EE613
Machine Learning for Engineers

Dimensionality reduction

jean-marc odobez



Overview

Introduction

Principle Component Analysis (PCA)
Global - compression

Probabilistic PCA
Global, probabilistic

t-distributed Stochastic Neighbor Embedding (t-SNE)
Local - visualization



Introduction - motivation



Introduction - motivation

Shape
analysis

e Flat hand of one person
Delineated with 80 points
=> shape representation: position of these points
=> original space dimension D=160
Assume allowed mobility = independent rotation of each finger

=> manifold of flat hand intrinsic dimension around M=5

T
X = |z1,Y1, %2, Y2, ---T80, Ys0]



Introduction
aces as high- dlmensmnnal data point
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=10 000 pixels
lull
L MAR GG R M -4

e Database of 2000 faces
’v -i '1 => 1 point per 5 dimensions !

|I. l I .l => data is very sparse

(To represent probability density,
need number of training samples
> D)

e But the face space has
actually a much smaller
dimension

Data components (here pixels)
are correlated



Motivation — data compression

reR* 5>y eR

(1)

NN

e Represent any data point in original space by a vector with
less components
e Face case

e D=10000 => 50/100 dimensions
Less storage, faster comparisons
Easier to compute probability distribution over datapoints, similarities



Motivation - visualization Dataset of Mayya
Glyphs

Computing Visual Representation

HOOSC-BoW
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(&JJ—L. o . Glyph Visualization

Sampling and Quantization of Computing [ | \
extracting HOOSC individual Bag-of-Words
\ descriptors descriptors (BoWw) /

CNN activations

% =) | Deep Convolutional Neural Network

\\F\eedforwarding images through CNN and obtaining activy

o Allow data interpretability: what is the ‘structure’ in the high
dimensional space

Dimensionality
reduction with t-SNE

and visualization
b F

=




Motivation - visualization Dimensionality

reduction in 2D

=» more internal details
=>» more rectangulag &4

=> |less internal details
. =» more oval
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o Allow data interpretability: what is the ‘structure’ in the high
dimensional space



Dimension reduction

Main Idea of PCA (and manifold reduction techniques)

e Many real worl datasets
e Data point lie in large dimensional spaces (manifolds)
e Data point components are highly correlated (globally, locally)
e Low linear dimensional subspace captures most data variability

e Dimension reduction technique
e Learn an explicit or implicit mapping (from data)

rcE=RP = flz)=yec F =R

where D > d and the space F keeps some properties of the original space



Principal component analysis (PCA)



Outline PCA

e Introduction

e Principal Component Analysis (PCA) Principles
Variance Maximization
Reconstruction error minimization

e Examples

e Discussion



PCA principles

e Goal: project data from space of dimension D into lower dimension space
(dimension M<D)

e Linear subspace => linear projection

Original data S Projected data
(reduced data)

.

Projection matrix UT

X = [.731,...,33D]T y = [ylv“'ayM]T

x — v = Ul'x with U ¢ RP*M

T
Yy — u; X



uq

PCA principles 1 //
e Data driven approach \.

Xn
i.e. learns a transformation from data /

=> dataset {Xl,-..,XN}axi c RD / |
A,
/

e Projections

Yn = U''x,, with Yin = uszn

I
Yin = U1 Xp, 1 >

e Two views of PCA. Given the dataset, find the principle components (u
vectors) retaining most of the information of the original data

o Capture most data variability of original points
=> maximizes variance of

o Generate data points as close as possible to initial points
=> Minimize reconstruction error = distance between o and

13



Interpretation of principal components



Interpretation of principal components

o



Interpretation of principal components

\



/
Variance maximization <

e Mean of data pointx - Covariance of original data points $ '>/
N N
1 1 _ _ R
=y > = _Zl<xn—x>(xn—x)T
n=1 n=
1 1
— 2
Maxy, var(yy) = N gz Yin — =~ g (ui x, —

n=1

= Slll

o Maximizedif |lui]] — oo
o Need constraint ||u;]|* = ufu; =1
e This is a constrained optimization problem solved with Lagrangian approach

J(uy) = ur{Sul + A (1 — urful) => Su; = A\ju; and A\ = ufSul

e Conclusion:
ul is the (unitary) eigenvector of S with largest eigenvalue
ul captures the most variation among the training vectors x,
Note: eigenvectors are sometimes called eigenmodes



1 7

Variance maximization A

e What about u2 ? °>/\,

It is also an eigenvector of S, orthogonal to u1,

up

x1

whose eigenvalue is the second largest

e Properties.

Vectors ug are orthogonal to each other, define a new coordinate system
The principal components coordinates yy are uncorrelated
=> covariance matrix of y is diagonal with

var(yr) = A\, = u; Suy,

The kth largest eigenvalue is the variance of the ki principal component y,
The ki principal component y, retains the ki fraction of the variability
in the sample dataset

18
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Alternative view //
N

Xn
e Approximate data points as a linear .\ /
combination of M new basis vectors / Xn
X = X + noise Y C

X = f—l—ylul—l—...—I— MUM
= uy, ..., up]

= X+ Uy

e we are looking for u; that are orthogonal, unitary
e Goal: select the basis vectors minimizing the reconstruction error

1 N
_ E S 2

It can be shown
WU; i=1..M are the eigenvectors of S with largest eigenvalues
. L e B
Principal component k is given by Y = U, (X _ X)
Note: if M = D, this corresponds to a change of basis

components y, are the coordinates of x in the new basis 19



To wrap up

Set of training samples ~ {X1,....xn},x; € R”

Compute mean and covariance
N
1 N
il 1 _
N le”’ = N E -x)"

solve eigenvectors of covariance matrix

e.g. SVD decomposition, or more efficient methods if only look for the M first
eigenvectors, and D is of large dimension

select/keep the M first eigenvectors (and eigenvalues)
=> sort eigenvectors u;by decreasing order of eigennvalues

=>form matrix TJ = (ul7 o UM)
: : . . L _ 11T S
lower dimensional representation of datapoints is given by Yn = U (Xn — X)

approximate reconstruction of data point Xn =~ X + Uy,

Total square error made by approximation Z(xn —%,)? = (N —1) Z Aj
( >\j discarded eigenvalues in the projection) =1 j=M+1



PCA — some examples

21



Eigenshapes (Cootes)
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Training data

e Synthetize new shapes by
varying the principal
component coefficient y,
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Appearance - eigenfaces
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Eigenfaces

Mean face

e each eigenface has the dimension of an image
e model variations around mean intensity
e contain positive (bright) and negative values (dark)

25



Eigenfaces

e Face x in ‘face space’ coordinates

26



Discussion

27



Considerations (1)

e How to choose the number M of eigenmodes to keep ?
o Eigenmodes account for data variability =>

select smallest M such that the Total Variance

in projection space is above a fraction Tota_l variance of traiping
of the original variance data in subspace of size M

> Thresh

(we assume eigenvalues are _
ranked in decreasing order) Total variance of
J data in full space

e Other: if PCA is used as preprocessing for a classification
Select M through cross-validation

28



Considerations (2)

e Note: if M=D (if we keep all dimensions), is PCA useful ?

Yes. Data point components y in new basis are decorrelated
=> covariance is diagonal
Interesting when using GMM with diagonal covariance
in further modeling steps

o PCA application - Data whitening
heterogeneous data: different dimensions correspond to different measures
e.g. for a person: x = (age,height, weight) etc => pb: not comparable units

before further step (which may require distance computation), normalize data

standardization: rescale each component so that it has zero meand and unit
standard deviation

with PCA: Vi = L_1/2UT(Xn o }_()

where L contains the DxD diagonal matrix with elements )\j

=> the y elements are uncorrelated with unit variance (the covariance is the identity
matrix)



Limitations

Training data:
784 letter 3 images
translated, rotated

Mean and
eigenvectors

Ranked
eigenvalues

Reconstruction
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50 eigenvectors to model 3
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Limitations

e Assumes that data are distributed as
a Gaussian => may not be true

o If there is a model for data generation
=> fit the model (e.g. using regression models)

e Are the principle component vector
good for classifications ? maybe not.
use of the classe label
(cf Linear Discriminant Analysis, LDA)

31



Limitation

e Capture global information o Xr—=9
o Fit data with an hyperplane (linearity) ..
: : : @ o
o Far away points might be projected close @ o
@ @,
0. © @
o Some data — located on manifolds ® o>
- N L © To
— dimensionality reduction : R
e Non-linear embeddings
e Preserve Local Structures
® ._:" :.'.n".

32




Extensions T )

N

C. Bishop

e Probabilistic PCA ’oe—o W

Xn

Fully generative model N
Allows training using EM algorithm for training, mixtures of PCA

e Kernal PCA

Use non-linear mapping functions (cf later course on SVM)

e Other linear/non-linear feature reduction techniques

Isomap, Kohonen maps
Locally Linear Embedding, t-SNE



Summary about PCA

e Interest
Curse of dimensionality: high-dimensionality data difficult to manipulate
Intrinsic data dimension is usually small

o PCA

Feature reduction technique, unsupervised (no data label)
Project initial data points with a linear projection

Projection directions given by eigenvectors of covariance matrix
Projected points keep maximum variance of initial training points

e Application
Data compression: less coordinates needed — efficient storage
Visualization: project high-dim points into 2D or 3D
Synthesis of new data point feasible
Noise removal: keep only the essential information
=> positive effect on subsequent steps



Probabilistic PCA (PPCA)

35



PCA - Summary

)

X
Way to remove correlation between points .\//
=> reduce dimensions through linear projection / A
Data driven: training samples {xi,...,xn},X; € RP
compute mean and covariance B L& L
X = N;Xn S = NZ(xn ) (x, — %)

find largest eigenvalues of covariance matrix
=> sort eigenvectors ui by decreasing order of eigenvalues

=>form matrix {7 — (111 UM)
e

lower dimensional representation of datapoints is given by y, = UT(xn — X)

approximate reconstructon X, ~ X + Uy,

36



Probabilistic view of PCA => probabilistic PCA

e PCA: algebraic view of data

e Alternative
=> find a lower-dimensional probabilistic description of the data
=> PCA as maximum likelihood solution of a probabilistic latent variable model

e What are the advantages ? what do we gain ?

=> we first present the model and then show its added properties

37



Probabilistic PCA — Generative process

x ¢ R”

z ¢ RM

e Generative process : from latent (low dimensional space) to data space
draw 2 ~ N'(2]0, 1) p(z) = N(2/0,T)
draw % ~ N (x|Wz + u, 0°T) p(x|z) = N (x|Wz + p,o°I)

X=Wz+ pu—+e

- dimensionD xM / o \ - random white noise
- column vectors define places origin in - uncorrelated with z
subspace in data space data space - isotropic in data space

e ~ N (€|0, o°T)

model parameters : u, W, o2



Probabilistic PCA — Generative process

A
Z2

chris bishop

e Generative process : from latent (low dimensional space) to data space
p(z) = N(20,1)  p(x|z) = N(x|Wz + 1, 6T)
e Model defines a probability density in data space p(x)

e Note : distributions are Gaussians => all involved distributions are Gaussian

e mean and covariance of p(X)
Elx| = E[Wz + p + ¢ = p
cov[x] = E[(Wz + ¢)(Wz + ¢)'] = E[Wzz' W] + E[ec’ | = WWT + 0’1

p(x) =N(x|p,C) C=WW7! 4%

39



Probabilistic PCA — Generative process

Z2

-
——
-

W,
x2

4

© chris bishop

»
>

Z1

e Generative process : from latent (low dimensional space) to data space
p(z) = N'(2[0,I)  p(x|z) = N(x|Wz + p,0°T)

e Note: unidentifiability of matrix W in data space

e selectmatrix W = WR,

R: M x M rotation matrix in latent space

C=WWT 12l =WRR"WT £ 21 =WWT £ 51 = C

=> defines the same distribution in data space

=> due to isotropy in latent space

=> redundancy in parameterization of W

40



Probabilistic PCA — Learning

)
ZTL

o \ Training data set X = {x,}

L& N

_ 1

X = — X, _ v _—T
YL S = 1Y -Rin-w

Boo— —— W n=1

N

e Link with PCA ? maximum likelihood PCA parameter estimation

N
Likelihood Inp(X|u, W,0?) = Z In p(x, |, W, 0?)

"D N 1 X

= ——In(2m) — 5 n|C| - 5 ;(xn —wTC(x, — p)
Optimization w.r.t. parameters: closed form solution
D
_ 1
P =X Wy =Upy(Ly - 0°T)'°R =5 Do M

i=M+1
U s Columns given by the M eigenvectors corresponding to the M largest eigenvalue of S
LM MxM diagonal matrix has elements given by the corresponding eigenvalues

R arbitrary rotation matrix => non-uniqueness of W (cf previous slide)

A; eigenvalues sorted in descending order of magnitude
41



Probabilistic PCA vs PCA

Comparison with PCA PCA : reconstruction

x =X+ Wy.Z + notse

W = UM(LM - 021)1/2 COV(Z) = IM COV(Y) = LM

=> (taking R=I) similar expression (except -02 scaling), in a probabilistic framework
=> recovers PCA when ¢? tendsto 0

D
1
. 2
variance “w. =577 2. N
1=M-+1
variance associated with discarded dimensions cf variance of reconstruction error in PCA

projection in latent space — it can be shown that for the ML case
p(z|x) = N(z|Elz|x], 05 L) PCA
T —
Ez|x] = L/ W], (x — %) yn =U" (%, — X)
Recover PCA case when o2 tends to 0 (but probability distribution get ill-defined)

Note: this does not correspond to an orthogonal projection

42



Probabilistic view of PCA => probabilistic PCA

e What are the advantages ? what do we gain ?

Probabilistic PCA: constrained form of Gaussian distribution on p(x)
number of free parameters is restricted (compared to full covariance model)
still captures dominant data correlation (compared to diagonal covariance model)

Generative process (we can sample random vectors)

Likelihood function of data points
more informative than the PCA reconstruction error
allow comparison with other probability density models

eigenvector

S~ new point, far from data, but

low reconstruction error

43



Probabilistic view of PCA => probabilistic PCA

e What are the advantages ? what do we gain ?

e latent space model => derivation of computationally efficient EM algorithm for
PCA, that does not require computation of covariance matrix

e Probabilistic model + EM => handling of missing values in the dataset
(allows PCA projections even if there are missing values in the input values)

e Principled extensions to other models and particularly Mixtures of probabilistic

PCA models
mixture with two

components

44



Probabilistic PCA : a specific case of Factor Analysis
e Factor analysis : same principle, but noise in data space is not isotropic

p(z) = N (z|0,1) p(x|z) = N (x|Wz + p, ‘IQ

general diagonal
covariance matrix

vs isotropic noise in PPCA  p(x|z) = N (x|Wz + p, 0°1)

e Notes

in FA, the covariance is still taken diagonal, so that the components of x are all
independent conditioned on z (this is true of course for PPCA as well)

in this case, no closed-form solution for the estimation of parameters (W and y)

45



Conclusion : Probabilistic PCA

e Probabilistic PCA: classical probabilistic method for finding low-
dimensional representation of the data

e Continuous latent model with closed form solution
e Extends to more models (Factor analysis, mixture models)

e Presents advantages compared to traditional PCA (eg handles missing
components in the data)



t-Stochastique-Neighbor-Embedding
(t-SNE)



What is t-SNE

e Dimensionality reduction algorithm

e PCA : global structure and mapping to low dimensional space

may lead to some inconsistencies (far away points can become
nearest neighbors)

e t-SNE : preserve local structure

low dimensional neighborhood should be the same as original
neighborhood

one example of local embedding methods (others: Isomap, Linear
Local Embedding (LLE), Spectral clustering)

reE=RP = fa)=yc F =R

Embedding: projection with
the notion of keeping some
form of similarity

e Use mainly for data-visualization
No easy way to embed new points



Example — t-SNE on MNIST
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Example — PCA on MNIST
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SNE - Stochastique Neighbor embedding

e Basicidea .
Set of points in high-dimensional space: {Xi cRY,i=1,..., N}

Encode high dimensional neighborhood information as a distribution

Distribution intuition
Introduce probability p;, that point j is a neighbor of point i
Higher probability for close points

Find low dimensional points {y; € Rd,i =1,..,N}

such that their neighborhood distribution is similar
= If X5 and X7 are close, then ys and y; should be close as well

Similarity measure ? Standard Kullback-Leibler (KL) divergence



Define probability that one point j is the neighbor of point i

exp (—|[|x; — xil[*/207)

p;; =0
e oD (— [k — xi?/207) "

Djli =

Parameter O set the size of the neighborhood

e Very low value — most probability in nearest neighbor

e Very high value — uniform weights, all points are neighbors
e Note: we use a different 0; for each datapoint

Results depends heavily on this parameter => defines neighborhood we
try to preserve



SNE - problem formulation (2)

o Given the data {x; € RD,i =1,..., N}, define the distribution

P; = p1jis-- > PNJi
e Goal
Find embeddings Y = {y; € R%,i = 1,..., N'} (with d=2 or 3)

Embedding quality ?
g quality exp (—[ly; — yill?)

define neighbor distribution in embedding space ¢;|: =

. > ki €XP (—llye — yill?)
(note: no sigma parameter)

Pjli
djli

minimize cost function C(Y) =) KL(P|Q:) =) ) pjjilog

e Note
Cost focuses on local structures (high p’s)
The embeddings Y are the parameters we are optimizing

How to embed a new point ? No embedding function! x —y = f(X)
Optimization via Gradient Descent — not convex! Use multiple restart!

oC
Jy.; =2 Z(yi —¥;) (Pjti — @1 + Pty — qulj)
j
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In 1D (right): R T
AB and BC preserved, but AC too large et ll e,

e Local relationship preserved

e “Crowding problem”
e High dimension space: more room, easy to have multiple neighbors

e Low dimensional space: area available to accomodate moderately distant
point not large enough compared to area for nearby data points

e Distinct cluster in high dimensional space pushed closer in lower space
=> might not be distinguishable
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t-SNE (t-student SNE)

Two main differences with SNE

o Symmetrized distribution Dij =
less sensitivity to outliers
leads to simpler gradient

Pjli + Pil;
2n

1+ lly; —vill?) "

e Use of an heavy-tail distribution (Student's % — T o
t-distribution, in red) to define Q 2t (1 H llyk = yill®)

(P; unchanged) |
goes slower to 0 than Gaussian 0.30]

slower change => more space to move |
i : . . Z0.20f
points around in medium distance |

0.10f

0.40

0.05f

New cost (note distribution is over all ij)

000—4 -3 2 1 O 1 2 3 4

X

C(Y) = KL(P|Q) = Zzpwlog



SNE - scale selection

e Intuitively — depending on expected ‘density’ select a scale to
keep k neighbor close
e sigma as distance to k" nearest neighbor
o k=2

58



ANE — scale selecti

on eXpected ‘density’ select a scale to

kth nearest neighbor

o k=2
e k=6
=> |left point : points on the right become neighbors

59



SNE - scale selection

e In SNE: sigma selected to obtain a given perplexity

' Shannon
perp(Pi(0;)) = 2" H(P) = =) pjilogapyi 28
j L

e P uniform over k elements => perplexity is k

Low perplexity — low entropy — small sigma

High perplexity — high entropy — large sigma
e Define the perplexity => search the sigma_i closest to it (via binary search)
e Important parameter : different perplexity capture different scales in data

60



Impact of perplexity
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Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5,000 Step: 5,000 Step: 5,000

Step: 5,000 Step: 5,000

Change of perplexity => impact on ‘scale of analysis’
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Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100
Step: 5,000 Step: 5,000

Step: 5,000 Step: 5,000 Step: 5,000

Output cluster size do not reflect cluster size in original space

Perplexity: 30 Perplexity: 50 Perplexity: 100

Perplexity: 2 Perplexity: 5
Step: 5,000 Step: 5,000 Step: 5,000

Step: 5,000 Step: 5,000

Relative position and distance in output does not reflect inout relative position and
distance (orange cluster in-between, closer to blue cluster)

Original
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th other Local methods
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(a) Visualization by Isomap.

(a) Visualization by t-SNE._

e MNIST

(b) Visualization by LLE.
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CNN embeddings — 4

13

e Karpathy - CNN
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https://cs.stanford.edu/people/karpathy/cnnembed/

CNN embeddings — from face CNN

64



t-SNE : conclusions

o Great way to visualize high-dimensional space data
Example: Deep Networks embeddings (CNN features)

e Local approach
preserve neighborhood information
heavy-tail distribution to avoid crowding problem
non-convex optimization

curse of dimensionality (euclidian distance in original space, so
depends on local linearity in the data manifold)

dependency on perplexity factor
no embedding function



