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Overview

l Graphical models fundamentals

l Bayesian networks, representations

l conditional independence

l undirected graphical models

l Learning

l ML, MAP, Bayesian

l the EM algorithm, latent variable models 

l Gaussian Mixture Model (GMM)

l Hidden Markov Model (HMM)

l Later : PCA, Probabilistic PCA
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BNs: two fundamental problems (reminder)

l given a factorized form for

l learning: given training data (i.e. a set of values for 
the observed nodes), estimate the parameters for 
the full BN

l inference: given a learned model, compute 
probabilities in the BN

l often interested in probabilities of hidden nodes

l conditioning on evidence

p(x|θ) =
LY

k=1

p(xk|pak, θ)

Model parameters
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Learning in a directed graphical model (DGM)
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Learning in graphical models: maximum likelihood (ML)

l assuming 

l a parametric form

l identically independently distributed (i.i.d.) data  drawn 

from the pdf

l likelihood function (of the parameters given the data)

l learning: find parameters that maximize 

l the likelihood 

l or the log-likelihood (analytically simpler)



Master of Science in Artificial Intelligence

Example : categorical distribution for the data (1)

l for a discrete variable taking 1 out of      values

l 1-of-k coding scheme

p(x = k|µ) = µk

parameters to learn
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Example : categorical distribution for the data (2)

l Likelihood

=>

counts of data that have label k

l Maximizing log-likelihood + ensuring that                         
=> lagrange multiplier 

l Maximum likelihood 
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Example : categorical distribution for the data (3)

l Throw a dice N = 10 times

=> Data (K=6) = {1,1,6,2,5,3,1,6,2,1 }   (not in 1-K encoding format)

k 1 2 3 4 5 6

4 2 1 0 1 2

0.4 0.2 0.1 0 0.1 0.2

l p(x=4) is estimated as 0

=> if we throw the dice again, is the probability of seeing a 4 really 0 ?

l might be due to small sample size



Master of Science in Artificial Intelligence

l ML learning 

l Issue: parameters may overfit data (often depends on number 
of samples vs number of parameters to estimate) 

l Bayesian

l consider parameters as a random variable itself 

l add prior on parameter

l compute posterior

l Note

l in Bayesian, learning is just a specific case of inference

l the posterior can be used in several ways

e.g Maximum a Posteriori (MAP) estimate relies on the mode

l we could also consider the expected parameters under the 

distribution (i.e the mean)

Bayesian learning
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l A solution: use ML or MAP estimates 

Bayesian learning – handling new data

l Sometimes, we are not interested in the parameters

l The question is

what is the likelihood of a new data point,

given the training data? 

l Issues

l uses a point estimate of parameters

l does not reflect uncertainties on parameter estimation 

=> might be overconfident  => full Bayesian treatment

=> posterior depend on training data

=> if posterior has a parametric form:

we can use it and throw away the training data

xnew

p(xnew|θML) p(xnew|θMAP )

p(xnew|D,α) ∝

Z
θ

p(xnew,θ|D,α)dθ =

Z
θ

p(xnew|θ)p(θ|D,α)dθ
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Bayesian learning

l Prior 

l favors some parameters over others

l should reflect our knowledge about the problem

l 'uninformative prior' : used to remove singularities and avoid 
spurious estimates => akin to regularization

l Interesting prior form : 'conjugate priors’

definition: if the posterior is of the same parametric form as 

the prior, then we call the prior the conjugate distribution for 

the likelihood distribution

l Interest: we have an analytical solution, so no need for 

optimisation e.g. to find the max (= mode of the distribution)

posterior likelihood prior

same parametric form
(but not the same parameters !)
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Example : categorical distribution for the data (4)

l Likelihood

l Conjugate prior : similar expression w.r.t. parameters

=> Dirichlet distribution (defined over simplex) 

example of distribution depending on equal         values 
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Example : categorical distribution for the data (5)

l Likelihood

l Prior 

l Posterior: Dirichlet distribution with updated parameters 

-1     can be interpreted as a count of (virtual) observations of the class k

- can favor one class against another if have prior information

- the larger the values, the more important the prior is against real observations  

( )
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Example : categorical distribution for the data (3)

l Throw a dice N = 10 times

=> Data (K=6) = {1,1,6,2,5,3,1,6,2,1 }   (not in 1-K encoding format)

l Dirichlet prior with 

k 1 2 3 4 5 6

4 2 1 0 1 2

0.4 0.2 0.1 0 0.1 0.2

0.312 0.187 0.125 0.062 0.125 0.187

l 6 'virtual' observations vs 10 real observations: prior counts for 6/16 
approx. 1/3 in the estimation of the parameters

l p(x=4) was 0 with ML => MAP allows to account for the potentially small 

sample size and gives a low probability 
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Example 2 : 1D - Gaussian distribution (1) - known

l Likelihood

l to be estimated

l assumed to be known

l Note: it has a gaussian shape in function of      (but is not a distribution over      )

l Posterior: Gaussian with updated parameters

l Conjugate Prior
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Example 2 : 1D - Gaussian distribution (2) - known

l Example of posterior with

N=0,1,2,10

l Note

l as N goes to infinity, we are more and more confident in our estimate of 

the mean (which tends to the maximum likelihood estimate)
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Learning in a directed graphical model (DGM)

General case
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Learning in DGM 

with fully observed data

l if for all data samples, all variables of the model are fully observed, there 

is no missing data, and there are no hidden variables, we say that the 

data is complete

l the likelihood is then given by 

where Dt is the data associated with node t   and its parents

l product of terms, one per Conditional Probability Distribution (CPD)

l parameters of each CPD can be optimized separately, e.g. using ML 

estimation

θ1

θ2 θ3

θ4 θ5
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MAP estimation in DGM – fully observed data

l The likelihood factorizes p(D|θ) =

VY

t=1

p(Dt|θt)

p(θ) =

VY

t=1

p(θt)

p(θ|D) ∝ p(D|θ)p(θ) =

VY

t=1

p(Dt|θt)p(θt)

l Assume the prior factorizes as well

l Then clearly the posterior factorizes

=> We can compute the posterior of each CPD independently

=> we can perform MAP estimation on each independently



Master of Science in Artificial Intelligence

Learning with latent variables

the expectation-maximization (EM) algorithm

l However, often, observations of a DGM rely on hidden variables

l allows to represent complicated distribution from simple components

l allows to do soft clustering of the data

l e.g. Gaussian Mixture Model 

l learning need techniques to handle this (EM algorithm)
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The Gaussian Mixture Model (GMM)

l Definition: a GMM for a multivariate r.v. x is defined as

the        are called the mixing coefficients 
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GMM as a graphical model 

l assumes a hidden K-dimensional 

variable categorical variable z used to 

select from which Gaussian a given 

observation is drawn

joint distribution

set of parameters
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GMM as a graphical model 

l assumes a hidden K-dimensional 

variable categorical variable z used to 

select from which Gaussian a given 

observation is drawn

set of parameters
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GMM as a graphical model (2)



Master of Science in Artificial Intelligence

GMM: an example

© c. bishop

ancestral sampling

“soft clustering”
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Learning the GMM parameters ?

l In practice: we are given the values of X 

l The z variables are not given

l they help in obtaining a better model, e.g. in the GMM having a better model 

of distributions on x

l Learning ?

l In the following, we describe a general procedure (EM), valid for any model. We 
will present its general treatment (bearing in mind the GMM case), and come 

back to the EM equation derivation for the GMM case afterwards 

set of parameters
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The expectation-maximization (EM) algorithm
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The EM algorithm: learning with latent variables

assume an arbitrary 
graphical model

X = {xi, i = 1 . . . N}

Z = {zi, i = 1 . . . N}

hidden

visible

zi

xi
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The EM algorithm: learning with latent variables

assume an arbitrary 
graphical model

X = {xi, i = 1 . . . N}

Z = {zi, i = 1 . . . N}

hidden

visible

zi

xi
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EM: incomplete vs complete data

incomplete data

X: 2-D observations

complete data

X: 2-D observations

Z: class labels (each point  : 

red,green or blue)

l Idea: suppose we know Z 

l X:       incomplete data (previous slide) 

l X,Z :   complete data

l Illustration: GMM case

l Easy to learn the 

individual distributions !

l p(z)

l for each k

l p(x | z = k)
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EM algorithm : intuition

ln LC(θ|X,Z) = ln p(X,Z|θ)l Complete data likelihood

l easier to maximize to obtain ML estimate

l however, we need to know Z ....

θML

θMLl If we new            (but not Z)

l we could estimate the posterior of Z  

l i.e. how probable are each values of Z for each observation

=> this would leave us with some kind of (weighted) complete dataset

p(Z|X,θ)

(xi, z) with weight p(z|xi,θ) ∀i, ∀z
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EM : an iterative process

l Goal: estimate

l Two steps

l E(xpectation)

l M(aximization)

E-step M-step
old new
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EM : the E step

l the complete log-likelihood is not available

l its expected value under the posterior pdf of the latent variable is used

l More concretely

l the current parameter estimate          is used to find the posterior

l the posterior is then used to find the expectation

p(Z|X,θ
old)

θ
old

Q(θ,θold) = EZ|X,θold (lnLC(θ|X,Z))

=
X

Z

p(Z|X,θ
old) ln p(X,Z|θ)

= EZ|X,θold (ln p(X,Z|θ))
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EM : the M step

l E-step

l M-step 

l maximize the expected value Q  

l update the parameters

l the log function acts directly on the (factorized) joint distribution so 

the maximum will be tractable

Q(θ,θold) =
X

Z

p(Z|X,θ
old) ln p(X,Z|θ)

θ
new = argmax

θ

Q(θ,θold)
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The EM algorithm 
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Inference, revisited

l inference : 

l given values for the observed nodes

l compute the posterior distribution

on a subset of the hidden variables

l inference =  the E-step

l consequence: learning (using EM) requires inference

hidden

visible

zi

xi
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why does EM work? 

a closer look (Neal and Hinton, 1999)

Kullback-Leibler divergence

complete 
likelihood

posterior 
over latent 

variables

approximating distribution
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EM: a closer look (2)
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EM: a closer look (3)

© c. bishop

General properties

of KL divergence
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The E-step, revisited

© c. bishop
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The M-step, revisited

© c. bishop
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The M-step, revisited (2)



Master of Science in Artificial Intelligence

The EM algorithm 
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MAP estimation with EM ?

l We want to optimize ln p(θ|X)

ln p(θ|X) = ln p(X|θ) + ln p(θ)− ln p(X)

ln p(θ|X) = L(q,θ) +KL(q||p) + ln p(θ)− ln p(X)

≥ L(q,θ) + ln p(θ)− ln p(X)

constant

l We can apply the same steps than in EM, maximizing the right hand side

l E-step: given        find q maximizing the r-h.s

=> same E-step as in standard EM

l M-step: maximize

=> if factorized prior => MAP estimation for each CPD distribution in general   

θ
old

θ
new = argmax

θ

⇣

Q(θ,θold) + ln p(θ)
⌘
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Limitations of EM

l EM divides a difficult problem into two steps that might be simpler 

to implement

l E-step and M-step might be intractable

l intractable M-step (generalized EM): instead of maximizing

, modify     to increase its value 

(with nonlinear optimization methods)

l intractable E-step: perform a partial, rather than full, optimization of

l EM depends on the initialization values (e.g. see GMMs)

l EM can get trapped on local maxima
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EM for Gaussian mixture models
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EM for GMM 

© c. bishop

incomplete data complete data
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EM for GMM 
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EM for GMM (2)
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EM for GMM (3)
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EM for GMM (4)

l Note the following

=> M optimization can be seen as standard ML 

estimation where the weight express the 'number of 

times' an observation should be counted

Q(θ,θold) =

N
X

n=1

K
X

k=1

γ(znk) lnπk +

K
X

k=1

 

N
X

n=1

γ(znk) lnN (xn|µk,Σk)

!

weighted log-likelihood for 

the categorical distribution
weighted loglikelihood

for the component k
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recipe: EM for GMMs
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recipe: EM for GMMs (2)
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EM for GMM in action

© c. bishopK=2 

L = EM iteration

1 std for each component
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Relation with Kmeans

J(µ, (rnk)) =
NX

i=1

KX

k=1

rnkkxi � µkk
2

l K-means optimizes

l cluster means

l means that data point n is assigned to cluster k

l J measures the distorsion of representing each xi  with its assigned cluster mean

rnk = 1

(µk)k=1,...,N

l Two steps

l E-step : compute best assignment of observation xi to cluster k

l M-step: given assignment, compute optimal means

rik =

⇢

1 if kxi � µkk
2 < kxi � µk0k2 8k0 6= k

0 otherwise

µk =

P
N

i=1
rikxiP

i
rik
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Kmeans - illustration
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Differences between Kmeans and EM for GMMs

J(µ, (rnk)) =
NX

i=1

KX

k=1

rnkkxi � µkk
2

l Difference with EM for GMM

l hard assignment vs soft assignment (responsibilities in GMM) 

l covariance assumed to be diagonal, with (infinite) fixed variance

l no mixture weights

l Two steps

l E-step : compute best assignment of observation xi to cluster k

l M-step: given assignment, compute optimal means

rik =

⇢

1 if kxi � µkk
2 < kxi � µk0k2 8k0 6= k

0 otherwise

µk =

P
N

i=1
rikxiP

i
rik
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What to remember

l ML and MAP model parameter learning

l ML learning is relatively easy to conduct with complete data

l MAP : provide priors on model parameters - useful with small sample datasets

l Conjugate priors

l Application to categorical and Gaussian likelihoods

l EM algorithm

l general method for learning in graphical models

l complete vs. incomplete likelihood

l EM as coordinate ascent on 

l learning involves inference (E-step)

l Mixture models

l simple assumptions, powerful models

l applicable to static (GMM) and sequential (HMM) data (upcoming course)

l EM results in “interpretable” parameter estimation algorithms

l fundamental ideas to understand more complex models
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Hidden Markov model (HMM)

l However, often, observations of a DGM rely on hidden variables

l allows to represent complicated distribution from simple components

l allows to do soft clustering of the data

l e.g. Gaussian Mixture Model 

l learning need techniques to handle this (EM algorithm)

Appendix
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Hidden Markov model (HMM)

© c. bishop

Dynamic-model: 
state transitions

Emission model: generating
the observations
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HMM (2)

© c. bishop

z can take K=3 states

caution: this is a state-transition 

diagram, NOT a graphical model

1-K encoding trick
Note: depends on 

two values
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HMM (3) - examples

© c. bishop

l Example 1

l no state favored, self-transition high

=> favors sequences of similar states (smoothness) 

l Example 2 – left-right HMM

l state diagram ?

l Example 3 – bouncing ball – 2 states

l state 1 : ballistic trajectory

l state 2 : hitting the ground – assumed 

to last only one time step

transition matrix ?

state

from\to

1 2 3

1 0.8 0.1 0.1

2 0.1 0.8 0.1

3 0.1 0.1 0.8

state

from\to

1 2 3

1 0.6 0.3 0.1

2 0 0.7 0.3

3 0 0 1.0
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HMM (4)

the state transition diagram can be unfolded over time to 

show the changes between variables into a lattice diagram

© c. bishop
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HMM (5)

K=3

2-D Gaussian observations

© c. bishop

or
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Homogeneous HMM

© c. bishop
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The HMM as a generative model

© c. bishop

K=3

2-D Gaussian 

observations

ancestral sampling:
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HMM "decoding" Viterbi algorithm (1)

l Goal: find the most probable sequence of states that can explain the 

observed values

l the number of possible paths through the lattice grows exponentially 

with the length of the chain

l Viterbi algorithm: 

l efficient way to solve this problem

l specific case of the max-sum algorithm on trees (cf last course)

l related to/probabilistic version of: Dynamic Time Warping

argmax
z1:N

p(z1:N |x1:N ) = argmax
z1:N

p(z1:N ,x1:N )

⇒ argmax
z1:N

log p(z1:N ,x1:N )

k = 1

k = 2

k = 3

n− 2 n− 1 n n + 1
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k = 1

k = 2

k = 3

n− 2 n− 1 n n + 1

HMM "decoding" Viterbi algorithm (2)

Sn(k) = max
l

(Sn−1(l) + log(p(zn = k|p(zn−1 = l)p(xn|zn = k)))

p(z1:n,x1:n) = p(z1)
nY

i=2

p(zi|zi−1)p(xi|zi) = p(z1:n−1,x1:n−1)p(zn|zn−1)p(xn|znxt)

and keep in memory Bn(k) the state l at time n-1 for which the max was achieved

l Assume that we know the best path up to time n-1, i.e. Sn-1(k). Then  

l Principle: recursively find the best path that ends up in a given state

=> define Sn(k) the maximum score of the path that ends in state k at time n

Sn(k) = max
z1:n−1,zn=k

log p(z1:n,x1:n)
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k = 1

k = 2

k = 3

n− 2 n− 1 n n + 1

HMM "decoding" Viterbi algorithm (3)

l Reaching the end of the sequence (time N) – Best score :

⇒ max
z1:N

log p(z1:N ,x1:N ) = max
k

SN (k)

l We can backtrack the best path using the stored Bn(k) 

k
max

n−1
= Bn(k

max

n
)

l State of best path at time N = state k for which the max SN(k)  is achieved

k
max

N
= argmax

k

SN (k)

SN (k) = max
z1:N−1,zN=k

log p(z1:N ,x1:N )

N

assume that it
is k

max

N

BN (kmax

N
)BN−1(k

max

N−1
)
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HMM learning: EM (1)
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HMM learning: EM (2)
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HMM learning: EM (3)
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EM equations for HMM with 

Gaussian emission distributions

identical 
to GMM


