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Introduction
What is machine learning

Given a 24×24 gray-scale image, can we predict if it is a face?

f : image ∈ R24×24 → f (image) = y , with y ∈ {Face,Non − Face}
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Introduction
What is machine learning (cont.)
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Introduction
What is machine learning (cont.)

Machine learning aims at designing algorithms to infer the world

regularities from a finite set of examples.

In practice, given a set of training examples D, build automatically

a predictor f ∗ of a hidden value given the visible signal.

Performance should be good on test data which are not available to

chose the predictor.
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Introduction
What is machine learning (cont.)

Many real-world applications fit in this framework

Application Accessible signal Value of interest

Character recognition image text

Scene understanding image objects

Speech recognition sounds words

Genetic diagnostic gene expressions diseases

Biometry picture/fingerprint identity

Automatic navigation radar echoes obstacles

Surveillance video streams activities

Preditive manufacturing device data failures/ maintenance
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Course organization
Content

Total of 28h course and 28h practical sessions.

• Introduction (2h)

• What is machine learning about
• Brief recall on probabilities and gradient descent

• Machine learning generalities: typologie - Bias/Variance
trade-off - Performance evaluation

• Generative models (6h)

• Directed / non-directed models
• Conditional independence
• Maximum Likelihood and Maximum a Posteriori (MAP)

• k-Mean + Gaussian Mixture Models (GMM) + E-M algorithm
• Hidden Markov Models + extensions

• Dimensionality reduction (PCA, Probabilistic PCA, T-SNE)

7 / 64

Course organization
Content

• Regression techniques (6h)

• Least-square + weighted least-square

• Iteratively reweighted least squares (IRLS)
• Tensor factorization methods
• Gaussian mixture regression (GMR)
• Gaussian process regression (GPR)

• Classification methods (5h)

• KNN and Naive Bayes
• Decision trees and Ensemble methods (random forest)
• Kernel methods and SVM

• Deep learning (8h)

• Multilayer Perceptron
• Convolution Neural Network (CNN)
• Learning methods and CNN models

Note: some methods can be applied to classification and regression tasks

(regression for classification (logistic regression), Decision trees or SVM for

regression, etc)
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Course organization

Objectives:

• understand algorithms, their principles, usefulness and how

they can be applied

• rely on existing libraries whenever possible - e.g. Scikit-learn
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Course organization

• Moodle page :
https://moodle.epfl.ch/enrol/index.php?id=16819

• Labs

• jupyter notebooks, accessible through the web (JupyterHub)
• please provide information (cf email of Olivier, info on moodle)
• a few of them will be graded

• in general, individual feedback (for graded version) + short
presentation for correction about main issues at the beginning
of lab sessions

• questions? ask Olivier or other TAs, but not Christine Marcel.
thanks

• Evaluation

• Average of lab grades (40 to 60%)

• 2h written exam on the course content. Some of the
questions will be about the practical sessions
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Probabilities
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Probability
Example

We recall here informaly a few definitions and properties of the probability
theory for discrete sets first.

A random variable is a variable that can take several values (events) according
to some probability distribution.

Example: event: a ball having one of two colors within two possible boxes

• one random variable denoted B represents the identity of the box, and
can take two values (r or b).

• ball color is another random variable, F , and can take the values g or o.

• an event is a pair (F ,B)
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Probability
Probability distributions

Joint probability : p(X = xi ,Y = yj) =
nij
N

Marginal Probability : p(X = xi ) =
ci
N

Conditional probability: p(Y = yj | X = xi ) =
nij
cij

Sum rule (marginalization) : p(X = xi) =
∑L
j=1 p(X = xi ,Y = yj)

which we can write

p(X ) =
∑
Y

p(X ,Y )

Product rule (conditioning) :

p(X = xi ,Y = yj) = p(Y = yj | X = xi)p(X = xi)

p(Y ,X ) = p(Y | X )p(X )
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Probability
Bayes’ law

In many practical situations, we want to estimate an hidden value given
an observation, but it is easier to model the observation given the
hidden value P(X = x | Y = y) than the contrary.

For instance X r.v. on [0, 1]3 the color of a pixel, and Y r.v. on {0, 1}
the presence of skin at that location of the image.

In such a case, we can use Bayes’ law to obtain the quantity of interest

P(Y = y | X = x) =
P(X = x | Y = y)

P(X = x)
P(Y = y)

P(X = x) =
∑
y

P(X = x | Y = y)P(Y = y)

posterior ∝ likelihood × prior

Note: if Y is finite, we can normalize numerically and we do not need

P(X = x).
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Probability
Continuous variables

p(x) ≥ 0;
∫∞
−∞ p(x)dx = 1

P(A) =
∫
A p(x)dx

P(X ∈ [a, b]) =
∫ b
a p(x)dx

For continuous variables we have to define carefully the events. We
usually consider continuous probability distributions, to which
correspond probability density functions (denoted p).

For instance, if X is a random variable of normal distribution, with
mean m and standard deviation s, we have

P(X ∈ [a, b]) =

∫ b
a

1√
2πs
e−

(x−m)2

2s2 dx

In R, the cumulative distribution function (cdf) is defined as

P(X ) = P(X ≤ x) =
∫ x
−∞
p(x)dx
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Probability
Expectation

It is often of interest to computed weighted average of a function f ,
where the weights denote the probability of a given variables. This leads
to the definition of expectations.

E (f ) =
∑
x

P(X = x) f (x) E (f ) =

∫
x

p(x) f (x)dx

Particular case: if f (x) = x , the expectation corresponds to the mean of
the probability distribution.

Similarly, we can define the conditional expectation

EX |Y (f ) =
∑
x

P(X = x | Y ) f (x).

Approximation of expectation. Given a set of variables drawn from p(x)

E (f ) =
1

N

N∑
n=1

f (xn).
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Probability
Independence

Two random variables X and Y are independent if knowing the value of
one does not say anything about the other. This can be formulated as

∀x , y ,P(X = x ,Y = y) = P(X = x)P(Y = y).

Note: in general, the marginals alone do not characterize the joint
distribution.

X = 0 X = 1

Y = 0 0.25 0.25

Y = 1 0.25 0.25

X = 0 X = 1

Y = 0 0.5 0.0

Y = 1 0.0 0.5
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Probability
Independence (cont.)

Independence is critical for learning and representation.
Making assumptions of independence or conditional independence is

often key in modeling real-world data.

Given two discrete and independent random variables X and Y , we have

E (XY ) =
∑
x ,y

P(X = x ,Y = y) x y

=
∑
x ,y

P(X = x)P(Y = y) x y

=
∑
x

P(X = x) x
∑
y

P(Y = y) y

= E (X )E (Y )

The computation is strongly reduced by the assumption of independence.
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Gradient descent
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Gradient descent
Introduction

Given a functional

f : RD → R
the core idea of gradient descent is to use order 1 information to

find a path to a (local) minimum.

Given an xn ∈ RD , what is a reasonable “better x” ?

With a crude approximation of f near xn

f̂ (x) ≃ f (xn) +∇f (xn)T (x − xn) +
1

2η
∥x − xn∥2

we get

∇f̂ (x) = ∇f (x)T +
1

η
(x − xn)

so that

∇f̂ (x) = 0⇒ argmin
x
f̂ (x) = xn − η∇f (xn).
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Gradient descent
Example

Varying the value of η
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Gradient descent
Introduction (cont.)

The resulting iterative rule takes the form of:

xn+1 = xn − ηn∇f (xn).

• finds a better x in the ’steepest descent’ direction.

• only finds a local minimum

• choosing x1 (as much as possible near optimal minimum) and

ηn (too small: slow updates; too large: leave basin of

attraction; oscillates around minimum) are critical
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Gradient descent
Example in 2D
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Gradient descent
Variants

Multiple variations exist around this simple recipe:

• Adaptive ηn: Either fix a decreasing dynamic for ηn, or take

into account f variation.

• Line-search: At every step, use

ηn = argmin
t
f (xn − t∇f (xn))

• Conjugate gradient: Do not use ∇f , but a direction updated

at every step.

• Natural gradient: Replace the quadratic term in

f̂ (x) ≃ f (xn) +∇f (xn)T (x − xn) +
1

2η
∥x − xn∥2

by something more fitting to the problem at hand.
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Gradient descent
Stochastic gradient

In machine learning, the functional to minimize f very often takes

the form of a large sum

f (x) =

K∑
k=1

fk(x)

in which case the gradient is

∇f (x) =
K∑
k=1

∇fk(x)

with a computational cost O(K ) at each step.

Typical case: k runs over the training samples, x are model

parameters.
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Gradient descent
Stochastic gradient (cont.)

If the family of fn is redundant, this is sub-optimal, since we could

use a larger step-size with a partial sum of the fn.

This argument motivates the use of the stochastic gradient descent:

xn+1 = xn − ηn∇fkn(xn)

which, under reasonable assumptions on the fk and ηn converges

properly.

This strategy allows to deal with extremely large training sets, and

is central in all “large-scale” learning techniques.
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Gradient descent
Todays laborarory

Today’s laboratory is going to introduce techniques typically used

in Deep Learning to optimize large networks.

• momentum techniques: averages gradients over multiple steps.

Useful in combination with stochastic gradient.

• RMSprop: allowing to adapt the learning rate per gradient

direction. This allows to use larger learning rates, and

converge faster.

• Adam: somehow a combination of the two.
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What is machine learning
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What do we need ?

Schematically, most machine learning problems require to define

the following

• a task: input space (observation) and output

• a class of predictor function f (with parameters w) which

maps an input element to an output element (y = f (x))

• some data D
• loss function L which indicates how well a predictor is doing

• an algorithm to find the parameters w from the training data,

so that it performs well on unseen data

In the following, we will formalize this.
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Three types of learning
Introduction

Let p be the true distribution of our data, and

D = {Z1, . . . ,ZN} ∈ ZN ,

the training examples, that we postulate i.i.d of distribution p.

There are three principal types of predictions:

• Classification

• Regression

• Density estimation
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Three types of learning
Objectives

Classification

In that case, Z = (X ,Y ), with typically X ∈ RD and

Y ∈ {1, . . . ,C}.

How to formalize the classification problem ?

Typically, one wants to estimate argmaxy fy (x)

probabilistic case:

argmaxy P(Y = y | X = x)

Examples: object recognition, cancer detection, speech processing.

Note: X could be a mix of dicrete and continuous data (structured

input)
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Three types of learning
Objectives

Regression

In that case, Z = (X ,Y ), with typically X ∈ RD and Y ∈ R.

One typically want to estimate a functional of the input y = f (x)

Probabilistic case: estimate the expected value

E (Y | X = x)

Examples: customer satisfaction, stock prediction, epidemiology.
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Three types of learning
Objectives

Density estimation

Z = RD

We want to estimate p(z)

Data visualization, pre-processing, outlier detection.

33 / 64

Three types of learning
Predictors

Learning consists of finding a “good” functional in a pre-defined set

of functionals F . For example:

• For classification:

f (x ;w1, . . . ,wC ) = argmax
y
⟨wy , x⟩

• For regression:

f (x ;α1, . . . , αK ) =
∑
k

αkhk(x)

• For density estimation:

q(x ;µ,Σ) =
1√

(2π)D |Σ|
exp

(
−
(z − µ)TΣ−1(z − µ)

2

)
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Three types of learning
Loss

We define the “good” functionals through a loss function

L : F × Z → R+

such that L(f , z) indicates how wrong f is on sample z .

For example:

• For classification:

L(f , (x , y)) = 1{f (x) ̸=y}

• For regression:

L(f , (x , y)) = (f (x)− y)2

• For density estimation:
L(q, z) = − log q(z)

Note: the loss may include other terms related to f itself (eg. for

regularization, cf later)
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Expected and empirical risks
Definitions

We are looking for an f with a small expected risk

R(f ) = EZ∼p (L(f ,Z ))

which means that our learning procedure should pick

f ∗ = argmin
f ∈F

R(f ).

Unfortunately this quantity is not available. Instead, we can use

the set of training samples D = {Z1, . . . ,Zn} supposed to be i.i.d

to compute an estimate of it called the empirical risk:

R̂(f ;D) = ÊD(L(f ,Z )) =
1

N

N∑
n=1

L(f ,Zn)
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Expected and empirical risks
Relation between the two

We have

EZ1,...,ZN∼p

(
R̂(f ;D)

)
= EZ1,...,ZN∼p

(
1

N

N∑
n=1

L(f ,Zn)

)

=
1

N

N∑
n=1

EZn∼p (L(f ,Zn))

=
1

N

N∑
n=1

EZ∼p (L(f ,Z ))

= EZ∼p (L(f ,Z ))

= R(f )

Hence the empirical risk is a non-biased estimator of the expected

risk.
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Expected and empirical risks
Relation between the two (cont.)

Finally, given D, F , and L, “learning” aims at computing

f ∗ = argmin
f ∈F

R̂(f ;D)

• Initial problem: find f ∗∗ = argminf ∈F R(f )

Note: intuitively R(f ∗) models our test performance.

• Can we bound R(f ∗) with R̂(f ∗,D)?

In other words: can the training performance provide

information about the test performance?

Unfortunately, not simply, and not without additional

information about F .
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Under and Over-fitting
Example: Polynomial regression

Given a set of noisy data points coming from an underlying model,

find a polynomial that best fit the data

Model (polynomial):
y(x ,w) = w0 + w1x + w2x

2 + . . .+ wMx
M =

∑M
j=0 wjx

j

Error function (empirical risk, given data points (xn, tn)):

E (w) = 1
2

∑N
n=1

(
y(xn,w)− tn

)2
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Under and Over-fitting
Example: Polynomial regression

We fix the training datasets D and increase the space F size

⇒ 0th, 1st , 3rd , 9th order polynomial

Test performance: measure the error of the model on independent

points drawn from the underlying function
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Under and Over-fitting
Example: Polynomial regression

Under and over fitting Fitted coefficients

Root mean square error ERMS =
√
2E (w∗)/N

How to avoid the overfitting problem?
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Under and Over-fitting
Polynomial regression: effect of data set size

We fix the model complexity and increase the size of the data D

9th order polynomial

Increasing the dataset size reduces the effect of overfitting
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Under and Over-fitting
Polynomial regression: regularization

Penalize large coefficients

Ẽ (w) = 1
2

∑N
n=1

(
y(xn,w)− tn

)2
+ λ
2

∑
j w
2
j
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Under and Over-fitting
Example: k-Nearest Neighbors

The nearest neighbour classifier predicts that the class of an X is

the class of the closest training example.
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Under and Over-fitting
Example: k-Nearest Neighbors (cont.)

k = 1 k = 3 k = 9 k = 27

k-Nearest Neighbors (500 training points, 5% flip-noise).
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Under and Over-fitting
Capacity

We observe that when the “richness” of F increases, the gap

between the expected and the empirical risk increases.

To bound R(f ∗) from R̂(f ∗,D), we need an additional term to

reflect the “richness” of F .

In classification, we can consider the capacity of F . which is the

maximum size of a set which can be arbitrarily labelled by a

function from F . Thus, intuitively, it reflects the ability to model

any arbitrary functional.
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Under and Over-fitting
Bias-variance trade-off

Example. Take 25 random datasets to do the polynomial fitting,

varying the degree of regularization. What do we observe?

47 / 64

Under and Over-fitting
Bias-variance trade-off

Example. Take 25 random datasets to do the polynomial fitting,

varying the degree of regularization. What do we observe?
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Under and Over-fitting
Bias-variance trade-off

Example. Take 25 random datasets to do the polynomial fitting,

varying the degree of regularization.

Compare with total variance: the variance of the expected error
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Under and Over-fitting
Bias-variance trade-off

We can decompose the expected error as the sum of a bias and a

variance term. For a given x , if f (x) denotes the ’true’ prediction,

and f ∗(x) the prediction using a training dataset,

ED
(
(f ∗(x)− f (x))2

)
(1)

=ED

(
(f ∗(x))2

)
− 2ED(f ∗(x))f (x) + f 2(x)

=
(
ED((f

∗(x))2)− ED(f ∗(x))2
)

+
(
ED(f

∗(x))2 − 2ED(f ∗(x))f (x) + f 2(x)
)

= VD(f
∗(x))︸ ︷︷ ︸

Variance

+
(
ED(f

∗(x))− f (x)
)2

︸ ︷︷ ︸
Bias

Increasing the capacity reduces the bias, since f ∗ fits better the

data on average, but increases the variance, since f ∗ varies a lot

with the training data.
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Under and Over-fitting
Bias-variance trade-off

An over-regularized model (small capacity) will have a large bias,

whereas an under-regularized model (large capacity) will a large

variance.
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Under and Over-fitting
Regularization

The main strategies to control over-fitting is to increase the amount

of data, or through some form of regularization:

• Impoverish the space F (less functionals, early stopping)

• Make the choice of f ∗ less dependent on data (penalty on

coefficients, margin maximization, ensemble methods)
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Machine learning in practice
Learning algorithm

A machine learning algorithm combines

• A space F
• A regularization term H(f )

• An algorithm to compute argminf ∈F R̂(f ;D) + H(f )

For instance the classical perceptron, and linear SVMs share the

same F .

Similarly for GMM and Parzen windows.

Many variants of ANNs differ only through the H term or the

optimization algorithm.
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Machine learning in practice
Main problem

The main practical issue to address is the trade-off between under

and over-fitting.

• Under-fitting: No available functional is consistent with the

data we have.

• Over-fitting: The chosen functional is extremely good on the

training data, but models irrelevant random perturbations.

The art of machine learning is to combine expertise to build a

sound space of predictors, and good statistical techniques to pick

the best one.
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Proper evaluation protocols
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Machine learning in practice
Cheating by over-fitting

Models have parameters to be trained, and often involve several

meta-parameters that need to be set (eg degree of polynomial,

regularization parameter λ).

The ideal development cycle is

Write code Train Test Paper

or in practice something like

Write code Train Test Paper

There may be over-fitting, but it does not bias the final

performance evaluation.
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Machine learning in practice
Cheating by over-fitting (cont.)

Unfortunately, it often looks like

Write code Train Test Paper

This should be avoided at all costs. The standard strategy is to

have a separate validation set for the tuning.

Write code Train Validation Test Paper
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Machine learning in practice
Cross-validation

When data is scarce, we can use cross-validation. It consists of

repeatedly splitting the training data into a train and a validation

set, and averaging the risk estimate through the multiple folds.

There does not exist any unbiased and universal estimator of the

variance of k-fold cross-validation valid under all distributions

(Bengio & Grandvalet 2004).
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Other typologies
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Discriminative vs. generative
Example: Gender prediction

The discriminative methods produce the value of interest without

modeling the data structure.

The generative approaches rely on a model of the data, even if it is

not the quantity of interest.

Example: Can we predict a Chinese basketball player’s gender from

his/her height?

Females Males

190 180 190 195

182 193 193 184

188 179 199 190

184 186 200 203

196 185 192 205

173 169 190 201
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Discriminative vs. generative
Example: Gender prediction (cont.)

We can either model P(H | G ) and from that derive P(G | H) using
Bayes’ law.

 140  160  180  200  220  240

Males
Females

 0

 0.2
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Discriminative vs. generative
Example: Gender prediction (cont.)

But we can also directly look for the best threshold:

 0

 2

 4

 6

 8

 10

 12

 140  160  180  200  220  240
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Other typologies
Supervision and parametrization

• Supervised vs. unsupervised

Supervised learning has access to the values to predict.

Unsupervised methods don’t. They are often used in density

estimation

Semi-supervised: the value to predict is available for some

data points but not for others

• Parametric vs. non-parametric

Fit a finite (small) number of parameters vs. select a model

with a large (possibly infinite) number of degrees of freedom.
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Relation to other fields

• Linear algebra

• Probabilities (modeling, bounds)

• Classical statistics (performance estimates)

• Signal processing (feature design, pre-processing)

• Optimization (estimation of the model’s parameters)

• Algorithmic (efficient implementations)

• System programming (large-scale learning)
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