
EE 613 – Machine Learning for Engineers

Machine Learning for Engineers

Kernel methods - Support Vector Machines
Jean-Marc Odobez

EE 613 – Machine Learning for Engineers

overview

l Kernel methods
l introduction and main elements
l defining kernels
l Kernelization of k-NN, K-Means, PCA

l Support Vector Machines (SVMs)
l classification
l regression

EE 613 – Machine Learning for Engineers

Kernel methods

introduction and main elements/considerations

EE 613 – Machine Learning for Engineers

l Data points in high dimensional spaces can be better separated
l Exemple: linear classifier (e.g. perceptron)

l linear decision function => map feature in high dimensional space

l here: polynomial kernel

l Questions:
l how to map data efficiently in high dimension (potentially infinite) spaces?
l how does such mapping affect existing methods/classifiers?

(1) high dimensional spaces

<latexit sha1_base64="a/uwctX/ErnAIsZsux1uWU0zjAU=">AAAEL3icjVLLbtNAFD1peJTwSmHJxmqF1IqQh0GFDVIgDQ81BROatqhuI9t1W7eObexx1RDlL/gR1nwI6gbBjsJPcGbqiJQKwUQzOffMPfflsSPfS0S1epSbyJ87f+Hi5KXC5StXr10vTt1YScI0dtyOE/phvGZbiet7gdsRnvDdtSh2rZ7tu6v2fkPerx64ceKFwbLoR+5Gz9oJvG3PsQSpbrFjLvWNXc+Iw71Zc8ESlhF6gZjTHmljF4fdWumwq0u2II1NvaSZybtYDPShZpY0Uty6BPqmPlcodIsz1XJVLe0sqGVgpj5t3vlwVO8b4VTOgokthHCQogcXAQSxDwsJf+uooYqI3AYG5GIiT927GKJAbUovlx4W2X2eO7TWMzagLWMmSu0wi88dU6nhNjUh/WJimU1T96mKLNm/xR6omLK2Pv/tLFaPrMAu2X/pRp7/q5O9CGzjoerBY0+RYmR3ThYlVVORlWtjXQlGiMhJvMX7mNhRytGcNaVJVO9ytpa6/648JSttJ/NNcayqlHX+rmKACjqq6phnhbnlt7Rpv8ce81TwAgvcj2EQL6NJ1MBzMi/xjEyT/FO0cJeoiXl+7XvES2NeTdotpWvTGul0vgqd3tK3xQjNsQi6iiGztsk0mPUV0Vuq/GwCadZh5VTWReK2yijreYMVxq7QDtUk5YRD9r2oeg14+vQ5YI9Dvvran2/8LFjRy7X58v3XfP5PcLImcQvTmGX+B6izX4OzdPAJ3/ADP/Mf85/zX/JfT1wncpnmJk6t/PEvHOfZ3g==</latexit>

�(x) = �(x1, x2) = (x2
1,
p
2x1x2, x

2
2)

EE 613 – Machine Learning for Engineers

(2) comparing samples

l We would like similar samples to be classified in the same way => distance

l We often think of distances in (euclidian) metric spaces
l distance <-> scalar product

l Might not always be easy or relevant
l how to compare

2 strings, 2 text paragraphs, 2 sequences, 2 images.....

l However: often we can define some similarity measures between elements
l e.g. for strings: Sim(s1,s2) = EditDistance(s1,s2)
l note: often triangular inequality not respected

l How can we exploit such measures in classification algorithms? which
properties of these measures are useful?

kx� x0k2 = (x� x0)·(x� x0) = x·x� 2x·x0 + x0 ·x0

<latexit sha1_base64="7tWWO/pmNG+ERRrvReGztBjXsTI=">AAAEY3icjVNdT9NQGH4LU7H4McDEGCU5kRgwZl/VIDcm6JgfYeocbGAokrY7G5WubdpTEhy79u95qzdemeCF/8HnnHVhczF6lp4973Oe97Ondui5sSgWv2pT05kLFy/NXNZnr1y9dj07N9+MgyRyeMMJvCData2Ye67PG8IVHt8NI251bY/v2Edleb5zzKPYDfxtcRLy/a7V8d2261gC1EH2s7lhCasWuL5gZisQITsnltkTZrYjy+mV+j2jr5seb4sV3Twd0TBmnn4w9AdsjF0esLlxluUmJEw3I7dzKO4fZJeK+aJabBKUUrC0vvb9y81vZ7dqwZxmk0ktCsihhLrEyScB7JFFMX57VKIiheD2qQcuAnLVOac+6fBNoOJQWGCPsHdg7aWsD1vGjJW3gywengiejO7BJ4AuApbZmDpPVGTJ/i12T8WUtZ3g305jdcEKOgT7L7+h8n/9ZC+C2rSmenDRU6gY2Z2TRknUVGTlbKQrgQghOIlbOI+AHeU5nDNTPrHqXc7WUudnSilZaTupNqGfqkpZ53kVPSpQQ1UdYS8gt3yXNuxP9BF5CvSKNvA8pRrwNlWAyvQSzBt6AaYC/jlVKQdUoVW87YfAr0dUFdhV5VeHNfQzcCsMqKW2igiVkQiGiiGz1sGUkfUt0Ht4eekEkrTDwljWTeC6yijr2aImYhdgB2qScsIB+t5UvfrYPWiO0SPuIe596c9bPgmaRr60mn/0Dh/AMxqsGbpNd2kFFTymdXRcwzQd+qUtaHe0xekfmdnMfObGQDqlpT4LNLYyi78B7fPomw==</latexit>

x·x0 =
1

2

�
kxk2 + kx0k2 � kx� x0k2

�

EE 613 – Machine Learning for Engineers

Two types of classifiers
l model-based (classification, regression)

l eg. linear classifier
l data used to learn the model parameters, and then removed

l non-parametric approach
l training data points are kept in classifier definition

l K-Nearest Neighbour (kNN)
l Parzen windows density estimation

l memory-based methods (fast at training, slow at testing)

In practice: in many memory-based methods, the solution can be written as
a linear combination of kernel function at training data points

representing scalar product in high dimension
This linear combination is often referred to as the ‘dual’ representation

(3) classifiers

P (x) =
1

n

X

i

1

hd
n

K

✓
x� xi

hn

◆

h(x) =

⇢
+1 if w·x+ b > 0
�1 otherwise

EE 613 – Machine Learning for Engineers

(3) illustration: perceptron algorithm (1)

Goal: training a linear classifier

l Note: bias b can be introduced as one of the weight term by adding a
constant component to x equal to 1

l Next slides: drop the tilde notation, and define classifier as

h(x) =

⇢
+1 if w·x+ b > 0
�1 otherwise

<latexit sha1_base64="T1fC7O41A2HAe+ENTlKZGUfFS3A=">AAAEP3icjVJLbxMxEJ5teJTllcCNXiwqpCLUZIOE4AJqaBHvkj7Sh7pVtLtxEpN9yeu0hFWO/CLuSPwMDpwBISGu3PjsbGmhQuDV2t98M994xrafhiJTjvPBmiqdOHnq9PQZ++y58xculiuXNrJkKAPeCpIwkVu+l/FQxLylhAr5Viq5F/kh3/QHi9q/ucdlJpJ4XY1Svht5vVh0ReApUO3ym/6cu+Qpr5mIWF1nd5kb8q5yc2a7Pu+JOPek9EbjPBzbN+rMjfzkVc5El42Zu89Fr68y5nYSlbLDLOwec5jr2vO/4hPV53JfZJyNbZfHnSKp7UqdoWrb7fKsU3XMYMdBvQCzCw3n7cfKu7iZVKwVcqlDCQU0pIg4xaSAQ/Iow7dDdXIoBbdLOTgJJIyf05hsaIeI4ojwwA4w92DtFGwMW+fMjDrALiF+CSWja9AkiJPAejdm/EOTWbN/y52bnLq2EVa/yBWBVdQH+y/dQeT/6nQvirp0x/Qg0FNqGN1dUGQZmlPRlbMjXSlkSMFp3IFfAgdGeXDOzGgy07s+W8/4P5tIzWo7KGKH9MVUqes8rCKnGrVM1RJzDXvru/Rhv6aX2KdGj2kJf4OawOv0AGiRHoFZpodgngNpuwHPM5qnJ2BeYF2F3QRag38d6yptIzpCve3inqTZdWJ1gGqoJkFV+nXoSgamphhzCLuNf8/Uk8EWRqGjlqFR5g4EUExPj6jWjAKvDK+6/ucbPg42blbrt6rOCp73fZqMaZqhqzSHN3ybFtBlE2cV0FerYl2xZkrvS59K30rfJ6FTVqG5TL+N0o+fUC/tVA==</latexit>

h(x) =

⇢
+1 if w·x > 0
�1 otherwise

<latexit sha1_base64="8A84hd6TOWQYX0EnrEUrHGEHbU4=">AAAEZHicjVLrThNBFD4LVbGiFom/TMwEYlIjtlsTL3/UIhjvWKAFDEuavQzt2L1ld7ZYm76FT+Eb8QJG38JvpluootHZ7M53vnO+c5kdJ/ZFKk3z2JiZLZw7f2HuYvHS/OUrV0sL13bSKEtc3nIjP0r2HDvlvgh5Swrp87044Xbg+HzX6a0p/26fJ6mIwqYcxPwgsDuhOBSuLUG1S18Zs6TwPT60jrjodGU6Yo8ZK0+sFWaJUHIUi+XtIoIDJ/o0ZHbosdGJct2WdiNCnNKWT80VVpvSyC4P2RFnXbvPp8QnZS0vkvGfcj5hJisWi+3Sslkx9WJnQS0Hy/Ul686X4/qgES0Ym2SRRxG5lFFAnEKSwD7ZlOLZpxqZFIM7oCG4BEhoP6cRFaHNEMURYYPt4duBtZ+zIWyVM9VqF1V8vAmUjG5BEyEuAVbVmPZnOrNi/5Z7qHOq3gbYnTxXAFZSF+y/dJPI/9WpWSQd0iM9g8BMsWbUdG6eJdOnojpnU1NJZIjBKezBnwC7Wjk5Z6Y1qZ5dna2t/d91pGKV7eaxGf3QXao+T7sYUpVauusE3ypqq3/pwP5MH1GnSq9oHe8qNYCb9BxojV6C2aAXYN4BKXsVnrd0l16DeY99C3YDaBv+JvYt+oDoAP228/+U6KpjywOqopsIXanboTrp6Z5CfH3Ybbx93U8KW2iFitqARup/IIBCejOl2tYK3DLc6trvd/gs2LlXqd2vmJu43s9ovOboBi1RGXf4IdUxZQNn5Rol44Hx1KjPfivMFxYL18ehM0auWaRfVuHmT3x79eI=</latexit>

w̃ = (w, b) and x̃ = (x, 1) then we have w̃·x̃ > 0

EE 613 – Machine Learning for Engineers

(3) illustration: perceptron algorithm (2)
Perceptron algorithm (Rosenblatt)

Simple method to train a linear classifier

l Given a training set

l Algorithm proceeds as follows

Result: if data are separable, algorithm is converging to a valid solution

(xn, yn) 2 RD ⇥ {�1, 1}, n = 1, . . . , N,
<latexit sha1_base64="eYWLX4uRiTiU3FmsW1TTbsGkiKI=">AAAD+HicjVLbbtNAEJ3UXEq4pfDIy6oVUhFpLhQVeEAKpOGWUoWQpJXqEtnOtjX1Tfa6ahrlL/gA3hBviI9B6hM8wl9wduJAUYVgV16fOTNndmZsO/LcRFUqx7kZ48zZc+dnL+QvXrp85Wph7lovCdPYkV0n9MJ407YS6bmB7CpXeXIziqXl257csPfr2r9xIOPEDYOOGkZy27d2A3fHdSwFql94kV887AdFMewHt4TpBsL0LbVn26P2+M2qMJXry0SYI7FULYqqMMdFYfIOxEMByhyEKimK9aLI5/uFhUqpwkucBtUMLNTmzdvvjmvDVjiXa5JJAwrJoZR8khSQAvbIogR7i6pUoQjcNo3AxUAu+yWNKQ9tiiiJCAvsPs5dWFsZG8DWORNWO7jFwxNDKegmNCHiYmB9m2B/ypk1+7fcI86paxvibWe5fLCK9sD+SzeN/F+d7kXRDt3nHlz0FDGju3OyLClPRVcuTnSlkCECp/EA/hjYYeV0zoI1CfeuZ2ux/ztHalbbThab0g+uUtf5u4oRlanLVcc4y7hbf0sb9hG9xT1lek6reB5RC7hDDaA6PQOzTk/BNMA/oTVaAmrQCr72MvDLE1EN2Gusa8Oa6lrYncxTB+rC2wDfxNlmlc75mnrIVYYd8jT0lELU3uR6A5weYg5QZ4nncoieJ3vMf/IDvVZ+/benQe9OqbpcuvsKv/RjmqxZukHztIhO7lENPbRQm0Of6At9pW/GkfHe+GB8nITO5DLNdfpjGZ9/AgOmzaU=</latexit>

<latexit sha1_base64="T1fC7O41A2HAe+ENTlKZGUfFS3A=">AAAEP3icjVJLbxMxEJ5teJTllcCNXiwqpCLUZIOE4AJqaBHvkj7Sh7pVtLtxEpN9yeu0hFWO/CLuSPwMDpwBISGu3PjsbGmhQuDV2t98M994xrafhiJTjvPBmiqdOHnq9PQZ++y58xculiuXNrJkKAPeCpIwkVu+l/FQxLylhAr5Viq5F/kh3/QHi9q/ucdlJpJ4XY1Svht5vVh0ReApUO3ym/6cu+Qpr5mIWF1nd5kb8q5yc2a7Pu+JOPek9EbjPBzbN+rMjfzkVc5El42Zu89Fr68y5nYSlbLDLOwec5jr2vO/4hPV53JfZJyNbZfHnSKp7UqdoWrb7fKsU3XMYMdBvQCzCw3n7cfKu7iZVKwVcqlDCQU0pIg4xaSAQ/Iow7dDdXIoBbdLOTgJJIyf05hsaIeI4ojwwA4w92DtFGwMW+fMjDrALiF+CSWja9AkiJPAejdm/EOTWbN/y52bnLq2EVa/yBWBVdQH+y/dQeT/6nQvirp0x/Qg0FNqGN1dUGQZmlPRlbMjXSlkSMFp3IFfAgdGeXDOzGgy07s+W8/4P5tIzWo7KGKH9MVUqes8rCKnGrVM1RJzDXvru/Rhv6aX2KdGj2kJf4OawOv0AGiRHoFZpodgngNpuwHPM5qnJ2BeYF2F3QRag38d6yptIzpCve3inqTZdWJ1gGqoJkFV+nXoSgamphhzCLuNf8/Uk8EWRqGjlqFR5g4EUExPj6jWjAKvDK+6/ucbPg42blbrt6rOCp73fZqMaZqhqzSHN3ybFtBlE2cV0FerYl2xZkrvS59K30rfJ6FTVqG5TL+N0o+fUC/tVA==</latexit>

h(x) =

⇢
+1 if w·x > 0
�1 otherwise

Meaning: sample not well
classified

EE 613 – Machine Learning for Engineers

(3) illustration: perceptron algorithm (3)

l Update rule at iteration l

l In (high dimension) projection space

l Result: run until convergence, keeping only l indices with a non 0 update
l weights are a linear combination of training data

l the decision function can be rewritten as

l Decision function h(x) : data is thus used only through dot products in projected
space, and implicitly, through a Kernel k

wl+1 = wl +

⇢
ylxl if ylwl · xl  0
0 otherwise

wl+1 = wl +

⇢
yl�(xl) if yl(wl · �(xl))  0
0 otherwise

x ! �(x)

k(x,x0) = �(x) · �(x0)

w =
X

l

yl�(xl)

w · �(x) =
X

l

yl �(xl) · �(x) =
X

l

yl k(xl,x)

EE 613 – Machine Learning for Engineers

Kernel methods

defining kernels

EE 613 – Machine Learning for Engineers

Kernels
l Kernel – we are given a projection operator

=> we can define a kernel as a dot product in that space

l Alternatively – directly provide a kernel k(x1,x2)

l Intuition – the kernel capture the similarity between x1 and x2

l E.g. : perceptron example

l Note: weighted sum of labels

l kernel k(xl,x) is high => x will tend to be classified like xl

l kernel k(xl,x) is low => xl will have no influence on output for x

l In practice, the choice of kernel depends on application

k(x,x0) = �(x) · �(x0)

x ! �(x)

<latexit sha1_base64="pbEomO+EHRekoPA1ChK+WLf0/D4=">AAAEn3icjVLbbtNAEB0XAyVcmsIjL4YKqRUlN1DhBamQhoCSFje0aUtcRbazTdyuL7LXRSHqD/DGR/EBPPIH8BOIs1tHJC0F7Ng5c3bOmZ3xOhH3ElEqfdNmLumXr1ydvZa7fuPmrbn8/O12Eqaxy7bdkIfxrmMnjHsB2xae4Gw3ipntO5ztOEdVub5zzOLEC4MtMYzYvm/3A+/Ac20Bqpv/Mli01mxhm6EXiCXjuWF9YF5/IBLD6oUiMqz1oTnwzDg8PJOXs5LU73LD8ofcdhiXcFn9/qTo8qW/GuZQ+AI/w2qwOGB8ym15UpvLdfMLpUJJXcZ5UM7Awmr9U/Wn9fmrGc5rNlnUo5BcSsknRgEJYE42Jbg7VKYSReD2aQQuBvLUOqMTykGbIoshwwZ7hHcfUSdjA8TSM1FqF1U4nhhKgx5AEyIvBpbVDLWeKmfJXuQ9Up5yb0P8O5mXD1bQAOy/dOPM/9XJXgQd0DPVg4eeIsXI7tzMJVVTkTs3JroScIjASdzDegzsKuV4zobSJKp3OVtbrX9XmZKVsZvlpvRD7VLu8/cuRlSkbbXrGO8iastv6SD+SIeoU6Q3tIbnBZnAW1QDqtJrMBtUB1MD/4qa9AioRiv42o+B1yeyaoibStdCNNZVcCoqyJa5TTjUJhwqykNWbYGpoupboD2oeDaBNOuwOFW1AdxSFeV+3lEb3kXEoZqknHCIvhuq1wBvjpxj9HiCU18+e8bPg3alUF4pPNnE8X9Jp9cs3aX7tIj6T2kV/ZqYpas91Da191pHv6fX9Q3dPE2d0TLNHZq69L1fqon/gA==</latexit>

h(x) = w·�(x) =
X

l

yl �(xl)·�(x) =
X

l

yl k(xl,x)

EE 613 – Machine Learning for Engineers

Kernels
l Kernel – we are given a projection operator

=> we can define a kernel as a dot product in that space

l We are given a function k . Does it define a Kernel?

l Valid kernels: Mercer Kernel

l Consider a smooth symmetric function k() over a compact C

l k() is a kernel if and only if it can be decomposed into

l and if and only if
l for all finite set

l the matrix K defined by Kij = k(xi,xj) is semi-definite positive

{x1, . . . ,xp} ⇢ C

k(x,x0) =
1X

i=1

↵i �i(x)·�i(x
0)

k : C ⇥ C ! IR

k(x,x0) = �(x) · �(x0)

x ! �(x)

EE 613 – Machine Learning for Engineers

Notable kernels
l Polynomial Kernels

l Gaussian Kernels

l note: not considered as a distribution here
=> no need for normalization constant

l implicit projection: in an infinite dimension space

l String Kernel

l Fisher Kernel

k(x,x0) = (u x·x0 + v)p, u, v � 0, p 2 IN

k(x,x0) = exp��kx�x0k2

, � > 0

k(x,x0) =
X

s2A?

ws�s(x)�s(x
0)

count number of times
substring s occurs in x

EE 613 – Machine Learning for Engineers

Building Kernel
l Kernel can be constructed by combining kernels, e.g. like

where kernels on the right are valid kernels on their respective domains, c1>0
and c2>0, A is a symmetric semidefinitive positive matrix, f is any function, q is a
polynomial of non-negative coefficients, and xa and xb are variables (not
necessarily disjoint) with x = (xa , xb)

l Properties can be used to demonstrate whether a proposed kernel is a
Mercer Kernel

• k(x,x0) = c1k1(x,x0) + c2k2(x,x0)
• k(x,x0) = f(x)k1(x,x0)f(x0)
• k(x,x0) = q(k1(x,x0))
• k(x,x0) = exp (k1(x,x0))
• k(x,x0) = k1(x,x0)k2(x,x0)
• k(x,x0) = k3(�(x),�(x0))
• k(x,x0) = xTAx0

• k(x,x0) = ka(xa,x0
a) + kb(xb,x0

b)
• k(x,x0) = ka(xa,x0

a)kb(xb,x0
b)

<latexit sha1_base64="z0nMEZ6Zo/ftKpLcxvK2SBy/Wn0=">AAAIBnicrVRLTxNRGP3AarH4AF26cCJVIGIf1KAuTHhVNAVToQUSBpuZ4bYM3M6M8yDUpnt/jTvjzvg33LvQhf4Gz71M6zSIjKl3Mpdzz3e+552iO9z0/Fzuy9DwhcTFS8mRy6nRK1evXR8bv7Hp2YFrsKphc9vd1jWPcdNiVd/0Odt2XKY1dc629MMlYd86Yq5n2lbFbzlst6k1LLNuGpoPqjae2EqnU6rOGqbV1lxXa3XanPMOqIBz5ivqjDqjqCXmWoxPqcuar5Vt0/LB9fDktHJPeYrXqOW7UqCz1fehnO0pZ/+iVFWlv5K4pdQjgulYRUU9Jqejif8t85upGNkGiK+yY0dROav7cRKprtnY9wdIF2d2MW5ygH7D4AUEX2uV982yax9Ebxdef+IHG3KPel1R1KZeby90orrB29Gis6ppUW1Nk7+RrlLvU+p9Sv1/TPa8UmIWklKZtRf+D0ml07WxiVwmJ5dyGuRDMDHfKKzcbi2Olu3xoRKptEc2GRRQkxhZ5ANz0sjDs0N5ypEDbpfa4FwgU9oZdSgF3wAqBoUG9hB7A6edkLVwFjE96W0gC8frwlOhu/CxoXOBRTZF2gMZWbBnxW7LmKK2Fv7qYawmWJ/2wZ7n11XG9RO9+FSnx7IHEz05khHdGWGUQE5FVK5EuvIRwQEn8B7sLrAhPbtzVqSPJ3sXs9Wk/ZtUClacjVAb0HdZpajzdxVtylJVVu1izyK3uEsd57d0gDxZekHLeBeoDFyhItASPQfzklbAFME/o1V6AFSkOdx2AXgtoirivCr91nHq+pXxVELLElAV1iL4EvZ16SVibtAmYmVxtuU0xJRs1F6S9VrYOTRHqDMj53KMnk+ejvySn4g11/tuT4PN2Uy+kHn4Cp/0Ip2sEbpFd2gKnTyiefRQRm1G4lPia+JH4mfyXfJ98kPy44l0eCj0uUl9K/n5F0APISw=</latexit>

EE 613 – Machine Learning for Engineers

Kernel methods

Kernelization of k-NN, K-Means, PCA

EE 613 – Machine Learning for Engineers

Kernelizing algorithms

l Many algorithms can be « Kernelized »
l Straightforward for the perceptron
l k-NN?
l k-Mean?
l PCA?

l how?
l write the algorithm using as data points the project data
l express results on the form of dot product
l use the kernel trick

<latexit sha1_base64="Yp++PHTyq9BqhxdY6Ftb5LrVLmM=">AAAD8XicjVLLbtNAFD2peZTySmHBgo3VCqkIEScBFZaBNDzUFExo0qKmqmx32rp1PJY9rhSi/gUbdgiWwAf1D+AvODN1REqFYCJPzj1zz33N+EkUZqpaPS5NWefOX7g4fWnm8pWr166XZ2/0MpmngegGMpLpuu9lIgpj0VWhisR6kgpv4EdizT9o6vO1Q5FmoYxX1TARmwNvNw53wsBTpLbKt/orQ3cvdFO5v9Bf8pTnyjBWd+2t8ny1UjXLPgtqBZhvzPXvfThuDF05W/LQxzYkAuQYQCCGIo7gIeNvAzVUkZDbxIhcShSac4EjzFCb00vQwyN7wH2X1kbBxrR1zMyoA2aJ+KVU2rhDjaRfSqyz2eY8N5E1+7fYIxNT1zbkv1/EGpBV2CP7L93Y8391uheFHTw2PYTsKTGM7i4oouRmKrpye6IrxQgJOY23eZ4SB0Y5nrNtNJnpXc/WM+c/jKdmtR0Uvjl+mip1nb+rGMFB11SdcneYW9+lT/s99pnHwUss8XsCl3gVLaImXpB5hedkWuSfoY37RC0s8rYfEK9MeLVot42uQ2usq/NV1OmtfduM0JqIUDcxdNYOmSazviZ6R1VUTCAvOnROZV0m7piMup636DG2Q1uaSeoJS/a9bHqNuUf0OWSPR3z1tT/f+FnQq1dqi5WHb/j8n+JkTeM25rDA/I/QYL8uZ6nv9Au+4buVWR+tT9bnE9epUqG5iVPL+voL453Fqw==</latexit>

�(x)

EE 613 – Machine Learning for Engineers

Kernelizing k-NN
l k-NN algorithm

l Training dataset:
l Parameter : K
l Classifying a new sample x

l Find the set C of K samples from D closest to x

l Assign to x the majority class in the associated set of labels

l requires distances between two examples

l easy to kernelize....

<latexit sha1_base64="N3aRmsiwDBHT9UISrdbJmxOgrhs=">AAAEJHicjVLLbtNAFL2peZTwSmHJZtQKqQjjxAEVNpUCSXg1lBDatFVdRbYzLUMd27LHlULIX/ANrPkQdgikboAl/AVnpo5IqRCM5fG5Z+65L48XByKVlcphYcY4dfrM2dlzxfMXLl66XJq70k2jLPH5uh8FUbLpuSkPRMjXpZAB34wT7g68gG94+3V1vnHAk1RE4Zocxnxn4O6FYlf4rgTVKz1tsGXmjNii03Cl245EKHvCHPbEDfaWMXyZI0I42KYT9COZmi1nbDKxbJuWZZnOaqwUKXPGxWKvtFCxKnqxk8DOwUJt3rn57rA2bEdzBZcc6lNEPmU0IE4hSeCAXErxbJNNFYrB7dAIXAIk9DmnMRWhzeDF4eGC3ce+B2s7Z0PYKmaq1T6yBHgTKBldhyaCXwKssjF9nunIiv1b7JGOqWob4uvlsQZgJb0C+y/dxPN/daoXSbt0T/cg0FOsGdWdn0fJ9FRU5WyqK4kIMTiF+zhPgH2tnMyZaU2qe1ezdfX5D+2pWGX7uW9GP3WVqs7fVYyoTOu66gR7GbnVv/Rgv6HXyFOmJ9TAe5/awGvUBKrTYzCr9AhME/xDatEtoCYt4W/fBn425dWE3dK6DqyJropbUYW38m0hQnMqQlXHUFk7YOrI+hxoC6ogn0CWd1g+lnUFuKMzqnpeUhexy7AjPUk14Qh9r+heQ+wBfA7Q4xi33v7zjp8E3aplL1l3XuD6P6CjNUvXaJ4Wkf8u1dBvG7P06QN9oW/03XhvfDQ+GZ+PXGcKueYqHVvG118bCdaI</latexit>

D = {(xi, yi)|yi 2 {1, . . . , L}, i = 1, ..., N}

<latexit sha1_base64="7xUe7ijvueKBUvAYROWs3Xx9kps=">AAAD/3icjVPLbtNAFD2peZTwamHJxmqFhISaF6iwDKThoQYIoUmLmray3WkxdWzLHlcKKQuW7PkHdsCSfkr/AP6CM7eOSKkQTOTJuWfuuS+P3TjwU12pHBWmrDNnz52fvlC8eOnylaszs9d6aZQlnup6URAla66TqsAPVVf7OlBrcaKcgRuoVXevYc5X91WS+lG4ooex2hg4u6G/43uOJrU1M98/sPtLjnbakR9qe2HC2PLt/sFmzS7Sq1KqyLJPg2oO5utz/dufjurDdjRbcNHHNiJ4yDCAQghNHMBByt86qqggJreBEbmEyJdzhfcoUpvRS9HDIbvHfZfWes6GtE3MVNQeswR8Eipt3KQmol9CbLLZcp5JZMP+LfZIYprahvx381gDshpvyP5LN/b8X53pRWMH96UHnz3FwpjuvDxKJlMxldsTXWlGiMkZvM3zhNgT5XjOtmhS6d3M1pHzH+JpWGN7uW+Gn1KlqfN3FSOU0ZWqE+5l5jbv0qX9Dm+Zp4ynWOLzAG3iFTSJGnhC5jkek2mSf4QWFoiaWOTbvkP8bMKrSbslug6tsa7GW1Gjt/FtMUJzIkJNYpisHTINZn1B9JqqIJ9AlndYPpF1mbgjGU09r9Bj7DLtSCZpJhyx72XpNeQe0GefPfIe8t5X/7zlp0GvVqoulu6+5AfwEMdrGjcwh1us4B7q7LjNaXr4iK/4jkPrg/XZ+mJ9O3adKuSa6zixrMNfhbHJqA==</latexit>

kx� xik2
<latexit sha1_base64="lU5gfmdLppFdjzgG2D8Jy16rfsI=">AAAExnicnVNtT9NQFD7Fqjjfhn70SwMxgZBtXTXoF5PpmGIYWicbGIpL2xW40PU27e3MHEZ+hH+Of6D+Cp976eIQF4x3Wfec55znvPXOi0OWCtM81Wau6FevXZ+9Ubh56/adu8W5e52UZ4kftH0e8mTbc9MgZFHQFkyEwXacBG7fC4Mt76gu/VuDIEkZjzbFMA52++5+xPaY7wpQ3eJP59hwNob2AbMTfrjorLrCtTmLxJJR+rujy5YM5/ijZTybJnR6XMTTnIWSYf2HUFZdnu66TFrA6RYXzLKpjnERVHOwUJt3lr+d1oY2n9M8cqhHnHzKqE8BRSSAQ3IpxWeHqmRSDG6XRuASIKb8AX2hArQZogJEuGCP8NyHtZOzEWyZM1VqH1VCfBMoDXoIDUdcAiyrGcqfqcySnZZ7pHLK3ob49fJcfbCCDsBephtH/qtOziJoj56qGRhmihUjp/PzLJnaiuzcmJhKIEMMTuIe/Amwr5TjPRtKk6rZ5W5d5f+uIiUrbT+PzeiH6lL2+buLEVWorbpO8KygtnyXHuzPdIg6FXpNq/g+Jxt4kxpAdVoD84ZegWmAf0lNKgE1aAVv+xHwxkRUA3ZT6VqwxjoLt8JCtIxtIkNjIoOlcsiqLTB1VH0L9AGqMN9Alk9YOVd1HbilKsp+3lMHuSuwudqk3DDH3Otq1gjPEDEDzIh7iHtf/fOWXwQdq1xdKT9+hz/ACzo7s/SA5mkRHTyhGia2sU1fs7WB9lU70df0SM/0T2ehM1quuU/njn7yC83RDH4=</latexit>

k�(x)� �(xi)k2 = �(x)·�(x)� 2�(x)·�(xi) + �(xi)·�(xi)
<latexit sha1_base64="FaKydvFCteMOcrAnaPWYf2crcR8=">AAAEPHicjVNLTxNRGD1lfGB9FV26mUBMIEhfEHRjUi31EarWSguGkjozDHjtdGYyc4ekNv4Lf49L/wN7Fxp1KWvPvUxDCyF6m07Pd77vfK+5tUNPxLJYPMxMGRcuXro8fSV79dr1GzdzM7facZBEjttyAi+Itmwrdj3huy0ppOduhZFr9W3P3bR7VeXfPHCjWAT+hhyE7k7f2vfFnnAsSaqbe2c+NHvznTVLWo1A+PKeeYIXsktm+VxvVyxkFye8XXHaz9PNzRXzRX3Ms6CUgrnKbGfx82Fl0AhmMjY62EUABwn6cOFDEnuwEPOzjRKKCMntYEguIhLa7+ITstQmjHIZYZHt8blPaztlfdoqZ6zVDqt4/EZUmrhLTcC4iFhVM7U/0ZkVe17uoc6pehvw105z9clKvCf7L90o8n91ahaJPTzQMwjOFGpGTeekWRK9FdW5OTaVZIaQnMK79EfEjlaO9mxqTaxnV7u1tP+7jlSssp00NsEP3aXq86SLIQpo6a4jPgusrd6lTfsjPrBOAc+xxu8jNIg3UCOq4hmZl3hKpkb+CepYIqphlW97mfjFWFSNdl3rmrRGujJvRZnRKrbODLWxDGWdQ1Vtkqmy6iuit1R56QaSdMLCRNV14qauqPp5gzZzF2gHepNqwwHnXtez+nx6jDngjLyHvPel07f8LGiX86XV/Mpr/gEe4/hM4w5mMc8O7qPCiRvcpoOv+IU/ODK+GN+Mn8bv49CpTKq5jYljHP0Fnozevg==</latexit>

= k(x,x)� 2k(x,xi) + k(xi,xi)

<latexit sha1_base64="LZmKxMiszLI4EIplpJtYUiMOWZI=">AAAELXicjVLLbtNAFD2peZTwSmHJxmqFVKSSF6hlg1RIw0MJENImbdVUke04ranjsexxpRJlza+wY82HsEBCsITu+QDOTB01aYVgIk/OPXPPfc3Yoe/Fslj8mpkxLly8dHn2Svbqtes3bubmbrVjkUSO23KEL6It24pd3wvclvSk726FkWsNbN/dtA8q6nzz0I1iTwQb8ih0dwfWXuD1PceSpLq59cpiZ82SVkN4gbxnPjY7Q/OU6A69bmm0dIYpK8bvCRkvmdnpo9rI7Iy6uYVivqiXeR6UUrCwOt/vf/jd+tgQcxkLHfQg4CDBAC4CSGIfFmL+dlBCESG5XQzJRUSePncxQpbahF4uPSyyB9z3aO2kbEBbxYy12mEWn19EpYm71Aj6RcQqm6nPEx1ZsX+LPdQxVW1H/LfTWAOyEvtk/6Ube/6vTvUi0ccj3YPHnkLNqO6cNEqip6IqNye6kowQklO4x/OI2NHK8ZxNrYl172q2lj7/pT0Vq2wn9U1wrKtUdZ5WMUQBLV11xL3A3Ooubdrv8Y55CniJNX5P0CDeQJWoghdkXuM5mSr5Z6jjPlEVy7ztB8SvJryqtOta16Q11pX5Ksr0Vr51RqhORCjrGCprk0yFWd8QbVPlpxNI0g4LU1lrxE2dUdWzjjZjF2gLPUk1YcG+a7rXgLtPn0P2qF596ewbPw/a5XxpOf/wLZ//U5ysWdzBPBaZfwWr7LfBWTr4jB+8g2Pjk/HF+GZ8P3GdyaSa25haxs8/J53dZw==</latexit>

C(x) = {xi1 ,xi2 , . . . ,xiK}

<latexit sha1_base64="qq6C16F3ct6h9/JU+czuhD/gzMA=">AAAEAXicjVLJbtNQFD2pGUqZUliysVohWEAmUGFZCGFQAoTQpK2aKrKdl2Lq2JaHSiHKigUr/gN2CJbAh/AHsOcDOO/GESkVgmf5+dzz7rmTnx16bpyUSt9yC8ax4ydOLp5aOn3m7Lnz+eULnThII0e1ncALoi3bipXn+qqduImntsJIWUPbU5v2flWfbx6oKHYDfyMZhWp3aO357sB1rIRUL3+lOzZHvbHbK0+uTUGFoOv1gyTOiPrE7E56+dVSoSTLPArKGVhdXxkM3vxsv2sGyzkLXfQRwEGKIRR8JMQeLMR8dlBGCSG5XYzJRUSunCtMsERtSi9FD4vsPvc9WjsZ69PWMWNRO8zi8Y2oNHGZmoB+EbHOZsp5KpE1+7fYY4mpaxvxa2exhmQTvCD7L93M8391upcEA9yWHlz2FAqju3OyKKlMRVduznWVMEJITuM+zyNiR5SzOZuiiaV3PVtLzr+Lp2a17WS+KX5IlbrO31WMUURbqo64F5lb/0ub9iu8ZJ4iHuEe3ztoEm+gRlTFQzJP8IBMjfx9NHCdqIY1/u0bxI/nvGq0G6Jr0ZrpKrwVFXpr3wYj1OYiVCSGztoiU2XWp0TbVHnZBNKsw+KhrHXilmTU9TxHh7GLtAOZpJ5wwL7r0qvP3aPPAXvUt7785x0/CjqVQnmtcPMZr/9dTNciLmEFV5n/FtbZb5OzdPAWn/AFX43Xxnvjg/Fx6rqQyzQXcWgZn38BVy7Mfw==</latexit>

{yi1 , yi2 , . . . , yiK}

EE 613 – Machine Learning for Engineers

Kernel K-Means
l Apply K-means in projected space
l Assumes μi denotes the means/centroids in this space

l as the projected space can be infinite, we keep the means in their dual form

i.e. as a weighted sum of the samples ...

l Assignment step: for each data sample, we need to find the closest mean

l Mean computation: update the alpha accordingly

µi =
X

j

↵i
j�(xj)

{↵i
1,↵

i
2, . . .}

k�(x)� µik2 = �(x)·�(x)� 2
P

j ↵
i
j�(xj)·�(x) +

P
j,k ↵

i
j↵

i
k�(xj)·�(xk)

<latexit sha1_base64="DgLqqnS5eqNdg5RIga85tElkr/Y=">AAAEGHicnVPLbtNAFLVrHsUUaGHJZkRUqRU4jlNUYFEpITU0ahKZNGkrxak1nkySSfySZ1wRTNZ8A6wQ/Ahig2DJju/gBxg7ocI0FRJXY+nMOXfuY3zHDhxCWaHwQ1ySLl2+cnX5mnx95cbNW6trtw+pH4UIt5Hv+OGxDSl2iIfbjDAHHwchhq7t4CN7XEn0o1McUuJ7LTYJcNeFA4/0CYKMU9aauAKA+RqY9YkxJEbojzbMXcig4ROPbQIFmG5kEe5xUgQ7MrjIz+z5LLhIlBVQBCaNXGsETOgEQ3hCErjI2xr9K9j9Wah49GA8zYT7Dcf/FdkabwIgW6u5Qr6QGjgPtDnIldTP79986+0Y/P5+8qAocrHHkAMp7WiFgHVjGDKCHDyVzYjiAKIxHOAOhx50Me3G6X+bgnXO9EDfD/nnMZCyf56IoUvpxLW5pwvZkP6tJeQirROx/uNuTLwgYthDs0T9yAHMB8kQgB4JMWLOhAOIQsJrBWgIQ4gYHxVZzuR5STninWRIRngf04X1LGwgQ+KA9skgy81uJJsk4BUlT4DT8rqZdhPn1Xy6Gj5LJ7ieppTnqtqmvAHV7/k2fjVy1eputWyoLb1c2as2nqu68aym6Pq2tqXUU0pXanq52Ug0w2jxTaXVburqvt5s6DXl4LB+lmcfhx52Dk7dpJh0TJ4ktn02FOfBYTGvbeUfvtBypafCzJaFu8I9YUPQhEdCSdgTDKEtIJGKb8UP4kfpnfRJ+iJ9nbkuifMzd4SMSd9/AUCkU3o=</latexit>

k�(x)� µik2 = k(x,x)� 2
P

j ↵
i
jk(xj ,x) +

P
j,k ↵

i
j↵

i
kk(xj ,xk)

<latexit sha1_base64="JRYmi1uKO0vkDso36ulQfpQEaYI=">AAAEgHicjVJdbxJBFL1bUSt+lOqjLxOLCY3AAjW1mjSpUvwIrVkr0CbdQpZlCgvL7mY/GhF59m/4W3z00Tf/gf4LzwyLQoips9nZc8+95869d6ft2VYQFgo/lJUriavXrq/eSN68dfvOWmr9biNwI9/kddO1Xf+kbQTcthxeD63Q5ieez41h2+bH7UFZ+I8vuB9YrlMLRx4/Gxpdxzq3TCME1Up9T6bTTP/E9MOR1rM03+1n9H0jNDTXcsJNlmP6MGpZiGiW2G6SMb3KfYfbc0HZ+fhkjpWYHkTDVp/phu31jKYl4JKq1c+yBeGjqWzczw4mC9IZHFyapTXYZOl0spXaKOQLcrFlUIzBxp769cvnb51dzV1XqqRTh1wyKaIhcXIoBLbJoADPKRWpQB64MxqD84Es6ec0oSS0EaI4IgywA+xdWKcx68AWOQOpNnGKjdeHktFDaFzE+cDiNCb9kcws2H/lHsucorYRvu041xBsSD2wl+lmkf+rE72EdE47sgcLPXmSEd2ZcZZITkVUzua6CpHBAydwB34f2JTK2ZyZ1ASydzFbQ/p/ykjBCtuMYyP6JasUdf6tYkwq1WXVPnYVZ4t/2Yb9kfo4R6U3tI/3OWnANaoAlek1mLf0CkwF/Es6oBxQhbbxt7eAD+eiKrAPpO4I1kyn4anFnjJQHd4K+Cr2I6kSOd9TA7lU2K6chpiSi9qrsl4Hu42YC9SZl3P5gJ6nz0Te5Kdibf+5t8ugUcoXt/KP3+FKv6DpWqX79IAy6OQJ7aEHDbWZyo7SVLpKL7GSyCTURHEauqLEmnu0sBLPfgPDb/vl</latexit>

<latexit sha1_base64="MLw2t4huH1Ygz+ZHPbWwIKHLH/E=">AAAEWXicjVLtThNBFL0LVbH4AaK//DORmGCC7bYS9I8GLMUPECvyZSg2s8uUTtnubHZnQdw0PoaP4rMYf5voW3hm2MYiMbrNTs899577teNFgUy06351RkYLFy5eGrtcHL9y9dr1ickbW4lKY19s+ipQ8Y7HExHIUGxqqQOxE8WC97xAbHuHNePfPhJxIlW4oU8isdfjB6FsS59rUK2JTzPNnqc+ZMdSd/qsOcuaPIg6vNV9L9lj1mzH3M8q/WytJeG1kUy2GfAS17yhZKhbXSs79XkiUOFBwrRifsCThNmc0hyzzB1EKd0R8bFMRP9ea2LaLbn2YedBJQfTC0+W5z5/WXzZUJMOpybtkyKfUuqRoJA0cECcEvx2qUIuReD2KAMXA0nrF9SnIrQpogQiONhDnAewdnM2hG1yJlbto0qAN4aS0V1oFOJiYFONWX9qMxv2b7kzm9P0doJ/L8/VA6upA/ZfukHk/+rMLJra9MjOIDFTZBkznZ9nSe1WTOdsaCqNDBE4g/fhj4F9qxzsmVlNYmc3u+XW/8NGGtbYfh6b0k/bpenzdxcZlWnTdh3jLKO2+ZYe7I/URZ0yvaAlvIvUAN6gOlCNnoNZo2dg6uCXaZXuA9VpHl/7AfCroag67FWrW4c10FVxK6qINrGryFAfylC1OUzVdTA1VH0N9A6qIN9Amk9YPlN1BXjdVjT9vKUt5C7DVnaTZsMKc6/YWUOcAWKOMGMft77y5x0/D7aqpcp8ae4Nrv9TOn3G6DbdoRnUf0gLmLeBXfr03Rl3bjq3Rr8VnMJYoXgaOuLkmik68xSmfgHaB+ai</latexit>

(with↵i
j =

1

Ni
if xj belongs to class i , 0 otherwise)

EE 613 – Machine Learning for Engineers

Kernel PCA
Standard PCA

l Way to remove correlation between points
=> reduce dimensions through linear projection

l Data driven: training samples
l compute mean and covariance

l find largest eigenvalues of covariance matrix
=> sort eigenvectors ui by decreasing order of eigenvalues
=> form matrix

l lower dimensional representation of datapoints is given by

l approximate reconstruction

20

yn = UT (xn � x̄)

U = (u1, . . . ,uM)

x̃n ' x̄+Uyn

EE 613 – Machine Learning for Engineers

Kernel PCA - intuition

l Apply normal PCA in high-dimensional projected space
l (straight) lines of constant projections in projected space

correspond to nonlinear projections in original space

EE 613 – Machine Learning for Engineers

Kernel PCA
l Assume projected data are centered (have 0 mean)

l Covariance matrix in projected space

where X is the design matrix, with column i defined by Φ(xi)

l PCA computes the eigenvalues/eigenvector of C.
How can we compute them (or involve) in terms of

l Note that

X

i

�(xi) = 0

C =
1

N

NX

i=1

�(xi)�(xi)
T =

1

N
XXT

K = XTX

Kkl = k(xk,xl) = �(xk)T�(xl)
<latexit sha1_base64="MeTZa4MQAqr/r9Gc+ig4sdNWXcM=">AAAEJHicjVLbbtNAEJ3EXEpaIIVHXqw2SK2AXCgq8IAUSM1FaZApSVqpKZHtbls3G9tar6OGKH/BN/A1vCEeKiGe4S84u3EgVVXBWl6fOTNndma8bsT9WJbLp5mscenylatz13LzC9dv3Mwv3mrHYSI81vJCHood14kZ9wPWkr7kbCcSzOm7nG27vZrybw+YiP0waMphxPb6zmHgH/ieI0F184NcoWB26kwEjDccKfwTi3dHPT42n03plc6GIx079APZ7d2fMfiqCmoM7SPfFuHxmbjVD80LXFAVCt38crlY1ss8DyopWK4ude59Oq0O7XAxU6cO7VNIHiXUJ0YBSWBODsV4dqlCZYrA7dEInADytZ/RmHLQJohiiHDA9rAfwtpN2QC2yhlrtYdTOF4BpUl3oQkRJ4DVaab2JzqzYi/KPdI5VW1DfN00Vx+spCOw/9JNI/9Xp3qRdEBPdA8+eoo0o7rz0iyJnoqq3JzpSiJDBE7hffgFsKeV0zmbWhPr3tVsHe3/qSMVq2wvjU3ol65S1fm3ihGVqKWrFthLOFv9Sxf2RzrGOSV6Qxt4n5MN3CQLqEavwbylV2As8C9pkx4AWbSOv70G3JiJsmBvat0WrKnOxtNMPTWgFrwW+Dr2La1SOd9TG7lKsEM9DTWlELXXdb0Bdo6YAeos6rmcoOfJM9Y3+ala63/u7XnQflisrBUfvcOVfkGTNUd3aIlW0MljqqIHG7V59D2TzcxnFozPxhfjq/FtEprNpJrbdGYZP34DsX3gPQ==</latexit>

<latexit sha1_base64="qVxsVPMK2wOmoePaz2caR5bPOqQ=">AAAEDHicjVLLbtNAFL2peZTwSmHJZtQKqRUlcZAQbJBSGsQzwU2TPhRHke1M02kc2xqPK4WIX2DFp7BAQmz5h27YUv6CMxNXFAqCsTxz7rn33Ll3ZvwkFKmy7aPCnHXu/IWL85eKl69cvXa9tHBjK40zGfBOEIex3PG9lIci4h0lVMh3Esm9sR/ybX+0rv3bh1ymIo7aapLw3tgbRmJPBJ4C1S+1ikXG3DpPxTBqeIo9Yl3mNibOvnBkfLDs1j3lObGIVL+6ssrccBCrlK3+OaK5wjB6/dKSXbbNYGdBNQdLtUX3zvuj2sSJFwob5NKAYgooozFxikgBh+RRiq9LVbIpAdejKTgJJIyf01sqQpshiiPCAzvCPITVzdkIts6ZGnWAXUL8EkpGt6GJESeB9W7M+DOTWbN/yz01OXVtE6x+nmsMVtE+2H/pTiL/V6d7UbRHD00PAj0lhtHdBXmWzJyKrpyd6kohQwJO4wH8EjgwypNzZkaTmt712XrGf2wiNavtII/N6LupUtf5s4opVahjqpaYK9hb36UP+w0dYJ8KPac6/jVygNv0BGidnoFp0lMwDSBtr8Hziu7SCzCvsbZgO0Cb8LextmgX0WPU28/vSZpdZ9YAqIJqYlSlX4euZGRqijCHsPv4D009KWxhFDqqCY0ydyCAInp5SrVpFHhleNXV39/wWbB1r1y9X7Y38Lwf02zM0y1apGW84QdUQ5cOziqgj/SVvtGx9c76YH2yPs9C5wq55ib9MqwvPwDcKdpr</latexit>

X = [�(x1), . . . ,�(xN)]

EE 613 – Machine Learning for Engineers

Kernel PCA
l By definition, we have

l Substituting the covariance definition leads to

l Consequence: the eigenvector can be expressed as a linear combination
of the projected samples (DUAL FORM)

l Then, how can we actually determine the a coefficients?
(and involve only the kernel function k(. , .))

Cvi = �ivi

vi =
NX

l=1

�(xl) ail, (with ail =
1

�iN
�(xl)

Tvi)

<latexit sha1_base64="7jWCOMRKQOdQ3GWQaHLGZ7QpkKo=">AAAEuXicnVJbbtNAFL0uAUp4pfBZIVlUSEEqSYyEQEKRWlpEeTS4bdKH6tZynEkyjWNb43GkNMoK+IUvVsCS2AGsAs5MHDVQFRBj2XPuua9zx9OMA57ISuWrMXcpd/nK1flr+es3bt66XVi4s5tEqfBZw4+CSOw3vYQFPGQNyWXA9mPBvH4zYHvN3pry7w2YSHgU1uUwZkd9rxPyNvc9Ccot/Mg7AWvLoum0heePrPGoNjadJO27o6BqjY+1uTm0u9wW0UnRWfekZ0c8lG7w0HSWnWXzQvdxHT7BO12JSMY7LBww3+Vm1TTz/91tqvZPPWd6TftXp6wXKPYswi0sVUoVvczzwMrA0spG/OXe58VTO1owtsihFkXkU0p9YhSSBA7IowTPIVlUoRjcEY3ACSCu/YzGlEduiiiGCA9sD98OrMOMDWGrmonO9tElwCuQadID5ESIE8Cqm6n9qa6s2Itqj3RNpW2IvZnV6oOV1AX7t7xp5L/mqVkktemZnoFjplgzajo/q5LqU1HKzZmpJCrE4BRuwS+AfZ05PWdT5yR6dnW2nvZ/05GKVbafxab0XatUOs9UjKhMDa1a4FtGb/Uvm7BP6QR9yvSa1vGukg1cp5dAa7QBpkavwGwCKXsVnnf0iN6AeY99G7YNtAN/Hfs2HSC6D71u9p+E7jqxWkBlqImgSt0OpaSnNYX4BrBdvAOtJ4HNdYaKqiFH6n/AgUJ6O5O1ozNwy3Crrd/v8Hmw+7hkPSlVtnC9X9BkzdMi3aci7vBTWsGUNs7KN5jxwfhofMo9z3m5bu5kEjpnZDl36ZeVS34Ck5sXMw==</latexit>
1

N

NX

l=1

�(xl) �(xl)
T

!
vi =

1

N

NX

l=1

�(xl)
�
�(xl)

Tvi

�
= �ivi

EE 613 – Machine Learning for Engineers

Kernel PCA
l In matrix form, eigengenvectors can thus be written as

l Eigenvalue problem

l Introducing the decomposition into it leads to

l Thus, we can find solutions for ai by solving the eigenvalue problem

vi = Xai

Cvi = �ivi C =
1

N
XXT 1

N
XXTvi = �ivi

1

N
XXTXai = �iXai

XTXXTXai = N�iX
TXai i.e. K2ai = �iNKai

Kai = �iNai

EE 613 – Machine Learning for Engineers

Kernel PCA
l We need to normalize the coefficient ai

l impose that eigenvectors in projected space have norm 1

l We need to center the data (in projected space)
l we can not compute the mean (in projected space) as we want to avoid

working directly in this projection space => we need to formulate the algorithm
purely in term of the kernel function

l Projection (coordinate) of a point on eigenvector i

1 = vT
i vi = (Xai)

T (Xai) = aTi X
TXai = aTi Kai = �iNaTi ai

K̃ = X̃T X̃ = XTX� 1
NXTX11T � 1

N 11TXTX+ 1
N211TXTX11T

= K� 1
NK11T � 1

N 11TK+ 1
N211TK11T

yi(x) = vT
i �(x) = (

NX

l=1

ail�(xl))
T�(x) =

NX

l=1

ail�(xl)
T�(x) =

NX

l=1

ailk(x,xl)

�̃(xj) = �(xj)�
1

N

NX

l=1

�(xl) X̃ = X� 1

N
X11T=>

EE 613 – Machine Learning for Engineers

Kernel PCA - illustration

l (Schölkopf et al1998) – Kernel PCA with Gaussian kernel – first 8 eigenvalues
l contour lines = points with equal projection on corresponding eigenvector
l first two eigenvectors, separate the 3 main clusters
l following eigenvectors split cluster into halves; and further 3 as well (along orthogonal

directions)

EE 613 – Machine Learning for Engineers

Kernel PCA - Summary
l Given a set of data points, stacked as X

l Compute the eigenvectors and eigenvalues

l Normalize them properly

l Projection of a new data point onto the principal components

compute K and then K̃

K̃ = K� 1

N
K11T � 1

N
11TK+

1

N2
11TK11T

K̃ai = �iai

�ia
T
i ai = 1

yi(x) =
NX

l=1

ail k(x,xl)

EE 613 – Machine Learning for Engineers

overview

l Kernel methods
l introduction and main elements
l defining kernels
l Kernelization of k-NN, K-Means, PCA

l Support Vector Machines (SVMs)
l classification
l regression

EE 613 – Machine Learning for Engineers

Support Vector Machines (SVM) - principle

l separable data: several classifiers available. Which one is the best?
l perceptron: classifier depends on initialization, order of visit of datapoints
l margin

l distance from the closest datapoint to the decision boundary
l why do we want a large margin?

l classification more immune to small perturbation of the datapoints

l H1: does not separate the classes
l H2: separate classes, but by a small margin
l H3: maximum margin

Main idea: look at the margin !

EE 613 – Machine Learning for Engineers

SVM – margin geometry

l linear decision function

- b

signed distance
to decision boundary

y(x) = wTx+ b
<latexit sha1_base64="8XP2Nd74WtTPuAmFtrHZs5ng35s=">AAAD6HicjVJdT9RQED3L+oHrB4s++tJATDDE/RCD+mCysqxoALPC7kLCImnLZSl026a9RVfCf/DBxPjqk7/GV+Uf6L/w3KErGGL0Nr09c2bO3JnpdSLfS3SlcpwbyV+4eOny6JXC1WvXb4wVx292kjCNXdV2Qz+M1x07Ub4XqLb2tK/Wo1jZfcdXa85+3fjXDlSceGHQ0oNIbfbtXuDteK6tSW0V57qrneUw1VPdeVvbzdAL9F3riWXYN8rr7erkdcuyTp3WtPiIFAuItFUobBUnK6WKLOs8qGZgsjbRnf5wXBs0w/HcArrYRggXKfpQCKCJfdhI+Gygigoicps4JBcTeeJXOEKB2pRRihE22X3uPVobGRvQNjkTUbs8xecbU2nhDjUh42Jic5ol/lQyG/ZvuQ8lp6ltwK+T5eqT1dgl+y/dMPJ/daYXjR08kh489hQJY7pzsyypTMVUbp3pSjNDRM7gbfpjYleUwzlbokmkdzNbW/w/JNKwxnaz2BQ/pUpT52kVhyijLVXH3Ms82/xLh/Y77PGcMl5gnu9TNIlbaBDV8ZzMSyyQaZB/hiXcI2pgln97hnj5TFSD9pLoVmgNdU0+rcxTJ2rT2yC/yH1FVCbnKjrMVaYdyjTMlELWvij1Btx9xhywzpLM5S2O5AY/Nmv29309Dzr3S9WZ0oNXvMpzOFmjuI0JTLGDh6ix9iZrcvEFX/EN3/N7+ff5j/lPJ6EjuUxzC3+s/Odf3pPNww==</latexit>

EE 613 – Machine Learning for Engineers

SVM – problem setting
l assume a linearly separable dataset

(separable in a high dimensional space)

l linear classifier

s.t. if y(x) > 0 then t = 1 otherwise t = -1

l distance of point xi to decision surface =

l Goal : find parameters resulting in the maximum margin !
(max of the minimum distance to the decision surface)

argmax
w,b

⇢
1

kwk min
i

⇥
ti(w

T�(xi) + b)
⇤�

y(x) = wT�(x) + b

D = {(xi, ti)|ti 2 {�1,+1}, i = 1, ..., N}

<latexit sha1_base64="1oF/DZgkGQZHs/nHabrUI5tSHlE=">AAAD8nicjVLLbhMxFL3p8Cjh0RQkNmxGFKSyIJkgIbpMaRHPlrR5tKhTjTwTJzWZlzyeopDmRxBCQmz5BJZsYc8flBW/wLEzFYUKgUdjn3vuPdf32vbTUGTKcb6VZqxTp8+cnT1XPn/h4qW5yvzlbpbkMuCdIAkTue2zjIci5h0lVMi3U8lZ5Id8yx+uaP/WPpeZSOK2GqV8N2KDWPRFwBQor7JUdvuSBWO31V0Lmc9DT9ijRdtdZYo1ExErT9yajN0D7X/FxWBPZe7BxC6XvcqCU3XMsE+CegEWGo0fh5+uvr3RTOZLG+RSjxIKKKeIOMWkgENilOHboTo5lILbpTE4CSSMn9OEytDmiOKIYGCHmAewdgo2hq1zZkYdYJcQv4TSppvQJIiTwHo32/hzk1mzf8s9Njl1bSOsfpErAqtoD+y/dEeR/6vTvSjq05LpQaCn1DC6u6DIkptT0ZXbx7pSyJCC07gHvwQOjPLonG2jyUzv+myZ8R+aSM1qOyhic/puqtR1/qpiTDXqmKol5hr21nfpw35NL7FPjR7TKv5lagK36QHQCj0Cs04PwawBaXsZnmd0m56AeY51E3YTqAV/G+smvUB0hHq94p6k2XVq9YBqqCZBVfp16EqGpqYYcwjbw79v6slgC6PQUevQKHMHAiimp8dULaPAK8Orrv/5hk+C7p1q/W7V2cDzvk/TMUvX6Dot4g3fowa6bOKsAnpHn+kLfbWU9cZ6b32Yhs6UCs0V+m1YH38C1pHTug==</latexit>

tiy(xi)

kwk

<latexit sha1_base64="K+Ea1a5z2hdhSFPLV8xY89n3tYY=">AAAEQHicjVJLbxMxEJ40PMryaFOO5bCiQioSNBskBMeWFvFsSR9pi+Jo5d06qcm+5HUKYZsrf4g7B/4FB+5FQkJcOfHZ2YpChcCrtb/5Zr7xjO0gi2SuPe9TZaJ65uy585MXnIuXLl+Zmq7NbOfpQIWiFaZRqnYDnotIJqKlpY7EbqYEj4NI7AT9ZePfORAql2mypYeZ6MS8l8iuDLkG5U+/Y1z1WMzf+AXb3F59LWRvX+e3DJaJFtgk0yOHRaKrWeGwruJh0RgV7PBENDscuQ6LZeJLdxzadow74oGIwA3nXbbCNW+mSOnLmw5TRtcpVzZyHH96zlvw7HBPg0YJ5haXvPefax+SZlqrrBOjPUoppAHFJCghDRwRpxxfmxrkUQauQwU4BSStX9CIHGgHiBKI4GD7mHuw2iWbwDY5c6sOsUuEX0Hp0g1oUsQpYLOba/0Dm9mwf8td2JymtiHWoMwVg9W0D/ZfuuPI/9WZXjR16b7tQaKnzDKmu7DMMrCnYip3T3SlkSEDZ/Ae/Ao4tMrjc3atJre9m7Pl1n9kIw1r7LCMHdAXW6Wp81cVBdWpZatWmOvY29xlAPstvcI+dXpCK/iXqAm8RQ+BlukxmDV6BGYVyNhL8Dyn2/QUzAusG7CbQJvwb2HdoJeIjlGvX96TsruOrT2gOqpJUZV5HaaSvq0pwRzB9vEf2Hpy2NIqTNQaNNregQRK6NkJ1aZV4JXhVTf+fMOnwfadhcbdBW8dz/sBjcckzdJ1mscbvkeL6LKJswrpa2WmMlu5Vv1YPap+q34fh05USs1V+m1Uf/wE/Tnv5Q==</latexit>

argmax
w,b

⇢
1

kwk min
i

[tiy(xi)]

�

EE 613 – Machine Learning for Engineers

SVM – max margin
l Max-margin optimization

l Note: rescaling w and b by s does not change the solution
l use that to constrain the problem

l set closest points (they exist) to the decision surface as
l all other points are further away
l note: margin (on one side) =

l Max-margin problem

l quadratic programming (QP) problem:
minimizing quadratic function subject to constraints
=> their exist QP solver libraries.

(
argmin 1

2kwk2 subject to

ti(wT�(xi) + b) � 1 8i = 1, . . . , N

ti(w
T�(xi) + b) = 1

argmax
w,b

⇢
1

kwk min
i

⇥
ti(w

T�(xi) + b)
⇤�

1

kwk
<latexit sha1_base64="+DYcMB/o75DPROuUZRINnK6iRNM=">AAADynicjVLLbtNAFD2peZTwaAoSG1hYFCQ2JA5FBXaBEB5KikKbpJWaqrLdSWrq2NbYLgQ3G8Rn8AFsYc2P8AdlxS9wZuJAUYVgLI/PPfeeO/dejxP5XpxY1rfCnHHq9Jmz8+eK5y9cvLRQWrzci8NUuqLrhn4oNx07Fr4XiG7iJb7YjKSwR44vNpz9uvJvHAgZe2HQScaR2B7Zw8AbeK6dkNopXe8PpO1m1UnWP+yv91bfCG+4l8T9w4lZLO6UlqyypZd5ElRzsFSr/Tj6evXjzXa4WGiij12EcJFiBIEACbEPGzGfLVRhISK3jYycJPK0X2CCIrUpowQjbLL73Ie0tnI2oK1yxlrt8hSfr6TSxC1qQsZJYnWaqf2pzqzYv+XOdE5V25hfJ881Iptgj+y/dLPI/9WpXhIM8ED34LGnSDOqOzfPkuqpqMrNY10lzBCRU3iXfknsauVszqbWxLp3NVtb+490pGKV7eaxKb7rKlWdv6vIUEFXVy25V3i2+pcO7Xd4zXMqeIEnfB+hTdxBg6iO52Re4hmZBvmnaOEOUQMr/NvLxKvHohq0W1q3Rmuma/Pp5J46UZfeBvkm9zWtUjnX0WOuCu1QT0NNKWTtTV1vwN1nzAHrLOu5vGXP02eib/JDtVZ+3duToHe3XF0u33vFK/0Y0zWPa7iB2+zkPmrsoc3aXLzHJ3zGF6NlSGNsZNPQuUKuuYI/lvHhJ2n7weE=</latexit>

EE 613 – Machine Learning for Engineers

SVM – Lagrangian duality
l Primal optimization problem

l introduce generalized Lagrangian

l primal problem

l Note:

l for w which do not verify the constraints, the primal is infinity;

l otherwise it is equal to f(w)

=> primal might then be ill-defined in this case => consider the dual

min
w

✓P(w) = min
w

max
↵,�|↵�0

L(w,↵,�)✓P(w) = max
↵,�|↵�0

L(w,↵,�)

L(w,↵,�) = f(w) +
kX

i=1

↵igi(w) +
lX

i=1

�ihi(w)

8
<

:

minw f(w)
s.t. gi(w)  0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . , l

EE 613 – Machine Learning for Engineers

SVM – Lagrangian duality
l Primal optimization problem

l introduce generalized Lagrangian

l primal problem

l Dual optimization problem

l Under certain constraints (f and gi convex, hi affine; constraints are feasible)
l dual problem leads to the same solution than the primal
l solution satisfies

(necessary and sufficient condition)
l Karush-Kuhn-Tucker conditions

8
>>>>><

>>>>>:

@L(w?,↵?,�?)
@wi

= 0 , i = 1, . . . n
@L(w?,↵?,�?)

@�i
= 0 , i = 1, . . . l

↵?
i gi(w

?) = 0 , i = 1, . . . k
gi(w?)  0 , i = 1, . . . k

↵?
i � 0 , i = 1, . . . k

max
↵,�|↵�0

✓D(↵,�) = max
↵,�|↵�0

min
w

L(w,↵,�)✓D(↵,�) = min
w

L(w,↵,�)

min
w

✓P(w) = min
w

max
↵,�|↵�0

L(w,↵,�)✓P(w) = max
↵,�|↵�0

L(w,↵,�)

L(w,↵,�) = f(w) +
kX

i=1

↵igi(w) +
lX

i=1

�ihi(w)

8
<

:

minw f(w)
s.t. gi(w)  0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . , l

EE 613 – Machine Learning for Engineers

SVM – Dual form

l Primal problem
l note: constraint is positive
l Lagrangian

l Dual problem: given a, minimize w.r.t. the weights and bias => derivatives

l Weights = linear combination of the projected datapoints

l We can substitute w in the lagrangian

(
argmin 1

2kwk2 subject to

ti(wT�(xi) + b) � 1 8i = 1, . . . , N

@L
@b

(w, b;a) =
NX

i=1

aiti = 0

@L
@w

(w, b;a) = w �
X

i

aiti�(xi) = 0) w =
NX

i=1

aiti�(xi)

L(w, b;a) =
1

2
kwk2 �

NX

1=1

ai
�
ti(w

T�(xi) + b)� 1

8
>>>>><

>>>>>:

@L(w?,↵?,�?)
@wi

= 0 , i = 1, . . . n
@L(w?,↵?,�?)

@�i
= 0 , i = 1, . . . l

↵?
i gi(w

?) = 0 , i = 1, . . . k
gi(w?)  0 , i = 1, . . . k

↵?
i � 0 , i = 1, . . . k

EE 613 – Machine Learning for Engineers

SVM – Dual form
l Primal problem

l Lagrangian

l Substitution of W in the lagrangian => following problem

l last inequality:
l either point is on the margin (constraint satisfied with an equality)

then ai will be non 0, we have a support vector
l or the point is not on the margin (the point is beyond the margin)

then the only way to satisfy the constraint is to have ai = 0
=> it does not participate in defining the weights

L(w, b;a) =
1

2
kwk2 �

NX

1=1

ai
�
ti(w

T�(xi) + b)� 1

8
>>>>>>><

>>>>>>>:

maxa L̃(a) =
PN

i=1 ai �
1
2

PN
i=1

PN
l=1 aialtitlk(xi,xl) subject to

PN
i=1 aiti = 0

ai � 0, i = 1, . . . , N

tiy(xi)� 1 � 0, i = 1, . . . , N

ai(tiy(xi)� 1) = 0, i = 1, . . . , N

8
>>>>><

>>>>>:

@L(w?,↵?,�?)
@wi

= 0 , i = 1, . . . n
@L(w?,↵?,�?)

@�i
= 0 , i = 1, . . . l

↵?
i gi(w

?) = 0 , i = 1, . . . k
gi(w?)  0 , i = 1, . . . k

↵?
i � 0 , i = 1, . . . k

EE 613 – Machine Learning for Engineers

SVM - discussion

l Interest of using the Dual form
l allows to introduce the kernel
l unique solution – quadratic optimization = no dependency on initialization

l Computation of a new score (and classification)
l weights as linear combination of projected data point
l score only expressed through the kernel
l the sum needs to run only on the set of Support Vectors

l Bias computation
l can be computed from any satisfied constraint, ie on support vectors
l average on all support vectors

b =
1

NS

X

i2S

ti �

X

l2S
altlk(xl,xi)

!

y(x) = wT�(x) + b =
NX

i=1

aiti�(xi)
T�(x) + b =

X

i2S
aitik(xi,x) + b

EE 613 – Machine Learning for Engineers

SVM - illustration

l Illustration with standard dot product as kernel
l Shown: decision boundary, plus margins
l Support Vectors (with non-zero weights) are on margin curves

EE 613 – Machine Learning for Engineers

SVM - illustration

l Illustration with Radial Basis Function
l Shown: decision boundary, plus margins
l Support Vectors (with non-zero weights) are on margin curves

EE 613 – Machine Learning for Engineers

SVM

l So far, we assumed that the data was separable
l not always possible
l not always desirable

l Can the model extend to the non-separable case?
l how to keep the notion of margin?

EE 613 – Machine Learning for Engineers

SVM – non separable case

l We need to take into account the errors
l Use a soft margin instead of a hard margin
l How to measure errors and deviations?

l add new variables – called slack variables

l Look at the points
l points beyond the margin: no error
l points within the margins : we want to penalize it, even if this is not an error

EE 613 – Machine Learning for Engineers

SVM – non separable case – formulation

l Separable case
(

argmin 1
2kwk2 subject to

ti(wT�(xi) + b) � 1 8i = 1, . . . , N

EE 613 – Machine Learning for Engineers

SVM – non separable case – formulation

l Primal problem

l introduced variables are slack variables – their sum provides an upper bound on the error
l framework is sensitive to outliers : errors grows linearly with distance
l C is analagous to (the inverse of) a regularisation coefficient. It controls the trade-off

between model complexity (the margin) and training errors

l when C è ∞, we recover the separable case

argmin
w,b

1

2
kwk2 + C

NX

i=1

max(0, 1� tiy(xi))

!

8
>><

>>:

argminw,b

⇣
1
2kwk2 + C

PN
i=1 ⇠i

⌘
subject to

tiy(xi) � 1� ⇠i 8i = 1, . . . , N

⇠i � 0

EE 613 – Machine Learning for Engineers

SVM – non separable case – dual form
l Lagrangian

l Derivating w.r.t. weights, bias, and slack variables

l Note: in lagrangian, slack variables only appear in linear form

l so taking into account the constraint linked to setting the derivative to 0, the slack
variables will vanish from the lagrangian at the optimum

L(w, b, ⇠;a, r) =
1

2
kwk2 + C

NX

i=1

⇠i �
NX

i=1

ai
�
ti(w

T�(xi) + b)� 1 + ⇠i

�

NX

i=1

ri⇠i

@L
@b

= 0)
NX

i=1

aiti = 0
@L
@w

= 0) w =
NX

i=1

aiti�(xi)
@L
@⇠i

= 0) ai = C � ri

<latexit sha1_base64="G2IsLlaJBWxvWbUtom0zX9BhSuw=">AAAFJXicjVLLbtNAFL0OAYp5tbBkM6JCakXTJEgIJFSppaDyaEP6SFtUF8txpu40jm15xkEl9HuQ+BcWSAiJFVv4AracmbiQNK3Alu1zz73n3jPjaSahkKpS+WYVzhXPX7g4dsm+fOXqtevjEzc2ZZylPm/4cRin201P8lBEvKGECvl2knKv0wz5VrO9qPNbXZ5KEUcb6jDhux0viMSe8D0Fyp2wDpxlL0i9KBBeNOWsb6685SLYV3JGYxEpjjmJmnFk6Pntrpd2uf9Ip1qZF/ZLwcwMM/1a7k+zOWY7YStWktl3mS5KecAcmXXcnpirHr3pObUkxhR5xP5McAWzS2fUDI1B4YDILp3VeNTbCeUcGzB5ao+pY++lUQ/gTp8xzYam2O74ZGW2Yi42Cqo5mJxfYh8d931QjyesVXKoRTH5lFGHOEWkgEPySOLeoSpVKAG3Sz1wKZAweU5HZEOboYqjwgPbxjtAtJOzEWLdUxq1jykhnhRKRnegiVGXAutpzOQz01mzZ/XumZ7a2yG+zbxXB6yifbD/0h1X/q9Or0XRHj00axBYU2IYvTo/75KZXdHO2cCqFDok4DRuIZ8C+0Z5vM/MaKRZu95bz+R/mErN6tjPazP6aVxqn39d9KhMDeM6xbuM2fpfNhG/owPMKdNzeoJngerAG/QUaJGeganREpgVIB0vILNMJXoB5hW+a4jrQOvIb+C7Rq9R3YFfN/9PqZnaj1pAZbiJ4UqfDu2kbTxFeIeIXTxd40ciFkahq2rQKPMPBFBELwdU60aBU4ZTXT15hkfB5r3Z6v3ZyiqO92PqX2N0i27TFM7wA5rHKuvYK9/6bP0qUMEqfih+Kn4pfu2XFqxcc5OGruL332QxQpM=</latexit>

L(w, b, ⇠;a, r) = . . .+C
NX

i=1

⇠i �
NX

i=1

ai⇠i �
NX

i=1

ri⇠i = . . .+
NX

i=1

(C � ai � ri)⇠i

EE 613 – Machine Learning for Engineers

SVM – non-separable case – dual form
l Lagrangian

l Derivating w.r.t. weights, bias, and slack variables

l We end with the dual problem, very similar to the separable case

l prediction formula is the same than in the separable case
l some ai will be 0 and will not contribute to the prediction; the rest will be Support Vectors
l if ai < C, then ri > 0 and thus the slack variable ξi=0 => the data are on the margin
l ai = C,then ri = 0 : point will lie within the margin (well classified or not) or on the opposite side

L(w, b, ⇠;a, r) =
1

2
kwk2 + C

NX

i=1

⇠i �
NX

i=1

ai
�
ti(w

T�(xi) + b)� 1 + ⇠i

�

NX

i=1

ri⇠i

@L
@b

= 0)
NX

i=1

aiti = 0
@L
@w

= 0) w =
NX

i=1

aiti�(xi)
@L
@⇠i

= 0) ai = C � ri

8
>>>>><

>>>>>:

maxa L̃(a) =
PN

i=1 ai �
1
2

PN
i=1

PN
l=1 aialtitlk(xi,xl) subject to

PN
i=1 aiti = 0

0  ai  C, i = 1, . . . , N

ai(tiy(xi)� 1 + ⇠i) = 0 and ⇠iri = 0, i = 1, . . . , N

8
>>>>><

>>>>>:

@L(w?,↵?,�?)
@wi

= 0 , i = 1, . . . n
@L(w?,↵?,�?)

@�i
= 0 , i = 1, . . . l

↵?
i gi(w

?) = 0 , i = 1, . . . k
gi(w?)  0 , i = 1, . . . k

↵?
i � 0 , i = 1, . . . k

EE 613 – Machine Learning for Engineers

SVM - illustration

l Illustration with standard dot product as kernel
l Shown: decision boundary, plus margins
l Support Vectors (with non-zero weights) are on margin curves

Hard margin Soft margin

More in the
laboratory !

EE 613 – Machine Learning for Engineers

Support Vector Machines (SVM)

The regression case

EE 613 – Machine Learning for Engineers

SVM – the regression case

l Idea: fit the training data using an ε-insensitive error function

l As before, introduce relaxed constraints, resulting in primal:
8
>><

>>:

argminw,b

⇣
1
2kwk2 + C

PN
i=1(⇠i + ⇠̂i)

⌘
subject to

ti  y(xi) + ✏+ ⇠i, ⇠i � 0 8i = 1, . . . , N

ti � y(xi)� ✏� ⇠̂i, ⇠̂i � 0 8i = 1, . . . , N

min
1

2
kwk2 + C

NX

i=1

E✏(y(xi)� ti)

E✏(z)

EE 613 – Machine Learning for Engineers

SVM – regression case – dual form
l Introducing Lagrangian variables, we end up maximizing

l Weights are still obtained as linear combination:

l Score of a new observation

8
>><

>>:

maxa,â L̃(a, â) =
PN

i=1(ai � âi)ti � 1
2

PN
i=1

PN
l=1(ai � âi)

PN
i=1(al � âl)k(xi,xl)� ✏

PN
i=1(ai + âi) subject to

PN
i=1(ai � âi) = 0

0  ai, âi  C

w =
NX

i=1

(ai � âi)�(xi)

y(x) =
NX

i=1

(ai � âi)k(x,xi) + b

EE 613 – Machine Learning for Engineers

Support Vector Machines (SVM)

Optimization and note

EE 613 – Machine Learning for Engineers

SVM - optimization
l Both the classification and regression can be viewed as a

minimization of the form

under the constraints

l This problem is quadratic, convex, and in 0(N3)

J(a) =
1

2
aTQa� �Ta

aT � = 0

Cmin  a  Cmax

EE 613 – Machine Learning for Engineers

SVM – optimization
Sequential Minimum Optimization (SMO) algorithm
l Can we do coordinate descent with one variable?

l no: first constraint imposes that when N-1 parameters are known/fixed, the last one can
only be set to a single value to satisfy the constraint

l idea: optimize with respect to two variables ai and aj (other are fixed) –
constraints are reduced to

l and the optimization problem can be solved analytically

l Choosing pairs of ai and aj
l consider the strongest gradient gi = [Qa-β]i
l make sure going towards these gradient directions will not hit the bounds

l gi γi and gj γj must point to opposite directions

l Cost about 0(N2)

ai�i + aj�j = cij

Cmin  ai, aj  Cmax

Cmin  ai � �gi,aj � �gj  Cmax

EE 613 – Machine Learning for Engineers

Kernel Machines & sparsity
l Other existing Kernel Machines

l directly express output as linear combination and estimate the weights
l fit a probabilistic model (e.g. as in logistic regression)
l use negative log-likelihood measure
l optimize penalized loss using explicit sparsity
l advantage: no need for Mercer Kernel, explicit sparsity, probabilistic

interpretation, better extension to Multiple classes

l Relevance Vector Machines (RVMs)
l other penalization function

p(t|x, ✓) = N (t; y(x),�2)y(x) =
NX

i=1

wik(x,xi) + b

L(w, b) = Lnll(D) + �kwk1

EE 613 – Machine Learning for Engineers

Support Vector Machines (SVM)

Summary

EE 613 – Machine Learning for Engineers

SVM - Summary

l Classification SVM – why do we like them
l finds the largest margin separating hyperplane
l uses the soft margin trick
l there is a unique solution (no initialization issue)
l project data in a high dimensional space for non-linear relation
l a kernel simplifies computation
l indirectly induces sparsity of support vectors

l Can work with fairly large datasets (few ten of thousands)

l Drawback:
l Complexity/computational can be high

EE 613 – Machine Learning for Engineers

SVM - Summary

l It leads to a quadratic (convex) minimization problem

l The capacity (to fit) can be controlled in several ways
l C : controls the trade-off classification error/margin
l Kernel choice
l Kernel parameters, if any

l The idea can be generalized to regression
l Other sparser methods

l Relevance Vector Machines
l L1 regularization kernel machines

EE 613 – Machine Learning for Engineers

Thank you for your attention!

