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1. Introduction. The theory of controllability and observability due to Kalman
is certainly one of the most important conceptual contributions to linear systems
theory. An account of the development of the ideas of controllability and obser-
vability as well as its implications on feedback control theory and realization
theory may be found in the recent book of Kalman, Falb and Arbib [1].

Ithas been known for some time that for a linear continuous, finite-dimensional
autonomous system with a scalar control variable, complete controllability is
equivalent to being able to assign arbitrary poles to the closed loop transfer matrix
by a suitable choice of state variable feedback gain matrix. This result was general-
ized to the vector control case by Wonham [2] and Simon and Mitter [3]. In [3]
constructive recursive algorithms to achieve pole assignment were also presented.
The objective of this note is to generalize this result to cover discrete-time, finite-
dimensional, autonomous linear systems defined over arbitrary fields. The result
can thus be applied to the feedback control of linear sequential machines [4]. By
duality arguments the problem of state determination is also solved.

2. Notation and system definition. Let

T = time set = Z = (ordered Abelian group of) integers;

U = input values = F™ = vector space of m-tuples over the field F;

X = state space = F";

Y = output space = F?;

Q = input space of functions ¢t — u(t); that is, arbitrary sequences u(— 1), u(0),

u(1), - -+, with u(t) e U.

We shall be concerned with the discrete-time, autonomous, linear dynamical

system X defined over a field F,

x(t + 1) = Ax(t) + Bu(t),

2.1
W) = Cx(t)
with te Z, x(t) e F", u(t)e F™, y(t) € F? and where
A:F"— F"
(2.2) B:F™ — F",
C.F"— F?

are F-homomorphisms.
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We shall usually not make a distinction between (4, B) and (4, C) as a pair
of F-homomorphisms or as a pair of matrices representing these homomorphisms
with respect to a given basis.

With respect to the system (2.1) we make the assumption:

(i) the pair (A4, B) is completely reachable, that is, the rank of the n x nm
matrix

(2.3) H(A,B) = [B,AB, ---, A" 'B]

is n.
(i) the pair (A4, C) is completely observable, that is, the rank of the n x np
matrix

2.4 K(A,C)=[CT, A"CT, .-, (AT C"]
is n.

3. Statement of main theorem.' The principal result of this paper is the
following theorem.

THEOREM 3.1. For the linear autonomous system (2.1), (A, B) is a completely
reachable pair if and only if for every monic polynomial g of degree n, there exists an
m x n matrix K over F such that the characteristic polynomial of A + BK is
precisely g (up to a factor of *1).

The proof of the result proceeds via several propositions and is presented in
the next section.

4. Proof of main theorem. The proof will be divided into three parts: necessity
for the case when B is a column vector, necessity for a general B and sufficiency.

PROPOSITION 4.1 (case m = 1). In (2.1) let B =b = n x 1 matrix. If (A, B) is
a completely reachable pair, then there exists a 1 x n matrix k such that the charac-
teristic polynomial of A + bk has an arbitrary preassigned form (of degree n).

The proof of this proposition essentially consists of transforming 4 to rational
canonical form and is identical to the proof given for the field of real numbers
(see, for example, [5, Theorems 7 and 97).

We now consider the case where B is an n x m matrix.

ProrosITION 4.2. If (A, B) is a completely reachable pair, then there exists a
matrix K and a vector b such that (A + BK, b) is a completely reachable pair and
b is in the column space of B.

Proof. The proof presented is essentially the same as independently given by
Heymann [6] and hence only an outline of the proof will be given.

Let b; be the jth column of B and let E; be the cyclic subspace of the coordinate
space E = F" generated by b;. Since (4, B) is a completely reachable pair
E=E, + -+ E,. In general, the E; are not independent, that is, E; N E; # &
fori # j. However, it is easy to see that there are subspaces S; and a finite integer ¢,
O0<l=msuchthat E=S, +---+ S, and §; N §; = J for i # j, that is, E is

! 1t was pointed out by the reviewer that a similar result has been obtained by R. E. Kalman in
the unpublished notes: Lectures on Controllability and Observability, CIME Seminar, Italy, February
1969.
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a direct sum of the subspaces S;. A basis for E can now be obtained by combining
the bases for the subspaces.

By rearranging the columns of B (hence the coordinates of the control) it can
be assumed that the first t columns of B are used. Hence the basis is

t
by, -+, A%y, - by, A%, and Y k= n.
i=1

Let R=1[by,---, A" b, ---, b, ---, A% 1b,] be the matrix whose col-
umns are the above basis vectors. Clearly R is invertible.

Define an m x n matrix S = [s, ---s,], where each column is an m-tuple
defined as follows:

J
S, =& if rj= Y k; and j=1,---,t—1; s5;=0 otherwise,
i=1
where &™ is the ith standard basis vector of F™

Finally, let P = SR~ ' Clearly PA% " 'b;=¢7,, j=1,---,t—1, and
PA'b; = 0 for all other powers of A.

Let A = A + BP. Then the controllability matrix of the pair (4, by) is H
= [b,4b,--- A" 'b,] and it has rank n. Clearly b, is in the column space of B.
The necessity part of the theorem now follows from Proposition 4.1.

We now prove sufficiency.

PROPOSITION 4.3. Given an arbitrary monic polynomial g of degree n, if there
exists an m x n matrix K such that the characteristic polynomial of A + BK is
precisely g, then (A, B) is a completely reachable pair.

Proof. We first assume that the field F has a sufficient number of scalars
a, -+, a,such that det(4 — a;I) # 0,i = 1,2, ---, n. From the above assump-
tion and by hypothesis there is a K such that (4 + BK)v; = aw; and v; # 0.
Since a,] — A is invertible, we have

(4.1) (] — A 'BKv, =v;, i=12,--,n.

Now for each g; there are scalars b(a;) such that
4.2) (af — A" =Y bfa)ai™?, i=12,---,n
i=1

Hence from (4.1) and (4.2), we obtain

(4-3) Z AJ_IB(bJ-(a,)KUi) = Di, i = 1, 2, e, N

j=1

Let H=[B,AB,---, A" 'Bland y = (y, --- y,)" € F"™. Then
Hy =Y A""'By,

j=1
If we set y; = bj(a;)Kv;, then (4.3) becomes
4.4) Hy* = v;, i=1,2,---,n,
where y* = (b,(a,)Kv; -+ - b,(a;)Kv;)".
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Since the eigenvalues of A + BK are distinct, the eigenvectors vy, -, v,
are linearly independent and form a basis for F". Hence, by using (4.4), any v e F"
can be written as v = H(}'; ¢;y¥). Therefore the range of H is F" and hence (4, B)
is a completely reachable pair.

Now if F does not contain enough distinct scalars, apply Proposition A.3 of
the Appendix to f = det (4 — xI) and g = det(4 + BK — xI). Then over some
extension field F’ = F, g has n distinct roots none of which are roots of f. Now
from the proof of Proposition 4.3, H considered as a linear transformation of
(F'y"™ — (F)" has rank n. But H is a matrix over F < F’; hence it has rank n
over F also.

For finite fields (containing at least 2 elements) the following stronger result
can be proved.

THEOREM 4.4. The following statements are equivalent :

(i) (A4, B) is a completely reachable pair ;
(i) Given a monic polynomial g of degree n, there exists a matrix K such that
the characteristic polynomial of A + BK is precisely g;

(iif) B # 0, and given an irreducible polynomial p of degree n, there exists a
matrix K such that the characteristic polynomial of A + BK is p.

Proof. The theorem will be proved by showing that the statements (i) and (iii)
are equivalent.

(i) = (iii) from Theorem 3.1.

We now prove the reverse implication. For n = 1, the result is obvious. For
n > 1, by Proposition A.1 we can construct an irreducible polynomial of degree n.

Let # denote the range of H(A, B). Define the map

A:F"/R — F"/R
by
A%, = A + BK)x;, i=1,2,---,n,

where F"/Z is the quotient space, {x,, -+ -, x,} is a basis for F* and X denotes the
coset of x in the quotient space F"/# and K is an m x n matrix. This is a well-
defined map since Z is an A-invariant subspace of F”".

Let p(x) = Y"_, pix' be the characteristic polynomial of A + BK. Then by
the Cayley-Hamilton theorem p(4 + BK) = 0. It is easily verified that A is an
endomorphism of F"/# — F"/4. Using an induction on k we can show

A% = (A + BCOYx

and we may verify that p(4) = O (that is, the zero map on F"/%).

Let m be the minimal polynomial of 4. Then m divides p since p(4) = 0.
Since by hypothesis p is irreducible, either m = 1 or m = +p.

Since B # 0, degm < n = degp, so m = 1. But m(4) = 0; this means that
the identity map on F"/Z is equal to the zero map and hence F"/Z = A. There-
fore # = F" and (4, B) is a completely reachable pair.

5. Anexample. As an example, consider the following three-state circuit over
the field Z;.
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FiG. 1

By inspection of the diagram,
xi(n + 1) = 2uy(n),
xy(n + 1) = x4(n) + 2x5(n) + us(n) + u,(n),
x3(n + 1) = 2x,(n) + x5(n) + x3(n) + u(n).
Letting x(n) = [x,(n) x,(n) x3(n)]and u”(n) = [uy(n) u,(n)],

000 2 0
xn+ D=1 2 0|x(n)+{1 1|un) = Ax(n) + Bu(n).
2 11 01
By direct calculation,
200 000
H=[1 11 2 2 1},
012201
which has rank 3. Following the construction in Proposition 4.2,
2 00
R = [b1 Ab1 Azbl] = 1 1 2 .
020
200
000 000
ThenR™'=|0 0 2|;also, S = . Therefore P = SR™! = )
001 2 22
222
000 200
Again by direct calculation, A =0 1 2)and H=|1 1 2|, which is the
100 020

same as R in this case, so H has rank 3. Letting p; = (p;p1,P13), the characteristic
polynomial of A4 + byp, is —x> + (2py1 + P12 + Dx? + (2p13 + p1)x + (P12
+ p13)- To see that these coefficients may be chosen arbitrarily, it suffices to note
that the following determinant is nonzero:

210
1 0 2)=1#£0.
011
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6. Observability and state reconstruction. Since the pair (4, C) has been
assumed to be a completely observable pair, it follows from Theorem 3.1 that
for every monic polynomial g of degree n, there exists a p x n matrix — DT such
that the characteristic polynomial of AT — CTDT is precisely g. Hence the charac-
teristic polynomial of 4 — DC can be made arbitrary.

Now consider an observer [7]:

6.1) Rt + 1) = XR(t) + Dy(t) + Bu(t), t=20,1,2,.--,

where X and D are n x n and n x p matrices respectively. Let D be chosen such
that AT — CTDT has arbitrary characteristic polynomial and let X = 4 — DC.
Then
K+ 1) — x(t +1) = (A4 — DO)[&(@) — x(1)],
X(0) — x(0) = given.
From (6.2) it follows that
£(n) — x(n) = (4 — DC)"[X(0) — x(0)].

6.2)

Since the characteristic polynomial of A — DC can be made arbitrary, the
matrix A — DC can in particular be made nilpotent and hence the observer
reconstructs the initial state in at most n steps.

Appendix. In this Appendix some results on finite fields which are used in the
proof of Proposition 4.3 are presented.

The following results are needed. The proof of the first two propositions are
consequences of well-known results on finite fields (see Lang [8, Chap. VII, § 5]).

ProrosITION A.1 (see [9, p. 128]). If F is a finite field consisting of at least two
elements, then the polynomial ring P(F) contains irreducible polynomials of every
degree =2.

PropPOSITION A.2. For every irreducible polynomial over a finite field F, there
is an extension field F' such that the given polynomial has n distinct roots in F', where
n is the degree of the polynomial.

PROPOSITION A.3. Let F be a finite field and f a given polynomial of degree n
over F. Then there is a polynomial g of degree n over F and some extension field
F' o F such that g has n distinct roots in F', none of which are roots of f.

Proof. First, consider the case when fhas at least one root in F. Then f = f'f”,
where f” is a product of linear factors and f” has no roots in F. Also, degf’ = 1,
so degf” < n.

By Proposition A.1, there is an irreducible polynomial g over F of degree n.
Then ged (f”, g) = 1sincedeg f” < degg. Clearly ged (f',g) = 1,s0ged (f,g) = 1.

By Proposition A.2, there is an extension field F' > F such that g has n distinct
roots in F'. But gcd(f,g) = 1 in F’ also, so no root of g is a root of fin F".

Next, consider the case when fhas no roots in F. Now, etiher F has n distinct
scalars or not. If it has, let g = (a; — x)(a, — x)---(a, — x), where the a; are
distinct scalars in F. Then no root of g is a root of f, and F is the desired extension
field.

If F does not have n distinct scalars, consider the prime factorization of f:
S = pip2- - Py, Where each p; is an irreducible polynomial of degree at least 2,
say degp; = m;, and ) ¥_, m; = n. (Note that the p, may not be distinct.)
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If k > 1, then each m; < n. Pick a polynomial g over F irreducible of degree n.
Then ged (f;2) = 1. Again. let F' o F be an extension of F containing n distinct
roots of g. Since ged (f, g) = 1, no root of g is a root of f.

If k = 1, then f = p, and m; = n. Let F have p distinct scalars, and choose
g =(a; — x)---(a, — x), where the a;e F are distinct. Also choose g” over F
irreducible of degree n — p. Then ged(f,g") =1 and gcd(f,g') = 1; hence,
ged (f,8'g") = L.

Let F’ o F be an extension field in which g” has n — p distinct roots. There-
fore g = g'¢” has n distinct roots in F’. Also, since ged (f, g) = 1, no root of g is
a root of f.

Acknowledgment. The authors are indebted to the reviewer for constructive
comments and suggestions. In particular the statement and proof of Theorem 4.4
was obtained as a result of comments by the reviewer.

Note added in proof. It was recently pointed out to me by R. W. Brockett
that V. M. Popov proved the result on pole assignment earlier in his paper:
Hyperstability and optimality of automatic systems with several control functions,
Rev. Roumaine Sci. Techn.-Electrotechnct. Energ., 9 (1964), pp. 629-690.
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