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Overview

l Introduction

l Principle Component Analysis (PCA)

l Global - compression

l Probabilistic PCA

l Global, probabilistic

l t-distributed Stochastic Neighbor Embedding (t-SNE)

l Local - visualization
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Introduction - motivation
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Introduction - motivation

l Flat hand of one person

l Delineated with 80 points

=> shape representation: position of these points  

=> original space dimension D=160

l Assume allowed mobility = independent rotation of each finger

=> manifold of flat hand intrinsic dimension  around M=5
4

Shape 

analysis
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Introduction
Faces as high-dimensionnal data point

l Each of this face

100x100 patches

= 10 000 pixels

D = 10 000 dimensions

l Database of 2000 faces

=> 1 point per 5 dimensions !

=> data is very sparse

(To represent probability density, 

need number of training samples
> D)

l But the face space has 

actually a much smaller

dimension 

5

Data components (here pixels) 
are correlated
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Motivation – data compression

l Represent any data point in original space by a vector with

less components

l Face case

l D = 10 000   =>   50/100 dimensions

l Less storage, faster comparisons

l Easier to compute probability distribution over datapoints, similarities
6
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Motivation - visualization

l Allow data interpretability: what is the ‘structure’ in the high 

dimensional space

7

Dataset of Mayya 
Glyphs
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Motivation - visualization

l Allow data interpretability: what is the ‘structure’ in the high 

dimensional space

8

Dimensionality 
reduction in 2D
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Dimension reduction

Main Idea of PCA (and manifold reduction techniques)

l Many real worl datasets

l Data point lie in large dimensional spaces (manifolds)

l Data point components are highly correlated (globally, locally)

l Low linear dimensional subspace captures most data variability

l Dimension reduction technique

l Learn an explicit or implicit mapping (from data)

where D > d  and the space F keeps some properties of the original space

9
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Principal component analysis (PCA)
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Outline PCA

l Introduction

l Principal Component Analysis (PCA) Principles
l Variance Maximization

l Reconstruction error minimization

l Examples

l Discussion

11
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PCA principles

l Goal: project data from space of dimension D into lower dimension space

(dimension M<D)

l Linear subspace => linear projection

12

Original data Projected data 

(reduced data)

=Projection matrix 
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PCA principles

l Data driven approach

i.e. learns a transformation from data

=> dataset

l Projections

l Two views of PCA. Given the dataset, find the principle components (u

vectors) retaining most of the information of the original data

l Capture most data variability of original points

=> maximizes variance of projected points

l Generate data points as close as possible to initial points

=> Minimize reconstruction error =  distance between o and o

13
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Interpretation of principal components
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Interpretation of principal components
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Interpretation of principal components
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Variance maximization

l Mean of data point       - Covariance of original data points S

l Maximized if

l Need constraint

l This is a constrained optimization problem solved with Lagrangian approach

l Conclusion:  

l u1 is the (unitary) eigenvector of S with largest eigenvalue

l u1 captures the most variation among the training vectors xn

Note: eigenvectors are sometimes called eigenmodes
17

J(u1) = u
T

1
Su1 + λ1(1− u

T

1
u1) =>
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Variance maximization

l What about u2 ? 

l It is also an eigenvector of S, orthogonal to u1,

whose eigenvalue is the second largest

l Properties. 

l Vectors uk are orthogonal to each other, define a new coordinate system

l The principal components coordinates yk are uncorrelated

=> covariance matrix of y is diagonal with

l The kth largest eigenvalue is the variance of the kth principal component yk

l The kth principal component yk retains the kth fraction of the variability

in the sample dataset

18
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Alternative view

l Approximate data points as a linear

combination of M new basis vectors

l we are looking for       that are orthogonal, unitary

l Goal: select the basis vectors minimizing the reconstruction error

It can be shown

l i=1..M are the eigenvectors of S with largest eigenvalues

l Principal component k is given by

l Note: if M = D, this corresponds to a change of basis

components yk are the coordinates of x in the new basis 19

yk = u
T

k
(x− x̄)
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To wrap up

Set of training samples

l Compute mean and covariance

l solve eigenvectors of covariance matrix

l e.g. SVD decomposition, or more efficient methods if only look for the M first 

eigenvectors, and D is of large dimension

l select/keep the M first eigenvectors (and eigenvalues)

=> sort eigenvectors ui by decreasing order of eigennvalues

=> form matrix

l lower dimensional representation of datapoints is given by

l approximate reconstruction of data point 

l Total square error made by approximation

(         discarded eigenvalues in the projection)

20

yn = UT (xn − x̄)

U = (u1, . . . ,uM )

x̃n ' x̄+Uyn

NX

i=1

(xn − x̃n)
2 = (N − 1)

DX

j=M+1

λj

λj
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PCA – some examples

21
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Eigenshapes (Cootes)

l Synthetize new shapes by 

varying the principal 

component coefficient yk

22

Training data

mean
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Faces shapes

23
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Appearance - eigenfaces

24

Training images   x1….xn



Master of Science in Artificial Intelligence

Eigenfaces

l each eigenface has the dimension of an image

l model variations around mean intensity

l contain positive (bright) and negative values (dark)

25

Mean face
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l Face x in ‘face space’ coordinates

Eigenfaces

26

+ mean
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Discussion

27



Master of Science in Artificial Intelligence

Considerations (1) 

l How to choose the number M of eigenmodes to keep ?

l Eigenmodes account for data variability =>

select smallest M such that the Total Variance 

in projection space is above a fraction 

of the original variance

(we assume eigenvalues are 

ranked in decreasing order)

l Other: if PCA is used as preprocessing for a classification

Select M through cross-validation

28

Total variance of training 
data in subspace of size M

Total variance of 
data in full space
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Considerations (2) 

l Note: if M=D (if we keep all dimensions), is PCA useful ?

Yes. Data point components y in new basis are decorrelated

=> covariance is diagonal

Interesting when using GMM with diagonal covariance 

in further modeling steps

l PCA application - Data whitening

l heterogeneous data: different dimensions correspond to different measures

e.g. for a person: x = (age,height, weight)  etc => pb: not comparable units

l before further step (which may require distance computation), normalize data

l standardization: rescale each component so that it has zero meand and unit 

standard deviation

l with PCA: 

l where L contains the DxD diagonal matrix with elements

=> the y elements are uncorrelated with unit variance (the covariance is the identity

matrix) 

29

yn = L−1/2UT (xn − x̄)

λj
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Limitations 

30

Training data:

784 letter 3 images 

translated, rotated

Mean and 

eigenvectors

Ranked

eigenvalues

Reconstruction

50 eigenvectors to model 3 

degrees of freedom…
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Limitations 

l Assumes that data are distributed as 

a Gaussian => may not be true

l If there is a model for data generation

=> fit the model (e.g. using regression models)

l Are the principle component vector

good for classifications ? maybe not.

use of the classe label 

(cf Linear Discriminant Analysis, LDA)

31
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Limitation

l Capture global information 

l Fit data with an hyperplane (linearity) 

l Far away points might be projected close

l Some data – located on manifolds

Þ dimensionality reduction : 

l Non-linear embeddings

l Preserve Local Structures

32

x
x
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Extensions

l Probabilistic PCA

l Fully generative model

l Allows training using EM algorithm for training, mixtures of PCA

l Kernal PCA

l Use non-linear mapping functions (cf later course on SVM)

l Other linear/non-linear feature reduction techniques

l Isomap, Kohonen maps

l Locally Linear Embedding, t-SNE

33

C. Bishop
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Summary about PCA

l Interest

l Curse of dimensionality: high-dimensionality data difficult to manipulate

l Intrinsic data dimension is usually small

l PCA

l Feature reduction technique, unsupervised (no data label)

l Project initial data points with a linear projection

l Projection directions given by eigenvectors of covariance matrix

l Projected points keep maximum variance of initial training points

l Application

l Data compression: less coordinates needed – efficient storage

l Visualization: project high-dim points into 2D or 3D

l Synthesis of new data point feasible

l Noise removal: keep only the essential information

=> positive effect on subsequent steps

34
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Probabilistic PCA (PPCA)

35



PCA - Summary

l Way to remove correlation between points

=> reduce dimensions through linear projection

l Data driven: training samples

l compute mean and covariance

l find largest eigenvalues of covariance matrix

=> sort eigenvectors ui by decreasing order of eigenvalues

=> form matrix

l lower dimensional representation of datapoints is given by

l approximate reconstruction 

36

yn = UT (xn − x̄)

U = (u1, . . . ,uM )

x̃n ' x̄+Uyn



Probabilistic view of PCA => probabilistic PCA

l PCA: algebraic view of data

l Alternative

=> find a lower-dimensional probabilistic description of the data

=> PCA as maximum likelihood solution of a probabilistic latent variable model

l What are the advantages ? what do we gain ?

=> we first present the model and then show its added properties

37



Probabilistic PCA – Generative process

l Generative process : from latent (low dimensional space) to data space

l draw

l draw

38

z

p(z)

bz

x2

x1

µ

p(x|bz)

}

bz|w|

w

x2

x1

µ

p(x)

p(z) = N (z|0, I)ẑ ∼ N (z|0, I)

x̂ ∼ N (x|Wẑ+ µ,σ
2
I) p(x|z) = N (x|Wz+ µ,σ

2
I)

x = Wz+ µ+ �

- random white noise

- uncorrelated with z

- isotropic in data space

✏ ∼ N (✏|0,σ2
I)

- dimension D x M 

- column vectors define

subspace in data space
places origin in 

data space

l model parameters : µ,W,σ
2

z ∈ IR
M

x ∈ IR
D



l Model defines a probability density in data space

l Note : distributions are Gaussians => all involved distributions are Gaussian

l mean and covariance of  

Probabilistic PCA – Generative process

l Generative process : from latent (low dimensional space) to data space

39

z

p(z)

bz

x2

x1

µ

p(x|bz)

}

bz|w|

w

x2

x1

µ

p(x)

p(z) = N (z|0, I) p(x|z) = N (x|Wz+ µ,σ
2
I)

p(x)

p(x)

IE[x] = IE[Wz+ µ+ ✏] = µ

cov[x] = IE[(Wz+ ✏)(Wz+ ✏)T ] = IE[Wzz
T
W

T ] + IE[✏✏T ] = WW
T + �

2
I

p(x) = N (x|µ,C) C = WW
T
+ σ

2
I

© chris bishop



l Note: unidentifiability of matrix W in data space

l select matrix

R:  M x M    rotation matrix in latent space

=> defines the same distribution in data space

=> due to isotropy in latent space

=> redundancy in parameterization of W

Probabilistic PCA – Generative process

l Generative process : from latent (low dimensional space) to data space

40

z

p(z)

bz

x2

x1

µ

p(x|bz)

}

bz|w|

w

x2

x1

µ

p(x)

p(z) = N (z|0, I) p(x|z) = N (x|Wz+ µ,σ
2
I)

W̃ = WR

C̃ = W̃W̃
T
+ σ

2
I = WRR

T
W

T
+ σ

2
I = WW

T
+ σ

2
I = C

© chris bishop



Probabilistic PCA – Learning

l Link with PCA ? maximum likelihood PCA parameter estimation 

l Likelihood

l Optimization w.r.t. parameters: closed form solution

41

X = {xn}

ln p(X|µ,W,σ
2) =

NX

n=1

ln p(xn|µ,W,σ
2)

= −

ND

2
ln(2π)−

N

2
ln |C|−

1

2

NX

n=1

(xn − µ)TC−1(xn − µ)

µ
ML

= x̄ σ
2
ML

=
1

D −M

DX

i=M+1

λi

Training data set

WML = UM (LM − σ
2
I)1/2R

Columns given by the M eigenvectors corresponding to the M largest eigenvalue of SUM

MxM diagonal matrix has elements given by the corresponding eigenvaluesLM

arbitrary rotation matrix => non-uniqueness of W (cf previous slide)R

eigenvalues sorted in descending order of magnitudeλi



Probabilistic PCA vs  PCA

l Comparison with PCA

=> (taking R=I) similar expression (except -σ2 scaling), in a probabilistic framework

=> recovers PCA when σ2 tends to 0

l variance 

variance associated with discarded dimensions  cf variance of reconstruction error in PCA

l projection in latent space – it can be shown that for the ML case

l Recover PCA case when σ2 tends to 0 (but probability distribution get ill-defined)

l Note: this does not correspond to an orthogonal projection 

42

σ
2
ML

=
1

D −M

DX

i=M+1

λi

x = x̄+WMLz+ noise x̃ ' x̄+UMy
cov(y) = LM

PCA : reconstruction

cov(z) = IMWML = UM (LM − σ
2
I)1/2

p(z|x) = N (z|IE[z|x],σ−2

ML
LM )

IE[z|x] = L
−1

M
W

T

ML
(x− x̄) yn = UT (xn − x̄)

PCA



Probabilistic view of PCA => probabilistic PCA

l What are the advantages ? what do we gain ?

l Probabilistic PCA: constrained form of Gaussian distribution on p(x)

l number of free parameters is restricted (compared to full covariance model)

l still captures dominant data correlation (compared to diagonal covariance model)

l Generative process (we can sample random vectors)

l Likelihood function of data points

more informative than the PCA reconstruction error

allow comparison with other probability density models

43

new point, far from data, but 

low reconstruction error

eigenvector



Probabilistic view of PCA => probabilistic PCA

l What are the advantages ? what do we gain ?

l latent space model => derivation of computationally efficient EM algorithm for 
PCA, that does not require computation of covariance matrix

l Probabilistic model + EM => handling of missing values in the dataset

(allows PCA projections even if there are missing values in the input values)

l Principled extensions to other models and particularly Mixtures of probabilistic

PCA models

44

mixture with two

components 



Probabilistic PCA : a specific case of Factor Analysis

l Factor analysis : same principle, but noise in data space is not isotropic

l Notes 

l in FA, the covariance is still taken diagonal, so that the components of x are all 

independent conditioned on z (this is true of course for PPCA as well)

l in this case, no closed-form solution for the estimation of parameters (W and ψ) 

45

p(z) = N (z|0, I) p(x|z) = N (x|Wz+ µ,Ψ)

p(x|z) = N (x|Wz+ µ,σ
2
I)vs isotropic noise in PPCA

general diagonal 

covariance matrix
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Conclusion : Probabilistic PCA

l Probabilistic PCA: classical probabilistic method for finding low-

dimensional representation of the data 

l Continuous latent model with closed form solution 

l Extends to more models (Factor analysis, mixture models)

l Presents advantages compared to traditional PCA (eg handles missing 

components in the data)

46
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t-Stochastique-Neighbor-Embedding

(t-SNE)
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What is t-SNE

l Dimensionality reduction algorithm

l PCA : global structure and mapping to low dimensional space

l may lead to some inconsistencies (far away points can become 

nearest neighbors)

l t-SNE : preserve local structure

l low dimensional neighborhood should be the same as original 

neighborhood

l one example of local embedding methods (others: Isomap, Linear 

Local Embedding (LLE), Spectral clustering)

l Use mainly for data-visualization

l No easy way to embed new points
48
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x ∈ E = R
D

→ f(x) = y ∈ F = R
d

Embedding: projection with 

the notion of keeping some 

form of similarity



Master of Science in Artificial Intelligence

Example – t-SNE on MNIST
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Master of Science in Artificial Intelligence

Example – PCA on MNIST

50



Master of Science in Artificial Intelligence

SNE – Stochastique Neighbor embedding

l Basic idea

l Set of points in high-dimensional space:

l Encode high dimensional neighborhood information as a distribution

l Distribution intuition

l Introduce probability  pj|I that point j is a neighbor of point i

l Higher probability for close points

l Find low dimensional points 

l such that their neighborhood distribution is similar

§ If x5 and x7 are close, then y5 and y7 should be close as well

l Similarity measure ? Standard Kullback-Leibler (KL) divergence

51

<latexit sha1_base64="YoebYnmz0kxM06wbrdgjlcU2ZDM=">AAACFnicbVDLSsNAFJ3UV62vqEs3g0VwUUMiRd0IRV24kir2AU0tk+mkHTqZhJmJWEK+wo2/4saFIm7FnX/jtM1CWw9cOJxzL/fe40WMSmXb30Zubn5hcSm/XFhZXVvfMDe36jKMBSY1HLJQND0kCaOc1BRVjDQjQVDgMdLwBucjv3FPhKQhv1XDiLQD1OPUpxgpLXXMAzeBboBU3/OTh7RDoUt5JnjJTXp3UYL01ClZllW6ctOOWbQteww4S5yMFEGGasf8crshjgPCFWZIypZjR6qdIKEoZiQtuLEkEcID1CMtTTkKiGwn47dSuKeVLvRDoYsrOFZ/TyQokHIYeLpzdLCc9kbif14rVv5JO6E8ihXheLLIjxlUIRxlBLtUEKzYUBOEBdW3QtxHAmGlkyzoEJzpl2dJ/dByjqzydblYOcviyIMdsAv2gQOOQQVcgiqoAQwewTN4BW/Gk/FivBsfk9ackc1sgz8wPn8AsjOdyA==</latexit>

{xi ∈ R
D, i = 1, ..., N}

<latexit sha1_base64="1x2whS0XyE0FMz1J0dsH8Kz/Cqk=">AAACFnicbVDLSsNAFJ3UV62vqks3g0VwUUMiRd0IRTeupIp9QBPDZDpph04mYWYilJCvcOOvuHGhiFtx5984bbPQ1gMXDufcy733+DGjUlnWt1FYWFxaXimultbWNza3yts7LRklApMmjlgkOj6ShFFOmooqRjqxICj0GWn7w8ux334gQtKI36lRTNwQ9TkNKEZKS175yEmhEyI18IN0lHkUOpTngp/eZve9KqTndtU0zeq1k3nlimVaE8B5YuekAnI0vPKX04twEhKuMENSdm0rVm6KhKKYkazkJJLECA9Rn3Q15Sgk0k0nb2XwQCs9GERCF1dwov6eSFEo5Sj0def4YDnrjcX/vG6igjM3pTxOFOF4uihIGFQRHGcEe1QQrNhIE4QF1bdCPEACYaWTLOkQ7NmX50nr2LRPzNpNrVK/yOMogj2wDw6BDU5BHVyBBmgCDB7BM3gFb8aT8WK8Gx/T1oKRz+yCPzA+fwDl+J3p</latexit>

{yi ∈ R
d, i = 1, ..., N}



Master of Science in Artificial Intelligence

SNS – problem formulation (1)

l Define probability that one point j is the neighbor of point i

l Parameter        set the size of the neighborhood

l Very low value – most probability in nearest neighbor

l Very high value – uniform weights, all points are neighbors

l Note: we use a different       for each datapoint

l Results depends heavily on this parameter => defines neighborhood we 

try to preserve

<latexit sha1_base64="RsBSFPACV1+ezxcgwOO72d3XrXw="></latexit>

pj|i =
exp

�

�kxj � xik
2/2σ2

i

�

P

k 6=i exp (�kxk � xik2/2σ2

i )

<latexit sha1_base64="TxGSDoluwXBGIRf2Re3BvzxLrN8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxgv2ANpTNdtMu3WzC7kQosT/DiwdFvPprvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hbqtx65NiJWDzhOuB/RgRKhYBSt1El6mXgSE3JN3F654lbdGcgy8XJSgRz1Xvmr249ZGnGFTFJjOp6boJ9RjYJJPil1U8MTykZ0wDuWKhpx42ezkyfkxCp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF75mVBJilyx+aIwlQRjMv2f9IXmDOXYEsq0sLcSNqSaMrQplWwI3uLLy6R5VvUuquf355XaTR5HEY7gGE7Bg0uowR3UoQEMYniGV3hz0Hlx3p2PeWvByWcO4Q+czx9tS5Cz</latexit>

pi|i = 0

point <latexit sha1_base64="hjrwwgb86egcjNPPjQ1ZPh0bj40=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy4r2Ae0Q8mkmTY0yYxJpliGfocbF4q49WPc+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6ShRhDZJxCPVCbCmnEnaNMxw2okVxSLgtB2MbzO/PaFKs0g+mGlMfYGHkoWMYGMlvyewGQVh+jTrM9QvV9yqOwdaJV5OKpCj0S9/9QYRSQSVhnCsdddzY+OnWBlGOJ2VeommMSZjPKRdSyUWVPvpPPQMnVllgMJI2ScNmqu/N1IstJ6KwE5mIfWyl4n/ed3EhNd+ymScGCrJ4lCYcGQilDWABkxRYvjUEkwUs1kRGWGFibE9lWwJ3vKXV0nroupdVmv3tUr9Jq+jCCdwCufgwRXU4Q4a0AQCj/AMr/DmTJwX5935WIwWnHznGP7A+fwB3K6SKw==</latexit>

xi

<latexit sha1_base64="kVae948y5Kkyylyz94fv/0DroLU=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9pl5JNs21okl2SrFCW/govHhTx6s/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6sJOEBZIMFY84JdZJjz3Dh5L0Oe6XK17VmwOvEj8nFcjR6Je/eoOYppIpSwUxput7iQ0yoi2ngk1LvdSwhNAxGbKuo4pIZoJsfvAUnzllgKNYu1IWz9XfExmRxkxk6DolsSOz7M3E/7xuaqPrIOMqSS1TdLEoSgW2MZ59jwdcM2rFxBFCNXe3YjoimlDrMiq5EPzll1dJ66LqX1Zr97VK/SaPowgncArn4MMV1OEOGtAEChKe4RXekEYv6B19LFoLKJ85hj9Anz92SZAy</latexit>

σi

<latexit sha1_base64="kVae948y5Kkyylyz94fv/0DroLU=">AAAB8HicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9pl5JNs21okl2SrFCW/govHhTx6s/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6sJOEBZIMFY84JdZJjz3Dh5L0Oe6XK17VmwOvEj8nFcjR6Je/eoOYppIpSwUxput7iQ0yoi2ngk1LvdSwhNAxGbKuo4pIZoJsfvAUnzllgKNYu1IWz9XfExmRxkxk6DolsSOz7M3E/7xuaqPrIOMqSS1TdLEoSgW2MZ59jwdcM2rFxBFCNXe3YjoimlDrMiq5EPzll1dJ66LqX1Zr97VK/SaPowgncArn4MMV1OEOGtAEChKe4RXekEYv6B19LFoLKJ85hj9Anz92SZAy</latexit>

σi



Master of Science in Artificial Intelligence

SNE – problem formulation (2)

l Given the data                                           , define the distribution

l Goal

l Find embeddings (with d=2 or 3)

l Embedding quality ?

l define neighbor distribution in embedding space  

(note: no sigma parameter)

l minimize cost function

l Note

l Cost focuses on local structures (high p’s) 

l The embeddings Y are the parameters we are optimizing

l How to embed a new point ?   No embedding function!

l Optimization via Gradient Descent – not convex! Use multiple restart!

55

<latexit sha1_base64="YoebYnmz0kxM06wbrdgjlcU2ZDM=">AAACFnicbVDLSsNAFJ3UV62vqEs3g0VwUUMiRd0IRV24kir2AU0tk+mkHTqZhJmJWEK+wo2/4saFIm7FnX/jtM1CWw9cOJxzL/fe40WMSmXb30Zubn5hcSm/XFhZXVvfMDe36jKMBSY1HLJQND0kCaOc1BRVjDQjQVDgMdLwBucjv3FPhKQhv1XDiLQD1OPUpxgpLXXMAzeBboBU3/OTh7RDoUt5JnjJTXp3UYL01ClZllW6ctOOWbQteww4S5yMFEGGasf8crshjgPCFWZIypZjR6qdIKEoZiQtuLEkEcID1CMtTTkKiGwn47dSuKeVLvRDoYsrOFZ/TyQokHIYeLpzdLCc9kbif14rVv5JO6E8ihXheLLIjxlUIRxlBLtUEKzYUBOEBdW3QtxHAmGlkyzoEJzpl2dJ/dByjqzydblYOcviyIMdsAv2gQOOQQVcgiqoAQwewTN4BW/Gk/FivBsfk9ackc1sgz8wPn8AsjOdyA==</latexit>

{xi ∈ R
D, i = 1, ..., N}

<latexit sha1_base64="ar7i9ks+DYFqYQbOKta6/qyVDdk=">AAACCHicbVDLSgMxFM3UV62vUZcuDBbBRSkzUtSNUHTjSirYVpgOQyaTtqGZZEgyQhm7dOOvuHGhiFs/wZ1/Y9rOQlsPBM49515u7gkTRpV2nG+rsLC4tLxSXC2trW9sbtnbOy0lUolJEwsm5F2IFGGUk6ammpG7RBIUh4y0w8Hl2G/fE6mo4Ld6mBA/Rj1OuxQjbaTA3m8EFJ57SZC5D3RUgR0WCa0qpr42tQ8Du+xUnQngPHFzUgY5GoH91YkETmPCNWZIKc91Eu1nSGqKGRmVOqkiCcID1COeoRzFRPnZ5JARPDRKBLtCmsc1nKi/JzIUKzWMQ9MZI91Xs95Y/M/zUt098zPKk1QTjqeLuimDWsBxKjCikmDNhoYgLKn5K8R9JBHWJruSCcGdPXmetI6r7km1dlMr1y/yOIpgDxyAI+CCU1AHV6ABmgCDR/AMXsGb9WS9WO/Wx7S1YOUzu+APrM8fgE6ZCA==</latexit>

Pi = [p1|i, . . . , pN |i]

<latexit sha1_base64="T56zVMap2AByVZT/IlZxXNHkLGE=">AAACcnicdVFdT9swFHUCG5B9FSZeNmnzVk0CaVQJQrAXJLS97JFJKyDVXeS4N62p4wT7BlGl+QH8vb3tV+xlP2BOyQODcSVLx+f4XF8fJ4WSFsPwl+cvLT96vLK6Fjx5+uz5i876xonNSyOgL3KVm7OEW1BSQx8lKjgrDPAsUXCaTL80+uklGCtz/R1nBQwzPtYylYKjo+LO9UVcnc9lTQ8pSw0XVcDgqmAKUtzaYXOWcZwkaTWr4/OdWxvJ5j92mZHjCW7XgTPZMourKWUaLqisH+oxfahHUAdxpxv2wkXR+yBqQZe0dRx3frJRLsoMNArFrR1EYYHDihuUQkEdsNJCwcWUj2HgoOYZ2GG1iKymHxwzomlu3NJIF+xtR8Uza2dZ4k42E9u7WkP+TxuUmH4aVlIXJYIWNxelpaKY0yZ/OpIGBKqZA1wY6WalYsJd8uh+qQkhuvvk++Bktxft9/a+7XWPPrdxrJLX5D3ZIhE5IEfkKzkmfSLIb2/Te+O99f74r/x3fpud77Wel+Sf8j/+Bdwcvsg=</latexit>

qj|i =
exp

�

�kyj � yik
2
�

P

k 6=i exp (�kyk � yik2)

<latexit sha1_base64="Jyev0WMECs457RKKFkhqOOSvKsE=">AAACGnicbVDLSsNAFJ3UV62vqks3g0VwUUIiRd0Uim5cSRX7kCaGyXTSDp1MwsxEKCHf4cZfceNCEXfixr9x2mah1QMXDufcy733+DGjUlnWl1FYWFxaXimultbWNza3yts7bRklApMWjlgkuj6ShFFOWooqRrqxICj0Gen4o/OJ37knQtKI36hxTNwQDTgNKEZKS17ZvoV16KTQCZEa+kE6zjwKHcpzwU+vs7t+FdK6XTVNs3rpZF65YpnWFPAvsXNSATmaXvnD6Uc4CQlXmCEpe7YVKzdFQlHMSFZyEklihEdoQHqachQS6abT1zJ4oJU+DCKhiys4VX9OpCiUchz6unNysJz3JuJ/Xi9RwambUh4ninA8WxQkDKoITnKCfSoIVmysCcKC6lshHiKBsNJplnQI9vzLf0n7yLSPzdpVrdI4y+Mogj2wDw6BDU5AA1yAJmgBDB7AE3gBr8aj8Wy8Ge+z1oKRz+yCXzA+vwHnDJ7n</latexit>

Y = {yi ∈ R
d, i = 1, ..., N}

<latexit sha1_base64="bpcC4vV5MznnfkRqYzuHtcSbVSw=">AAACGXicbVDLSsNAFJ3UV62vqEs3g0Wom5JIUTdC0Y3LCvYBTSmT6aQdOpmEmYkaQn7Djb/ixoUiLnXl3zhpI2rrgYHDOecy9x43ZFQqy/o0CguLS8srxdXS2vrG5pa5vdOSQSQwaeKABaLjIkkY5aSpqGKkEwqCfJeRtju+yPz2DRGSBvxaxSHp+WjIqUcxUlrqm5bjIzVyveQuhY6gw5FCQgS38FuOU3jmVX5Ch32zbFWtCeA8sXNSBjkaffPdGQQ48glXmCEpu7YVql6ChKKYkbTkRJKECI/RkHQ15cgnspdMLkvhgVYG0AuEflzBifp7IkG+lLHv6mS2opz1MvE/rxsp77SXUB5GinA8/ciLGFQBzGqCAyoIVizWBGFB9a4Qj5BAWOkyS7oEe/bkedI6qtrH1dpVrVw/z+sogj2wDyrABiegDi5BAzQBBvfgETyDF+PBeDJejbdptGDkM7vgD4yPL5ZwoUg=</latexit>

x → y = f(x)

<latexit sha1_base64="p6eJ3nRi4ZSEJXa03WvgWqNNZ7o="></latexit>

∂C

∂yi

= 2
X

j

(yi − yj)
�

pj|i − qj|i + pi|j − qi|j
�

<latexit sha1_base64="2bpKKDLq9wSQRLz4me/RSJSzwi8=">AAACOHicbZDLSgMxFIYz9VbrrerSTbAIdVNmpKgbodiNoGAL9iKdMmTSTJs2czHJCGXax3LjY7gTNy4UcesTmE5nUVsPhHz8/zkk57cDRoXU9VcttbS8srqWXs9sbG5t72R39+rCDzkmNewznzdtJAijHqlJKhlpBpwg12akYQ/KE7/xSLigvncnhwFpu6jrUYdiJJVkZW/L+ftjeAFNEboWhdc3+YpFR1WLzojx1YeBFfVHdAxN5neh6XCEo0QaRw8JZKxsTi/occFFMBLIgaQqVvbF7Pg4dIknMUNCtAw9kO0IcUkxI+OMGQoSIDxAXdJS6CGXiHYULz6GR0rpQMfn6ngSxursRIRcIYaurTpdJHti3puI/3mtUDrn7Yh6QSiJh6cPOSGD0oeTFGGHcoIlGypAmFP1V4h7SEUiVdaTEIz5lRehflIwTgvFajFXukziSIMDcAjywABnoASuQAXUAAZP4A18gE/tWXvXvrTvaWtKS2b2wZ/Sfn4B/e6sJQ==</latexit>

C(Y ) =
X

i

KL(Pi|Qi) =
X

i

X

j

pj|i log
pj|i

qj|i



Master of Science in Artificial Intelligence

SNE example/issue

l Local relationship preserved

l “Crowding problem”

l High dimension space: more room, easy to have multiple neighbors

l Low dimensional space: area available to accomodate moderately distant 

point not large enough compared to area for nearby data points

l Distinct cluster in high dimensional space pushed closer in lower space

=> might not be distinguishable

56

In 1D (right):

AB and BC preserved, but AC too large
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t-SNE (t-student SNE)

Two main differences with SNE

l Symmetrized distribution

l less sensitivity to outliers

l leads to simpler gradient

l Use of an heavy-tail distribution (Student’s 

t-distribution, in red) to define Qi

(Pi unchanged)

l goes slower to 0 than Gaussian

l slower change => more space to move 

points around in medium distance

l New cost (note distribution is over all ij)
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<latexit sha1_base64="3lSpRvhg6EHe98hoPAl/J3CKlL8=">AAACDnicbVDLSsNAFJ34rPUVdelmsBQEoSSlqBuh6MZlBfuANoTJdNJOO5mEmYlQ0nyBG3/FjQtF3Lp25984abPQ1gMXzpxzL3Pv8SJGpbKsb2NldW19Y7OwVdze2d3bNw8OWzKMBSZNHLJQdDwkCaOcNBVVjHQiQVDgMdL2xjeZ334gQtKQ36tJRJwADTj1KUZKS65ZjtyEjlJ4BXu+QDjRz9GUpvAMZsZ0lKZJlaeuWbIq1gxwmdg5KYEcDdf86vVDHAeEK8yQlF3bipSTIKEoZiQt9mJJIoTHaEC6mnIUEOkks3NSWNZKH/qh0MUVnKm/JxIUSDkJPN0ZIDWUi14m/ud1Y+VfOgnlUawIx/OP/JhBFcIsG9ingmDFJpogLKjeFeIh0rEonWBRh2AvnrxMWtWKfV6p3dVK9es8jgI4BifgFNjgAtTBLWiAJsDgETyDV/BmPBkvxrvxMW9dMfKZI/AHxucPaG+cXA==</latexit>

pij =
pj|i + pi|j

2n

<latexit sha1_base64="zdhg1+mKtN1iHuIOWvGSfTdscNw=">AAACeHicbVHLbtswEKTUV6q+3PaYC1E3aIIghmQEbS8FgubSYwrUSQDTESh6ZTOmKIVcFTAYfUP/Lbd8SC85lbJ9cJwuQGA4uzNc7maVkhbj+DYIHz1+8vTZ1vPoxctXr9903r47tWVtBAxEqUpznnELSmoYoEQF55UBXmQKzrLZcZs/+w3GylL/wnkFo4JPtMyl4OiptPPnKnXysqHfKMsNFy5iCnLcpQndp+yaFRynWe7mTXp5sHaR7Pqiz4ycTHHvwh0kTRN5pa2L1M0o03BFVbM0SvbvuczWXdSmS9REaacb9+JF0IcgWYEuWcVJ2rlh41LUBWgUils7TOIKR44blEJBE7HaQsXFjE9g6KHmBdiRWwyuoTueGdO8NP5opAt2XeF4Ye28yHxl27bdzLXk/3LDGvOvIyd1VSNosXworxXFkrZboGNpQKCae8CFkb5XKqbcLwD9rtohJJtffghO+73kc+/w52H36PtqHFtkm3wguyQhX8gR+UFOyIAI8jfYDj4GO8FdSMNP4d6yNAxWmvfkXoT9f94mv2I=</latexit>

qij =

�

1 + kyj � yik
2
��1

P

k 6=l (1 + kyk � ylk2)
�1

<latexit sha1_base64="YDrUFHyEEp0tlRzVdrs7dtRal8c="></latexit>

C(Y ) = KL(P |Q) =
X

i

X

j

pij log
pij

qij



Master of Science in Artificial Intelligence

SNE – scale selection 

l Intuitively – depending on expected ‘density’ select a scale to 

keep k neighbor close

l sigma as distance to kth nearest neighbor

l k = 2

58



Master of Science in Artificial Intelligence

SNE – scale selection 

l Intuitively – depending on expected ‘density’ select a scale to 

keep k neighbor close

l sigma as distance to kth nearest neighbor

l k = 2

l k = 6

=> left point : points on the right become neighbors

59



Master of Science in Artificial Intelligence

SNE – scale selection 

l In SNE: sigma selected  to obtain a given perplexity

l P uniform over k elements => perplexity is k

l Low perplexity – low entropy – small sigma

l High perplexity – high entropy – large sigma

l Define the perplexity => search the sigma_i closest to it (via binary search)

l Important parameter : different perplexity capture different scales in data

60

<latexit sha1_base64="4LJYyQ+Q7nfftSvavzYkkkjVsq8=">AAACEnicbVDLSsNAFJ3UV42vqEs3g0VoF5akFHUjFN10WcE+oAlhMp20004ezEyEEvsNbvwVNy4UcevKnX/jtI2grQcunDnnXube48WMCmmaX1puZXVtfSO/qW9t7+zuGfsHLRElHJMmjljEOx4ShNGQNCWVjHRiTlDgMdL2RtdTv31HuKBReCvHMXEC1A+pTzGSSnKNkl4vNlxagpfwFNoiCdwhjN10eE8n0GZR3638PF2jYJbNGeAysTJSABkarvFp9yKcBCSUmCEhupYZSydFXFLMyES3E0FihEeoT7qKhiggwklnJ03giVJ60I+4qlDCmfp7IkWBEOPAU50BkgOx6E3F/7xuIv0LJ6VhnEgS4vlHfsKgjOA0H9ijnGDJxoogzKnaFeIB4ghLlaKuQrAWT14mrUrZOitXb6qF2lUWRx4cgWNQBBY4BzVQBw3QBBg8gCfwAl61R+1Ze9Pe5605LZs5BH+gfXwDO2ecCA==</latexit>

H(Pi) = −

X

j

pj|i log2 pj|i
Shannon

entropy, in bits

<latexit sha1_base64="ligo6pWHin4HKW2jy6N0d4C1JnM=">AAACCnicbVDLSsNAFJ34rPEVdelmtAjtpiSlqBuh6KbLCvYBbQyT6aQdOkmGmYlQQtdu/BU3LhRx6xe482+ctFlo64ELh3Pu5d57fM6oVLb9baysrq1vbBa2zO2d3b196+CwLeNEYNLCMYtF10eSMBqRlqKKkS4XBIU+Ix1/fJP5nQciJI2jOzXhxA3RMKIBxUhpybNOTE4ELzU9WupLOgyRR8tleAWr92kjU8tTzyraFXsGuEycnBRBjqZnffUHMU5CEinMkJQ9x+bKTZFQFDMyNfuJJBzhMRqSnqYRCol009krU3imlQEMYqErUnCm/p5IUSjlJPR1Z4jUSC56mfif10tUcOmmNOKJIhGeLwoSBlUMs1zggAqCFZtogrCg+laIR0ggrHR6pg7BWXx5mbSrFee8UrutFevXeRwFcAxOQQk44ALUQQM0QQtg8AiewSt4M56MF+Pd+Ji3rhj5zBH4A+PzB7svmGQ=</latexit>

perp(Pi(σi)) = 2H(Pi)



Master of Science in Artificial Intelligence

Impact of perplexity

61

Change of perplexity => impact on ‘scale of analysis’

Output cluster size do not reflect cluster size in original space

Relative position and distance in output does not reflect inout relative position and 

distance (orange cluster in-between, closer to blue cluster)
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Comparison with other Local methods
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l MNIST
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CNN embeddings – 4096 dim features

l Karpathy - CNN embeddings
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https://cs.stanford.edu/people/karpathy/cnnembed/
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CNN embeddings – from face CNN
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t-SNE : conclusions

l Great way to visualize high-dimensional space data

l Example: Deep Networks embeddings (CNN features)

l Local approach

l preserve neighborhood information

l heavy-tail distribution to avoid crowding problem

l non-convex optimization 

l curse of dimensionality (euclidian distance in original space, so 

depends on local linearity in the data manifold)

l dependency on perplexity factor

l no embedding function
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