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Overview of Transformers

▶ Multiple layers, each outputting one vector per token
▶ Self-attention between layers (often bidirectional, depicted)
▶ All positions share the same parameters
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Today: Same goals, different building blocks

• Last week, we learned about sequence-to-sequence problems and 
encoder-decoder models.

• Today, we’re not trying to motivate entirely new ways of looking at 
problems (like Machine Translation)

• Instead, we’re trying to find the best building blocks to plug into our 
models and enable broad progress.
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2014-2017ish 
Recurrence

Lots of trial 
and error

2021
??????
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Issues with recurrent models: Linear interaction distance

• RNNs are unrolled “left-to-right”.

• This encodes linear locality: a useful heuristic!

• Nearby words often affect each other’s meanings

• Problem: RNNs take O(sequence length) steps for 
distant word pairs to interact.
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tasty pizza

The chef waswho  …

O(sequence length)
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Issues with recurrent models: Linear interaction distance

• O(sequence length) steps for distant word pairs to interact means:

• Hard to learn long-distance dependencies (because gradient problems!)

• Linear order of words is “baked in”; we already know linear order isn’t the 
right way to think about sentences…
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The waschef who  …

Info of chef has gone through 
O(sequence length) many layers!
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Issues with recurrent models: Lack of parallelizability

• Forward and backward passes have O(sequence length) 
unparallelizable operations

• GPUs can perform a bunch of independent computations at once!

• But future RNN hidden states can’t be computed in full before past RNN 
hidden states have been computed

• Inhibits training on very large datasets!
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If not recurrence, then what? How about attention?

• Attention treats each word’s representation as a query to access and 
incorporate information from a set of values.

• We saw attention from the decoder to the encoder; today we’ll think about 
attention within a single sentence.

• Number of unparallelizable operations does not increase with sequence length.

• Maximum interaction distance: O(1), since all words interact at every layer!

embedding 0 0 0 0 0 0 0 0

h1 h2 hT

2 2 2 2 2 2 2 2
attention

attention
1 1 1 1 1 1 1 1

All words attend 
to all words in 
previous layer; 
most arrows here 
are omitted
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Attention as a soft, averaging lookup table

9

We can think of attention as performing fuzzy lookup in a key-value store.

In a lookup table, we have a table of keys
that map to values. The query matches 
one of the keys, returning its value.

In attention, the query matches all keys softly, 
to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.
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Self-Attention Hypothetical Example

10
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Self-Attention: keys, queries, values from the same sequence
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Let 𝒘1:𝑛 be a sequence of words in vocabulary 𝑉, like Zuko made his uncle tea.

For each 𝒘𝑖 , let 𝒙𝑖 = 𝐸𝒘𝒊, where 𝐸 ∈ ℝ𝑑×|𝑉| is an embedding matrix.

1. Transform each word embedding with weight matrices Q, K, V , each in ℝ𝑑×𝑑

2. Compute pairwise similarities between keys and queries; normalize with softmax

𝒆𝑖𝑗 = 𝒒𝒊
⊤𝒌𝒋 𝜶𝑖𝑗 =

exp(𝒆𝑖𝑗)

σ𝑗′ exp(𝒆𝑖𝑗′)

3. Compute output for each word as weighted sum of values

𝒒𝑖 = 𝑄𝒙𝒊 (queries) 𝒌𝑖 = 𝐾𝒙𝒊 (keys) 𝒗𝑖 = 𝑉𝒙𝒊 (values)

𝒐𝑖 =෍

𝒋

𝜶𝑖𝑗 𝒗𝑖
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Barriers
• Doesn’t have an inherent 

notion of order! 

Barriers and solutions for Self-Attention as a building block
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Solutions
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Fixing the first self-attention problem: sequence order

• Since self-attention doesn’t build in order information, we need to encode the order of the 
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝒑𝑖 ∈ ℝ𝑑, for 𝑖 ∈ {1,2, … , 𝑛} are position vectors

• Don’t worry about what the 𝑝𝑖 are made of yet!

• Easy to incorporate this info into our self-attention block: just add the 𝒑𝑖 to our inputs!

• Recall that 𝒙𝑖 is the embedding of the word at index 𝑖. The positioned embedding is:

෥𝒙𝑖 = 𝒙𝑖 + 𝒑𝑖
In deep self-attention 
networks, we do this at the 
first layer! You could 
concatenate them as well, 
but people mostly just add…

13
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• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

• Pros:

• Periodicity indicates that maybe “absolute position” isn’t as important

• Maybe can extrapolate to longer sequences as periods restart!

• Cons:

• Not learnable; also the extrapolation doesn’t really work!

Position representation vectors through sinusoids 

cos(𝑖/100002∗1/𝑑)
𝒑𝑖 =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗
𝑑
2
/𝑑)

cos(𝑖/100002∗
𝑑
2/𝑑)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence
D

im
en

si
o

n
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• Learned absolute position representations: Let all 𝑝𝑖 be learnable parameters!

Learn a matrix 𝒑 ∈ ℝ𝑑×𝑛, and let each 𝒑𝑖 be a column of that matrix!

• Pros:

• Flexibility: each position gets to be learned to fit the data

• Cons:

• Definitely can’t extrapolate to indices outside 1,… , 𝑛.

• Most systems use this!

• Sometimes people try more flexible representations of position:

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

Position representation vectors learned from scratch

15
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Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning! It’s all just weighted 
averages

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

16
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Adding nonlinearities in self-attention

• Note that there are no elementwise 
nonlinearities in self-attention; 
stacking more self-attention layers 
just re-averages value vectors
(Why? Look at the notes!)

• Easy fix: add a feed-forward network
to post-process each output vector.

𝑚𝑖 = 𝑀𝐿𝑃 output𝑖
= 𝑊2 ∗ ReLU 𝑊1 output𝑖 + 𝑏1 + 𝑏2

The

𝑤1 𝑤2

chef

𝑤3

who

𝑤𝑛

food

…
self-attention

Intuition: the FF network processes the result of attention

FF FF FF FF

…
self-attention

FF FF FF FF

17
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Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning magic! It’s all just 
weighted averages

• Need to ensure we don’t 
“look at the future” when 
predicting a sequence

• Like in machine translation

• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

• Easy fix: apply the same 
feedforward network to each self-
attention output.

18
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Masking the future in self-attention

• To use self-attention in 
decoders, we need to ensure 
we can’t peek at the future.

• At every timestep, we could 
change the set of keys and 
queries to include only past 
words. (Inefficient!)

• To enable parallelization, we 
mask out attention to future 
words by setting attention 
scores to −∞.

The

chef

who

[START]

For encoding 
these words

We can look at these 
(not greyed out) words

𝑒𝑖𝑗 = ൝
𝑞𝑖
⊤𝑘𝑗 , 𝑗 ≤ 𝑖

−∞, 𝑗 > 𝑖

−∞

−∞−∞

−∞−∞ −∞

19
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Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning magic! It’s all just 
weighted averages

• Need to ensure we don’t 
“look at the future” when 
predicting a sequence

• Like in machine translation

• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

• Easy fix: apply the same 
feedforward network to each self-
attention output.

• Mask out the future by artificially 
setting attention weights to 0!

20
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• Self-attention:

• the basis of the method.

• Position representations:

• Specify the sequence order, since self-attention 
is an unordered function of its inputs.

• Nonlinearities:

• At the output of the self-attention block

• Frequently implemented as a simple feed-
forward network.

• Masking:

• In order to parallelize operations while not 
looking at the future.

• Keeps information about the future from 
“leaking” to the past.

Necessities for a self-attention building block:

21
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Summary of Attention instead of Recurrence

▶ Attention is all you need
▶ Plus a represention of sequence order, with absolute (or

relative) positions
▶ Plus layers of nonlinearity, for a fixed number of layers
▶ Plus causal masking, to similate running multiple models

on the same computation graph
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The Transformer Decoder

23

• A Transformer decoder is how 
we’ll build systems like 
language models.

• It’s a lot like our minimal self-
attention architecture, but 
with a few more components.

• The embeddings and position 
embeddings are identical.

• We’ll next replace our self-
attention with multi-head self-
attention.

Transformer Decoder
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Recall the Self-Attention Hypothetical Example

24
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Hypothetical Example of Multi-Head Attention

25
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Sequence-Stacked form of Attention

• Let’s look at how key-query-value attention is computed, in matrices.

• Let 𝑋 = 𝑥1; … ; 𝑥𝑛 ∈ ℝ𝑛×𝑑 be the concatenation of input vectors.

• First, note that 𝑋𝐾 ∈ ℝ𝑛×𝑑, 𝑋𝑄 ∈ ℝ𝑛×𝑑, 𝑋𝑉 ∈ ℝ𝑛×𝑑.

• The output is defined as output = softmax 𝑋𝑄 𝑋𝐾 ⊤ 𝑋𝑉 ∈∈ ℝ𝑛×𝑑.

= 𝑋𝑄𝐾⊤ 𝑋⊤

∈ ℝ𝑛×𝑛

All pairs of 
attention scores!

output ∈ ℝ𝑛×𝑑

=

𝐾⊤ 𝑋⊤

𝑋𝑄

First, take the query-key dot 
products in one matrix 
multiplication: 𝑋𝑄 𝑋𝐾 ⊤

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

𝑋𝑄𝐾⊤ 𝑋⊤softmax 𝑋𝑉

26
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Multi-headed attention

• What if we want to look in multiple places in the sentence at once?

• For word 𝑖, self-attention “looks” where 𝑥𝑖
⊤𝑄⊤𝐾𝑥𝑗 is high, but maybe we want 

to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V matrices

• Let, 𝑄ℓ, 𝐾ℓ, 𝑉ℓ ∈ ℝ𝑑×
𝑑

ℎ, where ℎ is the number of attention heads, and ℓ ranges 
from 1 to ℎ.

• Each attention head performs attention independently:

• outputℓ = softmax 𝑋𝑄ℓ𝐾ℓ
⊤𝑋⊤ ∗ 𝑋𝑉ℓ, where  outputℓ ∈ ℝ

𝑑/ℎ

• Then the outputs of all the heads are combined!

• output = output1; … ; outputℎ 𝑌, where 𝑌 ∈ ℝ𝑑×𝑑

• Each head gets to “look” at different things, and construct value vectors 
differently.

27
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Multi-head self-attention is computationally efficient

• Even though we compute ℎ many attention heads, it’s not really more costly.

• We compute 𝑋𝑄 ∈ ℝ𝑛×𝑑, and then reshape to ℝ𝑛×ℎ×𝑑/ℎ. (Likewise for 𝑋𝐾, 𝑋𝑉.)  

• Then we transpose to ℝℎ×𝑛×𝑑/ℎ; now the head axis is like a batch axis.

• Almost everything else is identical, and the matrices are the same sizes.

28

𝑋𝑄

First, take the query-key dot 
products in one matrix 
multiplication: 𝑋𝑄 𝑋𝐾 ⊤

𝐾⊤ 𝑋⊤

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

softmax 𝑋𝑉𝑋𝑄𝐾⊤ 𝑋⊤ 𝑋𝑉

output ∈ ℝ𝑛×𝑑

=
𝑃

=

mix

∈ ℝ3×𝑛×𝑛

3 sets of all pairs of 
attention scores!𝑋𝑄𝐾⊤ 𝑋⊤=
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Scaled Dot Product [Vaswani et al., 2017]

• “Scaled Dot Product” attention aids in training.

• When dimensionality 𝑑 becomes large, dot products between vectors tend to 
become large.

• Because of this, inputs to the softmax function can be large, making the 
gradients small.

• Instead of the self-attention function we’ve seen:

outputℓ = softmax 𝑋𝑄ℓ𝐾ℓ
⊤𝑋⊤ ∗ 𝑋𝑉ℓ

• We divide the attention scores by 𝑑/ℎ, to stop the scores from becoming large 

just as a function of 𝑑/ℎ (The dimensionality divided by the number of heads.)

outputℓ = softmax
𝑋𝑄ℓ𝐾ℓ

⊤𝑋⊤

𝑑/ℎ
∗ 𝑋𝑉ℓ

29
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The Transformer Decoder

30

• Now that we’ve replaced self-
attention with multi-head self-
attention, we’ll go through two 
optimization tricks that end up 
being :

• Residual Connections

• Layer Normalization

• In most Transformer diagrams, 
these are often written 
together as “Add & Norm”

Transformer Decoder
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The Transformer Encoder: Residual connections [He et al., 2016]

• Residual connections are a trick to help models train better.

• Instead of 𝑋(𝑖) = Layer(𝑋 𝑖−1 ) (where 𝑖 represents the layer)

• We let 𝑋(𝑖) = 𝑋(𝑖−1) + Layer(𝑋 𝑖−1 ) (so we only have to learn “the residual” 
from the previous layer)

• Gradient is great through the residual
connection; it’s 1!

• Bias towards the identity function!

𝑋(𝑖−1)
Layer 𝑋(𝑖)

𝑋(𝑖−1)
Layer 𝑋(𝑖)+

[no residuals] [residuals]

[Loss landscape visualization,

Li et al., 2018, on a ResNet]31
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The Transformer Encoder: Layer normalization [Ba et al., 2016]

• Layer normalization is a trick to help models train faster.

• Idea: cut down on uninformative variation in hidden vector values by normalizing 
to unit mean and standard deviation within each layer.

• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

• Let 𝑥 ∈ ℝ𝑑 be an individual (word) vector in the model.

• Let 𝜇 = σ𝑗=1
𝑑 𝑥𝑗; this is the mean; 𝜇 ∈ ℝ.

• Let 𝜎 =
1

𝑑
σ𝑗=1
𝑑 𝑥𝑗 − 𝜇

2
; this is the standard deviation; 𝜎 ∈ ℝ.

• Let 𝛾 ∈ ℝ𝑑 and 𝛽 ∈ ℝ𝑑 be learned “gain” and “bias” parameters. (Can omit!)

• Then layer normalization computes:

output =
𝑥 − 𝜇

𝜎 + 𝜖
∗ 𝛾 + 𝛽

Normalize by scalar 
mean and variance

Modulate by learned 
elementwise gain and bias

32
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The Transformer Decoder

33

• The Transformer Decoder is a 
stack of Transformer Decoder 
Blocks.

• Each Block consists of:

• Self-attention

• Add & Norm

• Feed-Forward

• Add & Norm

• That’s it! We’ve gone through 
the Transformer Decoder.

Transformer Decoder
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The Transformer Encoder

34

• The Transformer Decoder 
constrains to unidirectional 
context, as for language 
models.

• What if we want bidirectional 
context, like in a bidirectional 
RNN?

• This is the Transformer 
Encoder. The only difference is 
that we remove the masking
in the self-attention.

Transformer DecoderNo Masking!
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The Transformer Encoder-Decoder

35

• Recall that in machine 
translation, we processed the 
source sentence with a 
bidirectional model and 
generated the target with a 
unidirectional model.

• For this kind of seq2seq 
format, we often use a 
Transformer Encoder-Decoder.

• We use a normal Transformer 
Encoder.

• Our Transformer Decoder is 
modified to perform cross-
attention to the output of the 
Encoder.
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Cross-attention (details)

• We saw that self-attention is when keys, 
queries, and values come from the same 
source.

• In the decoder, we have attention that 
looks more like what we saw last week.

• Let ℎ1, … , ℎ𝑛 be output vectors from the 
Transformer encoder;  𝑥𝑖 ∈ ℝ𝑑

• Let 𝑧1, … , 𝑧𝑛 be input vectors from the 
Transformer decoder, 𝑧𝑖 ∈ ℝ𝑑

• Then keys and values are drawn from the 
encoder (like a memory):

• 𝑘𝑖 = 𝐾ℎ𝑖, 𝑣𝑖 = 𝑉ℎ𝑖.

• And the queries are drawn from the 
decoder, 𝑞𝑖 = 𝑄𝑧𝑖.

36

ℎ1, … , ℎ𝑛

𝑧1, … , 𝑧𝑛
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Great Results with Transformers

[Vaswani et al., 2017]

Not just better Machine 
Translation BLEU scores

Also more efficient to 
train!

First, Machine Translation from the original Transformers paper!

[Test sets: WMT 2014 English-German and English-French]39
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Great Results with Transformers

[Liu et al., 2018]; WikiSum dataset

Transformers all the way down.

Next, document generation! 

The old standard

40
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Great Results with Transformers

[Liu et al., 2018]

Before too long, most Transformers results also included pretraining, a method we’ll 
go over on Thursday.

Transformers’ parallelizability allows for efficient pretraining, and have made them 
the de-facto standard. 

On this popular aggregate 
benchmark, for example:

All top models are 
Transformer (and 
pretraining)-based. 

More results Thursday when we discuss pretraining.
41
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• Quadratic compute in self-attention (today):

• Computing all pairs of interactions means our computation grows 
quadratically with the sequence length!

• For recurrent models, it only grew linearly!

• Position representations:

• Are simple absolute indices the best we can do to represent position?

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

What would we like to fix about the Transformer?

43
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• One of the benefits of self-attention over recurrence was that it’s highly 
parallelizable.

• However, its total number of operations grows as 𝑂 𝑛2𝑑 , where 𝑛 is the 
sequence length, and 𝑑 is the dimensionality.

Quadratic computation as a function of sequence length

44

= 𝑋𝑄𝐾⊤ 𝑋⊤

∈ ℝ𝑛×𝑛

Need to compute all 
pairs of interactions!
𝑂 𝑛2𝑑𝐾⊤ 𝑋⊤

𝑋𝑄

• Think of 𝑑 as around 𝟏, 𝟎𝟎𝟎 (though for large language models it’s much larger!).

• So, for a single (shortish) sentence,  𝑛 ≤ 30; 𝑛2 ≤ 𝟗𝟎𝟎.

• In practice, we set a bound like 𝑛 = 512.

• But what if we’d like 𝒏 ≥ 𝟓𝟎, 𝟎𝟎𝟎? For example, to work on long documents?
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• Considerable recent work has gone into the question, Can we build models like 
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, Linformer [Wang et al., 2020]

Work on improving on quadratic self-attention cost

45

Key idea: map the 
sequence length 
dimension to a lower-
dimensional space for 
values, keys In

fe
re

n
ce

 t
im

e 
(s

)
Sequence length / batch size
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• As Transformers grow larger, a larger and larger percent of compute is outside
the self-attention portion, despit the quadratic cost.

• In practice, almost no large Transformer language models use anything but the 
quadratic cost attention we’ve presented here.

• The cheaper methods tend not to work as well at scale.

• So, is there no point in trying to design cheaper alternatives to self-attention?

• Or would we unlock much better models with much longer contexts (>100k 
tokens?) if we were to do it right?

Do we even need to remove the quadratic cost of attention?

46
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Do Transformer Modifications Transfer?

47

• "Surprisingly, we find that most modifications do not meaningfully improve 
performance."
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Fixing position representations:
Relative position encoding

In language, absolute positions are not very meaningful, but
relative positions are important
▶ Relative positions are properties of pairs of tokens
▶ The attention mechanism processes pairs of tokens
⇒ Input relative position to the attention weight computation

▶ Given relative position embeddings R ∈ Rn×dk , where
Rij is the embedding of length j−i , [Shaw et al 2018]

Eij(Q,K ,R) = Qi(Kj + Rij)
T

A(Q,K ,V ,R) = softmax
(

E(Q,K ,R)√
dk

)
V

with queries Q ∈ Rn×dk , keys K ∈ Rn×dk , values V ∈ Rn×dv

https://arxiv.org/abs/1803.02155


Machine Translation (Shaw et al, 2018)

Model Position 
Representati
on

BLEU 
En-De

BLEU
En-Fr

Transformer Big Absolute 27.9 41.3

Transformer Big Relative 29.2 41.5

Slide from Ashish Vaswani and Anna Huang



Fixing sequence inputs: Graph-to-Graph Transformers

Instead of sequence-to-sequence Transformers, can we have
graph-to-graph Transformers?
Yes! [Mohammadshahi and Henderson 2021, 2020]

▶ One “token” for each node of the graph
▶ Graph edges are properties of pairs of tokens
⇒ Input edge labels to the attention weight computation

▶ Given edge label embeddings R ∈ Rn×dk , where
Rij is the embedding of length j−i ,

Eij(Q,K ,R) = Qi(Kj + Rij)
T

A(Q,K ,V ,R) = softmax
(

E(Q,K ,R)√
dk

)
V

with queries Q ∈ Rn×dk , keys K ∈ Rn×dk , values V ∈ Rn×dv

https://doi.org/10.1162/tacl_a_00358
https://www.aclweb.org/anthology/2020.findings-emnlp.294


Fixing unknown words: subword inputs

There are always new words you have never seen before. And
for some languages words are not the natural way to segment
the input.
▶ input subwords rather than whole words
▶ choose the subword vocabulary based on frequency, so

there are never any unknown subwords



Word structure and subword models

Let’s take a look at the assumptions we’ve made about a language’s vocabulary.

We assume a fixed vocab of tens of thousands of words, built from the training set.

All novel words seen at test time are mapped to a single UNK.

word vocab mapping embedding

hat → pizza (index)

learn → tasty (index)

taaaaasty → UNK (index)

laern → UNK (index)

Transformerify→ UNK (index)

3

Common 
words

Variations

misspellings

novel items
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Word structure and subword models

Finite vocabulary assumptions make even less sense in many languages.

• Many languages exhibit complex morphology, or word structure. 

• The effect is more word types, each occurring fewer times.

4

Example: Swahili verbs can have 
hundreds of conjugations, each 
encoding a wide variety of 
information. (Tense, mood, 
definiteness, negation, information 
about the object, ++)

Here’s a small fraction of the 
conjugations for ambia – to tell.

[Wiktionary]
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The byte-pair encoding algorithm

Subword modeling in NLP encompasses a wide range of methods for reasoning about 
structure below the word level. (Parts of words, characters, bytes.)

• The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens).

• At training and testing time, each word is split into a sequence of known subwords.

Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary.

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.

2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword.

3. Replace instances of the character pair with the new subword; repeat until desired vocab size.

Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained 
models.

5 [Sennrich et al., 2016, Wu et al., 2016]
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Word structure and subword models

Common words end up being a part of the subword vocabulary, while rarer words are split 
into (sometimes intuitive, sometimes not) components.

In the worst case, words are split into as many subwords as they have characters.

word vocab mapping embedding

hat → hat 

learn → learn 

taaaaasty → taa## aaa## sty

laern → la## ern## 

Transformerify→ Transformer## ify

6

Common 
words

Variations

misspellings

novel items
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Summary of Transformers

▶ Transformers are multi-layer attention-based sequence
models

▶ Use bidirectional self-attention: Each token at one layer
uses attention over all tokens at the layer below

▶ Use multiple attention heads
▶ Use bag-of-vector representations, with sequential position

encoded in the input vectors (or relative position in
attention vectors)

▶ Decoder transformers can be used to generate text
▶ Transformers can be generalised to graphs



Outline

Attention instead of Recurrence (review)

Transformer Architecture

Transformer Results

Transformer Variants

Pretrained Transformers (preview)



Overview of Pretraining Models

We saw with word embeddings that the distributions in large
text corpora have a lot of information about the meaning of text.
Can we also exploit this information in contextualised word
representations for transfer to a new task?

▶ BERT:
▶ Transformer trained on predicting masked words
▶ Fine-tuned to perform a new task

▶ GPT (2,3):
▶ Transformer trained as a left-to-right language model
▶ Mined for information implicit in the language model



Outline

1. A brief note on subword modeling

2. Motivating model pretraining from word embeddings

3. Model pretraining three ways

1. Encoders

2. Encoder-Decoders

3. Decoders

4. What do we think pretraining is teaching?

7
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Motivating word meaning and context

Recall the adage we mentioned at the beginning of the course:

“You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

This quote is a summary of distributional semantics, and motivated word2vec. But:

“… the complete meaning of a word is always contextual,

and no study of meaning apart from a complete context

can be taken seriously.” (J. R. Firth 1935)

Consider I record the record: the two instances of record mean different things.

8 [Thanks to Yoav Goldberg on Twitter for pointing out the 1935 Firth quote.]
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Where we were: pretrained word embeddings

Circa 2017:

• Start with pretrained word embeddings (no 
context!)

• Learn how to incorporate context in an LSTM 
or Transformer while training on the task.

Some issues to think about:

• The training data we have for our 
downstream task (like question answering) 
must be sufficient to teach all contextual 
aspects of language.

• Most of the parameters in our network are 
randomly initialized!

9

… the movie was … 

ෝ𝒚

Not pretrained

pretrained
(word embeddings)

[Recall, movie gets the same word embedding, 
no matter what sentence it shows up in]
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Where we’re going: pretraining whole models

In modern NLP:

• All (or almost all) parameters in NLP 
networks are initialized via pretraining.

• Pretraining methods hide parts of the input 
from the model, and train the model to 
reconstruct those parts.

• This has been exceptionally effective at 
building strong: 

• representations of language

• parameter initializations for strong NLP 
models.

• Probability distributions over language that 
we can sample from

10

… the movie was … 

ෝ𝒚

Pretrained jointly

[This model has learned how to represent 
entire sentences through pretraining]
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What can we learn from reconstructing the input?

11

Stanford University is located in __________, California.
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What can we learn from reconstructing the input?

12

I put ___ fork down on the table.
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What can we learn from reconstructing the input?

13

The woman walked across the street,

checking for traffic over ___ shoulder.
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What can we learn from reconstructing the input?

14

I went to the ocean to see the fish, turtles, seals, and _____. 
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What can we learn from reconstructing the input?

15

Overall, the value I got from the two hours watching

it was the sum total of the popcorn and the drink.

The movie was ___.
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What can we learn from reconstructing the input?

16

Iroh went into the kitchen to make some tea.

Standing next to Iroh, Zuko pondered his destiny.

Zuko left the ______. 
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What can we learn from reconstructing the input?

17

I was thinking about the sequence that goes

1, 1, 2, 3, 5, 8, 13, 21, ____ 
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Pretraining through language modeling [Dai and Le, 2015]

Recall the language modeling task:

• Model 𝑝𝜃 𝑤𝑡 𝑤1:𝑡−1), the probability 
distribution over words given their past 
contexts.

• There’s lots of data for this! (In English.)

Pretraining through language modeling:

• Train a neural network to perform language 
modeling on a large amount of text.

• Save the network parameters.

18

Decoder
(Transformer, LSTM, ++ )

Iroh goes to make tasty tea

goes to make tasty tea END
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The Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

19

(Transformer, LSTM, ++ )

Iroh goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language modeling)

Lots of text; learn general things!

Step 2: Finetune (on your task)

Not many labels; adapt to the task!

(Transformer, LSTM, ++ )

☺/

… the movie was … 
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Stochastic gradient descent and pretrain/finetune

Why should pretraining and finetuning help, from a “training neural nets” perspective?

• Consider, provides parameters ෠𝜃 by approximating min
𝜃

ℒpretrain 𝜃 .

• (The pretraining loss.)

• Then, finetuning approximates min
𝜃

ℒfinetune 𝜃 , starting at ෠𝜃.

• (The finetuning loss)

• The pretraining may matter because stochastic gradient descent sticks (relatively) 

close to ෠𝜃 during finetuning.

• So, maybe the finetuning local minima near ෠𝜃 tend to generalize well!

• And/or, maybe the gradients of finetuning loss near ෠𝜃 propagate nicely!

20
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