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Machine Learning for Engineers

Generative models. Introduction
to Graphical models
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Overview

e Graphical models fundamentals
o Bayesian networks, representations
e conditional independence
e undirected graphical models

e Learning
e ML, MAP, Bayesian
e the EM algorithm, latent variable models

Gaussian Mixture Model (GMM)
Hidden Markov Model (HMM)

e Later : PCA, Probabilistic PCA
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BNs: two fundamental problems (reminder)

Model parameters
e given a factorized form for L !

p(x10) = | [ p(ax|pay, 0)

e learning: given training data (i.e. a set of values for
the observed nodes), estimate the parameters for
the full BN

e inference: given a learned model, compute
probabilities in the BN

e often interested in probabilities of hidden nodes
e conditioning on evidence



Learning in a directed graphical model (DGM)



Learning in graphical models: maximum likelihood (ML)

e assuming T v

o a parametric form p(x|6) - N
o identically independently distributed (i.i.d.) data drawn é

from the pdf D={xy,}, n=1,...,N

e likelihood function (of the parameters given the data)

L(0|D) = p(D|0) = H p(x,|0)

e learning: find parameters that maximize
e the likelihood 611 = arg m@axL(9|D)
e or the log-likelihood (analytically simpler)

Oy = arg m@axlog (L(6|D))



Example : categorical distribution for the data (1)

o for a discrete variable taking 1 out of K values

\

parameters to learn

e 1-of-k coding scheme



Example : categorical distribution for the data (2)

e Likelihood K

{ 1 k=1
K K
=> logp(Dlp) = Z inkuk = ZNk(D)Mk
i k=1 k=1

Ni(D) = Z Lik <«— counts of data that have label k

e Maximizing log-likelihood + ensuring that Zuk =1
=> lagrange multiplier

. o Ny (D)
e Maximum likelihood — p'* =
: Zk’ Nk’(D)




Example : categorical distribution for the data (3)

e Throw a dice N =10 times
=> Data (K=6) = {1,1,6,2,5,3,1,6,2,1 } (notin 1-K encoding format)

k 1 2 3 4 5 6
N (D) 4 2 1 0 1 2
ML 04 | 0.2 0.1 0 0.1 0.2
Lo

e p(x=4)is estimated as 0
=> if we throw the dice again, is the probability of seeing a 4 really 0 ?

e might be due to small sample size



Bayesian learning

e ML learning

Issue: parameters may overfit data (often depends on number
of samples vs number of parameters to estimate)

e Bayesian

0
consider parameters as a random variable itself 4
add prior on parameter p(6|«) é

compute posterior

p(0|D, o) < p(DI6, a)p(0|c) L i1

p(8|D, o) o p(D|6)p(6]cx)
e Note
in Bayesian, learning is just a specific case of inference
the posterior can be used in several ways
e.g Maximum a Posteriori (MAP) estimate relies on the mode
Orrap = arg m@axlogp(9|D, a)

Oriap = argmax (log p(D]0) + log p(6]a))

we could also consider the expected parameters under the
distribution (i.e the mean)



Bayesian learning — handling new data

e Sometimes, we are not interested in the parameters

e The question is @ @
what is the likelihood of a new data point,

given the training data?

e A solution: use ML or MAP estimates Q
i=1,....,N
P(Xnew|Onrr) p<Xnew ‘HMAP>
e Issues

e uses a point estimate of parameters
e does not reflect uncertainties on parameter estimation
=> might be overconfident => full Bayesian treatment

P(Xnew|D, a) o /p(xnew,9|D,oz)d9 = /p(xnewIH)p(9|D,oz)d9
0 0

=> posterior depend on training data
=> if posterior has a parametric form:
we can use it and throw away the training data




Bayesian learning
p(0|D, o)  p(D|0)p(0]cx)

: teri X likelihood rior
o Prior posterior ikelihood X p

favors some parameters over others
should reflect our knowledge about the problem

‘'uninformative prior' : used to remove singularities and avoid
spurious estimates => akin to regularization

Interesting prior form : 'conjugate priors’

definition: if the posterior is of the same parametric form as
the prior, then we call the prior the conjugate distribution for
the likelihood distribution

p(0|a) = p(d|D, ) = p(f]a)
™S /
same parametric form
(but not the same parameters !)

Interest: we have an analytical solution, so no need for
optimisation e.g. to find the max (= mode of the distribution)

8
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Example : categorical distribution for the data (4)

o Likelihood p(D|pu) = H;/Vk(D)

e Conjugate prior : similar expression w.r.t. parameters
=> Dirichlet distribution (defined over simplex)

[(cx) -

Dir(u|la) = ar—l gy = QL
) ) L 2

AU'ZA

251

ap = 101 oy = 10° o = 101
M3
example of distribution depending on equal @} values



Example : categorical distribution for the data (5)

o Likelihood P(Dlu) = Huk

K

e Prior Dir(pla) = P(al)ro(oofor)(%) ] w
k=1

e Posterior: Dirichlet distribution with updated parameters

p(p| D, &) o p(D|p)p(plar) ocr[uNk (D)ten

= p(u|D, a) = Dir(ula’) ay, = o + Ni(D)
/LMAP Oé;c—l _ Oék—FNk(D)—l
- Dol — 1) > (g + Npr(d) — K

(Y --1 can be interpreted as a count of (virtual) observations of the class k
- can favor one class against another if have prior information
- the larger the values, the more important the prior is against real observations



Example : categorical distribution for the data (3)

e Throw a dice N =10 times
=> Data (K=6) = {1,1,6,2,5,3,1,6,2,1} (notin 1-K encoding format)

o Dirichlet prior with g = 2

k 1 2 3 4 5 6
Ni(D) 4 2 1 0 1 2
ML 0.4 0.2 0.1 0 0.1 0.2
Mg
’uzk\mp 0.312 | 0.187 | 0.125 | 0.062 | 0.125 | 0.187

e 6 'virtual' observations vs 10 real observations: prior counts for 6/16
approx. 1/3 in the estimation of the parameters

e p(x=4)was 0 with ML => MAP allows to account for the potentially small
sample size and gives a low probability



Example 2 : 1D - Gaussian distribution (1) - 0 known

o Likelihood p(x|p) = N(x|u,o)
[ to be estimated
g assumed to be known

N
1 1
o) = [T o - 2m2>mexp{2—z }

Note: it has a gaussian shape in function of [ (but is not a distribution over (L )

e Conjugate Prior p(u) =N (,u|uo,08) :

e Posterior: Gaussian with updated parameters

p(ulx) o p(x|w)p(p).  plulx) =N (ulpn, o)
o’ No? 1 &
AN = N08+02M0+N08—SJQMML’ MML:N;JM

1 _ 1. N
0]2\,_ 8 o2’



Example 2 : 1D - Gaussian distribution (2) - o known

e Example of posterior with
N=0,1,2,10

p(plx) = N (ulpn, o)

e Note
| N=0 N-—->x
N [220) ML
0% o 0

5

-1

e as N goes to infinity, we are more and more confident in our estimate of
the mean (which tends to the maximum likelihood estimate)

UN = NO'2 n o2 1o

1
2
oN o5 O

N
No} 1
+ NoZ _I_O_QMMLa MML = anlxn



Learning in a directed graphical model (DGM)

General case



Learning in DGM
with fully observed data

e if for all data samples, all variables of the model are fully observed, there
IS N0 missing data, and there are no hidden variables, we say that the
data is complete

e the likelihood is then given by

1%
p(D|0) = Hp x;|0) = H Hp(ﬂfit\xi,pa(t), 0;) = Hp(Dt‘Ht)
t=1

where D; is the data associated with node { and its parents
e product of terms, one per Conditional Probability Distribution (CPD)

e parameters of each CPD can be optimized separately, e.g. using ML
estimation



MAP estimation in DGM - fully observed data

|4
e The likelihood factorizes  p(D|0) = [ [ p(D:/6:)
t=

1

\%

e Assume the prior factorizes as well p(0) = ][ »(6:)
t=1

e Then clearly the posterior factorizes

p(0|D) o p(D|6)p Hp Dy¢|60¢)p(6:)

t=1

=> We can compute the posterior of each CPD independently
=> we can perform MAP estimation on each independently



e However, often, observations of a DGM rely on hidden variables
e allows to represent complicated distribution from simple components
e allows to do soft clustering of the data
e e.g. Gaussian Mixture Model
e l|earning need techniques to handle this (EM algorithm)

Learning with latent variables

the expectation-maximization (EM) algorithm



The Gaussian Mixture Model (GMM)

e Definition: a GMM for a multivariate r.v. x is defined as

K
p) =S NGy B) 0<m <1l Yom=1
k=1

the 7T are called the mixing coefficients
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GMM as a graphical model

e assumes a hidden K-dimensional
variable categorical variable z used to
select from which Gaussian a given
observation is drawn

Z = (21, .0y 2k)

sz = 1,p(zk = 1) = Tk
k



GMM as a graphical model

e assumes a hidden K-dimensional
variable categorical variable z used to
select from which Gaussian a given
observation is drawn

z = (21,..., 2k)

Y a=1plz=1)=m
k

set of parameters

0 ={m, (., Xp)k=1. K}



GMM as a graphical model (2)

e prior probability of z:

'p(Zk — 1) = Tk

e posterior probability of z given x:

plzr = 1)p(x|z =1
Yw) = plar = 1x) = k= VP = 1
> i Pz = 1)p(x[z; = 1)

>

I T
i1 TN (%], 25)

e Y(zr) can also be seen as the responsibility of compo-
nent £ for explaining the observation x.



GMM: an example e

0.5 : |
0.3

057

© c. bishop

1 0.5¢

0 0.5 1 0 0.5 1

p(z)p(x|z) p(x )

ancestral sampling

0 0.5 1

I

v(2nk) for each x,,
(% of R,G,B for £ =1,2,3)

“soft clustering”



Learning the GMM parameters ?

7T

)y

)

0 = {m, (s, Xk)k=1..K}

set of parameters

e In practice: we are given the values of X
e The z variables are not given

057}

e they help in obtaining a better model, e.g. in the GMM having a better model

of distributions on x
e Learning ?

In the following, we describe a general procedure (EM), valid for any model. We

will present its general treatment (bearing in mind the GMM case), and come
back to the EM equation derivation for the GMM case afterwards



The expectation-maximization (EM) algorithm



The EM algorithm: learning with latent variables

assume an arbitrary O hidden z;
graphical model O visible x

o goal: find ML solutions for latent variable models
o X: set of all observed data variables X ={x;,i=1...N}
e 7: set of all latent variables. Z={z;,i=1...N}




The EM algorithm: learning with latent variables

O hidden z,
O visible x;

assume an arbitrary
graphical model

o goal: find ML solutions for latent variable models

o X: set of all observed data variables X ={x;,i=1...N}
o 7: set of all latent variables. Z={z;,,i=1...N}
o the log-likelihood is given by

e problem: the summation is inside the log function
e In(-) cannot act easily on the joint distribution!



EM: incomplete vs complete data

057

e |dea: suppose we know Z

e X incomplete data (previous slide)
e X,Z: complete data

e lllustration: GMM case

incomplete data

X: 2-D observations

057

(a) | « Easy to learn the

0 05 1
complete data
X: 2-D observations

Z: class labels (each point :
red,green or blue)

e p(2)

individual distributions !

e foreachk

p(x|z=k)



EM algorithm : intuition

o Complete data likelihood InL(0|X,Z) = Inp(X,Z|0)

e easier to maximize to obtain ML estimate 0,
e however, we need to know Z ....

o Ifwe new Oy (butnotZ)
e we could estimate the posteriorof Z p(Z|X, 0)
e i.e. how probable are each values of Z for each observation

=> this would leave us with some kind of (weighted) complete dataset

(x;,2z) with weight p(z|x;, 0) Vi, Vz



EM : an iterative process

e Goal: estimate
Or = arg max L(6|D)
e Two steps

e E(xpectation)
e M(aximization)

o [E}— ]

| \




EM : the E step

e the complete log-likelihood is not available
e its expected value under the posterior pdf of the latent variable is used

e More concretely
e the current parameter estimate 0°'? is used to find the posterior

p(Z|X,6°)
e the posterior is then used to find the expectation

Q(97 BOld) — EZ|X,90ld (lIl LC’(H‘Xv Z))
= Lz x gotd (Inp(X, Z10))

=) p(Z|X,0°") Inp(X, Z|6)
Z



EM : the M step

o Esstep  Q(6,07") =) p(Z|X,6°)Inp(X, Z|6)
Z

e M-step
e maximize the expected value Q
e update the parameters

0"“" = arg mgl,x Q(0, OOld)

e the log function acts directly on the (factorized) joint distribution so
the maximum will be tractable



The EM algorithm

o given p(X, Z|#), maximize p(X |¢) w.r.t. #
) choose an initial value for the parameters pold
2) E-step: evaluate p(Z|X, #°!9)
3) Mb-step: evaluate """ given by
0" = argmaxy Q(H, (901‘1)

where

Q0,677 = " p(ZIX,0°) Inp(X, Z|#).
Z

apply convergence criterion (on the log-likelihood
or on the parameters). If criterion 1s not satisfied,

H’old — prew

and return to step 2.




Inference, revisited O hidden z
I en 4

O visible x;

e Iinference:

e given values for the observed nodes

e compute the posterior distribution
on a subset of the hidden variables

p(Z|X,0)

e inference = the E-step

e consequence: learning (using EM) requires inference



why does EM work?
a closer look (Neal and Hinton, 1999)

e assume that direct optimization of p(X|#) is hard, but
optimization of p(X,Z|#) is much easier.
 for any distribution ¢(Z) over latent variables

approximating distribution

Inp(X1|0) = L(q,0)+ KL(q||p)

., let
e I S

4(Z)
. Z\|X.0 .
KL = - amntS
variables

Kullback-Leibler divergence



EM: a closer look (2)

Proof.
Inp(X,Z|0) = Inp(Z|X,0)+Inp(X|0) —
L(q,0) = Zq )(Inp(Z|X,0) + In p(X|0) — Ing(Z))
— Zq 111 Z@ + Zq(Z)lnp(X]@)
~ 9(Z) Z
— _KL(q(2)||p(Z) + Inp(X]|6) —
Inp(X|0) = L(q,0) + KL(q|p)



EM: a closer look (3)

General properties
of KL divergence

Inp(X|0) = L(q,0) + KL(q||p)

K L(q||p) = 0
KL(qllp) =0 <= ¢(Z) = p(Z|X,0)
In p(X|6)
L(q.0) < Inp(X|0)
h J h J
© c. bishop

L(q,0) is a lower bound on Inp(X|0).

EM is a coordinate ascent algorithm on £(q, 0):

o E-Step; q‘neu? - ‘a.l‘g Hla.Xq E((], 90[(1)

e M-step: 6"“" = arg maxy L(q"“", 0)




The E-step, revisited

KL(q|lp) =0 x J x

£(q,6°% Inp(X|6°')

© c. bishop

In p(X10) = L(q,0) + K L(ql||p)

o given 0/ maximize L(q,0°'") wrt. q(Z).

o the largest £(q,#°'?) occurs when K L(q||p) = 0, i.e.,
when ¢(Z) = p(Z|X,0°'?), the posterior distribution
over latent variables.

e 1In this case, the lower bound equals the log-likelihood,
ﬁ((], 901([) _ 111])(X’90l(l).



The M-step, revisited KL(qllp)I - ' [

L(q,0") ln p(X|6™)

Inp(X|0) = L(q,0) + KL(q||p)

© c. bishop

o given ¢"" = p(Z|X, #°'?), maximize £(¢"", ) w.r.t.
9 — 9716'(0.

o L(q"",0™") increases unless it is at a maximum

o KL(q""||p(Z|X,0™")) will be nonzero because
g™ was computed using the old parameters

e the increase in In p(X|0"“") is greater than the increase
in the lower bound.



The M-step, revisited (2)

o after the E-step, inserting ¢(Z) = p(Z|X,0°'9) in the
definition of £(q"“",0) gives

B oz P ZL9)
L(q,0) = ;1(2)1 7

| | X, Z|6)
— (71X 90[([ Ii p( ;

_ Q(Q, 901(1) B ZP(Z‘Xs Qol(l) lllp(Z‘Xq 901(1)
Z

= Q(6,6°) + H(q)

e therefore, in the M-step, the quantity that 1s being
maximized 1s the expected value of the complete log-
likelihood Q(#, 6°'9).



The EM algorithm

o given p(X, Z|#), maximize p(X |¢) w.r.t. #
) choose an initial value for the parameters pold
2) E-step: evaluate p(Z|X, #°!9)
3) Mb-step: evaluate """ given by
0" = argmaxy Q(H, (901‘1)

where

Q0,677 = " p(ZIX,0°) Inp(X, Z|#).
Z

apply convergence criterion (on the log-likelihood
or on the parameters). If criterion 1s not satisfied,

H’old — prew

and return to step 2.




MAP estimation with EM ?

e We want to optimize In p(0|X)

Inp(0|X) =Inp(X|0)+Inp(@) — Inp(X)
Inp(6|X) = L(q,0) + KL(q||[p) + Inp(0) — Inp(X)
> L(q,0) + Inp(0) — Inp(X)

\ constant

e We can apply the same steps than in EM, maximizing the right hand side
e E-step: given 6°'¢ find g maximizing the r-h.s

=> same E-step as in standard EM
e M-step: maximize

0"" = arg max (Q(H, 0°') + lnp(O))

=> if factorized prior => MAP estimation for each CPD distribution in general



Limitations of EM

e EM divides a difficult problem into two steps that might be simpler
to implement

e E-step and M-step might be intractable
intractable M-step (generalized EM): instead of maximizing
L(q,0) w.rt. 0 modify @ to increase its value
(with nonlinear optimization methods)

intractable E-step: perform a partial, rather than full, optimization of
L(q,0) wrt. q(Z)

e EM depends on the initialization values (e.g. see GMMs)
e EM can get trapped on local maxima



EM for Gaussian mixture models



EM for GMM

© c. bishop
rzn B
T @
Xn
He — >
\. NJ \. NJ
incomplete data complete data

e observed variables: X = (x1, ..., X ), hidden variables:
Z = (z1,...,zN), parameters 6 = (pt, 2, 7).
o complete likelithood
N K

pX.Z|n,2,m) = [ T] it N Gealpaw, B>

n=1 k=1



EM for GMM

o recall that Q(6,0°'%) = Ezix g0 {In p(X, Z|0)}, so

( N K

n=1 k=1

\
4

N K
— K < Z Z Znk {hl T + In ./\/‘(Xvn, ’,LLIC? EA)}}

n=1 k=1
N K

— Z Z E(zpp) {Inmy + In N (X, | e, X5) }

n=1 k=1




EM for GMM (2)

e where
Ezix gt (znr) = Z 2k P(Z] X, pold)
Z
— Z anp(zn,k, Xn, (90ld)
0.1

- 1. p(znk =1 Xns QOZ(l)
+ 0 - p(znk = 0 Xn 901(1)
— p(znk‘. — 1‘X"l’ 901(1)

— old ( 2o )

which 1s the E-step.
e the M-step finds the parameters 6 that maximizes
Q(0,6°'), searching for

0Q
00
for each of pup, Xp, T, with Y mp = 1.

0



EM for GMM (3)

N K
Q0,07 = Y N y(zar) {nmi + InN (%0 |k, i)}

n=1 k=1

L N i
oQ ‘ 9, 9,
—° = ‘ ] s )3
Bt ,,Z::l (Zak) {d (In7g) + B (In N (X |21 L))}
N
‘ 9, 1 s’
= )1 (,,2,1){()—(111( — S (xx —;,L.)Tz,{l(xn—#,\,))}
n=1 -
N
= > Y(znke) {—Z5 (%0 — pi)} =0 é?x(jjx — (A4 AT)x = 24x
n—11

if A is symmetric.

Pre-multiplying both sides by .,

M/

«nL Xn - ,U']f) =0

n=1
and rearrangilﬁ terms,
N
_ Zn:l ’:"(‘3711\7))()1.
Fle = N -
Zn:] A;"(""’nk)




EM for GMM (4)

e Note the following

Q(0,6°) => " y(zmp)Inmp + Y (Z V(Znk) I N (X | 114 z,g)
/ \

weighted log-likelihood for weighted loglikelihood
the categorical distribution for the component k

=> M optimization can be seen as standard ML
estimation where the weight express the 'number of
times' an observation should be counted



recipe: EM for GMMs

1) given X = (x1,...,xy) and K, initialize parameters:
(p, 2, m) = (p1.5, 215, T1: 5 ), and evaluate the initial
value of the log-likelihood.

2) E-step: compute posterior of hidden variables using
current parameters

WAT-/\/’<X‘IL’,LLA79 Zk)
K \
Zj:l W;iN(Xn’l«‘;ja Zj)

Y(Zpk) =




recipe: EM for GMMs (2)

3) M-step: re-estimate parameters using the posteriors
N

. 1 4
IU;‘M w A Z "/"(,V’Zn[‘f )X

k n=1
N

. 1 -
Zn( w N Z ’}(?ﬁnk ) (X'n /l;}c w )(X-n, — :u'lf,
N,

where N, = 520 y(21)
4) compute the log-likelihood

new

Uy

In p(X|p, X, ) S‘lny/u\./\/ X | fres )

n=1 k=1

and verify convergence of parameters or log-likelihood.
if convergence not satisfied return to step 2.




EM for GMM in action

1 std for each component

2

K=2
L = EM iteration

Y(zni) for each x,,

© c. bishop



Relation with Kmeans

N K
J(p, (Trk)) ernkHXz —Mk||2

e K-means optimizes =1 k=1
e (My)k=1,.. N cluster means
e 7,r = 1 means that data point n is assigned to cluster k
e J measures the distorsion of representing each x; with its assigned cluster mean

e Two steps
e E-step : compute best assignment of observation x; to cluster k

Lo i P <l — P VR R
ik 0 otherwise

e M-step: given assignment, compute optimal means

= Ziil ik X4
" D i Tik




Kmeans - illustration




Differences between Kmeans and EM for GMMs

J(p, (Trk)) ernkHXz - MkHQ

1 k=1
e Two steps =

e E-step: compute best assignment of observation x; to cluster k

Lo i P <l =P VR R
ik 0 otherwise

e M-step: given assignment, compute optimal means

b = S Tk
" D i Tik

e Difference with EM for GMM

e hard assignment vs soft assignment (responsibilities in GMM)
e covariance assumed to be diagonal, with (infinite) fixed variance
e no mixture weights



What to remember

e ML and MAP model parameter learning
ML learning is relatively easy to conduct with complete data
MAP : provide priors on model parameters - useful with small sample datasets
Conjugate priors
Application to categorical and Gaussian likelihoods

e EM algorithm
general method for learning in graphical models
complete vs. incomplete likelihood
EM as coordinate ascenton L(q, 6)
learning involves inference (E-step)

e Mixture models
simple assumptions, powerful models
applicable to static (GMM) and sequential (HMM) data (upcoming course)
EM results in “interpretable” parameter estimation algorithms
fundamental ideas to understand more complex models
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Appendix

Hidden Markov model (HMM)

e However, often, observations of a DGM rely on hidden variables
e allows to represent complicated distribution from simple components
e allows to do soft clustering of the data
e e.g. Gaussian Mixture Model
e learning need techniques to handle this (EM algorithm)



Hidden Markov model (HMM)

© c. bishop

o dynamic Bayes net, a k.a. state-space model
e X: observed continuous or discrete variables

o 7: latent discrete variables

Dynamic-model:
state transitions

Emission model: generating
the observations

N

n=2

p(xlzNa Z1;N) — p(Zl) H p(znlzn—l) H p(xnlzn)

N

n=1




HMM (2) =

(- ™ — A21
z can take K=3 states

caution: this is a state-transition a2 A23 A= D:)A
diagram, NOT a graphical model ¥ y
00—
© c. bishop

A33

e transition probability matrix

A 1k — P( Znk — 1’*72—1 ] 1)« 0 < Ajlc < la ZA]'L? =1

K K
; ) ~n—l Znk
p(Zn|Zn—1, A) H 1_[ A o S 1-K encoding trick

k=1j5=1 Note: depends on

two values
K

p(z1|m) = H T Z’m{ =1

k=1 k



HMM (3) - examples

Example 1

e no state favored, self-transition high
=> favors sequences of similar states (smoothness)

state 1 2 3
from\to
1 0.80.1| 0.1
2 0.1108]| 0.1
3 01101]| 0.8
Example 2 — left-right HMM state 1 2 3
e state diagram ? from\to
1 06|03]| 0.1
2 0 |07 0.3
3 0| 0] 10

Example 3 — bouncing ball — 2 states
e state 1 : ballistic trajectory

e state 2 : hitting the ground — assumed

to last only one time step

transition matrix ?

N
D:)A



HMM (4)

.30 ofoliodo-

the state transition diagram can be unfolded over time to
show the changes between variables into a lattice diagram



HMM (5)

K=3
05 B k: 1 h
2-D Gaussian observations

© c. bishop

0

0 0.5 1

o emission distribution (observation model)

K
p<xn‘zna ()) — H p(Xn‘G‘);{)z‘” k
k=1

where ¢ = {¢)} represent the parameters for the
distribution

o emission distributions are conditional probability tables
if x 1s discrete, Gaussian or GMMs if X is continuous.



Homogeneous HMM

Z1 Zo Zy_1q Zy, Zp 1
e o0 o 2
X1 X9 Xn—1 Xn Xn+1

o homogeneous model:

© c. bishop

— all the conditional distributions for the latent vari-
ables share the same parameters A

— all the emission distributions share the same para-
meters o.

e defining X = xy.5, Z = 2z1.ny. and 0 = {7, A, ¢}, the
joint distribution can now be written as

N
p(X,Z|0) = p(z1|7) Hp (20|21 —1, A) Hp (%1, |20, @

n—=2 n=1




The HMM as a generative model

K=3
2-D Gaussian
observations
05 r k: — 1 1 05 B

0 05 1 0 0.5
© c. bishop

ancestral sampling:
e sample z; ~ p(z1|7).
e sample Xy ~ p(x1|z1, @).
e forn=2:N,
— sample z,, ~ p(z,|Z,—1,A).
— sample x,, ~ p(xX,|Z,, ®).



HMM "decoding” Viterbi algorithm (1)
k:1D D D

n—2 n—1 n n—+1

e Goal: find the most probable sequence of states that can explain the

observed values
arg TzﬂaXP(ZLN\XLN) — arg IZﬂaXp(ZLN, X1:N)
1:N 1: N

= arg max logp(z1.n,X1.N)
Z1:N

e the number of possible paths through the lattice grows exponentially
with the length of the chain

e Viterbi algorithm:
e efficient way to solve this problem
e specific case of the max-sum algorithm on trees (cf last course)
e related to/probabilistic version of: Dynamic Time Warping



HMM "decoding” Viterbi algorithm (2)
k:1D D D

k_SD D

n—2 n—1 n n—+1

p(zl naxln — Zl Hp ZZ|Z’L 1 X’L|Z> p(zln 1, X1:n— 1) (Zn|zn 1) (Xn|znxt)

e Principle: recurswely flnd the best path that ends up in a given state
=> define S,(k) the maximum score of the path that ends in state k at time n

Sn(k) — max klogp<zl:naxlzn)

Zli:n—1,Zn=—
e Assume that we know the best path up to time n-1, i.e. S,.1(k). Then

Sn(k) = mlaX (Sn—1(l) +1og(p(zn = k|p(zn—1 = ))p(Xn|2, = k)))

and keep in memory B, (k) the state | at time n-1 for which the max was achieved



HMM "decoding” Viterbi algorithm (3)
O 0O O

assume that it

< iS k_max
N

By (EN™)

O

N

0

e Reaching the end of the sequence (time N) — Best score :

Sn(k)= max logp(zi.n,X1:N)
Z1:N—-1,ZN=Fk

= maxlog p(z1.n,X1.N) = max Sn (k)
Z1:N

e State of best path at time N = state k for which the max Sy(k) is achieved
kN = arg max Sn (k)
e We can backtrack the best path using the stored B, (k)
T = Ba (k™)

n—1 —



HMM learning: EM (1)
e the complete log-likelihood for the HMM 1s

( N N
Inp(X,Z0) = In<p(zi|r) [ plznlzn-1.4) Hp(xnlzn,,c*))}

. n—=2 n=1

g K
= In< 1_&[7‘““‘} + In H H HA“” L.j nk

k=1 n=2kLk=17=1

(' N K
+ In¥ H Hp(x,l\o;\,):""}

n=1Lk=1
K N K K

— Z/lklllrk+YYY”l lj/rzklllAjk

k=1 n=2k=17=1

N K
+ Z Z “nk hlp(xn ’@k)

n=1kLFk=1




HMM learning: EM (2)

e denote the marginal posterior of a latent variable z,, as
old
V(2n) = p(2,] X, 077)
o and the conditional probability p(z,, = 1|X,0°'?) as

Y(z2nk) = By x00a (Zak) = Y (Z0) 2k

Z

o similarly, denote the joint posterior distribution of two
successive latent variables z,,_1, z,, as

’S<Zn—1 ) Zn) = p(Zn_—l’ Z, ‘X‘ 901(1)

e and similarly

5(271—14' ) Z-n,lc) — E(Z'n,—l.j anc)



HMM learning: EM (3)

o substituting the definitions for In p(X, Z|0), v and £ in
the definition of Q(#, 6°'?),

Q6" = 3" A(z)

N K
— Z Z ’\)""(Z'nk) In p<X'71 ‘Ol\)

n=1 k=1

o E-step: computing y(2,,1) and &(z,_1 j2,k) terms ef-
ficiently — forward-backward algorithm — alpha-beta
recursion.

e M-step: maximize Q(6#,0°%) wrt. 0 = {m A ¢},
treating v and & as constant.



EM equations for HMM with
Gaussian emission distributions

Tk

A

i

identical/

to GMM .

M)

(215)
N
Zn:Q €<Z'n— 'y “nk )

Zl lZn 25(*rl—lj /*nl)

Zn 1 }( nk)xn

N
Z n=1 Y <Z'n' k )
N
Z n—1"1 (Z nk ) (Xn

— k) (X

— Mk

)"

2.

N
n—=1

ol

Z

nk )



