

EE-613: Machine Learning for Engineers

Jean-Marc Odobez

Credit for introductory course: François Fleuret - C. Bishop's Book

Lecturers and TAs

Jean-Marc Odobez

- <http://www.idiap.ch/~odobez/>
jean-marc.odobez@epfl.ch

Sylvain Calinon

- <http://http://www.calinon.ch/>
sylvain.calinon@idiap.ch

Michael Villamizar

- <http://michael-villamizar.com/>
michael.villamizar@idiap.ch

Olivier Canévet

- olivier.canevet@idiap.ch

Tobias Loew

- tobias.loew@idiap.ch

Anshul Gupta

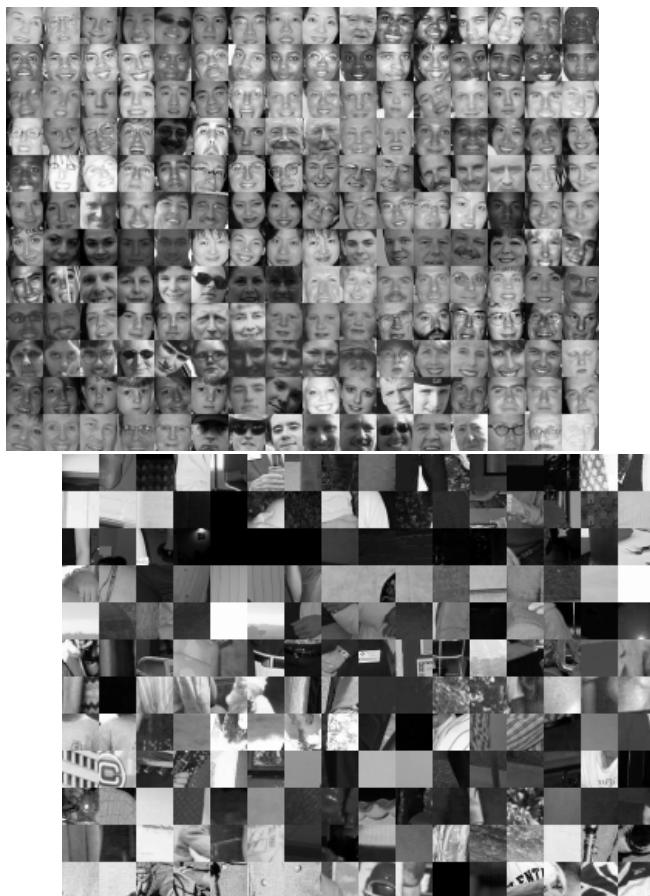
- agupta@idiap.ch

Samy Tafasca

- samy.tafasca@idiap.ch

Introduction

What is machine learning

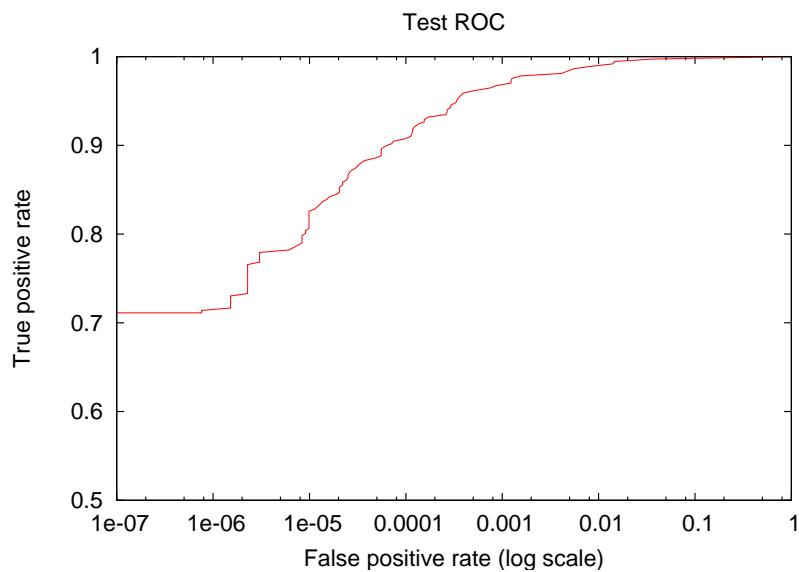


3 / 64

Given a 24×24 gray-scale image, can we predict if it is a face?

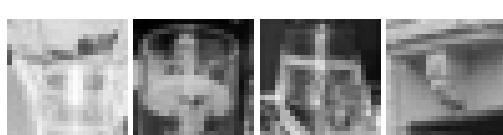
Introduction

What is machine learning (cont.)



Evaluation on test data (2015)

TP	FP
99%	$\simeq 0.8\%$
80%	$\simeq 10^{-3}\%$



4 / 64

Introduction

What is machine learning (cont.)

Machine learning aims at designing algorithms to infer the world regularities from a finite set of examples.

In practice, given a set of training examples \mathcal{D} , build automatically a predictor f^* of a hidden value given the visible signal.

Performance should be good on test data which are not available to chose the predictor.

5 / 64

Introduction

What is machine learning (cont.)

Many real-world applications fit in this framework

Application	Accessible signal	Value of interest
Character recognition	image	text
Scene understanding	image	objects
Speech recognition	sounds	words
Genetic diagnostic	gene expressions	diseases
Biometry	picture/fingerprint	identity
Automatic navigation	radar echoes	obstacles
Surveillance	video streams	activities
Predictive manufacturing	device data	failures/ maintenance

6 / 64

Course organization

Content

Total of 28h course and 28h practical sessions.

- Introduction (2h)
 - What is machine learning about
 - Brief recall on probabilities and gradient descent
 - Machine learning generalities: typologie - Bias/Variance trade-off - Performance evaluation
- Generative models (6h)
 - Directed / non-directed models
 - Conditional independence
 - Maximum Likelihood and Maximum a Posteriori (MAP)
 - k-Mean + Gaussian Mixture Models (GMM) + E-M algorithm
 - Hidden Markov Models + extensions
- Dimensionality reduction (PCA, Probabilistic PCA, T-SNE)

7 / 64

Course organization

Content

- Regression techniques (6h)
 - Least-square + weighted least-square
 - Iteratively reweighted least squares (IRLS)
 - Tensor factorization methods
 - Gaussian mixture regression (GMR)
 - Gaussian process regression (GPR)
- Classification methods (5h)
 - KNN and Naive Bayes
 - Decision trees and Ensemble methods (random forest)
 - Kernel methods and SVM
- Deep learning (8h)
 - Multilayer Perceptron
 - Convolution Neural Network (CNN)
 - Learning methods and CNN models

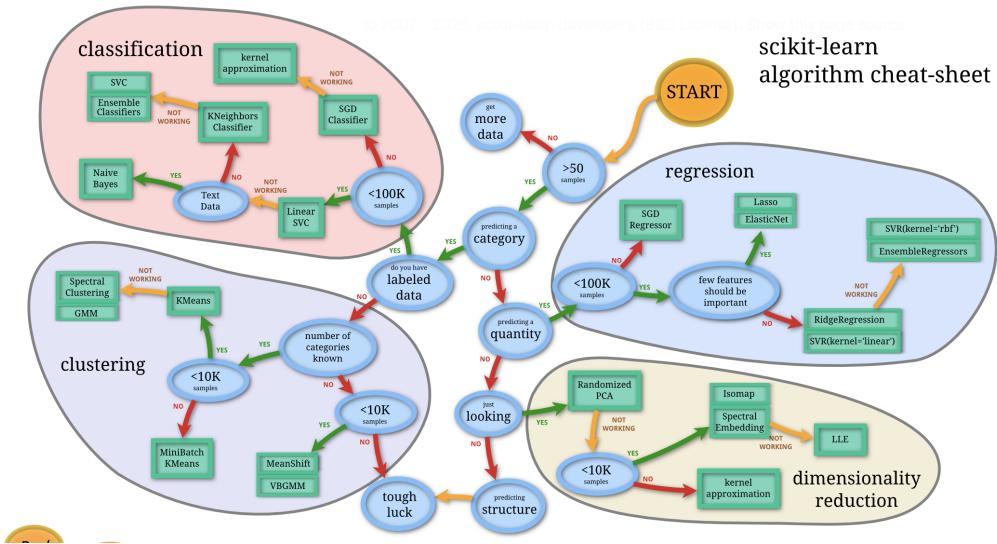
Note: some methods can be applied to classification and regression tasks (regression for classification (logistic regression), Decision trees or SVM for regression, etc)

8 / 64

Course organization

Objectives:

- understand algorithms, their principles, usefulness and how they can be applied
- rely on existing libraries whenever possible - e.g. Scikit-learn



9 / 64

Course organization

- Moodle page :
<https://moodle.epfl.ch/enrol/index.php?id=16819>
- Labs
 - jupyter notebooks, accessible through the web (JupyterHub)
 - please provide information (cf email of Olivier, info on moodle)
 - a few of them will be graded
 - in general, individual feedback (for graded version) + short presentation for correction about main issues at the beginning of lab sessions
 - questions? ask Olivier or other TAs, but not Christine Marcel. thanks
- Evaluation
 - Average of lab grades (40 to 60%)
 - 2h written exam on the course content. Some of the questions will be about the practical sessions

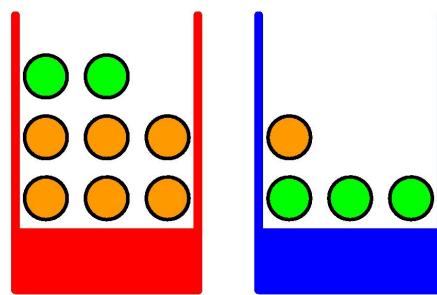
Probabilities

11 / 64

Probability Example

We recall here informaly a few definitions and properties of the probability theory for discrete sets first.

A random variable is a variable that can take several values (events) according to some probability distribution.

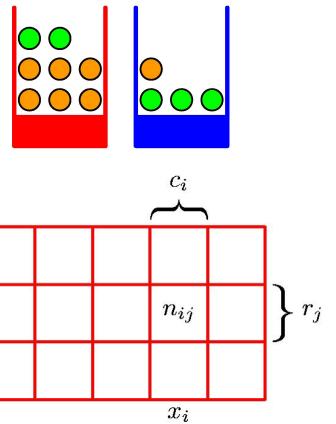


Example: event: a ball having one of two colors within two possible boxes

- one random variable denoted B represents the identity of the box, and can take two values (r or b).
- ball color is another random variable, F , and can take the values g or o .
- an event is a pair (F, B)

12 / 64

Probability Probability distributions



Joint probability : $p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$

Marginal Probability : $p(X = x_i) = \frac{c_i}{N}$

Conditional probability: $p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$

Sum rule (marginalization) : $p(X = x_i) = \sum_{j=1}^L p(X = x_i, Y = y_j)$
which we can write

$$p(X) = \sum_Y p(X, Y)$$

Product rule (conditioning) :

$$p(X = x_i, Y = y_j) = p(Y = y_j | X = x_i)p(X = x_i)$$

$$p(Y, X) = p(Y | X)p(X)$$

13 / 64

Probability Bayes' law

In many practical situations, we want to estimate an hidden value given an observation, but it is easier to model the observation given the hidden value $P(X = x | Y = y)$ than the contrary.

For instance X r.v. on $[0, 1]^3$ the color of a pixel, and Y r.v. on $\{0, 1\}$ the presence of skin at that location of the image.

In such a case, we can use Bayes' law to obtain the quantity of interest

$$P(Y = y | X = x) = \frac{P(X = x | Y = y)}{P(X = x)} P(Y = y)$$

$$P(X = x) = \sum_y P(X = x | Y = y) P(Y = y)$$

$$\text{posterior} \propto \text{likelihood} \times \text{prior}$$

Note: if Y is finite, we can normalize numerically and we do not need $P(X = x)$.

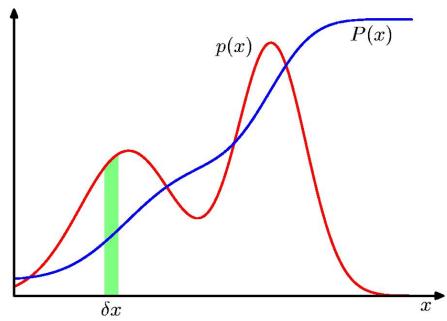
14 / 64

Probability Continuous variables

$$p(x) \geq 0; \quad \int_{-\infty}^{\infty} p(x) dx = 1$$

$$P(A) = \int_A p(x) dx$$

$$P(X \in [a, b]) = \int_a^b p(x) dx$$



For continuous variables we have to define carefully the events. We usually consider continuous probability distributions, to which correspond probability density functions (denoted p).

For instance, if X is a random variable of normal distribution, with mean m and standard deviation s , we have

$$P(X \in [a, b]) = \int_a^b \frac{1}{\sqrt{2\pi}s} e^{-\frac{(x-m)^2}{2s^2}} dx$$

In \mathbb{R} , the cumulative distribution function (cdf) is defined as

$$P(X) = P(X \leq x) = \int_{-\infty}^x p(x) dx$$

15 / 64

Probability Expectation

It is often of interest to compute weighted average of a function f , where the weights denote the probability of a given variables. This leads to the definition of expectations.

$$E(f) = \sum_x P(X = x) f(x) \quad E(f) = \int_x p(x) f(x) dx$$

Particular case: if $f(x) = x$, the expectation corresponds to the mean of the probability distribution.

Similarly, we can define the conditional expectation

$$E_{X|Y}(f) = \sum_x P(X = x | Y) f(x).$$

Approximation of expectation. Given a set of variables drawn from $p(x)$

$$E(f) = \frac{1}{N} \sum_{n=1}^N f(x_n).$$

16 / 64

Probability Independence

Two random variables X and Y are independent if knowing the value of one does not say anything about the other. This can be formulated as

$$\forall x, y, P(X = x, Y = y) = P(X = x)P(Y = y).$$

Note: in general, the marginals alone do not characterize the joint distribution.

		$X = 0$		$X = 1$		
		$Y = 0$	$Y = 1$	$Y = 0$	$Y = 1$	
$Y = 0$	$X = 0$	0.25	0.25	$Y = 0$	0.5	0.0
	$X = 1$	0.25	0.25	$Y = 1$	0.0	0.5

17 / 64

Probability Independence (cont.)

Independence is critical for learning and representation.

Making assumptions of independence or conditional independence is often key in modeling real-world data.

Given two discrete and independent random variables X and Y , we have

$$\begin{aligned} E(XY) &= \sum_{x,y} P(X = x, Y = y)xy \\ &= \sum_{x,y} P(X = x)P(Y = y)xy \\ &= \sum_x P(X = x) \times \sum_y P(Y = y)y \\ &= E(X)E(Y) \end{aligned}$$

The computation is strongly reduced by the assumption of independence.

18 / 64

Gradient descent

19 / 64

Gradient descent

Introduction

Given a functional

$$f : \mathbb{R}^D \rightarrow \mathbb{R}$$

the core idea of gradient descent is to use order 1 information to find a path to a (local) minimum.

Given an $x_n \in \mathbb{R}^D$, what is a reasonable “better x” ?

With a crude approximation of f near x_n

$$\hat{f}(x) \simeq f(x_n) + \nabla f(x_n)^T (x - x_n) + \frac{1}{2\eta} \|x - x_n\|^2$$

we get

$$\nabla \hat{f}(x) = \nabla f(x)^T + \frac{1}{\eta} (x - x_n)$$

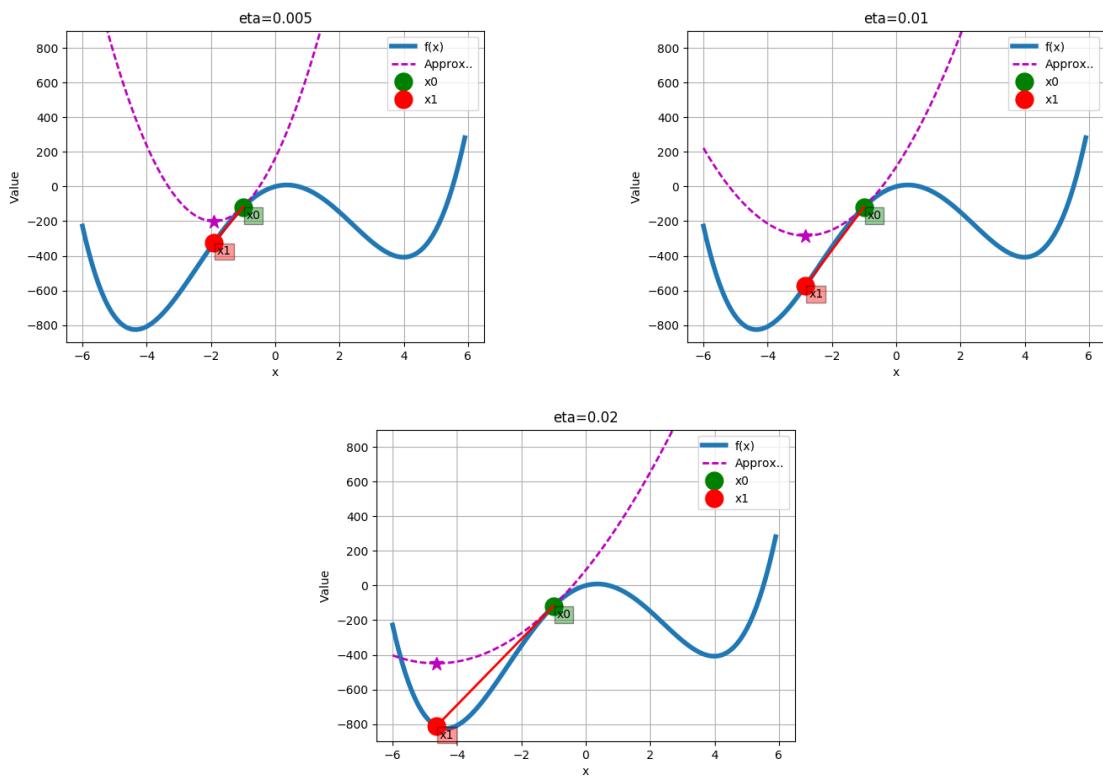
so that

$$\nabla \hat{f}(x) = 0 \Rightarrow \underset{x}{\operatorname{argmin}} \hat{f}(x) = x_n - \eta \nabla f(x_n).$$

20 / 64

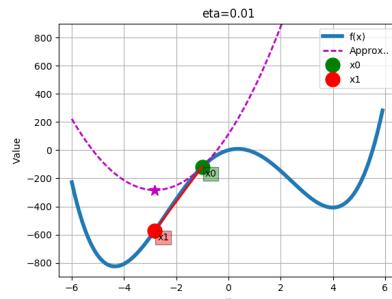
Gradient descent Example

Varying the value of η



21 / 64

Gradient descent Introduction (cont.)



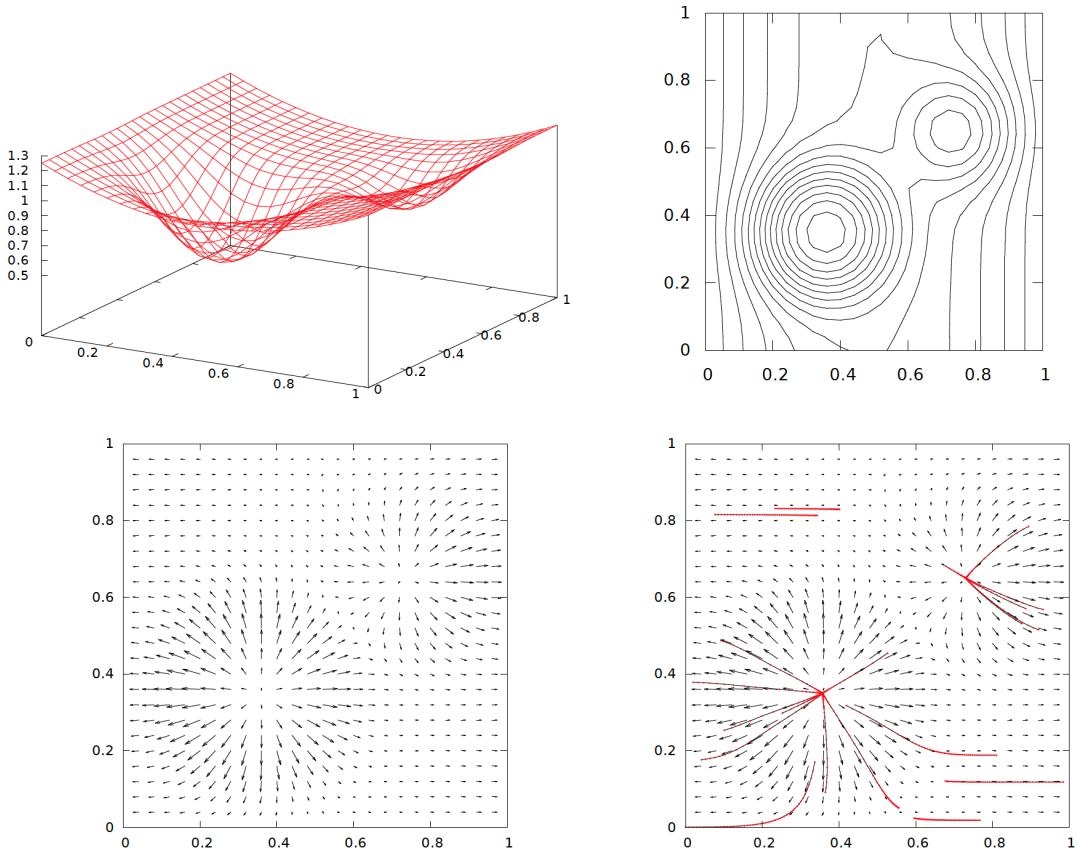
The resulting iterative rule takes the form of:

$$x_{n+1} = x_n - \eta_n \nabla f(x_n).$$

- finds a better x in the 'steepest descent' direction.
- only finds a local minimum
- choosing x_1 (as much as possible near optimal minimum) and η_n (too small: slow updates; too large: leave basin of attraction; oscillates around minimum) are critical

22 / 64

Gradient descent Example in 2D



23 / 64

Gradient descent Variants

Multiple variations exist around this simple recipe:

- Adaptive η_n : Either fix a decreasing dynamic for η_n , or take into account f variation.
- Line-search: At every step, use

$$\eta_n = \underset{t}{\operatorname{argmin}} f(x_n - t \nabla f(x_n))$$

- Conjugate gradient: Do not use ∇f , but a direction updated at every step.
- Natural gradient: Replace the quadratic term in

$$\hat{f}(x) \simeq f(x_n) + \nabla f(x_n)^T (x - x_n) + \frac{1}{2\eta} \|x - x_n\|^2$$

by something more fitting to the problem at hand.

24 / 64

Gradient descent Stochastic gradient

In machine learning, the functional to minimize f very often takes the form of a large sum

$$f(x) = \sum_{k=1}^K f_k(x)$$

in which case the gradient is

$$\nabla f(x) = \sum_{k=1}^K \nabla f_k(x)$$

with a computational cost $O(K)$ at each step.

Typical case: k runs over the training samples, x are model parameters.

25 / 64

Gradient descent Stochastic gradient (cont.)

If the family of f_n is redundant, this is sub-optimal, since we could use a larger step-size with a partial sum of the f_n .

This argument motivates the use of the stochastic gradient descent:

$$x_{n+1} = x_n - \eta_n \nabla f_{k_n}(x_n)$$

which, under reasonable assumptions on the f_k and η_n converges properly.

This strategy allows to deal with extremely large training sets, and is central in all “large-scale” learning techniques.

26 / 64

Today's laboratory is going to introduce techniques typically used in Deep Learning to optimize large networks.

- momentum techniques: averages gradients over multiple steps. Useful in combination with stochastic gradient.
- RMSprop: allowing to adapt the learning rate per gradient direction. This allows to use larger learning rates, and converge faster.
- Adam: somehow a combination of the two.

What is machine learning

What do we need ?

Schematically, most machine learning problems require to define the following

- a task: input space (observation) and output
- a class of predictor function f (with parameters w) which maps an input element to an output element ($y = f(x)$)
- some data \mathcal{D}
- loss function L which indicates how well a predictor is doing
- an algorithm to find the parameters w from the training data, so that it performs well on unseen data

In the following, we will formalize this.

29 / 64

Three types of learning

Introduction

Let p be the true distribution of our data, and

$$\mathcal{D} = \{Z_1, \dots, Z_N\} \in \mathcal{Z}^N,$$

the training examples, that we postulate i.i.d of distribution p .

There are three principal types of predictions:

- Classification
- Regression
- Density estimation

30 / 64

Three types of learning Objectives

Classification

In that case, $Z = (X, Y)$, with typically $X \in \mathbb{R}^D$ and $Y \in \{1, \dots, C\}$.

How to formalize the classification problem ?

Typically, one wants to estimate $\text{argmax}_y f_y(x)$

probabilistic case:

$$\text{argmax}_y P(Y = y \mid X = x)$$

Examples: object recognition, cancer detection, speech processing.

Note: X could be a mix of discrete and continuous data (structured input)

31 / 64

Three types of learning Objectives

Regression

In that case, $Z = (X, Y)$, with typically $X \in \mathbb{R}^D$ and $Y \in \mathbb{R}$.

One typically want to estimate a functional of the input $y = f(x)$

Probabilistic case: estimate the expected value

$$E(Y \mid X = x)$$

Examples: customer satisfaction, stock prediction, epidemiology.

32 / 64

Three types of learning Objectives

Density estimation

$$\mathcal{Z} = \mathbb{R}^D$$

We want to estimate $p(z)$

Data visualization, pre-processing, outlier detection.

33 / 64

Three types of learning Predictors

Learning consists of finding a “good” functional in a pre-defined set of functionals \mathcal{F} . For example:

- For classification:

$$f(x; w_1, \dots, w_C) = \operatorname{argmax}_y \langle w_y, x \rangle$$

- For regression:

$$f(x; \alpha_1, \dots, \alpha_K) = \sum_k \alpha_k h_k(x)$$

- For density estimation:

$$q(x; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^D |\Sigma|}} \exp \left(-\frac{(z - \mu)^\top \Sigma^{-1} (z - \mu)}{2} \right)$$

34 / 64

Three types of learning

Loss

We define the “good” functionals through a loss function

$$L : \mathcal{F} \times \mathcal{Z} \rightarrow \mathbb{R}_+$$

such that $L(f, z)$ indicates how wrong f is on sample z .

For example:

- For classification:

$$L(f, (x, y)) = 1_{\{f(x) \neq y\}}$$

- For regression:

$$L(f, (x, y)) = (f(x) - y)^2$$

- For density estimation:

$$L(q, z) = -\log q(z)$$

Note: the loss may include other terms related to f itself (eg. for regularization, cf later)

35 / 64

Expected and empirical risks

Definitions

We are looking for an f with a small **expected risk**

$$R(f) = E_{Z \sim \rho}(L(f, Z))$$

which means that our learning procedure should pick

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} R(f).$$

Unfortunately this quantity is not available. Instead, we can use the set of training samples $\mathcal{D} = \{Z_1, \dots, Z_n\}$ supposed to be i.i.d to compute an estimate of it called the **empirical risk**:

$$\hat{R}(f; \mathcal{D}) = \hat{E}_{\mathcal{D}}(L(f, Z)) = \frac{1}{N} \sum_{n=1}^N L(f, Z_n)$$

36 / 64

Expected and empirical risks

Relation between the two

We have

$$\begin{aligned} E_{Z_1, \dots, Z_N \sim p} (\hat{R}(f; \mathcal{D})) &= E_{Z_1, \dots, Z_N \sim p} \left(\frac{1}{N} \sum_{n=1}^N L(f, Z_n) \right) \\ &= \frac{1}{N} \sum_{n=1}^N E_{Z_n \sim p} (L(f, Z_n)) \\ &= \frac{1}{N} \sum_{n=1}^N E_{Z \sim p} (L(f, Z)) \\ &= E_{Z \sim p} (L(f, Z)) \\ &= R(f) \end{aligned}$$

Hence the empirical risk is a **non-biased** estimator of the expected risk.

37 / 64

Expected and empirical risks

Relation between the two (cont.)

Finally, given \mathcal{D} , \mathcal{F} , and L , “learning” aims at computing

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \hat{R}(f; \mathcal{D})$$

- Initial problem: find $f^{**} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} R(f)$

Note: intuitively $R(f^*)$ models our test performance.

- Can we bound $R(f^*)$ with $\hat{R}(f^*, \mathcal{D})$?

In other words: can the training performance provide information about the test performance?

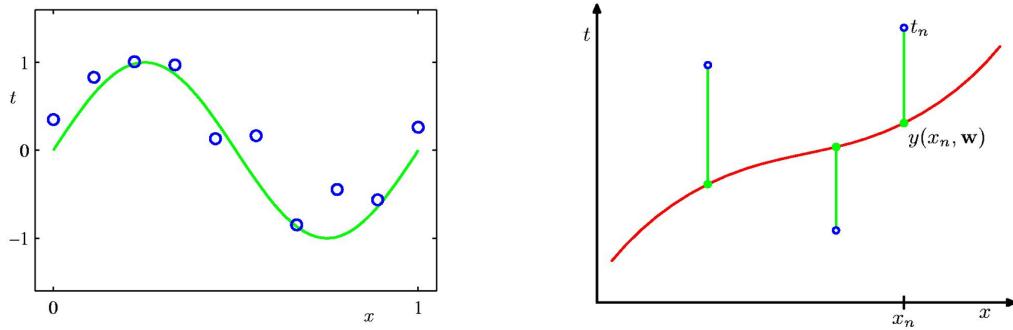
Unfortunately, not simply, and not without additional information about \mathcal{F} .

38 / 64

Under and Over-fitting

Example: Polynomial regression

Given a set of noisy data points coming from an underlying model, find a polynomial that best fit the data



Model (polynomial):

$$y(x, w) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^M w_j x^j$$

Error function (empirical risk, given data points (x_n, t_n)):

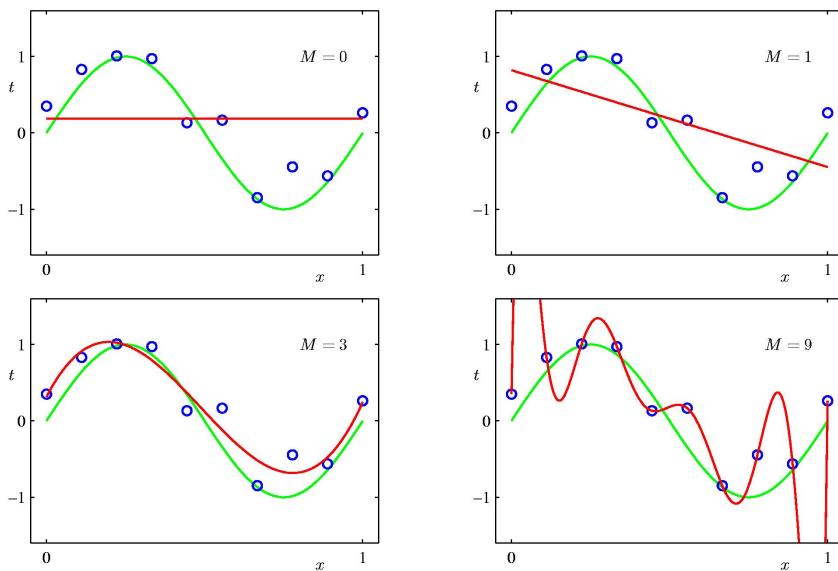
$$E(w) = \frac{1}{2} \sum_{n=1}^N (y(x_n, w) - t_n)^2$$

39 / 64

Under and Over-fitting

Example: Polynomial regression

We fix the training datasets \mathcal{D} and increase the space \mathcal{F} size
 $\Rightarrow 0^{th}, 1^{st}, 3^{rd}, 9^{th}$ order polynomial



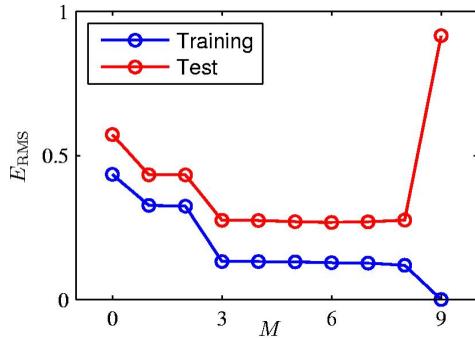
Test performance: measure the error of the model on independent points drawn from the underlying function

40 / 64

Under and Over-fitting

Example: Polynomial regression

Under and over fitting



Fitted coefficients

	$M = 0$	$M = 1$	$M = 3$	$M = 9$
w_0^*	0.19	0.82	0.31	0.35
w_1^*		-1.27	7.99	232.37
w_2^*			-25.43	-5321.83
w_3^*			17.37	48568.31
w_4^*				-231639.30
w_5^*				640042.26
w_6^*				-1061800.52
w_7^*				1042400.18
w_8^*				-557682.99
w_9^*				125201.43

$$\text{Root mean square error } E_{RMS} = \sqrt{2E(w^*)/N}$$

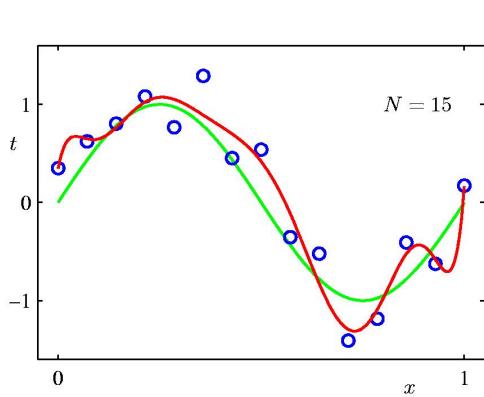
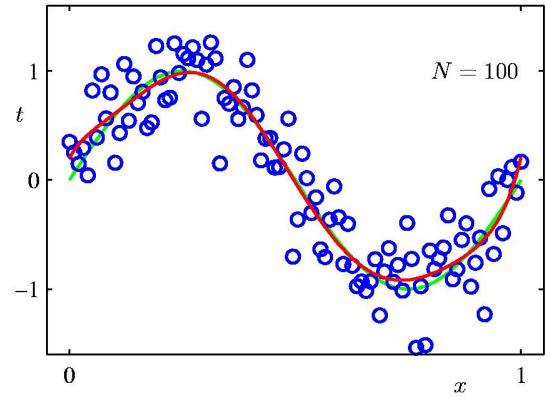
How to avoid the overfitting problem?

41 / 64

Under and Over-fitting

Polynomial regression: effect of data set size

We fix the model complexity and increase the size of the data \mathcal{D}



9^{th} order polynomial

Increasing the dataset size reduces the effect of overfitting

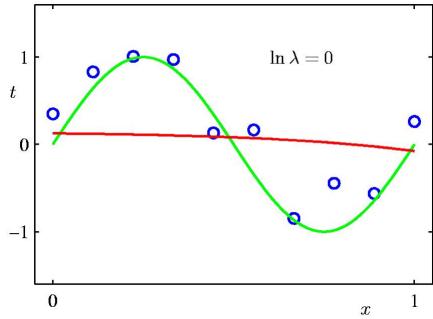
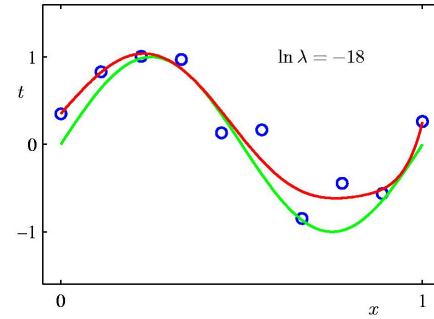
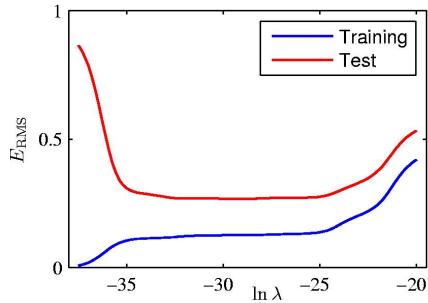
42 / 64

Under and Over-fitting

Polynomial regression: regularization

Penalize large coefficients

$$\tilde{E}(w) = \frac{1}{2} \sum_{n=1}^N \left(y(x_n, w) - t_n \right)^2 + \frac{\lambda}{2} \sum_j w_j^2$$



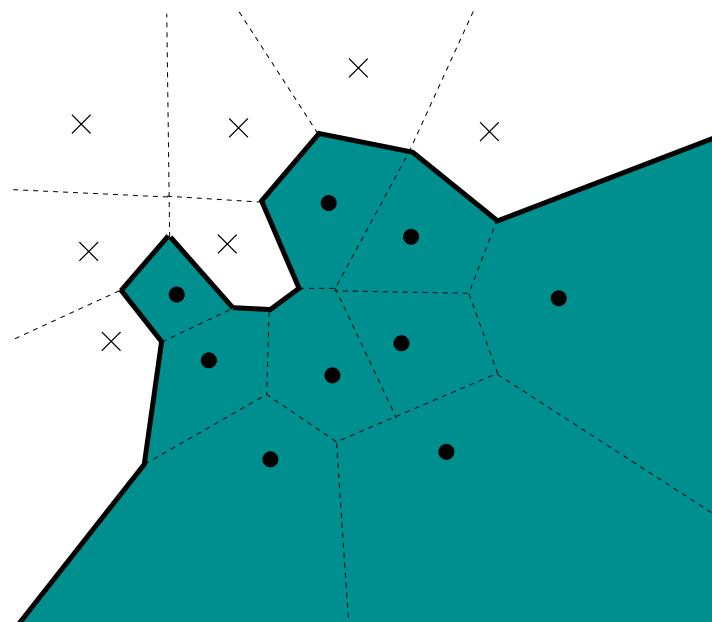
	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^*	0.35	0.35	0.13
w_1^*	232.37	4.74	-0.05
w_2^*	-5321.83	-0.77	-0.06
w_3^*	48568.31	-31.97	-0.05
w_4^*	-231639.30	-3.89	-0.03
w_5^*	640042.26	55.28	-0.02
w_6^*	-1061800.52	41.32	-0.01
w_7^*	1042400.18	-45.95	-0.00
w_8^*	-557682.99	-91.53	0.00
w_9^*	125201.43	72.68	0.01

43 / 64

Under and Over-fitting

Example: k -Nearest Neighbors

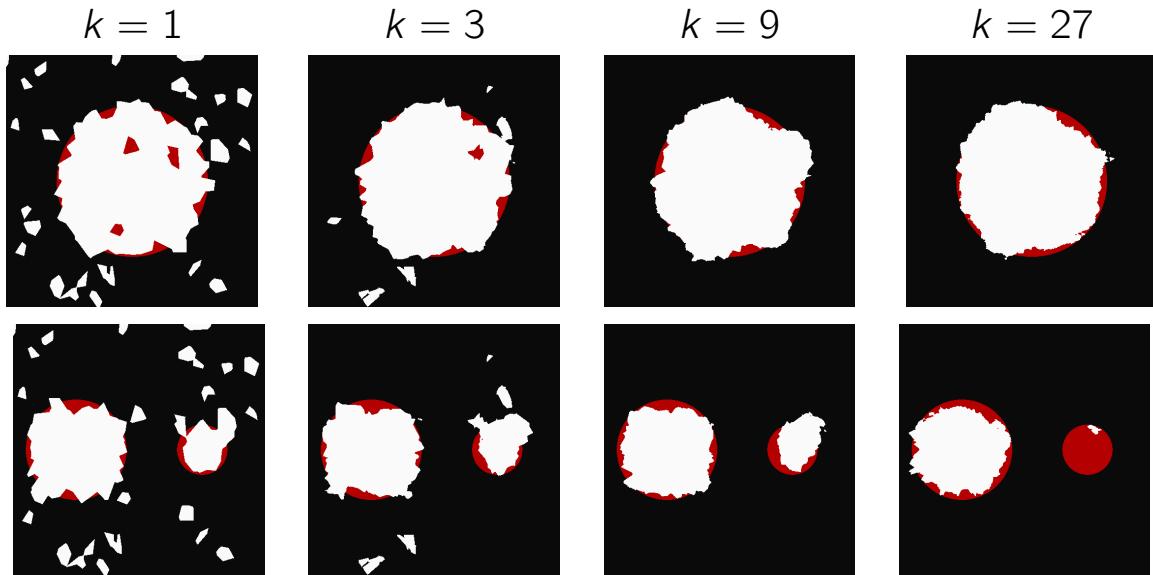
The nearest neighbour classifier predicts that the class of an X is the class of the closest training example.



44 / 64

Under and Over-fitting

Example: k -Nearest Neighbors (cont.)



k -Nearest Neighbors (500 training points, 5% flip-noise).

45 / 64

Under and Over-fitting

Capacity

We observe that when the “richness” of \mathcal{F} increases, the gap between the expected and the empirical risk increases.

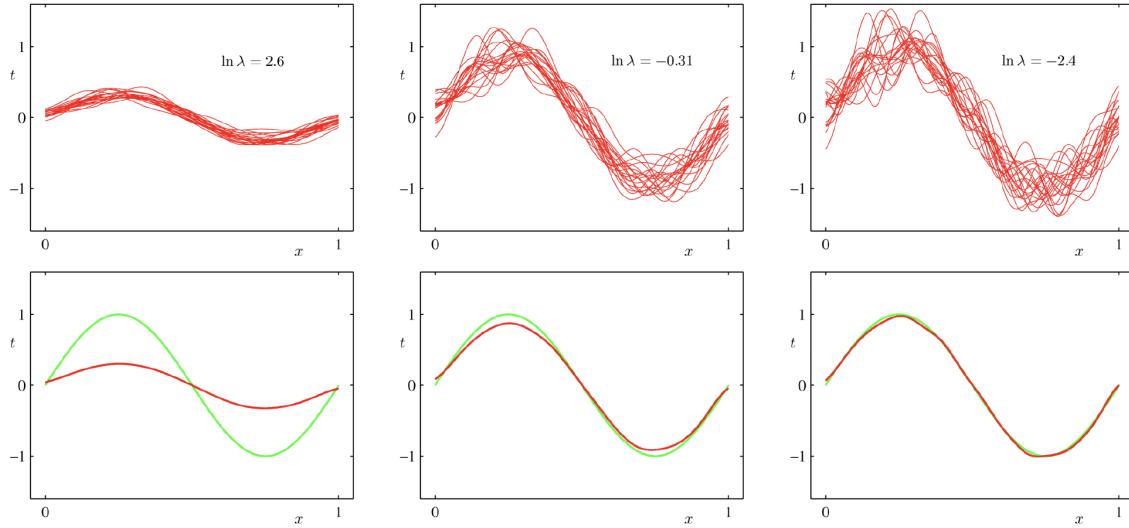
To bound $R(f^*)$ from $\hat{R}(f^*, \mathcal{D})$, we need an additional term to reflect the “richness” of \mathcal{F} .

In classification, we can consider the **capacity** of \mathcal{F} . which is the maximum size of a set which can be arbitrarily labelled by a function from \mathcal{F} . Thus, intuitively, it reflects the ability to model any arbitrary functional.

46 / 64

Under and Over-fitting Bias-variance trade-off

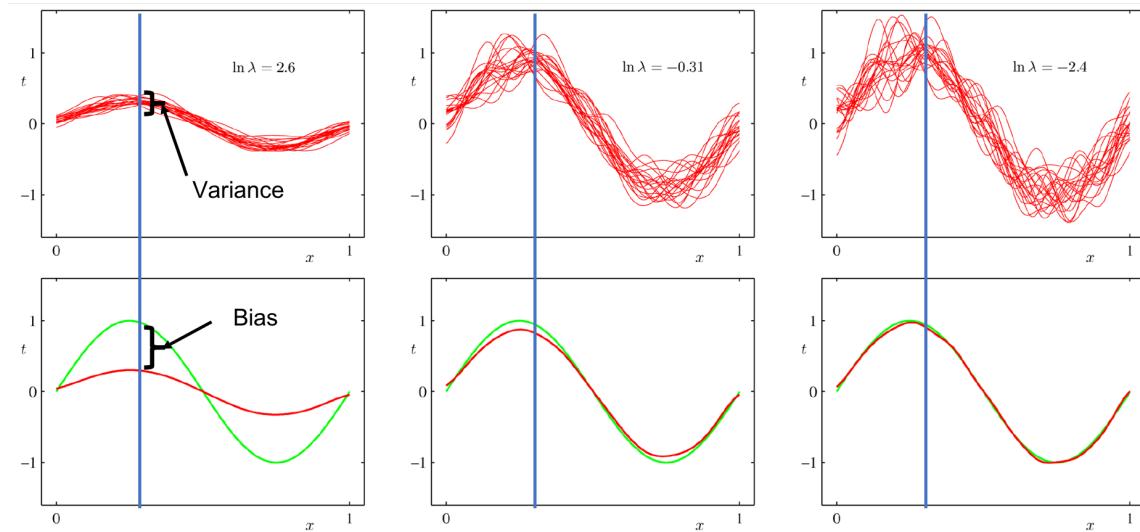
Example. Take 25 random datasets to do the polynomial fitting, varying the degree of regularization. What do we observe?



47 / 64

Under and Over-fitting Bias-variance trade-off

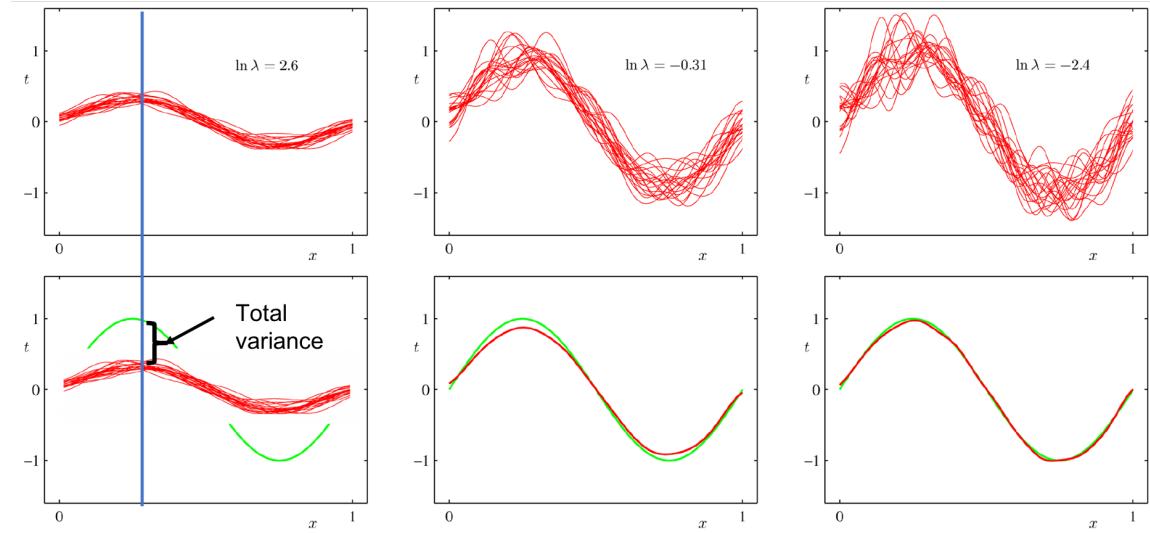
Example. Take 25 random datasets to do the polynomial fitting, varying the degree of regularization. What do we observe?



48 / 64

Under and Over-fitting Bias-variance trade-off

Example. Take 25 random datasets to do the polynomial fitting, varying the degree of regularization.



Compare with total variance: the variance of the expected error

49 / 64

Under and Over-fitting Bias-variance trade-off

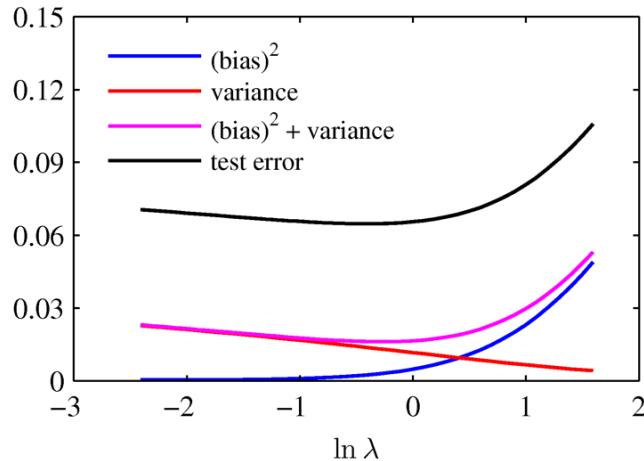
We can decompose the expected error as the sum of a bias and a variance term. For a given x , if $f(x)$ denotes the 'true' prediction, and $f^*(x)$ the prediction using a training dataset,

$$\begin{aligned}
 & E_{\mathcal{D}} ((f^*(x) - f(x))^2) \\
 &= E_{\mathcal{D}} \left((f^*(x))^2 \right) - 2E_{\mathcal{D}}(f^*(x))f(x) + f^2(x) \\
 &= \left(E_{\mathcal{D}}((f^*(x))^2) - E_{\mathcal{D}}(f^*(x))^2 \right) \\
 & \quad + \left(E_{\mathcal{D}}(f^*(x))^2 - 2E_{\mathcal{D}}(f^*(x))f(x) + f^2(x) \right) \\
 &= \underbrace{V_{\mathcal{D}}(f^*(x))}_{\text{Variance}} + \underbrace{\left(E_{\mathcal{D}}(f^*(x)) - f(x) \right)^2}_{\text{Bias}}
 \end{aligned} \tag{1}$$

Increasing the capacity reduces the bias, since f^* fits better the data on average, but increases the variance, since f^* varies a lot with the training data.

50 / 64

Under and Over-fitting Bias-variance trade-off



An over-regularized model (small capacity) will have a large bias, whereas an under-regularized model (large capacity) will have a large variance.

51 / 64

Under and Over-fitting Regularization

The main strategies to control over-fitting is to increase the amount of data, or through some form of regularization:

- Impoverish the space \mathcal{F} (less functionals, early stopping)
- Make the choice of f^* less dependent on data (penalty on coefficients, margin maximization, ensemble methods)

52 / 64

Machine learning in practice

Learning algorithm

A machine learning algorithm combines

- A space \mathcal{F}
- A regularization term $H(f)$
- An algorithm to compute $\operatorname{argmin}_{f \in \mathcal{F}} \hat{R}(f; \mathcal{D}) + H(f)$

For instance the classical perceptron, and linear SVMs share the same \mathcal{F} .

Similarly for GMM and Parzen windows.

Many variants of ANNs differ only through the H term or the optimization algorithm.

53 / 64

Machine learning in practice

Main problem

The main practical issue to address is the trade-off between under and over-fitting.

- Under-fitting: No available functional is consistent with the data we have.
- Over-fitting: The chosen functional is extremely good on the training data, but models irrelevant random perturbations.

The art of machine learning is to combine expertise to build a sound space of predictors, and good statistical techniques to pick the best one.

54 / 64

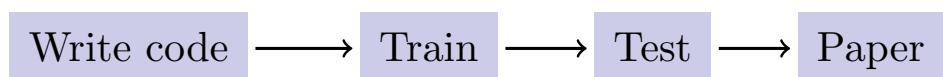
Proper evaluation protocols

55 / 64

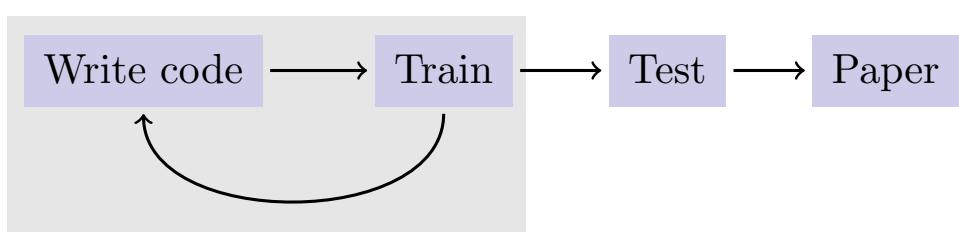
Machine learning in practice Cheating by over-fitting

Models have parameters to be trained, and often involve several meta-parameters that need to be set (eg degree of polynomial, regularization parameter λ).

The ideal development cycle is



or in practice something like

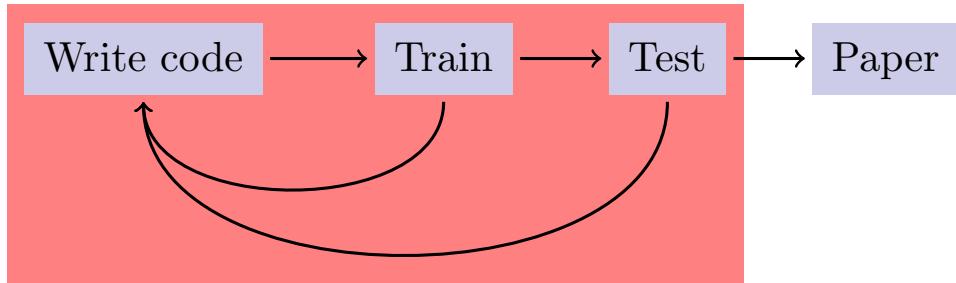


There may be over-fitting, but it does not bias the final performance evaluation.

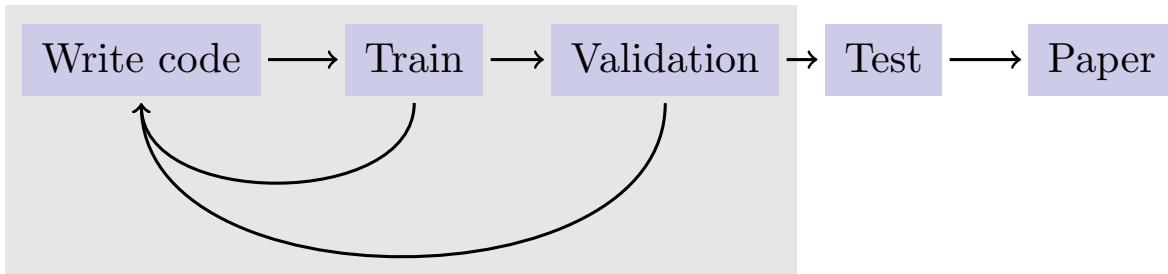
56 / 64

Machine learning in practice Cheating by over-fitting (cont.)

Unfortunately, it often looks like



This should be avoided at all costs. The standard strategy is to have a separate **validation set** for the tuning.



57 / 64

Machine learning in practice Cross-validation

When data is scarce, we can use cross-validation. It consists of repeatedly splitting the training data into a train and a validation set, and averaging the risk estimate through the multiple folds.

There does not exist any unbiased and universal estimator of the variance of k -fold cross-validation valid under all distributions (Bengio & Grandvalet 2004).

58 / 64

Other typologies

59 / 64

Discriminative vs. generative

Example: Gender prediction

The discriminative methods produce the value of interest without modeling the data structure.

The generative approaches rely on a model of the data, even if it is not the quantity of interest.

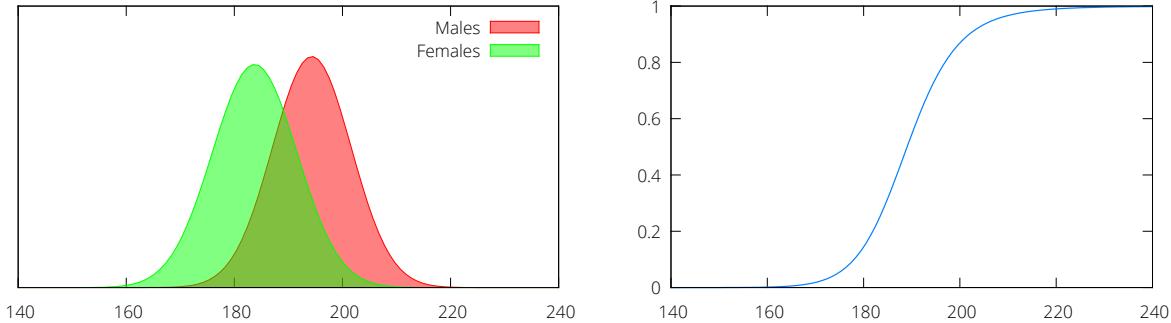
Example: Can we predict a Chinese basketball player's gender from his/her height?

Females		Males	
190	180	190	195
182	193	193	184
188	179	199	190
184	186	200	203
196	185	192	205
173	169	190	201

60 / 64

Discriminative vs. generative Example: Gender prediction (cont.)

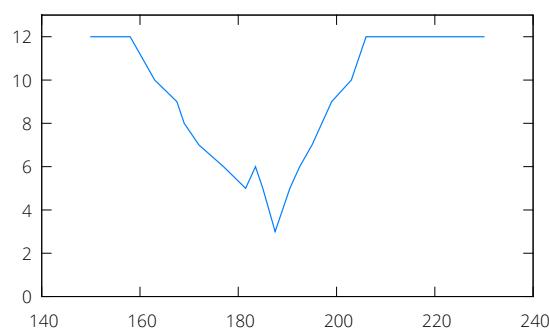
We can either model $P(H | G)$ and from that derive $P(G | H)$ using Bayes' law.



61 / 64

Discriminative vs. generative Example: Gender prediction (cont.)

But we can also directly look for the best threshold:



62 / 64

Other typologies

Supervision and parametrization

- Supervised vs. unsupervised

Supervised learning has access to the values to predict.

Unsupervised methods don't. They are often used in density estimation

Semi-supervised: the value to predict is available for some data points but not for others

- Parametric vs. non-parametric

Fit a finite (small) number of parameters vs. select a model with a large (possibly infinite) number of degrees of freedom.

63 / 64

Relation to other fields

- Linear algebra
- Probabilities (modeling, bounds)
- Classical statistics (performance estimates)
- Signal processing (feature design, pre-processing)
- Optimization (estimation of the model's parameters)
- Algorithmic (efficient implementations)
- System programming (large-scale learning)

64 / 64