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Recap from previous class

 Graphs are flexible tools to model the data domain

e Going beyond graph structure:

- Jointly consider domain (i.e., graph) and data (i & e., graph signals) that live in
that domain
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* Useful information can be extracted by generalizing classical
signal processing tools to the graph domain
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How to extract information from graph
data: A summary so far

v Hand-crafted features: Capture some structural properties of the graph,
followed by some statistics (signatures)

v Graph kernel methods: Design similarity functions in an embedding space

v Spectral features: Capture the graph properties through spectral graph
theory, graph signal processing Model-driven

 Learned features: Learn graph features directly from data by designing
models based on meaningful assumptions

v Unsupervised embeddings: Learn features based on different ways of
preserving information from the original graph (without node attributes)

= Graph neural network features: Learn features from the data using a

well-designed family of neural networks (with node attributes)
Data-driven
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Today: Graph neural networks (GNNs)

e A different way of obtaining ‘deeper’ embeddings inspired by deep
learning

* They generalize to graphs with node attributes
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GNNs: A growing trend

ICLR Keyword Growth 2018-2020
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Outline

e From CNNs to GNNs

e Key building blocks of GNNs

Graph convolution
- A spectral approach
- A spatial approach

Local and global pooling
Loss functions
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Outline
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e Key building blocks of GNNs

Graph convolution
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Computing embeddings from graphs
with node attributes

e A naive approach:

- Embed graph and node attributes into a Euclidean space
- Feed them into a deep neural net (e.g., MLP)
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e |ssues with that:
- Computationally expensive
- Not applicable to graphs of different sizes

- Not invariant to node ordering: if we reorder nodes the representations will be different

Can we do better? Yes!
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Good priors are key to learning

e We build intuition from classical deep learning algorithms
 CNNSs exploit structure in the images

Translation invariance Composability
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CNNs: Translation invariance

* We leverage spatial information in an image with convolution

|t is achieved by learning a set of convolution filters/kernels, which
are applied to an image to identify similar patterns

Input

w/

Output

Kernels W— w4 1
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CNNs: Composability

* Aggregate local filters by pooling meaningful pixels to identify
bigger patterns

224x224x64 : x
19011084 Single depth slice
«
pool | «| I 2 | 4
max pool with 2x2 filters
56|78 and stride 2 6 | 8
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CNN architecture: lllustrative example

 CNNs hierarchically aggregate (through convolution) and pool
(i.e., subsample) images along pixel-grid

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

https://en.wikipedia.org/wiki/File:Typical _cnn.png
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How can we extend CNNs on graphs?

* Desirable properties

- Convolution: how to achieve translation invariance

- Localization: what is the notion of locality

- Graph pooling: how to downsample on graphs

- Efficiency: how to keep the computational complexity low

- Generalization: how to build models that generalize to unseen graphs
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Permutation Invariance

e Graph structure is independent of the labelling of the nodes or
from how we choose to draw them

 Graph and node representations should be permutation invariant
Graph representations should be invariant to the order of the nodes
Similar intuition to translation invariance on images

X W f(X, W)
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Permutation Invariance

e Graph structure is independent of the labelling of the nodes or
from how we choose to draw them

 Graph and node representations should be permutation invariant

Graph representations should be invariant to the order of the nodes

Similar intuition to translation invariance on images
PX PW Pt f(PX, PWPT)
munn 123456789
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Permutation Invariance

e Graph structure is independent of the labelling of the nodes or
from how we choose to draw them

 Graph and node representations should be permutation invariant

Graph representations should be invariant to the order of the nodes
Similar intuition to translation invariance on images

PX pPwpt f(PX,PWPT)
[TTT] 1234567829
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Permutation Equivariance

e Graph structure is independent of the labelling of the nodes or
from how we choose to draw them

* Node representations should be permutation equivariant

If we permute the nodes of the graph, the nodes’ output should be permuted in
the same way

X W f(X, W)
1234567829
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Permutation Equivariance

e Graph structure is independent of the labelling of the nodes or
from how we choose to draw them

* Node representations should be permutation equivariant

If we permute the nodes of the graph, the nodes’ output should be permuted in
the same way

PX PWPT Pf(X,W)
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Permutation Equivariance

e Graph structure is independent of the labelling of the nodes or
from how we choose to draw them

* Node representations should be permutation equivariant

If we permute the nodes of the graph, the nodes’ output should be permuted in
the same way

PX rwpT Pf(X, W)
123456789
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2 5 2
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f(PX, PWPT) = Pf(X,A) P: permutation matrix

i i Network Machine Learning - EE452
= P l- I Dr Dorina Thanou

Prof. Pascal Frossard 15



GNN model: schematic overview

e Applicable to most state-of-the-art architectures

e mmp )
a
Transformed graph Prediction
Graph and node attributes (node/edge embeddings) (node, edge, graph level)
/
g,X G,H Y

GNN blocks

(graph convolution, pooling, nonlinearity) Classification layer

* We can construct permutation equivariant functions by applying
permutation invariant functions on local neighbourhoods of the graph

16

i i Network Machine Learning - EE452
= P I— I Dr Dorina Thanou

Prof. Pascal Frossard



Outline

e From CNNs to GNNs

e Key building blocks of GNNs

Graph convolution
- A spectral approach
- A spatial approach

Local and global pooling
Loss functions
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Towards a convolution on graphs:
A spectral viewpoint

e Key intuition: Convolution in the vertex domain is equivalent to multiplication in
the spectral domain

e Recall that: The graph Fourier transform of a graph signal  is defined usmg the
eigenvectors and the eigenvalues of the Laplacian matrix (L = XAX )

* We define convolution on graphs starting from the muiltiplication in the GFT
domain

Classical convolution Convolution on graphs

zxg=xg(AN)x ©=g(L)x

@rg)®) = [ alt-rgryar

FT @ ﬁ IGFT
A

(z % g)(w) = 2(w) - §(w) (zxg)(A) = ((xTz) 0 g)(A) ©F

How can we interpret graph convolution?
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Reminder: Graph spectral filtering

e |tis defined in direct analogy with classical filtering in the
frequency domain

Filtering a graph signal = with a spectral filter §(-) is performed in the graph
Fourier domain

GFT IGFT

- X' @ g(A)x" XG(A)X"
‘ Low-pass £ 4 ‘ High-pé—z || L@E

Convolution on graphs is equivalent to filtering!
zxg=xg(A)x" z=g(L)x

Shuman et al., “The emerging field of signal processing on graphs”, IEEE Signal Process. Mag., 2013
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Is the graph convolution localized?

_ s T _ -
* In general the answer is no! rxg=xgA)x @ =g(L)
 However, if we consider polynomial filters, the answer is yes
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Is the graph convolution localized?

_ s T _ -
* In general the answer is no! rxg=xgA)x @ =g(L)
 However, if we consider polynomial filters, the answer is yes

K K |
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Is the graph convolution localized?

A T, . __ ~
* |[n general the answer is no! xxg=xg(N)x" z=g(L)x
 However, if we consider polynomial filters, the answer is yes
K K |
Example: Jo(\) = Zﬁj)\j, 0 c REF! :\’> go(L) = Zﬁj[ﬂ
7=0 7=0

. L¥ defines the K-hop neighborhood: dg(vi,vj) > K — (L™ );; =0
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Is the graph convolution localized?

_ s T _ -
* In general the answer is no! rxg=xgA)x @ =g(L)
 However, if we consider polynomial filters, the answer is yes

K K |
Example: §o(\) = Z 0; N, § c RET! :\’> go(L) = Zﬁj[ﬂ
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Is the graph convolution localized?

_ s T _ -
* In general the answer is no! rxg=xgA)x @ =g(L)
 However, if we consider polynomial filters, the answer is yes

K K |
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Is the graph convolution localized?

_ s T _ -
* In general the answer is no! rxg=xgA)x @ =g(L)
 However, if we consider polynomial filters, the answer is yes

K K |
Example: Jg(A\) = Zﬁj)\j, h e RET :"> go(L) = ZHjLJ
j=0

7=0

- L defines the K -hop neighborhood: dc(vi,v;) > K — (L"*);; =0
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Is the graph convolution localized?

_ s T _ -
* In general the answer is no! rxg=xgA)x @ =g(L)
 However, if we consider polynomial filters, the answer is yes

K K |
Example: §o(\) = Z 0; N, § c RET! :\’> go(L) = Zﬁj[ﬂ
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A spatial interpretation of graph
convolution

* Localization of the Laplacian polynomials leads to a spatial interpretation

K=1

on the graph

K K
X * (g = Q(L)x — Z QkLkib — Z szk
k=0 k=0

 Note that:
20 — I
z1 = Lzg e
20 = L2y = L7z Zawa{%TS/O
{
*
O
ZK:LZK—lz"':LKZO Q/

e Graph convolution can be computed recursively by exchanging
information in a local neighborhood (i.e., message passing)

» The kernel §(-) does not depend on the order of the nodes: permutation

Invariant!
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The receptive field of graph convolution

* Node embeddings are based on local neighborhood propagation

 Due to the irregular nature of the graph, there is no fixed size
neighbourhood

* The degree Kof the polynomial defines the receptive field of each

node
- o= ..‘ - ..
o T ‘.
Sy g
F * = T e
- .. 0‘ QW. - -
o. - of 1 b
E = > -
= -,
s .: e -
.J" T ® - Z
= ’._‘
Receptive field on an image Receptive field on a graph
g g
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The basic GNN: a spectral viewpoint

* Typical GNN architectures consist of a set of graph convolutional
layers, each of which is followed by element-wise nonlinearity

§(L)h©® g1 (L)A
. Nonlinearity . Nonlinearity Predictive
- 0 (0) 1 1 - #
M L) ‘L(e.g., ReLU)J - g5 (L)t {(e.g., ReLU)J - { task J
RO = x g, (LAY g, (L)Y

* By learning the parameters of the each convolutional filter, we
learn how to propagate information on a graph to compute node

embeddings
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Each layer increases the receptive field
of each node

 Each layer increases the receptive field by K hops

e Example: K =1

Layer 0 Layer 1 Layer 2
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Towards a graph convolution:
A spatial viewpoint

* Key intuition: Generalize the notion of convolution from images
(grid graph) to networks (irregular graph)

 Example of a single CNN layer with 3x3 filter

Fixed neighbourhood
6
0y + o0

Canonical order across neighbors

—>
6y
® G
8
Animation from V. Dumoulin zz.(l+1) = Z le)zz(l)
1=0

Can we exploit similar structure for graph data?

Dr Dorina Thanou
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Towards a graph convolution:
A spatial viewpoint

* Key intuition: Generalize the notion of convolution from images
(grid graph) to networks (irregular graph)

 Example of a single CNN layer with 3x3 filter
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Spatial graph convolution

 Main issue: We cannot have variable number of weights; it
requires assuming an order on the nodes
LD =3 9<1> (l)

e Solution: Impose same filter weights for all nodes JEN;

(l+1) Z o), (l)

FjEN;

.

AT =902 1 N7 g0
JEN;

Update embeddings by exchanging information with 1-hop neighbors
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The basic GNN: a spatial viewpoint

» Consists of a set of graph convolutional layers, each of which is
followed by element-wise nonlinearity, i.e., At = g(2)

Wh(O)ggo Wh(l)egl
0) 5(0) Nonlinearity 1) o(1) Nonlinearity Predictive
M‘ Wh®, -L(e.g., ReLU)J m) Who, -{(e.g., ReLU) |"""==P| MLP | mm) | Tk
L0 — x WO SRS

e Each layer increases the receptive field by 1-hop neighbors
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Comparison between spatial and
spectral design

e Spectral convolution: Generalizes the notion of convolution by
following a frequency viewpoint

e Spatial convolution: Generalizes the notion of convolution by
following a spatial viewpoint

e Strong links exist between both; The practical difference usually
relies on the receptive field

- Spectral approaches: Every layer can ‘reach’ K-hops neighbors
- Spatial approaches: Each layer can ‘reach’ 1-hops neighbors
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A summary of the GNN landscape

e Convolutional GNNs:

h; = Qb(Xi,jE@Niw(Xj))

* Message passing GNNs:
h’i — Xi) D X’MX
6(Xiy @ V(X X;)
e Attentional GNNs:

hi = ¢(Xi, @ Xy, X;5) (X))

JEN; Functions to be learned!

* Depending on how these functions are instantiated, different
architectures are obtained; More in the following lecture!

[Slide inspired from P. Veli¢kovic]
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Outline

e From CNNs to GNNs

e Key building blocks of GNNs

Graph convolution
- A spectral approach
- A spatial approach

Local and global pooling
Loss functions
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How to define pooling on graphs?

Feature maps

Convolutions Subsampling Convolutions Subsampling |Fully connected

* Arelatively open question, with ongoing research
* No single way to do coarsening/pooling!

 Methods can be grouped in three main categories:
- topology based pooling
- global pooling
- hierarchical pooling
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Topology based pooling

Multi-scale graph coarsening: no features involved

- Graclus algorithm (Dhillon et al. 2007)

i i Network Machine Learning - EE452
= = Dr Dorina Thanou
[t I h L

Prof. Pascal Frossard

32



Topology based pooling

Multi-scale graph coarsening: no features involved

- Graclus algorithm (Dhillon et al. 2007)
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Topology based pooling

Multi-scale graph coarsening: no features involved

Graclus algorithm (Dhillon et al. 2007)

Local greedy way of merging vertices that minimises the normalised cut
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Multi-scale graph coarsening: no features involved

Graclus algorithm (Dhillon et al. 2007)

Local greedy way of merging vertices that minimises the normalised cut

i i Network Machine Learning - EE452
= = Dr Dorina Thanou
[t I h L

Prof. Pascal Frossard

32



Topology based pooling

Multi-scale graph coarsening: no features involved

Graclus algorithm (Dhillon et al. 2007)

Local greedy way of merging vertices that minimises the normalised cut

Add artificial nodes to ensure two children for each vertex
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Topology based pooling

Multi-scale graph coarsening: no features involved
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Topology based pooling

Multi-scale graph coarsening: no features involved

ol1[2T3]45l6[7]8otoji1] = € R'?

X\l/zk ,}eR?’

Defferrard et al. 2016

Graclus algorithm (Dhillon et al. 2007)

Local greedy way of merging vertices that minimises the normalised cut

Add artificial nodes to ensure two children for each vertex

1D grid pooling: [max(0,1), max(4,5,6), max(8,9,10)]
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Global pooling

 |nvolves node features

e Uses sum/max or neural networks to pool all representation of
nodes

ha = mean/maaz/sum(th), héK), coos h(K))

N

e Also known as READOUT

 Example: SortPool (Zhang et al. 2018)

- sorts embeddings for nodes according to the structural roles of a graph
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Hierarchical pooling

 |nvolves nodes features

* Aggregates information in a hierarchical way that respects the
graph structure

e Results in learning clusters
 Example: DiffPool [Ying et al. 2019]

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification
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Outline

e From CNNs to GNNs

e Key building blocks of GNNs

Graph convolution
- A spectral approach
- A spatial approach

Local and global pooling
Loss functions
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How to use GNNs?

 GNNs typically provide embeddings at a node level
 These embeddings can be used for learning a downstream task

Node
classification

7 N

[ yi = f(hs)
-
- Graph
= ]

classification

\ Yg = f(éevhz)
1
g, X g, H
Link prediction
GNN-based
embeddings
Yij = f(hishj, Wij)
Network Machine Learning - EE452
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Loss function: Node level task

e Given labels Y = [y1, 4o, ..., yn]| On each node, predict
labels Y = [§1, Y2, ..., Yn] by minimizing the following loss

function:
[]
loss = Z loss; (y; — i)
1€y
[T |

 Example of a loss function per node: Cross entropy loss
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Loss function: Edge level task

* Given labels Y = [y1.2,¥2.3,...,yn . ~v—1] On each node, predict
labels Y = [91,2, 92,3, ..., Un,N—1] by minimizing the following loss

function:
1
loss = E lossi(Yi.; — Yi.i)
1,]€E
[T
1
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Loss function: Graph level task

* Given a set of M graphs with labels Y = |y1,¥2,...,yn] on each
graph, predict labels Y = [g1, 92, ..., yar] DY minimizing the
following loss function:

[1TH M
loss = Z 1085 (Y — Um)
m=1

Ym = freadout({hm,i}%v’i < V)
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Some practical aspects

e Data pre-processing: Normalization of the attributes is important

e Optimizer: ADAM is often a good starting point

e Learning rate: Probably the most important hyperparameters

e Activation function: ReLU often works well (other options are possible e.g.,
LeakyReLU)

e Batch size: Should be a good compromise between performance and size. Smaller
batches are usually better, and 32 is a good starting point

 Embedding dimensions: 32, 64, 128 are often good starting points

o Start always with shallow models: deep models may be harder to optimize, and do
not necessarily improve the performance
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Summary

* Graph neural networks are designed based on a generalization of
deep learning technigues on graphs

* Their key ingredients are:
Parameter sharing across nodes (permutation invariance)

Local exchange of information and neighbourhood aggregation on the graph
(e.g., graph convolution)

Graph subsampling/pooling (mainly used for graph level tasks)

 GNNs provide ways of computing node/edge/graph embeddings
by exploiting structure (i.e., graphs) and node attributes

e \WWe discuss state-of-the-art architectures in the next lecture!
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