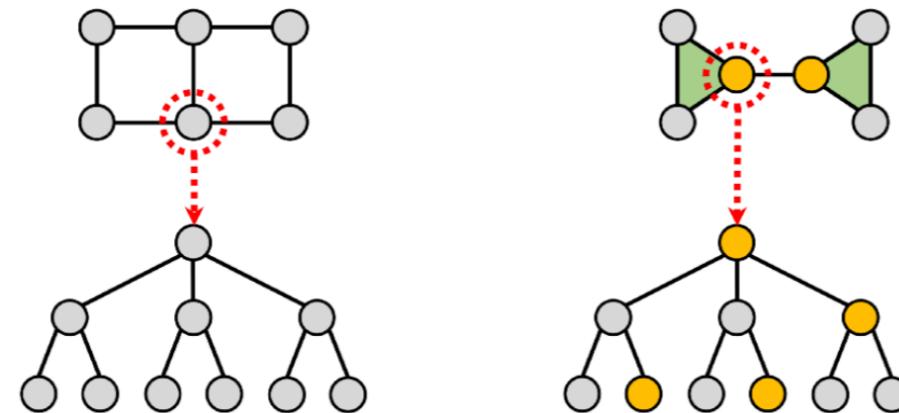
- **Intuition:** Exploit the identity of each node or a neighborhood around it to increase the expressive power of MPNNs
 - Augment nodes with randomized/positional features or local context (positional encoding)
 - Examples: [Loukas'20, Vignac'20, Sato'21, Abboud'21]



- ✓ These models are more expressive
 - They are either not permutation equivariant or computationally costly

Improvements of expressiveness of MPNNs

- **Intuition:** If the network cannot detect a pattern, we can count this pattern and add the extra count as an additional feature
 - Augment nodes with handcrafted subgraph-based features (structural encoding)
 - Examples: [Bouritsas'20]



- ✓ These models are at least as expressive as 1-WL and they can distinguish some non-isomorphic graphs that 1-WL fails
 - They require expert knowledge on what features are relevant for a task

Still MPNNs remain the most widely-used framework in practice!

Outline

- Expressive power of GNNs
- **Inferring the graph topology**
- Dynamic graph models
- Learning with sparse labels

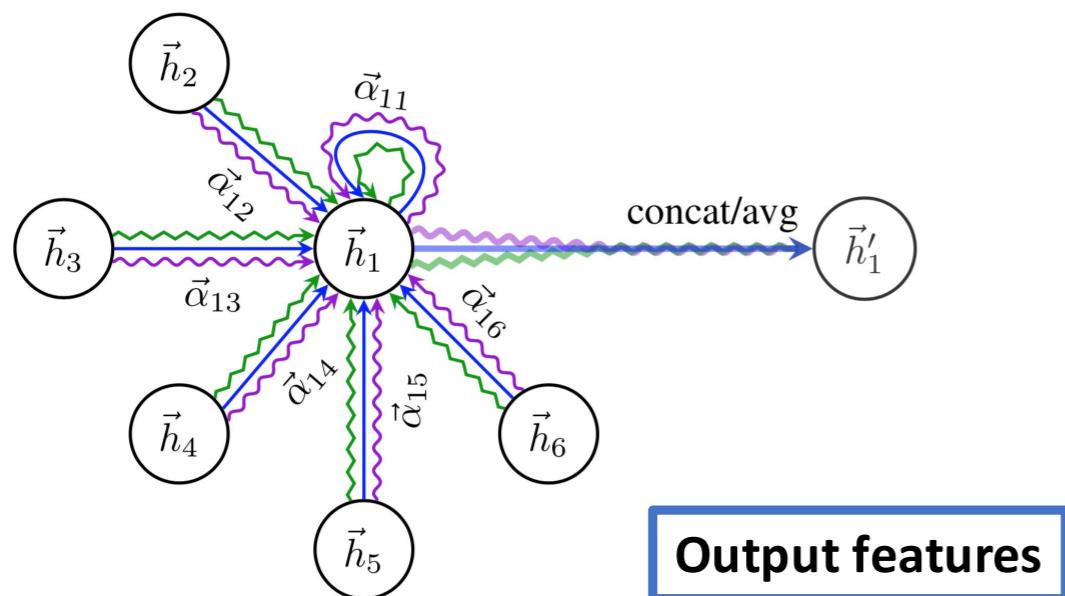
What if the graph is not given

- All techniques so far require a graph to be provided as input
- In many applications, the graph is not given
- A fully connected graph could be designed, but:
 - It does not capture important interactions between nodes
 - It does not scale

How can we learn a graph from data in a GNN?

Graph attention can be considered as an example of graph inference

- For a given connectivity matrix, attentional GNNs learn the weights of each edge
 - Different weights are attributed to different nodes in a neighbourhood
 - Dependence on the global graph structure can be removed



Updated embedding

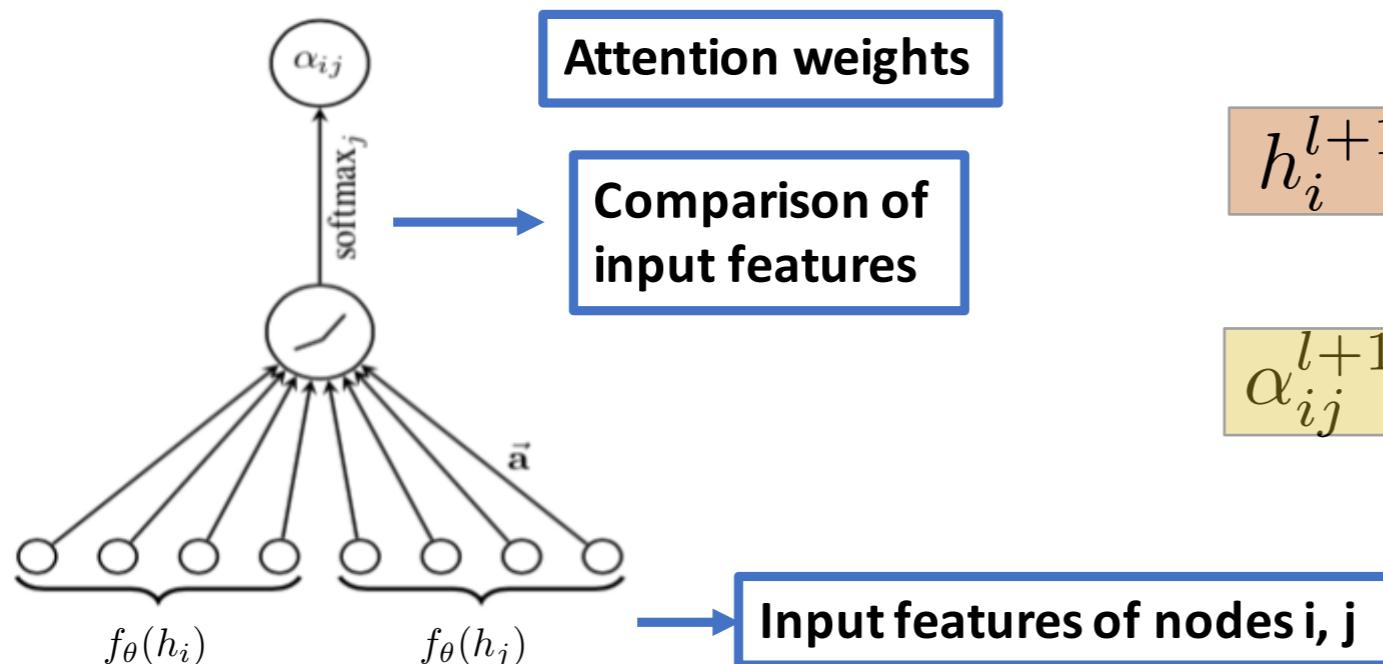
$$h_i^{l+1} = \sigma(\alpha_{ii}^l \theta_0^l h_i^l + \sum_{j \in \mathcal{N}_i} \alpha_{ij}^l \theta_1^l h_j^l)$$

Output features

[Velickovic et al., Graph Attention Networks, ICLR 2018]

Graph attention can be considered as an example of graph inference

- For a given connectivity matrix, attentional GNNs learn the weights of each edge
 - Different weights are attributed to different nodes in a neighbourhood
 - Dependence on the global graph structure can be removed



Updated embedding

$$h_i^{l+1} = \sigma(\alpha_{ii}^l \theta_0^l h_i^l + \sum_{j \in \mathcal{N}_i} \alpha_{ij}^l \theta_1^l h_j^l)$$

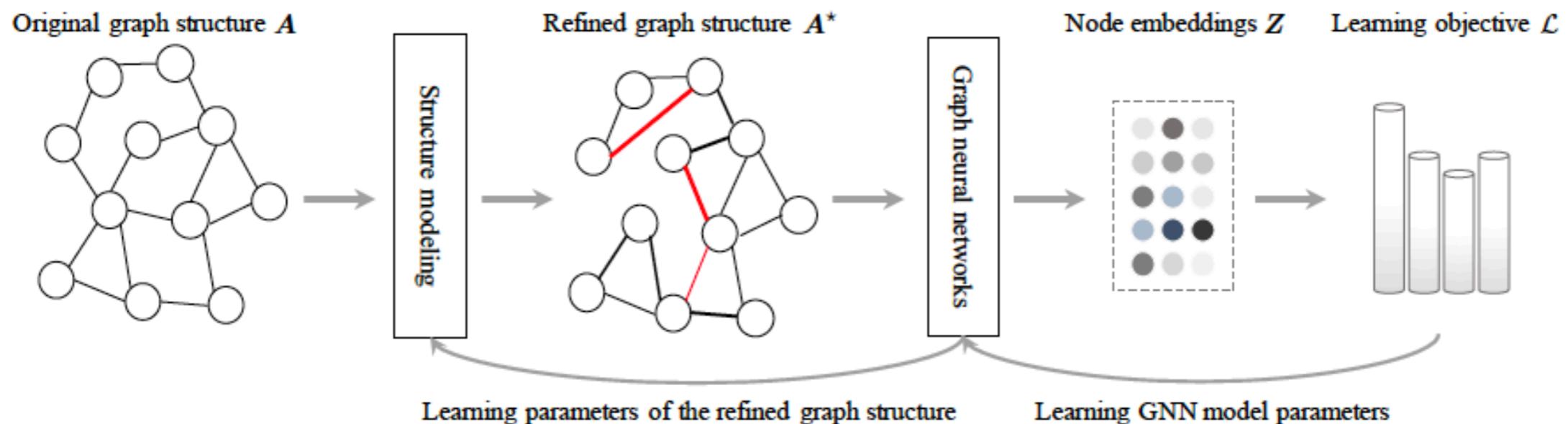
$$\alpha_{ij}^{l+1} = \alpha(f_\theta(h_i^{l+1}), f_\theta(h_j^{l+1}))$$

Updated edge attention

[Velickovic et al., Graph Attention Networks, ICLR 2018]

Learning the connectivity

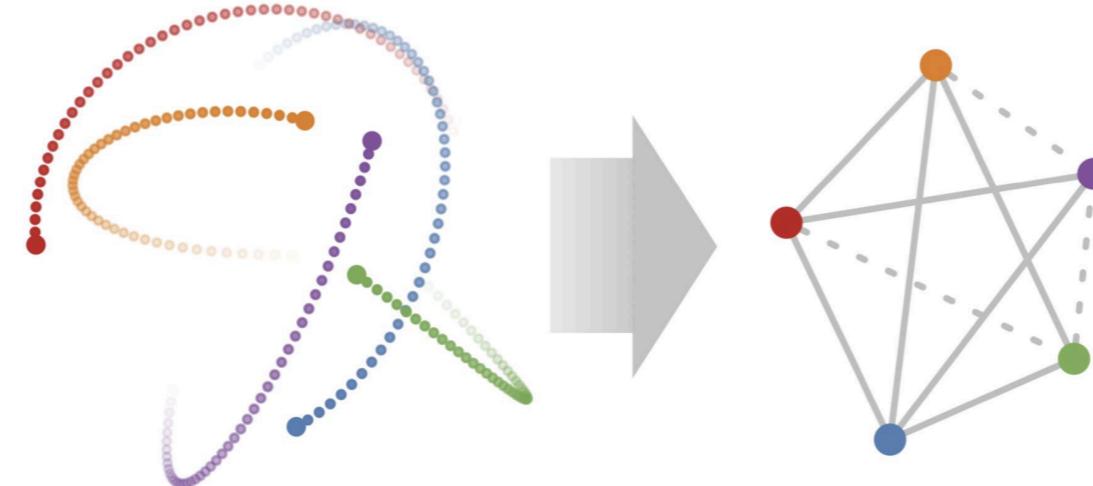
- We can infer simultaneously the graph structure and the node representations by optimising a downstream task



[Zhu et al., Deep Graph Structure Learning for Robust Representations: A Survey, arXiv, 2021]

Example: Neural relational inference

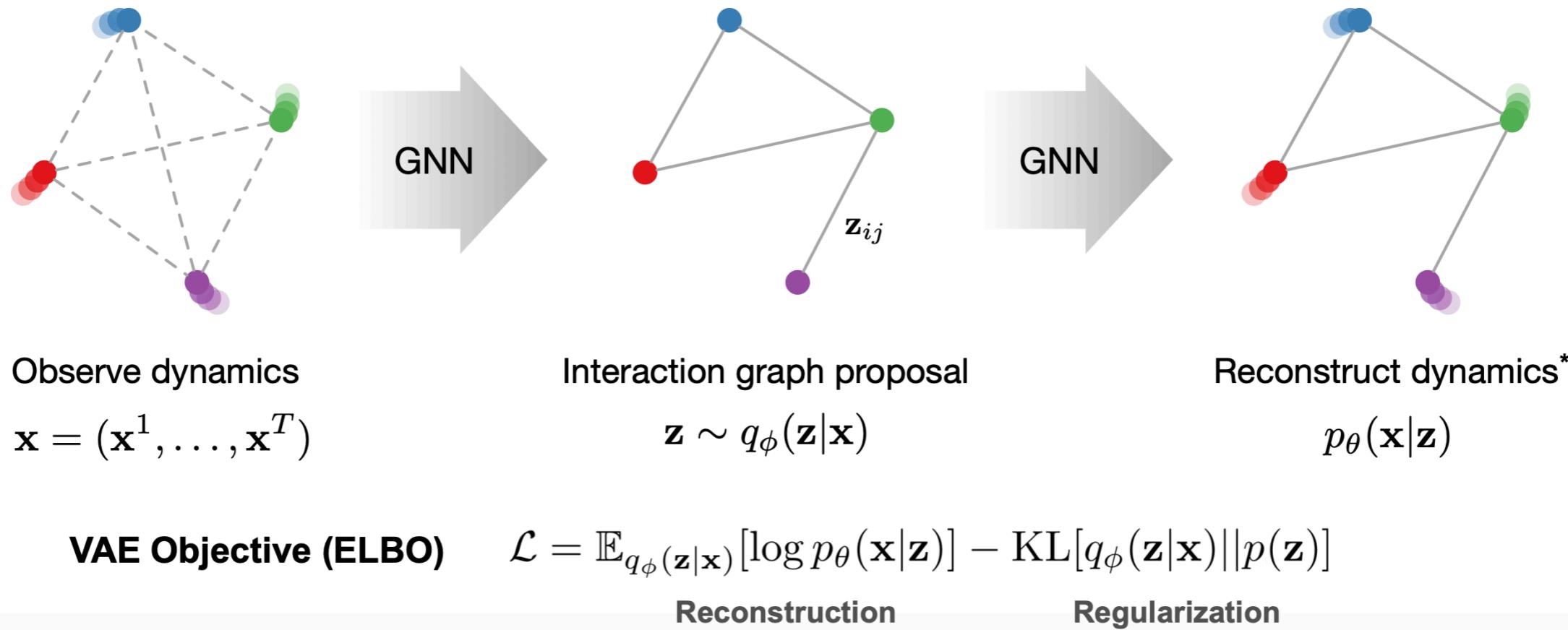
- Objective: Infer the interaction graph from observed dynamics without knowing structure of interactions



- Intuition: Use a downstream task to drive graph construction
 - Infer the graph through an encoder
 - Use the graph to make predictions
 - Optimize the entire system end-to-end

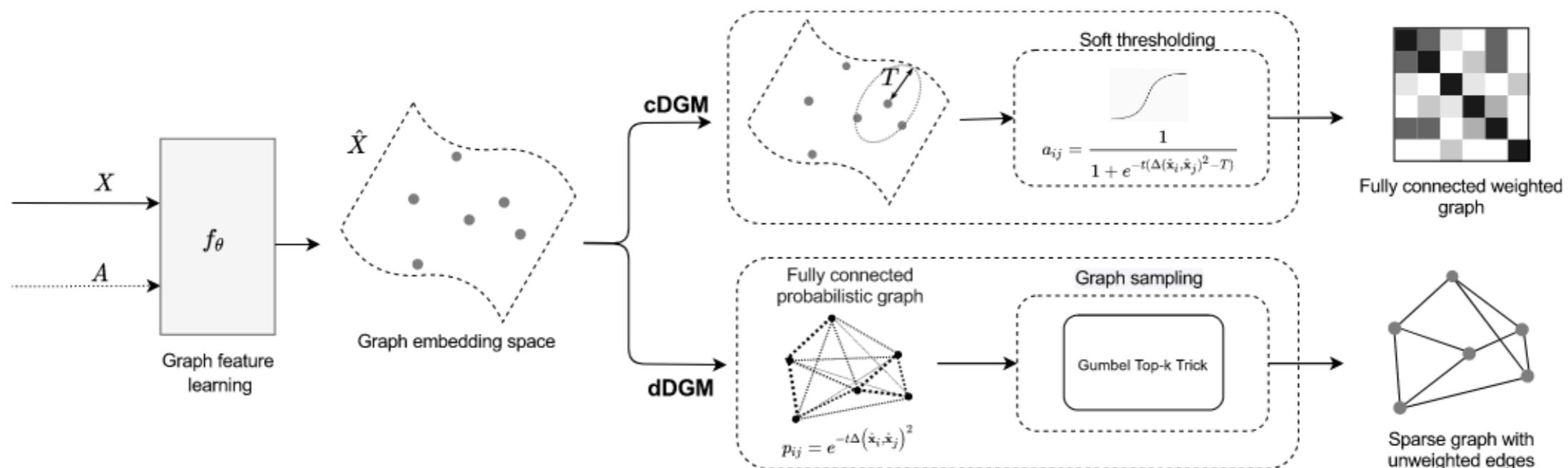
[Kipf et al., Neural relational inference for interacting systems, ICML 2018]

Example: Neural relational inference



Example: Differential graph module

- DGM projects nodes to a latent space and uses a Gaussian kernel to obtain a probability for each node pair
- The learnable function predicting the probability is optimized for a downstream task



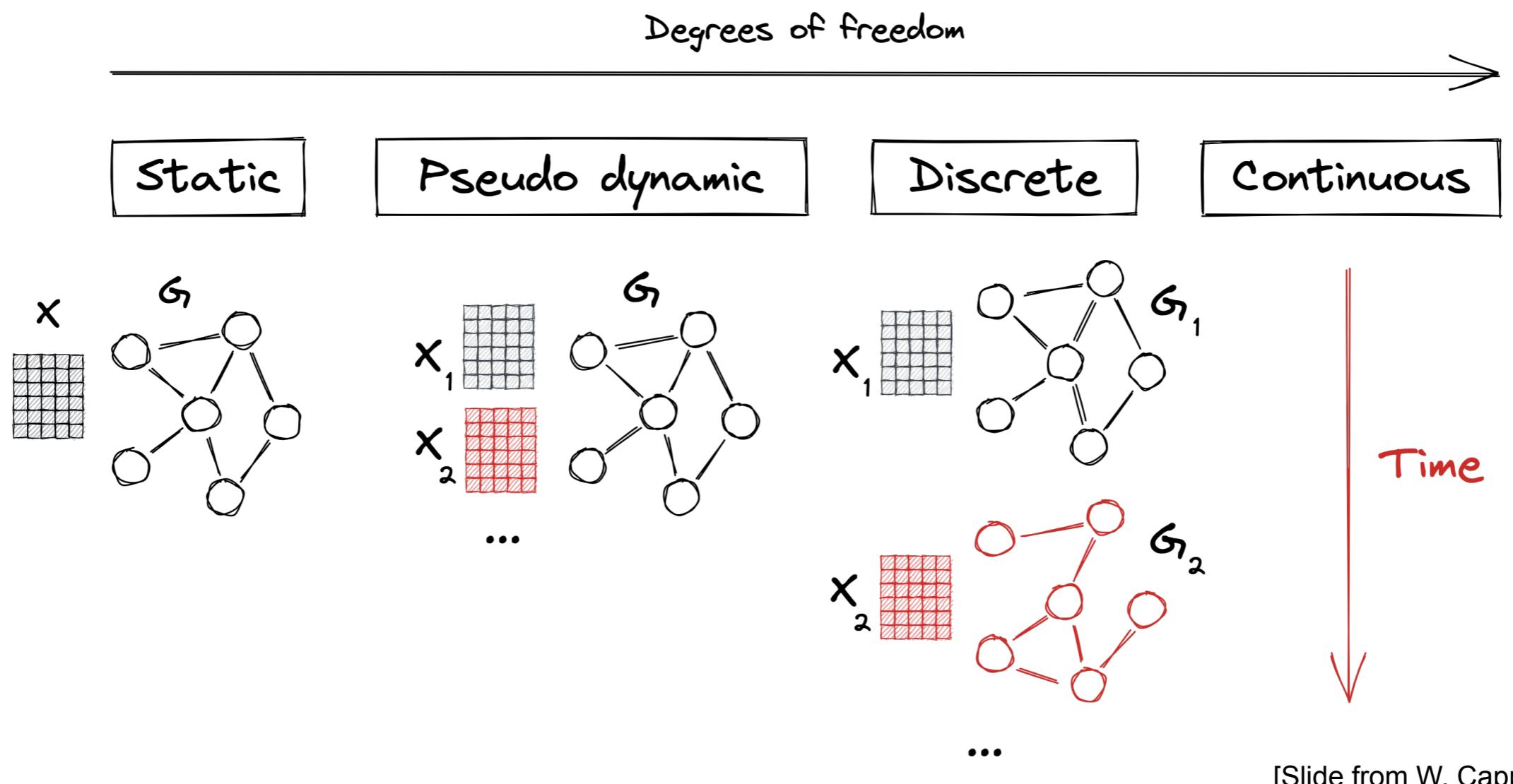
[Kazi et al., Differentiable graph module for graph convolutional networks, ICML, 2020]

Outline

- Expressive power of GNNs
- Inferring the graph topology
- **Dynamic graph models**
- Learning with sparse labels

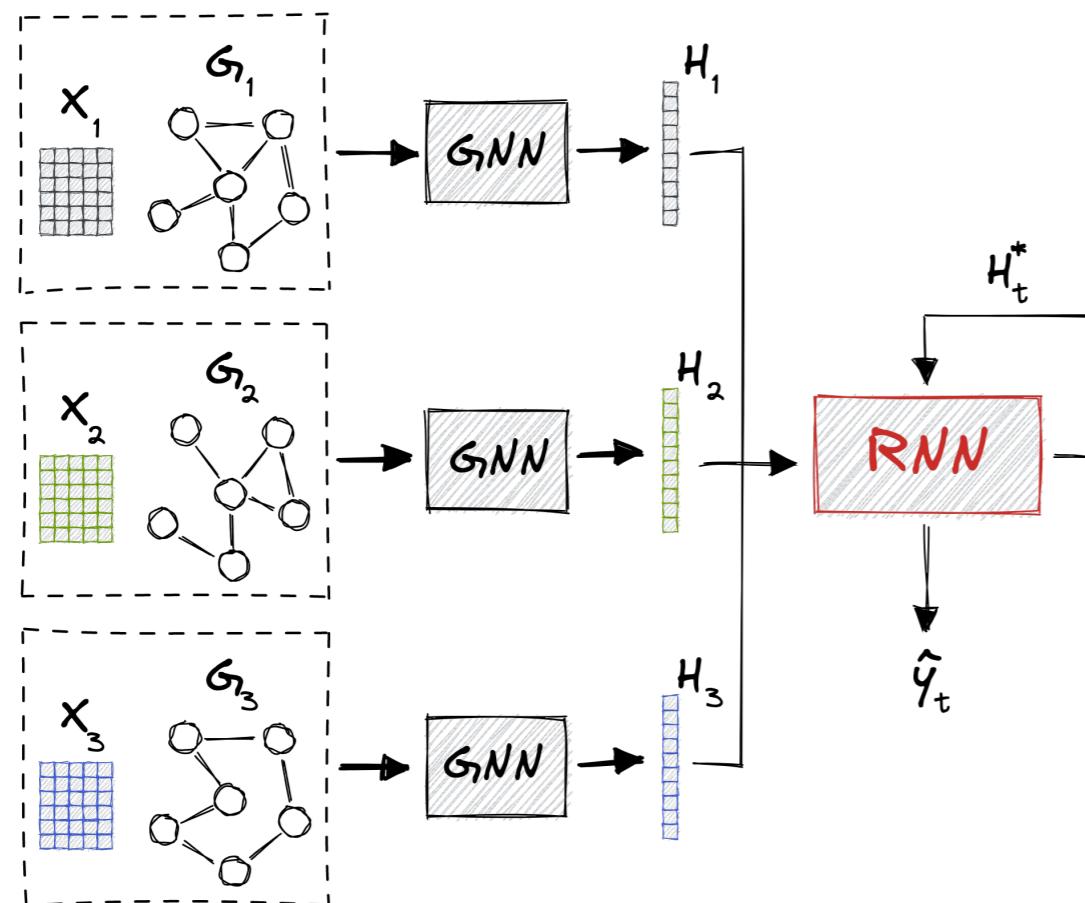
Spatial-temporal GNNs

- Dynamic networks are graphs where over time links and nodes may appear and disappear, and features may change



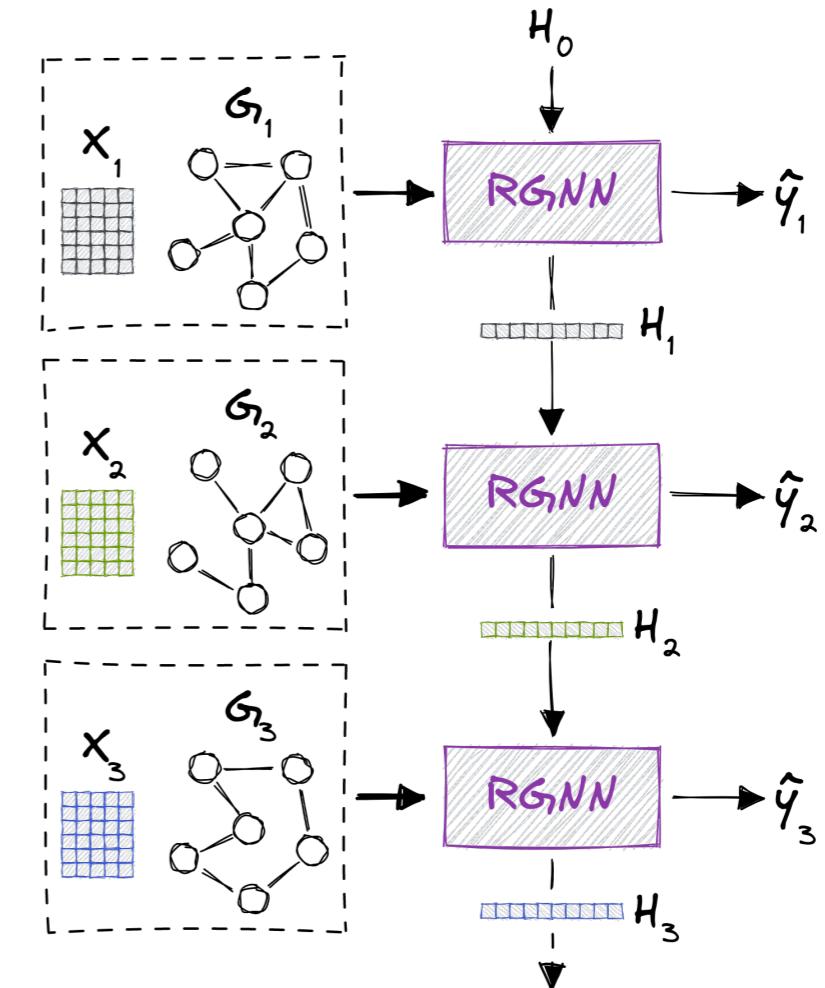
[Slide from W. Cappelletti]

Temporal GNNs follow two paradigms



Spatial then temporal:

Node embeddings for each time step are fed to a temporal model



Spatio-temporal:

A single model for embedding spatial and temporal information

[Skarding et al., Foundations and Modeling of Dynamic Networks Using Dynamic Graph Neural Networks: A Survey, IEEE Access, 2021]

Outline

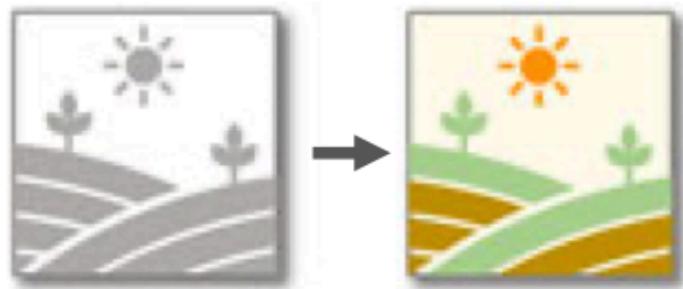
- Expressive power of GNNs
- Inferring the graph topology
- Dynamic graph models
- **Learning with sparse labels**

Unsupervised/self-supervised learning with GNNs

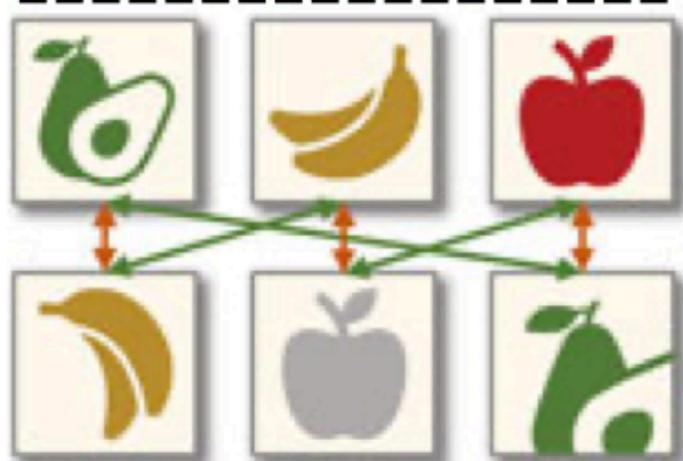
- So far, we have assumed that labels are available
 - They are used to design a loss function
- What if the labels are not available or limited?
 - Loss function should depend on the information provided by the graph itself: e.g., input features, graph topology
 - Some examples: DeepWalk, node2vec, SDNE (they consider only the graph structure)
- In self-supervised learning (SSL), models are learned by solving a series of hand-crafted auxiliary tasks (so-called pretext tasks)
 - Supervision signals are acquired from data itself, without the need for annotation

Illustrative examples of pretext tasks

Computer vision



A



B

- A. Image colorisation
- B. Image contrastive learning

Natural Language Processing

[MASK] is impossible.

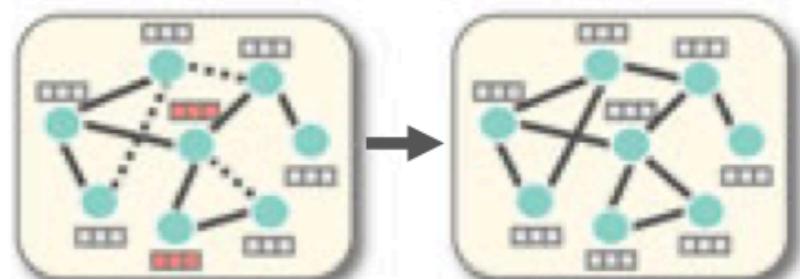
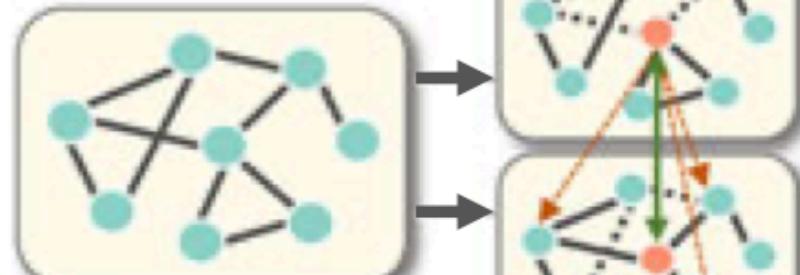
Nothing is impossible.

I'm going outside.

I'll be back soon.

I got up late.

Graph machine learning

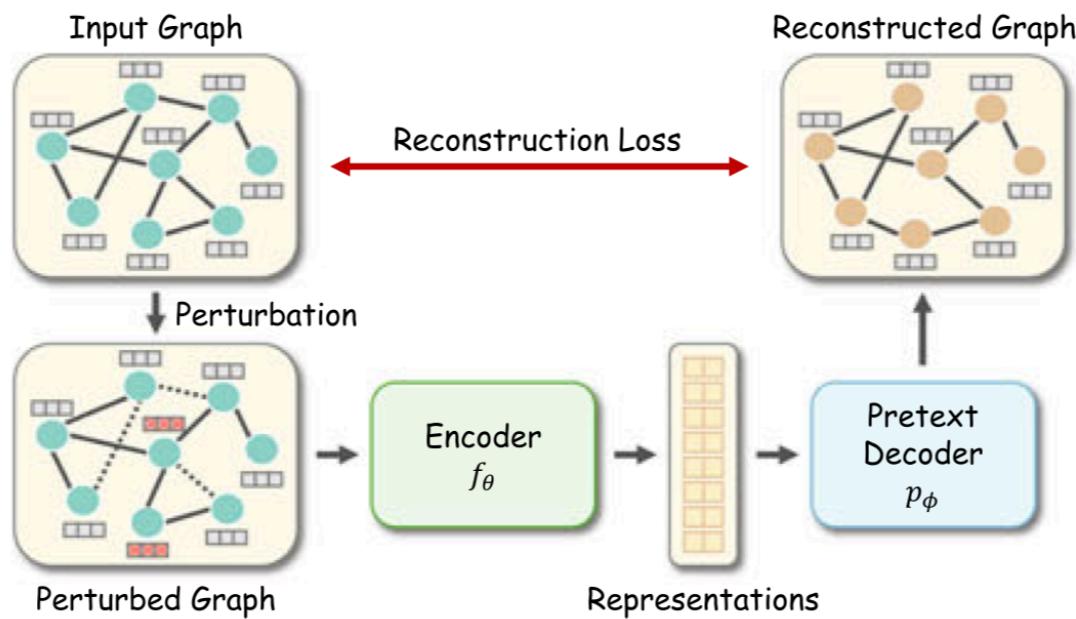


- A. Masked graph generation
- B. Node contrastive learning

[Liu et al., Graph Self-Supervised learning: A survey, IEEE TKDE 2023]

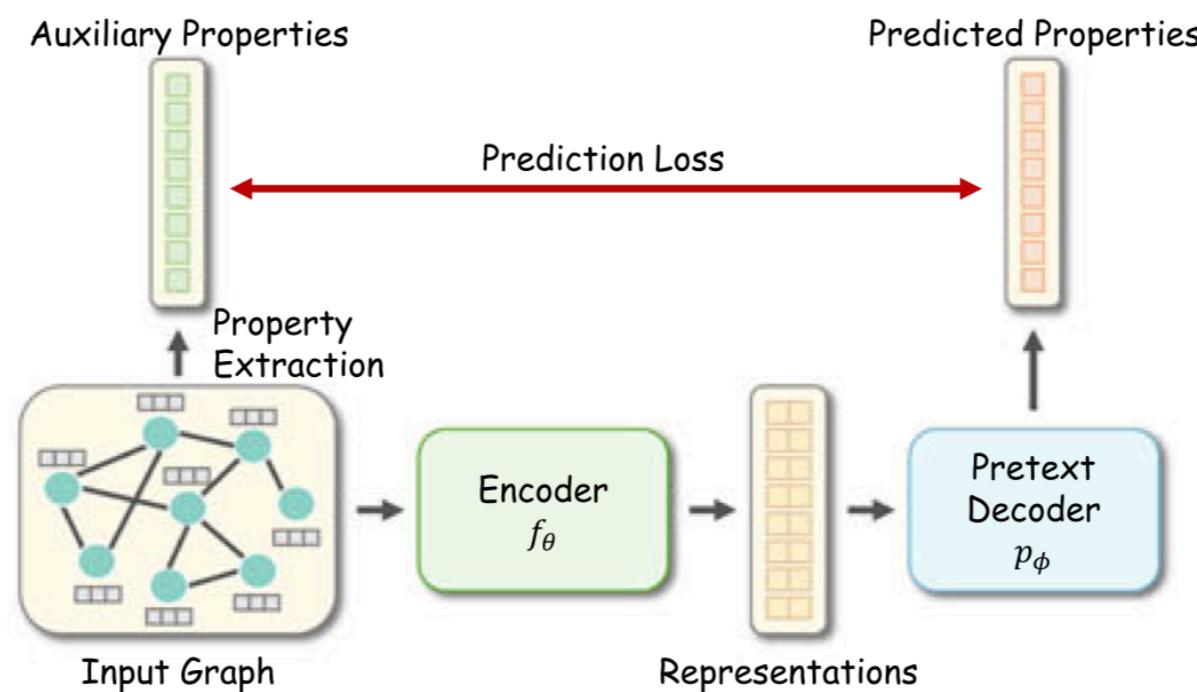
Generation-based SSL

- Pretext tasks are defined as a graph data reconstruction problem of either the graph structure or the node attributes
- GNNs are typically used to encode nodes in the graph (encoder)
- The decoder reconstructs the adjacency matrix or the node attributes (pretext task)
- The loss is defined to measure the difference between the reconstructed and the original graph data (e.g., GAE)



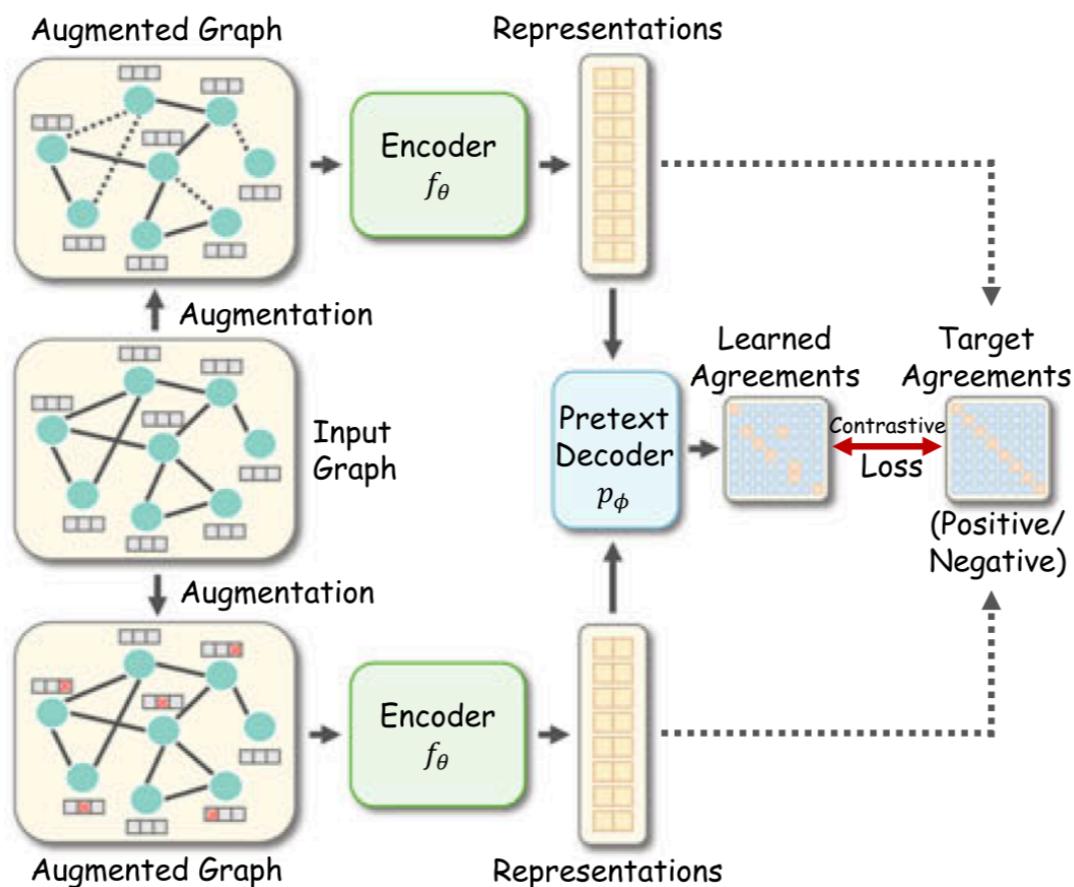
Auxiliary property-based SSL

- Pretext tasks are defined as auxiliary properties of the data (e.g., graph partition, node degree, cluster index)
- It often requires domain knowledge
- The loss is defined to measure the difference between the estimated and the original auxiliary property (e.g., mean square error, cross-entropy)



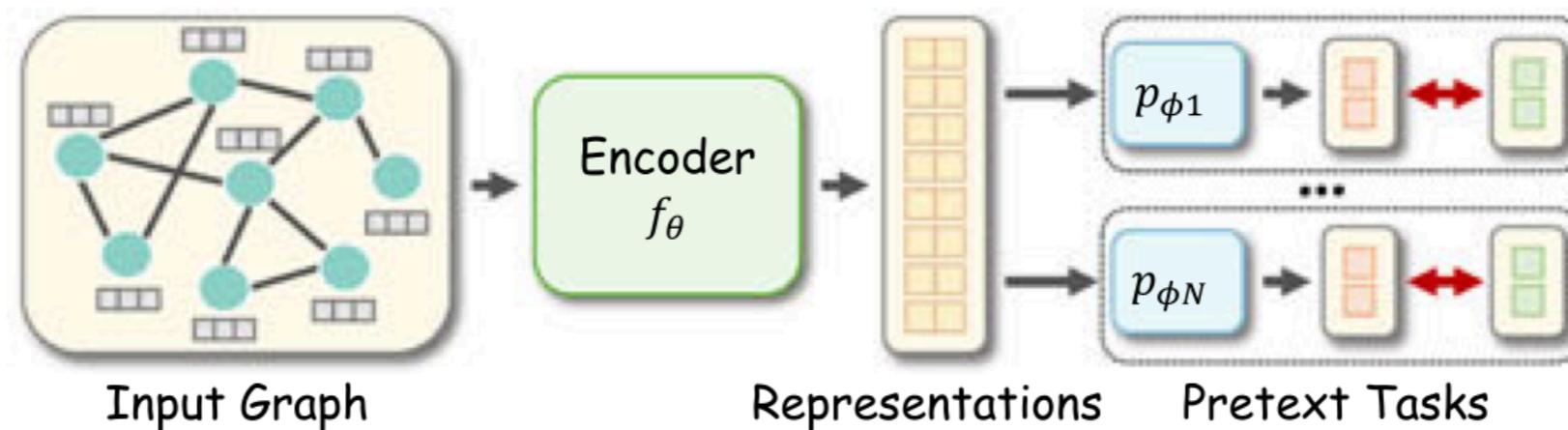
Contrastive-based SSL

- Pretext tasks are defined based on the concepts of mutual information (MI) maximization
- The loss is defined by maximizing the estimated MI between augmented instances of the same object (e.g., node, subgraph, graph)



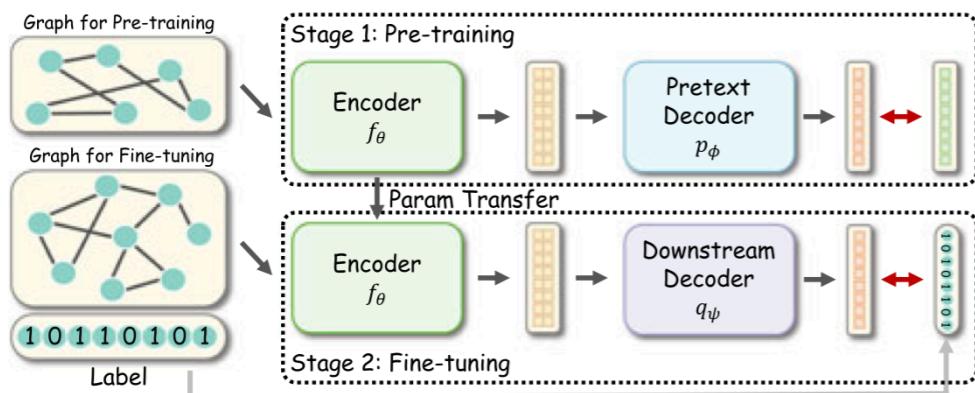
Hybrid methods for SSL

- Pretext tasks are defined based on a combination of multiple objective
- Balancing the different pretext tasks is often challenging

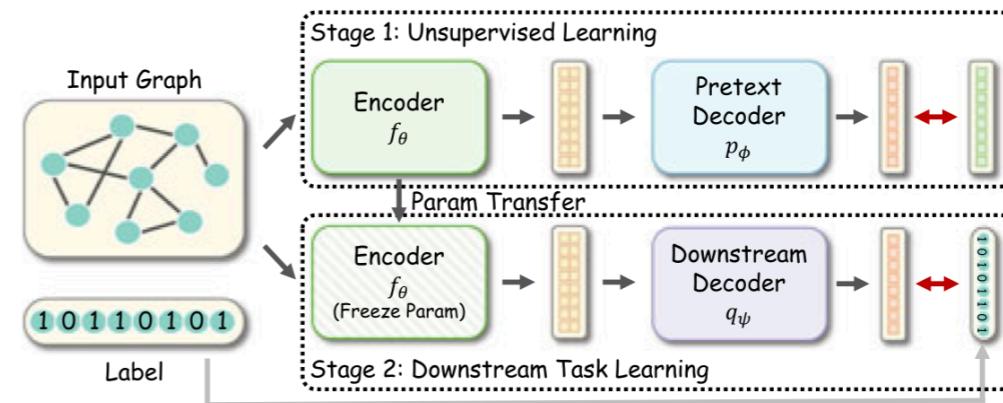


How do I use my labels in SSL?

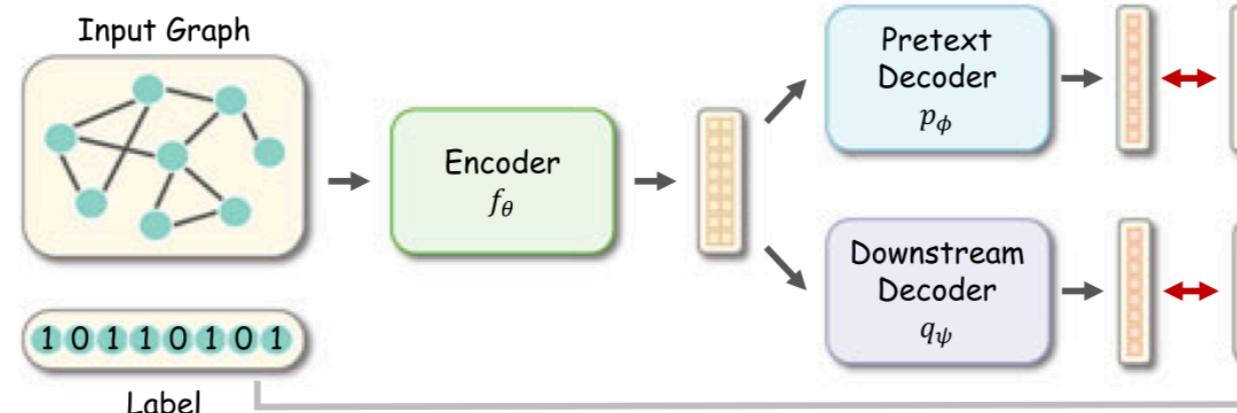
- If labelled data are available, they can be combined with the pretext task(s) to improve the models:



Stage 1: Pre-training on pretext
Stage 2: Fine-tuning on labeled data



Stage 1: Pre-training on pretext
Stage 2: Fine-tuning on labeled data with frozen decoder



Multitask learning: Learn jointly pretext and downstream task

Summary

- The expressive power of GNN architectures has strong connections with the WL kernel
- Building more expressive architectures is still a challenge
- Self-supervised learning on graphs is a promising learning paradigm when labels are limited
- The choice of the pretext task is crucial; It needs to be correlated with the main task

Recall: Useful resources

- **Toolboxes**
 - https://github.com/rusty1s/pytorch_geometric
 - <https://github.com/dmlc/dgl>
 - <https://github.com/deepmind/jraph>
 - <https://github.com/tensorflow/gnn>
- **Datasets**
 - DGL datasets: <https://docs.dgl.ai/api/python/dgl.data.html>
 - PyG datasets: <https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html>
 - OGB datasets: <https://ogb.stanford.edu>
 - <https://chrsmrrs.github.io/datasets/>
 - <https://chrsmrrs.github.io/datasets/>

References

1. Graph representation learning (chap 5), William Hamilton
 - https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf
2. Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges, Bronstein et al, 2022
 - <https://arxiv.org/abs/2104.13478>
3. A Comprehensive Survey on Graph Neural Networks, Wu et al, 2021
 - <https://arxiv.org/abs/1901.00596>
4. Graph neural networks: A review of methods and applications, Zhou et al, 2020.
 - <https://arxiv.org/pdf/1812.08434.pdf>

References

5. How powerful are graph neural networks? Xu et al, 2019
 - <https://arxiv.org/pdf/1810.00826.pdf>
6. Graph Self-Supervised learning: A survey, Liu et al, 2023
 - <https://arxiv.org/pdf/2103.00111.pdf>
7. Self-supervised learning of graph neural networks: A unified review, Xie et al., 2022
 - <https://arxiv.org/pdf/2102.10757.pdf>