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overview

l Kernel methods
l introduction and main elements
l defining kernels
l Kernelization of k-NN, K-Means, PCA

l Support Vector Machines (SVMs)
l classification
l regression
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Kernel methods

introduction and main elements/considerations
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l Data points in high dimensional spaces can be better separated
l Exemple: linear classifier (e.g. perceptron)

l linear decision function => map feature in high dimensional space

l here: polynomial kernel

l Questions:
l how to map data efficiently in high dimension (potentially infinite) spaces?
l how does such mapping affect existing methods/classifiers?

(1) high dimensional spaces

<latexit sha1_base64="a/uwctX/ErnAIsZsux1uWU0zjAU="></latexit>
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(2) comparing samples

l We would like similar samples to be classified in the same way => distance

l We often think of distances in (euclidian) metric spaces
l distance <-> scalar product

l Might not always be easy or relevant
l how to compare

2 strings, 2 text paragraphs, 2 sequences, 2 images.....

l However: often we can define some similarity measures between elements
l e.g. for strings:    Sim(s1,s2) = EditDistance(s1,s2)
l note: often triangular inequality not respected

l How can we exploit such measures in classification algorithms? which
properties of these measures are useful?

kx� x0k2 = (x� x0)·(x� x0) = x·x� 2x·x0 + x0 ·x0

<latexit sha1_base64="7tWWO/pmNG+ERRrvReGztBjXsTI="></latexit>
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Two types of classifiers
l model-based (classification, regression) 

l eg. linear classifier
l data used to learn the model parameters, and then removed

l non-parametric approach 
l training data points are kept in classifier definition

l K-Nearest Neighbour (kNN)
l Parzen windows density estimation

l memory-based methods (fast at training, slow at testing)

In practice: in many memory-based methods, the solution can be written as 
a linear combination of kernel function at training data points 

representing scalar product in high dimension 
This linear combination is often referred to as the  ‘dual’ representation

(3) classifiers
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�1 otherwise
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(3) illustration: perceptron algorithm (1)

Goal: training a linear classifier

l Note: bias b can be introduced as one of the weight term by adding a 
constant component to x equal to 1

l Next slides: drop the tilde notation, and define classifier as

h(x) =

⇢
+1 if w·x+ b > 0
�1 otherwise

<latexit sha1_base64="T1fC7O41A2HAe+ENTlKZGUfFS3A="></latexit>

h(x) =

⇢
+1 if w·x > 0
�1 otherwise

<latexit sha1_base64="8A84hd6TOWQYX0EnrEUrHGEHbU4="></latexit>

w̃ = (w, b) and x̃ = (x, 1) then we have w̃·x̃ > 0
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(3) illustration: perceptron algorithm (2)
Perceptron algorithm (Rosenblatt)

Simple method to train a linear classifier

l Given a training set

l Algorithm proceeds as follows

Result: if data are separable, algorithm is converging to a valid solution

(xn, yn) 2 RD ⇥ {�1, 1}, n = 1, . . . , N,
<latexit sha1_base64="eYWLX4uRiTiU3FmsW1TTbsGkiKI="></latexit>

<latexit sha1_base64="T1fC7O41A2HAe+ENTlKZGUfFS3A="></latexit>

h(x) =

⇢
+1 if w·x > 0
�1 otherwise

Meaning: sample not well 
classified
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(3) illustration: perceptron algorithm (3)

l Update rule at iteration l

l In (high dimension) projection space

l Result: run until convergence, keeping only l indices with a non 0 update
l weights are a linear combination of training data

l the decision function can be rewritten as

l Decision function h(x) : data is thus used only through dot products in projected
space, and implicitly, through a Kernel k

wl+1 = wl +

⇢
ylxl if ylwl · xl  0
0 otherwise

wl+1 = wl +

⇢
yl�(xl) if yl(wl · �(xl))  0
0 otherwise

x ! �(x)

k(x,x0) = �(x) · �(x0)

w =
X

l

yl�(xl)

w · �(x) =
X

l

yl �(xl) · �(x) =
X

l

yl k(xl,x)



EE 613 – Machine Learning for Engineers

Kernel methods

defining kernels
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Kernels
l Kernel – we are given a projection operator

=> we can define a kernel as a dot product in that space

l Alternatively – directly provide a kernel k(x1,x2)

l Intuition – the kernel capture the similarity between x1 and x2

l E.g.  : perceptron example

l Note: weighted sum of labels

l kernel k(xl,x) is high => x will tend to be classified like xl

l kernel k(xl,x) is low => xl will have no influence on output for x

l In practice, the choice of kernel depends on application

k(x,x0) = �(x) · �(x0)

x ! �(x)

<latexit sha1_base64="pbEomO+EHRekoPA1ChK+WLf0/D4="></latexit>
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Kernels
l Kernel – we are given a projection operator

=> we can define a kernel as a dot product in that space

l We are given a function k . Does it define a Kernel?

l Valid kernels: Mercer Kernel

l Consider a smooth symmetric function k() over a compact C

l k() is a kernel if and only if it can be decomposed into

l and if and only if
l for all finite set

l the matrix K defined by Kij = k(xi,xj) is semi-definite positive 

{x1, . . . ,xp} ⇢ C

k(x,x0) =
1X

i=1

↵i �i(x)·�i(x
0)

k : C ⇥ C ! IR

k(x,x0) = �(x) · �(x0)

x ! �(x)
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Notable kernels
l Polynomial Kernels

l Gaussian Kernels

l note: not considered as a distribution here
=> no need for normalization constant

l implicit projection: in an infinite dimension space

l String Kernel

l Fisher Kernel

k(x,x0) = (u x·x0 + v)p, u, v � 0, p 2 IN

k(x,x0) = exp��kx�x0k2

, � > 0

k(x,x0) =
X

s2A?

ws�s(x)�s(x
0)

count number of times 
substring s occurs in x
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Building Kernel
l Kernel can be constructed by combining kernels, e.g. like

where kernels on the right are valid kernels on their respective domains, c1>0 
and c2>0, A is a symmetric semidefinitive positive matrix, f is any function,  q is a 
polynomial of non-negative coefficients, and xa and xb are variables (not 
necessarily disjoint) with x = (xa , xb)

l Properties can be used to demonstrate whether a proposed kernel is a 
Mercer Kernel

• k(x,x0) = c1k1(x,x0) + c2k2(x,x0)
• k(x,x0) = f(x)k1(x,x0)f(x0)
• k(x,x0) = q(k1(x,x0))
• k(x,x0) = exp (k1(x,x0))
• k(x,x0) = k1(x,x0)k2(x,x0)
• k(x,x0) = k3(�(x),�(x0))
• k(x,x0) = xTAx0

• k(x,x0) = ka(xa,x0
a) + kb(xb,x0

b)
• k(x,x0) = ka(xa,x0

a)kb(xb,x0
b)

<latexit sha1_base64="z0nMEZ6Zo/ftKpLcxvK2SBy/Wn0="></latexit>
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Kernel methods

Kernelization of k-NN, K-Means, PCA
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Kernelizing algorithms

l Many algorithms can be « Kernelized »
l Straightforward for the perceptron
l k-NN?
l k-Mean?
l PCA?

l how?
l write the algorithm using as data points the project data 
l express results on the form of dot product
l use the kernel trick

<latexit sha1_base64="Yp++PHTyq9BqhxdY6Ftb5LrVLmM="></latexit>

�(x)
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Kernelizing k-NN
l k-NN algorithm

l Training dataset:
l Parameter : K
l Classifying a new sample x

l Find the set C of K samples from D closest to x

l Assign to x the majority class in the associated set of labels

l requires distances between two examples

l easy to kernelize.... 

<latexit sha1_base64="N3aRmsiwDBHT9UISrdbJmxOgrhs="></latexit>

D = {(xi, yi)|yi 2 {1, . . . , L}, i = 1, ..., N}

<latexit sha1_base64="7xUe7ijvueKBUvAYROWs3Xx9kps="></latexit>

kx� xik2
<latexit sha1_base64="lU5gfmdLppFdjzgG2D8Jy16rfsI=">AAAExnicnVNtT9NQFD7Fqjjfhn70SwMxgZBtXTXoF5PpmGIYWicbGIpL2xW40PU27e3MHEZ+hH+Of6D+Cp976eIQF4x3Wfec55znvPXOi0OWCtM81Wau6FevXZ+9Ubh56/adu8W5e52UZ4kftH0e8mTbc9MgZFHQFkyEwXacBG7fC4Mt76gu/VuDIEkZjzbFMA52++5+xPaY7wpQ3eJP59hwNob2AbMTfrjorLrCtTmLxJJR+rujy5YM5/ijZTybJnR6XMTTnIWSYf2HUFZdnu66TFrA6RYXzLKpjnERVHOwUJt3lr+d1oY2n9M8cqhHnHzKqE8BRSSAQ3IpxWeHqmRSDG6XRuASIKb8AX2hArQZogJEuGCP8NyHtZOzEWyZM1VqH1VCfBMoDXoIDUdcAiyrGcqfqcySnZZ7pHLK3ob49fJcfbCCDsBephtH/qtOziJoj56qGRhmihUjp/PzLJnaiuzcmJhKIEMMTuIe/Amwr5TjPRtKk6rZ5W5d5f+uIiUrbT+PzeiH6lL2+buLEVWorbpO8KygtnyXHuzPdIg6FXpNq/g+Jxt4kxpAdVoD84ZegWmAf0lNKgE1aAVv+xHwxkRUA3ZT6VqwxjoLt8JCtIxtIkNjIoOlcsiqLTB1VH0L9AGqMN9Alk9YOVd1HbilKsp+3lMHuSuwudqk3DDH3Otq1gjPEDEDzIh7iHtf/fOWXwQdq1xdKT9+hz/ACzo7s/SA5mkRHTyhGia2sU1fs7WB9lU70df0SM/0T2ehM1quuU/njn7yC83RDH4=</latexit>

k�(x)� �(xi)k2 = �(x)·�(x)� 2�(x)·�(xi) + �(xi)·�(xi)
<latexit sha1_base64="FaKydvFCteMOcrAnaPWYf2crcR8="></latexit>

= k(x,x)� 2k(x,xi) + k(xi,xi)

<latexit sha1_base64="LZmKxMiszLI4EIplpJtYUiMOWZI="></latexit>

C(x) = {xi1 ,xi2 , . . . ,xiK}

<latexit sha1_base64="qq6C16F3ct6h9/JU+czuhD/gzMA="></latexit>

{yi1 , yi2 , . . . , yiK}
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Kernel K-Means
l Apply K-means in projected space ....
l Assumes μi denotes the means/centroids in this space

l as the projected space can be infinite, we keep the means in their dual form

i.e. as a weighted sum of the samples ...

l Assignment step: for each data sample, we need to find the closest mean

l Mean computation: update the alpha accordingly

µi =
X

j

↵i
j�(xj)

{↵i
1,↵

i
2, . . .}

k�(x)� µik2 = �(x)·�(x)� 2
P

j ↵
i
j�(xj)·�(x) +

P
j,k ↵

i
j↵

i
k�(xj)·�(xk)

<latexit sha1_base64="DgLqqnS5eqNdg5RIga85tElkr/Y="></latexit>

k�(x)� µik2 = k(x,x)� 2
P

j ↵
i
jk(xj ,x) +

P
j,k ↵

i
j↵

i
kk(xj ,xk)

<latexit sha1_base64="JRYmi1uKO0vkDso36ulQfpQEaYI="></latexit>

<latexit sha1_base64="MLw2t4huH1Ygz+ZHPbWwIKHLH/E="></latexit>

(with↵i
j =

1

Ni
if xj belongs to class i , 0 otherwise)
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Kernel PCA
Standard PCA

l Way to remove correlation between points
=> reduce dimensions through linear projection

l Data driven: training samples
l compute mean and covariance

l find largest eigenvalues of covariance matrix
=> sort eigenvectors ui by decreasing order of eigenvalues
=> form matrix

l lower dimensional representation of datapoints is given by

l approximate reconstruction 

20

yn = UT (xn � x̄)

U = (u1, . . . ,uM )

x̃n ' x̄+Uyn
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Kernel PCA - intuition

l Apply normal PCA in high-dimensional projected space
l (straight) lines of constant projections in projected space

correspond to nonlinear projections in original space
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Kernel PCA
l Assume projected data are centered (have 0 mean)

l Covariance matrix in projected space

where X is the design matrix, with column i defined by Φ(xi)

l PCA computes the eigenvalues/eigenvector of C. 
How can we compute them (or involve) in terms of

l Note that

X

i

�(xi) = 0

C =
1

N

NX

i=1

�(xi)�(xi)
T =

1

N
XXT

K = XTX

Kkl = k(xk,xl) = �(xk)T�(xl)
<latexit sha1_base64="MeTZa4MQAqr/r9Gc+ig4sdNWXcM="></latexit>

<latexit sha1_base64="qVxsVPMK2wOmoePaz2caR5bPOqQ="></latexit>

X = [�(x1), . . . ,�(xN )]
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Kernel PCA
l By definition, we have

l Substituting the covariance definition leads to

l Consequence: the eigenvector can be expressed as a linear combination
of the projected samples (DUAL FORM)

l Then, how can we actually determine the  a coefficients?
(  and involve only the kernel function k(. , .)   )

Cvi = �ivi

vi =
NX

l=1

�(xl) ail, (with ail =
1

�iN
�(xl)

Tvi)

<latexit sha1_base64="7jWCOMRKQOdQ3GWQaHLGZ7QpkKo="></latexit> 
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NX

l=1
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Tvi
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= �ivi
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Kernel PCA
l In matrix form, eigengenvectors can thus be written as

l Eigenvalue problem

l Introducing the decomposition into it leads to

l Thus, we can find solutions for ai by solving the eigenvalue problem

vi = Xai

Cvi = �ivi C =
1

N
XXT 1

N
XXTvi = �ivi

1

N
XXTXai = �iXai

XTXXTXai = N�iX
TXai i.e. K2ai = �iNKai

Kai = �iNai
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Kernel PCA
l We need to normalize the coefficient ai

l impose that eigenvectors in projected space have norm 1

l We need to center the data (in projected space)
l we can not compute the mean (in projected space) as we want to avoid

working directly in this projection space => we need to formulate the algorithm
purely in term of the kernel function

l Projection (coordinate) of a point on eigenvector i

1 = vT
i vi = (Xai)

T (Xai) = aTi X
TXai = aTi Kai = �iNaTi ai

K̃ = X̃T X̃ = XTX� 1
NXTX11T � 1

N 11TXTX+ 1
N211TXTX11T

= K� 1
NK11T � 1

N 11TK+ 1
N211TK11T

yi(x) = vT
i �(x) = (

NX

l=1

ail�(xl))
T�(x) =

NX

l=1

ail�(xl)
T�(x) =

NX

l=1

ailk(x,xl)

�̃(xj) = �(xj)�
1

N

NX

l=1

�(xl) X̃ = X� 1

N
X11T=>
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Kernel PCA - illustration

l (Schölkopf et al1998) – Kernel PCA with Gaussian kernel – first 8 eigenvalues
l contour lines = points with equal projection on corresponding eigenvector
l first two eigenvectors, separate the 3 main clusters
l following eigenvectors split cluster into halves; and further 3 as well (along orthogonal 

directions)
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Kernel PCA - Summary
l Given a set of data points, stacked as X

l Compute the eigenvectors and eigenvalues

l Normalize them properly

l Projection of a new data point onto the principal components

compute K and then K̃

K̃ = K� 1

N
K11T � 1

N
11TK+

1

N2
11TK11T

K̃ai = �iai

�ia
T
i ai = 1

yi(x) =
NX

l=1

ail k(x,xl)
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overview

l Kernel methods
l introduction and main elements
l defining kernels
l Kernelization of k-NN, K-Means, PCA

l Support Vector Machines (SVMs)
l classification
l regression
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Support Vector Machines (SVM) - principle

l separable data: several classifiers available. Which one is the best?
l perceptron: classifier depends on initialization, order of visit of datapoints
l margin

l distance from the closest datapoint to the decision boundary
l why do we want a large margin?

l classification more immune to small perturbation of the datapoints

l H1: does not separate the classes
l H2: separate classes, but by a small margin
l H3: maximum margin

Main idea: look at the margin !
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SVM – margin geometry

l linear decision function

- b

signed distance
to decision boundary

y(x) = wTx+ b
<latexit sha1_base64="8XP2Nd74WtTPuAmFtrHZs5ng35s="></latexit>
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SVM – problem setting
l assume a linearly separable dataset

(separable in a high dimensional space)

l linear classifier

s.t. if y(x) > 0 then t = 1 otherwise t = -1

l distance of point xi to decision surface =

l Goal : find parameters resulting in the maximum margin !
(max of the minimum distance to the decision surface)

argmax
w,b

⇢
1

kwk min
i

⇥
ti(w

T�(xi) + b)
⇤�

y(x) = wT�(x) + b

D = {(xi, ti)|ti 2 {�1,+1}, i = 1, ..., N}

<latexit sha1_base64="1oF/DZgkGQZHs/nHabrUI5tSHlE="></latexit>

tiy(xi)

kwk

<latexit sha1_base64="K+Ea1a5z2hdhSFPLV8xY89n3tYY="></latexit>

argmax
w,b

⇢
1

kwk min
i

[tiy(xi)]

�
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SVM – max margin
l Max-margin optimization

l Note: rescaling w and b by s does not change the solution
l use that to constrain the problem

l set closest points (they exist) to the decision surface as
l all other points are further away
l note:  margin (on one side)  =  

l Max-margin problem

l quadratic programming (QP) problem:
minimizing quadratic function subject to constraints
=> their exist QP solver libraries.

(
argmin 1

2kwk2 subject to

ti(wT�(xi) + b) � 1 8i = 1, . . . , N

ti(w
T�(xi) + b) = 1

argmax
w,b

⇢
1

kwk min
i

⇥
ti(w

T�(xi) + b)
⇤�

1

kwk
<latexit sha1_base64="+DYcMB/o75DPROuUZRINnK6iRNM="></latexit>
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SVM – Lagrangian duality
l Primal optimization problem

l introduce generalized Lagrangian

l primal problem

l Note: 

l for w which do not verify the constraints, the primal is infinity; 

l otherwise it is equal to f(w)

=> primal might then be ill-defined in this case => consider the dual

min
w

✓P(w) = min
w

max
↵,�|↵�0

L(w,↵,�)✓P(w) = max
↵,�|↵�0

L(w,↵,�)

L(w,↵,�) = f(w) +
kX

i=1

↵igi(w) +
lX

i=1

�ihi(w)

8
<

:

minw f(w)
s.t. gi(w)  0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . , l
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SVM – Lagrangian duality
l Primal optimization problem

l introduce generalized Lagrangian

l primal problem

l Dual optimization problem

l Under certain constraints (f and gi convex, hi  affine; constraints are feasible)
l dual problem leads to the same solution than the primal
l solution satisfies

(necessary and sufficient condition)
l Karush-Kuhn-Tucker conditions

8
>>>>><

>>>>>:

@L(w?,↵?,�?)
@wi

= 0 , i = 1, . . . n
@L(w?,↵?,�?)

@�i
= 0 , i = 1, . . . l

↵?
i gi(w

?) = 0 , i = 1, . . . k
gi(w?)  0 , i = 1, . . . k

↵?
i � 0 , i = 1, . . . k

max
↵,�|↵�0

✓D(↵,�) = max
↵,�|↵�0

min
w

L(w,↵,�)✓D(↵,�) = min
w

L(w,↵,�)

min
w

✓P(w) = min
w

max
↵,�|↵�0

L(w,↵,�)✓P(w) = max
↵,�|↵�0

L(w,↵,�)

L(w,↵,�) = f(w) +
kX

i=1

↵igi(w) +
lX

i=1

�ihi(w)

8
<

:

minw f(w)
s.t. gi(w)  0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . , l
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SVM – Dual form

l Primal problem
l note: constraint is positive
l Lagrangian

l Dual problem: given a, minimize w.r.t. the weights and bias => derivatives

l Weights = linear combination of the projected datapoints

l We can substitute w in the lagrangian

(
argmin 1

2kwk2 subject to

ti(wT�(xi) + b) � 1 8i = 1, . . . , N

@L
@b

(w, b;a) =
NX

i=1

aiti = 0

@L
@w

(w, b;a) = w �
X

i

aiti�(xi) = 0 ) w =
NX

i=1

aiti�(xi)

L(w, b;a) =
1

2
kwk2 �

NX

1=1

ai
�
ti(w

T�(xi) + b)� 1
 

8
>>>>><

>>>>>:

@L(w?,↵?,�?)
@wi

= 0 , i = 1, . . . n
@L(w?,↵?,�?)

@�i
= 0 , i = 1, . . . l

↵?
i gi(w

?) = 0 , i = 1, . . . k
gi(w?)  0 , i = 1, . . . k

↵?
i � 0 , i = 1, . . . k
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SVM – Dual form
l Primal problem

l Lagrangian

l Substitution of W in the lagrangian =>  following problem

l last inequality: 
l either point is on the margin (constraint satisfied with an equality)

then ai will be non 0, we have a support vector
l or the point is not on the margin (the point is beyond the margin)

then the only way to satisfy the constraint is to have ai = 0
=> it does not participate in defining the weights

L(w, b;a) =
1

2
kwk2 �

NX

1=1

ai
�
ti(w

T�(xi) + b)� 1
 

8
>>>>>>><

>>>>>>>:

maxa L̃(a) =
PN

i=1 ai �
1
2

PN
i=1

PN
l=1 aialtitlk(xi,xl) subject to

PN
i=1 aiti = 0

ai � 0, i = 1, . . . , N

tiy(xi)� 1 � 0, i = 1, . . . , N

ai(tiy(xi)� 1) = 0, i = 1, . . . , N

8
>>>>><

>>>>>:

@L(w?,↵?,�?)
@wi

= 0 , i = 1, . . . n
@L(w?,↵?,�?)

@�i
= 0 , i = 1, . . . l

↵?
i gi(w

?) = 0 , i = 1, . . . k
gi(w?)  0 , i = 1, . . . k

↵?
i � 0 , i = 1, . . . k
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SVM - discussion

l Interest of using the Dual form
l allows to introduce the kernel
l unique solution – quadratic optimization = no dependency on initialization

l Computation of a new score (and classification)
l weights as linear combination of projected data point
l score only expressed through the kernel
l the sum needs to run only on the set of Support Vectors

l Bias computation
l can be computed from any satisfied constraint, ie on support vectors
l average on all support vectors

b =
1

NS

X

i2S

 
ti �

X

l2S
altlk(xl,xi)

!

y(x) = wT�(x) + b =
NX

i=1

aiti�(xi)
T�(x) + b =

X

i2S
aitik(xi,x) + b
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SVM - illustration

l Illustration with standard dot product as kernel
l Shown: decision boundary, plus margins
l Support Vectors (with non-zero weights) are on margin curves



EE 613 – Machine Learning for Engineers

SVM - illustration

l Illustration with Radial Basis Function
l Shown: decision boundary, plus margins
l Support Vectors (with non-zero weights) are on margin curves
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SVM

l So far, we assumed that the data was separable
l not always possible
l not always desirable

l Can the model extend to the non-separable case?
l how to keep the notion of margin?
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SVM – non separable case

l We need to take into account the errors
l Use a soft margin instead of a hard margin
l How to measure errors and deviations?

l add new variables – called slack variables 

l Look at the points
l points beyond the margin: no error
l points within the margins : we want to penalize it, even if this is not an error
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SVM – non separable case – formulation 

l Separable case
(

argmin 1
2kwk2 subject to

ti(wT�(xi) + b) � 1 8i = 1, . . . , N
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SVM – non separable case – formulation 

l Primal problem

l introduced variables are slack variables – their sum provides an upper bound on the error
l framework is sensitive to outliers : errors grows linearly with distance
l C is analagous to (the inverse of) a regularisation coefficient. It controls the trade-off 

between model complexity (the margin) and training errors

l when C è ∞, we recover the separable case

argmin
w,b

 
1

2
kwk2 + C

NX

i=1

max(0, 1� tiy(xi))

!

8
>><

>>:

argminw,b

⇣
1
2kwk2 + C

PN
i=1 ⇠i

⌘
subject to

tiy(xi) � 1� ⇠i 8i = 1, . . . , N

⇠i � 0
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SVM – non separable case – dual form
l Lagrangian

l Derivating w.r.t. weights, bias, and slack variables

l Note: in lagrangian, slack variables only appear in linear form

l so taking into account the constraint linked to setting the derivative to 0, the slack
variables will vanish from the lagrangian at the optimum

L(w, b, ⇠;a, r) =
1

2
kwk2 + C

NX

i=1

⇠i �
NX

i=1

ai
�
ti(w

T�(xi) + b)� 1 + ⇠i
 
�

NX

i=1

ri⇠i

@L
@b

= 0 )
NX

i=1

aiti = 0
@L
@w

= 0 ) w =
NX

i=1

aiti�(xi)
@L
@⇠i

= 0 ) ai = C � ri

<latexit sha1_base64="G2IsLlaJBWxvWbUtom0zX9BhSuw="></latexit>

L(w, b, ⇠;a, r) = . . .+C
NX

i=1

⇠i �
NX

i=1

ai⇠i �
NX

i=1

ri⇠i = . . .+
NX

i=1

(C � ai � ri)⇠i
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SVM – non-separable case – dual form
l Lagrangian

l Derivating w.r.t. weights, bias, and slack variables

l We end with the dual problem, very similar to the separable case

l prediction formula is the same than in the separable case
l some ai will be 0 and will not contribute to the prediction; the rest will be Support Vectors
l if ai < C, then ri > 0 and thus the slack variable ξi=0 => the data are on the margin
l ai = C,then ri = 0 : point will lie within the margin (well classified or not) or on the opposite side

L(w, b, ⇠;a, r) =
1

2
kwk2 + C

NX

i=1

⇠i �
NX

i=1

ai
�
ti(w

T�(xi) + b)� 1 + ⇠i
 
�

NX

i=1

ri⇠i

@L
@b

= 0 )
NX

i=1

aiti = 0
@L
@w

= 0 ) w =
NX

i=1

aiti�(xi)
@L
@⇠i

= 0 ) ai = C � ri

8
>>>>><

>>>>>:

maxa L̃(a) =
PN

i=1 ai �
1
2

PN
i=1

PN
l=1 aialtitlk(xi,xl) subject to

PN
i=1 aiti = 0

0  ai  C, i = 1, . . . , N

ai(tiy(xi)� 1 + ⇠i) = 0 and ⇠iri = 0, i = 1, . . . , N

8
>>>>><

>>>>>:

@L(w?,↵?,�?)
@wi

= 0 , i = 1, . . . n
@L(w?,↵?,�?)

@�i
= 0 , i = 1, . . . l

↵?
i gi(w

?) = 0 , i = 1, . . . k
gi(w?)  0 , i = 1, . . . k

↵?
i � 0 , i = 1, . . . k
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SVM - illustration

l Illustration with standard dot product as kernel
l Shown: decision boundary, plus margins
l Support Vectors (with non-zero weights) are on margin curves

Hard margin Soft margin

More in the 
laboratory !
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Support Vector Machines (SVM)

The regression case
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SVM – the regression case

l Idea: fit the training data using an ε-insensitive error function

l As before, introduce relaxed constraints, resulting in primal:
8
>><

>>:

argminw,b

⇣
1
2kwk2 + C

PN
i=1(⇠i + ⇠̂i)

⌘
subject to

ti  y(xi) + ✏+ ⇠i, ⇠i � 0 8i = 1, . . . , N

ti � y(xi)� ✏� ⇠̂i, ⇠̂i � 0 8i = 1, . . . , N

min
1

2
kwk2 + C

NX

i=1

E✏(y(xi)� ti)

E✏(z)
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SVM – regression case – dual form
l Introducing Lagrangian variables, we end up maximizing

l Weights are still obtained as linear combination:

l Score of a new observation

8
>><

>>:

maxa,â L̃(a, â) =
PN

i=1(ai � âi)ti � 1
2

PN
i=1

PN
l=1(ai � âi)

PN
i=1(al � âl)k(xi,xl)� ✏

PN
i=1(ai + âi) subject to

PN
i=1(ai � âi) = 0

0  ai, âi  C

w =
NX

i=1

(ai � âi)�(xi)

y(x) =
NX

i=1

(ai � âi)k(x,xi) + b
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Support Vector Machines (SVM)

Optimization and note



EE 613 – Machine Learning for Engineers

SVM - optimization
l Both the classification and regression can be viewed as a 

minimization of the form

under the constraints

l This problem is quadratic, convex, and in 0(N3)

J(a) =
1

2
aTQa� �Ta

aT � = 0

Cmin  a  Cmax
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SVM – optimization
Sequential Minimum Optimization (SMO) algorithm
l Can we do coordinate descent with one variable?

l no: first constraint imposes that when N-1 parameters are known/fixed, the last one can
only be set to a single value to satisfy the constraint

l idea: optimize with respect to two variables  ai and aj (other are fixed) –
constraints are reduced to 

l and the optimization problem can be solved analytically

l Choosing pairs of ai and aj
l consider the strongest gradient gi = [Qa-β]i
l make sure going towards these gradient directions will not hit the bounds

l gi γi and gj γj must point to opposite directions

l Cost about 0(N2)

ai�i + aj�j = cij

Cmin  ai, aj  Cmax

Cmin  ai � �gi,aj � �gj  Cmax
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Kernel Machines & sparsity
l Other existing Kernel Machines

l directly express output as linear combination and estimate the weights
l fit a probabilistic model (e.g. as in logistic regression)
l use negative log-likelihood measure
l optimize penalized loss using explicit sparsity
l advantage: no need for Mercer Kernel, explicit sparsity, probabilistic

interpretation, better extension to Multiple classes

l Relevance Vector Machines (RVMs)
l other penalization function

p(t|x, ✓) = N (t; y(x),�2)y(x) =
NX

i=1

wik(x,xi) + b

L(w, b) = Lnll(D) + �kwk1
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Support Vector Machines (SVM)

Summary
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SVM - Summary

l Classification SVM – why do we like them
l finds the largest margin separating hyperplane
l uses the soft margin trick
l there is a unique solution (no initialization issue)
l project data in a high dimensional space for non-linear relation
l a kernel simplifies computation
l indirectly induces sparsity of support vectors

l Can work with fairly large datasets (few ten of thousands)

l Drawback:
l Complexity/computational can be high 
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SVM - Summary

l It leads to a quadratic (convex) minimization problem

l The capacity (to fit) can be controlled in several ways
l C : controls the trade-off     classification error/margin
l Kernel choice
l Kernel parameters, if any

l The idea can be generalized to regression
l Other sparser methods

l Relevance Vector Machines
l L1 regularization kernel machines
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Thank you for  your attention!


