

Linear Systems Theory

Ph. Hiller
Lecture III
Invariant Polynomials

Notation: Looking at a linear systems
with transfer matrix $G(s)$ with m inputs
and p outputs

has many representations in

state-space form $\dot{x} = Ax + Bu$
 $y = Cx + Du$

We have seen that system similarity
preserves the transfer function i.e.

$$\bar{A} = PAP^{-1} \quad \bar{B} = PB \quad \bar{C} = CP^{-1} \quad \bar{D}$$

$$G(s) = C(sI - A)^{-1}B + D = \bar{C}(sI - \bar{A})^{-1}\bar{B} + \bar{D}$$

input-output

How do properties of $G(s)$ linked to
input-output behaviors connect with invariant
properties of the A matrix?

?

stabilization: Stabilization is linked to the possibility
of changing the structure of the A matrix,
changing its invariants.

First goal: determine the invariant structure of
the A matrix.

Side goal:

From a theoretical level, what is the algebraic setting for establishing the invariants, generalizations?

- Annihilating polynomial
- coprime polynomials.
- Polynomial map.
- Minimal annihilating polynomial (MAP)

Theorem 1 There always exist a vector having same MAP as the whole space.

Theorem 2 Two subspaces are direct summands
 \iff
Their MAP are coprime

Theorem 3 Every space splits as a direct sum of cyclic subspaces

main Theorem
of lecture

$$V = I_1 \oplus I_2 \oplus \dots \oplus I_r$$

where $\gamma(I_1)$ is the MAP of I_1
and $\gamma(I_2)$ is the MAP of I_2

$\gamma(I_2)$ divides $\gamma(I_1)$.

etc. $\gamma(I_{j+1})$ divides $\gamma(I_j)$, $r > j \geq 2$.

$$A = I$$

$$|\lambda I - I|$$

$$= \begin{pmatrix} \lambda - 1 & & & 0 \\ & \lambda - 1 & & \\ & & \ddots & \\ 0 & & & \lambda - 1 \end{pmatrix}$$

$$= (\lambda - 1)^n$$

$$(\lambda - 1)^n \Bigg\} \lambda - A = I$$

$$(I - I)^n = 0$$

$\Rightarrow \lambda(A)$ is not

the minimal annihilating polynomial of the A matrix

MAP

(minimal annihilating polynomial)

$$\text{is } (\lambda - I)$$

$\underbrace{\quad}_{\text{invariant polynomial}}$

$$A \in \mathbb{R}^{n \times n}$$

invariant char(A)

$$\lambda(A) \triangleq |\lambda I - A|$$

\rightarrow eigenvalues of A

and PAP^{-1} has the same eigenvalues as A .

$$\Big| \lambda PP^{-1} - PAP^{-1} \Big|$$

$$|P| \Big| \lambda I - A \Big| |P|^{-1} =$$

$$|\lambda I - A|$$

Cayley Hamilton theorem

$$\lambda(A) \Big|_{\lambda=A} = 0 \in \mathbb{R}^{n \times n}$$

$$\forall A \in \mathbb{R}^{n \times n}$$

quotients relative to invariant subspaces
relative annihilating polynomial.

Lemma Polynomial maps commute although matrices generally don't

$$\varphi_1(A) \varphi_2(A) = \varphi_2(A) \varphi_1(A).$$

Lemma RMAP always divides TMAP.

divisors and invariant polynomials

Result without proof

$$\text{Set } |\lambda I - A| = D_n(\lambda)$$

Compute the greatest common divisor of all
minors of order $n-r$

this defines $D_{n-r}(\lambda)$

$$\text{define } \frac{D_n(\lambda)}{D_{n-1}(\lambda)} = i_1(\lambda) \quad \frac{D_{n-1}(\lambda)}{D_{n-2}(\lambda)} = i_2(\lambda)$$

We get the invariant polynomials.

Proof : linked to finding the companion
matrix linked to each cyclic subspace.

Polynomial maps are elements of a torsion module over a principal ideal domain.

Vector space + endomorphism \cong torsion module over $\mathbb{F}(\lambda)$
a principal ideal domain

Choose a basis of V , say e_1, e_2, \dots, e_n

denote by $\varphi_1(\lambda), \varphi_2(\lambda), \dots, \varphi_n(\lambda)$
the minimal polynomials of these vectors. $\dim \{e_1, Ae_1, A^2e_1, \dots\} = p$

Let $\varphi(\lambda)$ least common multiple of these polynomials

Then $\varphi(\lambda)$ is MAP of the whole space.

(since every vector is representable in the form

$$V = \sum_{i=1}^n \alpha_i e_i$$
)

Definition and notation (direct sum)

$V = V_1 \oplus V_2$ \Leftrightarrow no vector in common
between V_1 and V_2
except the null vector.

Definition: (invariant subspace)

A subspace $V' \subset V$ is called invariant
with respect to the operator A , if $AV' \subset V'$
if $x \in V'$ implies $Ax \in V'$.

dim

$$\left(\text{span} \left\{ e_1, Ae_1, A^2 e_1, \dots \right\} \right) = P \quad A^P e_1 = \left(-\alpha_1 A^{p-1} - \alpha_2 A^{p-2} \dots \right) e_1$$

$$\Rightarrow \left(\lambda^p + \alpha_1 \lambda^{p-1} + \alpha_2 \lambda^{p-2} + \dots + \alpha_p \right)$$

is a MP of e_1

Theorem: Given A as operator, $A: V \rightarrow V$

Let the minimal polynomial over the field F (field associated with the vector space V) be

$\chi(\lambda)$ and suppose that $\chi(\lambda)$

as $\chi(\lambda) = \chi_1(\lambda) \chi_2(\lambda)$

if $\chi_1(\lambda)$ and $\chi_2(\lambda)$ are coprime then

$\exists V_1$ and $\exists V_2$ invariant subspaces

such that $V = V_1 \oplus V_2$ and

$\chi_1(\lambda)$ is MAP of V_1

$\chi_2(\lambda)$ is MAP of V_2 .

Proof: coprimeness implies $1 = \chi_1 X_1 + \chi_2 X_2$
 $\exists X_1$ and X_2 /

let $x \in V \Rightarrow x = \underbrace{\chi_1(A) X_1(A) x}_{x''} + \underbrace{\chi_2(A) X_2(A) x}_{x'}$

Let $V_1 \stackrel{\Delta}{=} \{x \in V \mid \chi_1(A)x = 0\}$

$V_2 \stackrel{\Delta}{=} \{x \in V \mid \chi_2(A)x = 0\}$

$$\begin{aligned}
 x' \in V_1 \quad \text{since} \quad \mathcal{Y}_1(A)x' &= \mathcal{Y}_1 \mathcal{Y}_2 X_2 x \\
 &= \mathcal{Y}_1 X_2 x = X_2 \mathcal{Y}_1 x = 0
 \end{aligned}$$

$$\begin{aligned}
 x'' \in V_2 \quad \text{since} \quad \mathcal{Y}_2(A)x'' &= \\
 &= \mathcal{Y}_2 \mathcal{Y}_1 X_1 x = X_1 \mathcal{Y}_1 x = X_1 0 = 0.
 \end{aligned}$$

and V_1 have only 0 as common vector.

for if $x_0 \in V_1$ & $x_0 \in V_2$

$$\mathcal{Y}_1 x_0 = 0 \quad \text{and} \quad \mathcal{Y}_2 x_0 = 0$$

using the coprime identity $x_0 = \mathcal{Y}_1 X_1 x_0 + \mathcal{Y}_2 X_2 x_0 = 0 + 0 = 0$.
 $1 = \mathcal{Y}_1 X_1 + \mathcal{Y}_2 X_2$ a contradiction

$$\Rightarrow V = V_1 \oplus V_2$$

V_1 is invariant : $x \in V_1 \Rightarrow \mathcal{Y}_1 x = 0$
 (by definition)

$$0 = A \mathcal{Y}_1 x = \mathcal{Y}_1 A x \Rightarrow A x \in V_1$$

$\mathcal{Y}_1(\lambda)$ is the TAP.

Suppose $\tilde{\mathcal{Y}}_1(\lambda)$ is a map of V_1

$$\begin{aligned}
 \tilde{\mathcal{Y}}_1 \mathcal{Y}_2 x &= \mathcal{Y}_2 \tilde{\mathcal{Y}}_1 x' + \tilde{\mathcal{Y}}_1 \mathcal{Y}_2 x'' \\
 &= 0 + 0 = 0
 \end{aligned}$$

Since x is arbitrary $\Rightarrow \psi_1, \psi_2$ is MAP of V
which contradicts that ψ is MAP of V .

Theorem in a vector space there always exist a vector with MAP equal to the one of the whole space!

Case 1. MAP of V is a power of a (important for feedback.)
polynomial $\psi(\lambda) = (\varphi(\lambda))^l$

in V choose a basis e_1, e_2, \dots, e_n .

The MAP of e_i is a divisor of $\psi(\lambda)$

hence $\psi_i = (\varphi(\lambda))^{l_i}$

$e_j \Rightarrow \psi_j = (\varphi(\lambda))^{l_j}, j=1, \dots, n$.

but MAP of V is the least common multiple of the $\psi_j, j=1, \dots, n$.

$\psi(\lambda)$ coincides with the MAP of one of the basis vectors. $\exists k, \psi = \psi_k$.

$\Rightarrow e_k$ has same MAP as V .

Lemma: $e' \rightarrow \gamma_1$ MAP, i.e. $\gamma_1 e' = 0$
 $e'' \rightarrow \gamma_2$ MAP, i.e. $\gamma_2 e'' = 0$

(in full $\gamma_1(A)e' = \gamma_2(A)e'' = 0$).

If γ_1 and γ_2 are coprime then

MAP of $e' + e''$ is $\gamma_1 \gamma_2 = \gamma$

Proof: Let χ an arbitrary AP of $e' + e'' \trianglelefteq e$

$$\chi e = 0$$

first multiply by γ_2 : $\gamma_2 \chi e = 0$

$$\gamma_2 \chi (e' + e'') = 0$$

$$\gamma_2 \chi e' + \gamma_2 \chi e'' = 0$$

$$\gamma_2 \chi e' + \chi \underbrace{\gamma_2 e''}_{0} = 0$$

$$\gamma_2 \chi e' = 0$$

$\Rightarrow \gamma_2 \chi$ is AP of e'

hence $\gamma_2 \chi$ is divisible by γ_1

and coprimeness imply χ is divisible by γ_1 .

\Rightarrow similarly χ is divisible by γ_2 .

$\Rightarrow \chi$ is divisible by γ

Hence every AP of e is divisible by ψ_1, ψ_2
 $\Rightarrow \psi_1, \psi_2$ is MAP of $e = e' + e''$.

Proof in the general case (existence of x sharing same MAP on the whole space).

Let us decompose the MAP of $V = \psi(\lambda)$

into irreducible factors over \mathbb{F}

$$\psi = \psi_1^{c_1} \psi_2^{c_2} \dots \psi_s^{c_s}$$

ψ_1, \dots, ψ_s are distinct.

$$V = I_1 \oplus I_2 \oplus \dots \oplus I_s$$

MAP of I_i 's are power of irreducible polynomials, we know that

$\forall I_i, \exists e_i$ having same MAP $(\psi_i^{c_i})$

Since these MAPs are coprime,

$$\text{the vector } e = \sum_{i=1}^s e_i$$

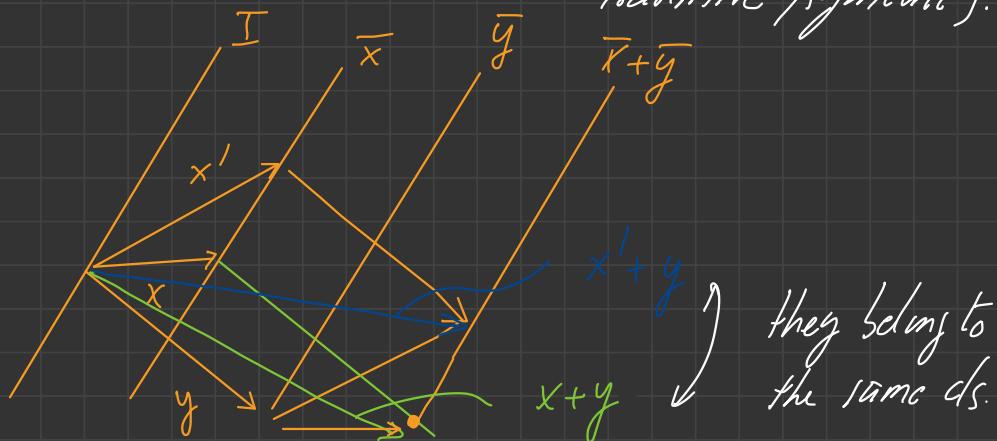
will have MAP equal to ψ by the above lemma.

Quotient vector space

$$x \equiv y \pmod{I}$$

$$\Leftrightarrow y - x \in I$$

it is an equivalence class (reflexive, transitive, symmetric).



Definitions

Relative minimal annihilating polynomial
RMAP

MAP : $\sigma(A)x = 0$
of x
(w.r.t. A)

RMAP $(\text{mod } I)$ $\sigma(A)x \equiv 0 \pmod{I}$.

Decomposition of a Space into cyclic subspaces

Let $f(\lambda) = \lambda^p + \alpha_1 \lambda^{p-1} + \dots + \alpha_p$

MAP of a vector v .

$v, Av, \dots, A^{p-1}v$ are linearly independent.

but

$$A^p v = -\alpha_p v - \alpha_{p-1} Av - \dots - \alpha_1 A^{p-1}v$$

$$\text{span} \{ v, Av, \dots, A^{p-1}v \} \triangleq \mathcal{I}$$

is invariant and p -dimensional

Definition : such an invariant space is called cyclic since it is generated by a single vector v .

Lemma : every vector $x \in \mathcal{I}$ is

representable as a linear combination of the generating vectors, i.e. \exists polynomial $X(\lambda)$

of degree $p-1$

such that

$$x = X(A)v$$

Remark : MAP of \mathcal{I} = MAP of v

Main result of the lecture

Main Theorem

$$\text{Let } \psi_1 = \psi = \lambda^m + \alpha_1 \lambda^{m-1} + \dots + \alpha_m$$

be the MAP of the whole space V .

Then $\exists V \in V$ having the same MAP (previous theorem). Let I_1 denote the

$$I_1 \triangleq \text{span} \{ V, Av, \dots, A^{m-1}v \}$$

if $n=m$, then $V = I_1$, and the theorem is proved.

So let $m < n$, and let us compute the

RMAP of $V \pmod{I_1}$ i.e.

$$\psi_2(\lambda) = \lambda^p + \beta_1 \lambda^{p-1} + \dots + \beta_p$$

Remark: ψ_2 is a divisor of ψ_1 , i.e,

$$\exists \varphi \quad \psi_1 = \psi_2 \varphi$$

this is easy since if σ is the RMAP of $x \pmod{I}$ and σ is MAP of V , then $\sigma x = 0$

But $\sigma x = 0$ implies $\sigma x \equiv 0 \pmod{I}$

so that σ is a RAP of $x \pmod{I}$
 therefore since it is a RAP it is divisible by the
 minimal one which is the RTAP \pmod{I} ,
 i.e. σ_1 .

in V , $\exists v^*$ with RTAP $\pmod{I_1}$
 equal to ψ_2 . (same constructions
 as with the TAP)

meaning that

$$\psi_2 v^* \equiv 0 \pmod{I_1}$$

i.e. $\exists x$

$$\boxed{\psi_2 v^* = x v}$$

let us apply φ to both sides

$$\varphi \psi_2 v^* = \varphi x v$$

$$\psi_1 v^* = \varphi x v$$

But ψ_1 is TAP hence $\psi_1 v^* = 0$

$$0 = \varphi x v$$

$\hookrightarrow \varphi x$ is AP of V if it is divisible by

$$\varphi x = \psi_1 \mu = \psi_2 \varphi \mu$$

$$\Rightarrow x = \psi_2 \mu$$

$$\varphi_2 V^* = X V \quad \text{becomes} \quad \varphi_2 V^* = \varphi_2 \mu V$$

$$\varphi_2 (V^* - \mu V) = 0$$

let us define

$$W \stackrel{\Delta}{=} V^* - \mu V$$

so that

$$\varphi_2 W = 0$$

φ_2 is AP of W , and therefore
divisible by the RTAP of $V^* \pmod{I_1}$

$$\text{since } W \equiv V^* \pmod{I_1}$$

Since φ_2 is the RTAP, φ_2 is TAP.

it follows then that

span $\{W, Aw, \dots, A^{p-1}w\}$ is cyclic
and invariant.

$$\Rightarrow \{V, Av, \dots, A^{m-1}v, W, Aw, \dots, A^{p-1}w\}$$

are lin. indep. and a basis of

$$\text{if } n = m+p \Rightarrow V = I_1 \oplus I_2$$

and the proof is finished.

If not $n > m+p$ iterate mod $(I_1 \oplus I_2)$

