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overview

e Kernel methods
e introduction and main elements

e defining kernels
o Kernelization of k-NN, K-Means, PCA

e Support Vector Machines (SVMs)

e classification
e regression

EE 613 — Machine Learning for Engineers



Kernel methods

introduction and main elements/considerations
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(1) high dimensional spaces

e Data points in high dimensional spaces can be better separated

e Exemple: linear classifier (e.g. perceptron)
e linear decision function => map feature in high dimensional space
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e here: polynomial kernel ¢(X) — ¢(x1,$2) — (ZIZ‘%, \/5331332733%)

e Questions:
e how to map data efficiently in high dimension (potentially infinite) spaces?
e how does such mapping affect existing methods/classifiers?
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(2) comparing samples

e We would like similar samples to be classified in the same way => distance

e We often think of distances in (euclidian) metric spaces

e distance <-> scalar product
x —x'|I* = (x—x)-(x—x') =xx - 2x-x' +x' X
1

xex' = 3 (I + 2 = x = x|

e Might not always be easy or relevant

e how to compare
2 strings, 2 text paragraphs, 2 sequences, 2 images.....

e However: often we can define some similarity measures between elements
e e.qg.forstrings: Sim(s1,s2) = EditDistance(s1,s2)
e note: often triangular inequality not respected

e How can we exploit such measures in classification algorithms? which
properties of these measures are useful?
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(3) classifiers

Two types of classifiers

e model-based (classification, regression) h(x) = {
e eg. linear classifier
e data used to learn the model parameters, and then removed

+lifwx+b>0
—1 otherwise

e non-parametric approach

e training data points are kept in classifier definition
K-Nearest Neighbour (KkNN) 1

1 X — X;
Parzen windows density estimation P(x) = - Z h_dK ( ; 7’)
n n

1

e memory-based methods (fast at training, slow at testing)

In practice: in many memory-based methods, the solution can be written as
a linear combination of kernel function at training data points
representing scalar product in high dimension

This linear combination is often referred to as the ‘dual’ representation

EE 613 — Machine Learning for Engineers



(3) illustration: perceptron algorithm (1)

Goal: training a linear classifier h(x) = { +lifw-x+0>0

—1 otherwise

e Note: bias b can be introduced as one of the weight term by adding a
constant component to x equal to 1

~

w = (w,b) and X = (x,1) then we have w-x > 0

e Next slides: drop the tilde notation, and define classifier as

h(x) = +1iftw-x>0
| —1 otherwise
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(3) illustration: perceptron algorithm (2)

Perceptron algorithm (Rosenblatt)

Simple method to train a linear classifier h(x) = { +litw-x>0

—1 otherwise

e Givenatrainingset (x,,y,) € R” x {-1,1}, n=1,...,N,

e Algorithm proceeds as follows

1. Start with wg = 0,
2. while 3ng s.t. yn, (wk - xn, ) <0, update wyt1 = wi + Y, Xn, -

~

Meaning: sample not well
classified

Result: if data are separable, algorithm is converging to a valid solution
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(3) illustration: perceptron algorithm (3)

e Update rule at iteration | Wi, = W) + { 0 otherwise
e In (high dimension) projection space X — (%)
yip(x) if y(wi-o(x)) <0

Wit1 = Wit { 0 otherwise

e Result: run until convergence, keeping only / indices with a non 0 update
e weights are a linear combination of training data
W = ZYz¢(Xl)
l

e the decision function can be rewritten as
W p(x) = ZYZ od(x1) - d(x) = ZYZ k(x1, x)
l
k(x,x") = ¢(x) - p(x')

e Decision function h(x) : data is thus used only through dot products in projected
space, and implicitly, through a Kernel k

EE 613 — Machine Learning for Engineers e ICJIBED



Kernel methods

defining kernels
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Kernels

e Kernel —we are given a projection operator x — ¢(x)

=> we can define a kernel as a dot product in that space k(x, X’) - qﬁ(x) . qﬁ(xl)

e Alternatively — directly provide a kernel k(x4,X5)

e Intuition — the kernel capture the similarity between x, and x,
o E.g. : perceptron example
h(x) = w-@(x) = ZYZ d(x1) P(x) = ZYZ k(x1,x)
Note: weighted sum of labels l l
kernel k(x;,x) is high => x will tend to be classified like x,
kernel k(x;,x) is low => x, will have no influence on output for x

e In practice, the choice of kernel depends on application
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Kernels

e Kernel —we are given a projection operator x — ¢(x)

=> we can define a kernel as a dot product in that space k(x, X’) - qﬁ(x) . qﬁ(xl)

e We are given a function k . Does it define a Kernel?

e Valid kernels: Mercer Kernel

e Consider a smooth symmetric function k() over a compact C L:Cx(C—=1R

e k() is a kernel if and only if it can be decomposed into
k(x,x") = Zaz‘ ¢;(x)-¢;(x)
i=1

e and if and only if
for all finite set  {x31,...,x,} C C

the matrix K defined by Kj = k(x;,x;) is semi-definite positive
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Notable kernels

e Polynomial Kernels
k(x,x') = (uxx"+0v)?, u,v>0,peN

e (Gaussian Kernels
k(x,x') = exp X1~ >0
e note: not considered as a distribution here

=> no need for normalization constant
o implicit projection: in an infinite dimension space

e String Kernel kx,x') = ) we,(x)p (X))

sEA* \ count number of times
substring s occurs in x

e Fisher Kernel
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Building Kernel
e Kernel can be constructed by combining kernels, e.g. like

Ok(x x') = cki(x,x") + cako(x, %)
)= J®)k(xX)f(X)

: q(k1(x,x"))
exp (k1(x,x"))

x')

x')

x') =

x') = ki(x,x)ka(x,%x)
X’g = k3(o(x), p(x'))
x')

/

/

xT Ax’/
— ka(Xa,X;) + kb(Xban)
° k(x,x) = ko(Xa, %)) kp(xp, %)

/

k(x,
(
k(
k(
(
k(
k(

where kernels on the right are valid kernels on their respective domains, c1>0
and c2>0, A is a symmetric semidefinitive positive matrix, f is any function, gis a
polynomial of non-negative coefficients, and x, and x, are variables (not
necessarily disjoint) with x = (x,, X;)

e Properties can be used to demonstrate whether a proposed kernel is a
Mercer Kernel
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Kernel methods

Kernelization of k-NN, K-Means, PCA
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Kernelizing algorithms

e Many algorithms can be « Kernelized »
e Straightforward for the perceptron
o K-NN?
e k-Mean?
o PCA?

e how?
write the algorithm using as data points the project data ¢ (x)
express results on the form of dot product
use the kernel trick
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Kernelizing k-NN

e k-NN algorithm
e Training dataset: D={(x;,yi)|ly; e{1,...,L},i=1,.... N}
e Parameter: K

e Classifying a new sample x
Find the set C of K samples from D closest to x

C(x) = {Xi,» Xins- -, Xin }

Assign to x the majority class in the associated set of labels
{yiwyiz? s 7yiK}

e requires distances between two examples |[|x — x|’

lp(x) — p(xi)II” = D(x)-P(x) — 2¢(x)- P (x:) + (%) B(x;)
= k(x,x) — 2k(x,%x;) + k(x;, X;)

e easy to kernelize....
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Kernel K-Means

e Apply K-means in projected space ....

e Assumes |; denotes the means/centroids in this space
e as the projected space can be infinite, we keep the means in their dual form

{a},ab, ...}
i.e. as a weighted sum of the samples ...

1

. o
Hi = Z O{qub(xj) (with o = N if x; belongs to class 7,0 otherwise)
J

e Assignment step: for each data sample, we need to find the closest mean
lp(x) — will®> = P(x)- d(x) =23, aldp(x;)-P(x) + 3, , Al d(x;)-d(xk)
[p(x) — pill® = k(x,x) — 23, abk(xj,x) + 3 abagk(x;, Xx)

e Mean computation: update the alpha accordingly
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Kernel PCA A
Standard PCA \/\'

e Way to remove correlation between points >/
=> reduce dimensions through linear projection

: - D
e Data driven: training samples {xi,...,xy},X; € R
e compute mean and covariance - - 1 S x S 1 3 (ot = %) (30 — BT

e find largest eigenvalues of covariance matrix
=> sort eigenvectors ui by decreasing order of eigenvalues

=> form matrix U — (Ul, c e ,UM)

e lower dimensional representation of datapoints is given by y,, = UT(xn — X)

e approximate reconstruction Xpn = X + UYn
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Kernel PCA - intuition

272‘

_/ : T

e Apply normal PCA in high-dimensional projected space

e (straight) lines of constant projections in projected space
correspond to nonlinear projections in original space
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Kernel PCA

e Assume projected data are centered (have 0 mean)
Z P(x;) =0

e Covariance matrix in projected space

1

N
C= % ; B(x:)p(x:) = XX X = [¢p(x1), -, (xn))

where X is the design matrix, with column i defined by ®(x;)

e PCA computes the eigenvalues/eigenvector of C.
How can we compute them (or involve) in terms of

Ky = k(xg,x;) = ¢(xx) ! d(x1)

o Notethat K =X'X
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Kernel PCA

o By definition, we have (C'v; = \;Vv;
e Substituting the covariance definition leads to
1 1
(N > #(x) ¢(Xl)T> Vi =3¢ Y o(xi) (px)"vi) = A,
=1 =1

e Consequence: the eigenvector can be expressed as a linear combination
of the projected samples (DUAL FORM)

N
V; = Z o(x;) a;;, (with a; = qb(:xl)TVz-)

AN
=1

e Then, how can we actually determine the a coefficients?
( and involve only the kernel function k(. ,.) )
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Kernel PCA

e In matrix form, eigengenvectors can thus be written as

V;, = Xa@-
e Eigenvalue problem
1 1
Cv,=X\v; C= NXXT NXXTW = \;V;

e Introducing the decomposition into it leads to

1
NXXTXaZ- = \;Xa;
XTXXTXa, = N\, XTXa, ie. K?a, = \;,NKa,

e Thus, we can find solutions for a; by solving the eigenvalue problem
Kaz- = )\ZNaZ
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Kernel PCA

e We need to normalize the coefficient a;
e impose that eigenvectors in projected space have norm 1

1 =v!v; = (Xa;)"(Xa;) = a] X' Xa; = a] Ka; = \;Na a;

e We need to center the data (in projected space)

e we can not compute the mean (in projected space) as we want to avoid
working directly in this projection space => we need to formulate the algorithm
purely in term of the kernel function

B(x;) = B(x;) - —qu x) = X=X X117
K=X"X =XTX- p AXTX11T — L117XTX + H117XTX117
=K - +K117 — +117K + ;117K117
e Projection (coordinate) of a point on eigenvector i

yi(x) = vi p(x) = (Z a;;d(x;)) Zazlqb x)) ' p(x) = Zailk(x, X7 )
=1
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Kernel PCA - illustration

Eigenvalue=21.72 Eigenvalue=21.65 Eigenvalue=4.11 Eigenvalue=3.93

Eigenvalue=3.66 Eigenvalue=3.09 Eigenvalue=2.60 Eigenvalue=2.53

e (Scholkopf et al1998) — Kernel PCA with Gaussian kernel — first 8 eigenvalues
e contour lines = points with equal projection on corresponding eigenvector
e first two eigenvectors, separate the 3 main clusters

e following eigenvectors split cluster into halves; and further 3 as well (along orthogonal
directions)
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Kernel PCA - Summary
e Given a set of data points, stacked as X

compute K and then K

- 1 1 1
K=K- —K117 - —11"TK+ —117TK117
N N * N2

e Compute the eigenvectors and eigenvalues Kaz’ = A\
o Normalize them properly ~ \;aj a; = 1

e Projection of a new data point onto the principal components

Y (X) = Z a;; k(x,x;)
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overview

e Kernel methods
e introduction and main elements

e defining kernels
o Kernelization of k-NN, K-Means, PCA

e Support Vector Machines (SVMs)

e classification
e regression
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Support Vector Machines (SVM) - principle

X, Hs

Main idea: look at the margin !

O e H1: does not separate the classes
O e H2: separate classes, but by a small margin
e H3: maximum margin
X >

1

e separable data: several classifiers available. Which one is the best?
e perceptron: classifier depends on initialization, order of visit of datapoints
e margin

e distance from the closest datapoint to the decision boundary

e why do we want a large margin?

classification more immune to small perturbation of the datapoints
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SVM - margin geometry

y >0 £2
y =20
y <0
X
i’ signed distance
/ % < to decision boundary
>
3
. . . T
e linear decision function y(x) =w' x+b
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SVM - problem setting

e assume a linearly separable dataset
(separable in a high dimensional space)

D= {(Xi,ti”ti € {—1,-|—1},Z =1, ,N}

e linear classifier
y(x) = w' ¢(x) +b

s.t. if y(x) > 0 then t = 1 otherwise t = -1

e distance of point x; to decision surface =

e Goal : find parameters resulting in the maximum margin !

(max of the minimum distance to the decision surface)

arg max { 1 min [ty(x;)] } arg max {i min [t;(w" ¢(x;) + )] }

wo (|[w] wib | [|w]
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SVM — max margin
e Max-margin optimization

argmax{ ! min [t;(w T¢(xz>+b)}}

wb | [[w]

e Note: rescaling w and b by s does not change the solution
e use that to constrain the problem
set closest points (they exist) to the decision surface as ti(WT¢(Xi) + b) =1
all other points are further away 1

note: margin (on one side) = M

i in £ ||w]? bject t
e Max-margin problem {afgmm AAdl subject to

ti(WT¢(Xi) + b) 2 1 Vi = 1, ce ,N

e quadratic programming (QP) problem:
minimizing quadratic function subject to constraints
=> their exist QP solver libraries.
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SVM - Lagrangian duality

e Primal optimization problem min,, f(w)

Y — Y ° 7l
k l
o introduce generalized Lagrangian L(w,«a, ) = f(w) + Z a;g;(w) + Z Bih;(w)
i=1 i=1
e primal problem
0 — L minfp(w) = min max L(w,«,
p(w) = max L(waf) mi p(w) = mi Jmax (w, i, B)

e Note:

for w which do not verify the constraints, the primal is infinity;
otherwise it is equal to f(w)

=> primal might then be ill-defined in this case => consider the dual
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SVM - Lagrangian duality

e Primal optimization problem [ minw f(w)
st. gi(w)<0,i=1,...,k
hi(w)=0,i=1,...,1

k
o introduce generalized Lagrangian L(w,«a, ) = f(w) + Z a;g;(w) + Z Bih;(w)

e primal problem
Op(w) = max L(w,o,) minfp(w)=min max L(w,q,f)

a,Bla>0 w w o a,fla>0
e Dual optimization problem
Op(a,; f) = min L(w, a, B) agl@éo%(a,ﬁ) — a%ﬁi}éonlinﬁ(w’ a, ()

e Under certain constraints (f and g;convex, h, affine; constraints are feasible)
e dual problem leads to the same solution than the primal

o solution satisfies ( 85(1”(;’0‘*’5*) = 0,i=1,...n
(necessary and sufficient condition) OL(w 0" ,B%) — 0.i=1 I

e Karush-Kuhn-Tucker conditions 3 a,‘f;;(w*) — 0,i=1,...k
glw”) < U,1=1...F

\ af > 0,i=1,...k
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((Qelwnal ) = 0 i=1,...n)
SVM - Dual form P g e,
\ afgi(w*) = 0,i=1,...k
gi(w*) < 0,i=1,...k
arg min 5 ||w/? subject to \ af > 0,i=1,...k
e Primal problem
e note: constraint is positive
o Lagrangian L(w, b;a) = —||W||2 Zaz {t:(w" p(x;) +b) — 1}

e Dual problem: given a, minimize w.r.t. the weights and bias => derivatives

N
r W= Z aitiP(x;)
i=1

e Weights = linear combination of the projected datapoints

e We can substitute w in the lagrangian
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> > > 3

o Lagrangian [(w, —_||WH2 Z‘“ {t:(wl(x;) +b) — 1}

( ac(wg,g*,_m = 0,i=1,..
SVM — Dual form ol gy,
Y afg(w) = 0,i=1,
e Primal problem \ Wt S s
N
W = Z aitz¢(x2)

~.
I
[

e Substitution of W in the lagrangian => following problem

( maxa /j(a) = vazl a; — % Zfil Zl]\il a;ait;tik(x;,x;) subject to
zz’]\il aiti = O
\ a > 0i=1,...,N
tiyx)—1 > 0,i=1,...,N
. ai(tiy(xi) — 1) = O,i = 1,...,N

e lastinequality:
either point is on the margin (constraint satisfied with an equality)
then a; will be non 0, we have a support vector
or the point is not on the margin (the point is beyond the margin)
then the only way to satisfy the constraint is to have a;=0
=> it does not participate in defining the weights
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SVM - discussion y
W = Zaiticp(xi)

e Interest of using the Dual form

e allows to introduce the kernel

e unique solution — quadratic optimization = no dependency on initialization
e Computation of a new score (and classification)

e weights as linear combination of projected data point

e score only expressed through the kernel

e the sum needs to run only on the set of Support Vectors

y(x) = wlp(x —|—b—ZaZt d(x)Tp(x) +b= Zaitik(xi,x) +0b

1e€S

e Bias computation
e can be computed from any satisfied constraint ie on support vectors

e average on all support vectors h— — Z t— Zaztlk X7, X;)
S ies les
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SVM - illustration

X2
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e lllustration with Radial Basis Function
e Shown: decision boundary, plus margins
e Support Vectors (with non-zero weights) are on margin curves
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SVM

e So far, we assumed that the data was separable
e not always possible
e not always desirable

e Can the model extend to the non-separable case?
e how to keep the notion of margin?
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SVM — non separable case

-
@

e \We need to take into account the errors
e Use a soft margin instead of a hard margin
e How to measure errors and deviations?

e add new variables — called slack variables

e Look at the points
e points beyond the margin: no error
e points within the margins : we want to penalize it, even if this is not an error
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SVM — non separable case — formulation

e Separable case
argmin 7 [w|?  subject to
tz'(WTQb(XZ')-Fb) Z 1 Vizl,...,N
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SVM — non separable case — formulation

e Primal problem

[ arg Mminy p (%HWHQ + C’vazl 57;) subject to
\ tiyxi)>1-& Vi=1,...,N
\ fz >0

N
1
arg r‘flv%l <§||w||2 - C’; max(0,1 — tzy(xz))>

introduced variables are slack variables — their sum provides an upper bound on the error
o framework is sensitive to outliers : errors grows linearly with distance

e Cis analagous to (the inverse of) a regularisation coefficient. It controls the trade-off
between model complexity (the margin) and training errors

e when C = %, we recover the separable case
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SVM - non separable case — dual form
e Lagrangian ﬁ(w,b,g;a,r)z%||w||2+cZ§i—Za@- {ti(wT¢(xi>+b)—1+§@-}—Zm&

e Derivating w.r.t. weights, bias, and slack variables

oL N oL N oL
— =0=w= a;t; o(x; — =0= a;t; =0 =0=a;, =C —1r;
Iw z:zl G ; 23 Z 7’

e Note: in lagrangian, slack variables only appear in linear form

['(ngaar +CZ€Z Zazfz Zrzgz— Z _az_rz

e so taking into account the constraint linked to setting the derivative to 0, the slack
variables will vanish from the lagrangian at the optimum
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SVM — non-separable case — dual form
e Lagrangian ﬁ(w,b,g;a,r)z%||w||2+025i—2a@- {ti(wT¢(xi)+b)—H&}—Zm@

e Derivating w.r.t. weights, bias, and slack variables

oL al oL N oL
-~ — 4. ) = — it =
- 0=w ; 1 a;t;p(x;) 9% 0= ; 1 a 0 O¢;

e We end with the dual problem, very similar to the separable case

:O:>CLZ':C—7“Z'

f 5 N N N :
maxa £(a) =) ;1 a; — %Zizl > -1 Giagtitik(x;,%x;) subject to
N (Lol B g i=1,...n
4 Zi:l a;t; =0 5£(w3*f”o§*’ﬁ*) 0 i1
] 0B; ’ v
OS(MSC,Z:L...,N \ argi(w*) = 0,i=1,...k
) gi(w*) < 0,i=1,...k
\ ai(tiy(xi)—ljtfi):Oandfim:O,z:l,...,N \ af > 0,i=1,...k

e prediction formula is the same than in the separable case

e some a;will be 0 and will not contribute to the prediction; the rest will be Support Vectors

e ifaj<C, thenr;> 0 and thus the slack variable ¢=0 => the data are on the margin

e aj=C,then r;= 0 : point will lie within the margin (well classified or not) or on the opposite side
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SVM - illustration
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lllustration with standard dot product as kernel
Shown: decision boundary, plus margins
Support Vectors (with non-zero weights) are on margin curves
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Support Vector Machines (SVM)

The regression case
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SVM - the regression case

A

y(z)
E(z)

T E(2)

—€ 0 €

e Idea: fit the training data using an e-insensitive error function

e As before, introduce relaxed constraints, resulting in primal:

[ argminy. (%HWH2 + szf\;(f’i + éb)) subject to
< t<y(x)+e+&, &>0 Vi=1,....N
\ tzZy(Xz)_e—éz, £Z>O V’Lzl,,N




SVM - regression case — dual form

e Introducing Lagrangian variables, we end up maximizing

(maxes £(a,8) = Y00 (0 — i)t — 5 iy Yoy (ai — ) Yy (o0 — k(i %) — €00 (a4 ) subjec
| Tifa-i) =0

| 0<a,0;<C

e Weights are still obtained as linear combination:

N
w=3
1=1

1 9 ©
e Score of a new observation O-© OO ]
N 5
y(X) = Z(az — &i)k(X,Xi) + b -1t ©
i=1 .
0 1
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Support Vector Machines (SVM)

Optimization and note
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SVM - optimization

e Both the classification and regression can be viewed as a
minimization of the form

J(a) = %aTQa — pra

under the constraints
aly =0
Cmin S a S Cma:v

e This problem is quadratic, convex, and in O(N?3)
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SVM - optimization
Sequential Minimum Optimization (SMOQO) algorithm

e Can we do coordinate descent with one variable?

e no: first constraint imposes that when N-1 parameters are known/fixed, the last one can
only be set to a single value to satisfy the constraint

e idea: optimize with respect to two variables a; and a; (other are fixed) —
constraints are reduced to  a,;~; + a;7v; = c¢;;

Cmin S Qg , Ay S Cmax
e and the optimization problem can be solved analytically

e Choosing pairs of aj and a;
e consider the strongest gradient g; = [Qa-p];
e make sure going towards these gradient directions will not hit the bounds

sz'n S a; — )\gza a; — >\gj S Cmaa:

e giy;and g;y; must point to opposite directions

e Cost about O(N?)
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Kernel Machines & sparsity

e Other existing Kernel Machines

y(x) = Zwik(X7 X;) +0b p(t|x,0) = N(t;y(x),0°)
 L(w,b) = Loy (D) + M| w|s

o directly express output as linear combination and estimate the weights
o fit a probabilistic model (e.g. as in logistic regression)

e use negative log-likelihood measure

e optimize penalized loss using explicit sparsity

e advantage: no need for Mercer Kernel, explicit sparsity, probabilistic
interpretation, better extension to Multiple classes

e Relevance Vector Machines (RVMs)
e other penalization function
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Support Vector Machines (SVM)

Summary
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SVM - Summary

e Classification SVM — why do we like them

finds the largest margin separating hyperplane

uses the soft margin trick

there is a unique solution (no initialization issue)

project data in a high dimensional space for non-linear relation
a kernel simplifies computation

indirectly induces sparsity of support vectors

e Can work with fairly large datasets (few ten of thousands)

e Drawback:

Complexity/computational can be high
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SVM - Summary

e Itleads to a quadratic (convex) minimization problem

e The capacity (to fit) can be controlled in several ways
e C :controls the trade-off  classification error/margin
e Kernel choice
o Kernel parameters, if any

e The idea can be generalized to regression

e Other sparser methods
e Relevance Vector Machines
e L1 regularization kernel machines
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Thank you for your attention!
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