EE-608: Deep Learning For Natural
Language Processing:
Transformers

James Henderson

sssssssssssssss

Idiap Research Institute

DLNLP, Lecture 4

Outline

Attention instead of Recurrence (review)

Transformer Architecture

Transformer Results

Transformer Variants

Pretrained Transformers (preview)

Overview of Transformers

<ped>
<peds>
<ped>
<ped>
<ped>
<ped>
<S03>

HNoWp
alow
ssaooud
Bunoa
10
uoneusibas
ay
Bunjew
6002
aouls
SME|
mau
passed
aney
sjuswuIanob
uedaWY
jo
Auolew
e

jeyy
wds

sl

u

S

3

<ped>
<ped>
<ped>
<ped>
<ped>
<ped>
<S03>

wroligll W

alow
ssaooud
Buon

10
uoneusibal
|y
Bupjew
6002
ELIE
SME|

mau
passed
aney
sjuawuIanob
uesuawy
j0
Aolew
e

ey}

ds

sy

ul

s!

|

0

> Multiple layers, each outputting one vector per token

> Self-attention between layers (often bidirectional, depicted)

» All positions share the same parameters

Outline

Attention instead of Recurrence (review)

Today: Same goals, different building blocks

* Last week, we learned about sequence-to-sequence problems and

encoder-decoder models.

e Today, we're not trying to motivate entirely new ways of looking at
problems (like Machine Translation)

* Instead, we're trying to find the best building blocks to plug into our
models and enable broad progress.

o

H

2014-2017ish
Recurrence

Slide from John Hewitt

Lots of trial
and error

2021
72??

Issues with recurrent models: Linear interaction distance

* RNNs are unrolled “left-to-right”.
* This encodes linear locality: a useful heuristic!
* Nearby words often affect each other’s meanings

tasty pizza
* Problem: RNNs take O(sequence length) steps for
distant word pairs to interact.

0(sequence length)

Iﬁlﬂ:ﬁ:

The chef who ...

Slide from John Hewitt

Issues with recurrent models: Linear interaction distance

e O(sequence length) steps for distant word pairs to interact means:
* Hard to learn long-distance dependencies (because gradient problems!)

* Linear order of words is “baked in”; we already know linear order isn’t the
right way to think about sentences...

—000 — | 000 — —’I

oL

— 000 — — 000

The chef who ... / was

Info of chef has gone through
O(sequence length) many layers!

Slide from John Hewitt

Issues with recurrent models: Lack of parallelizability

e Forward and backward passes have O(sequence length)
unparallelizable operations

* GPUs can perform a bunch of independent computations at once!

» But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

* Inhibits training on very large datasets!

—000® — —> 000 — —*H

F * t
F ——o00| — —— ooo—»i—»i

hy h,

‘ Numbers indicate min # of steps before a state can be computed

Slide from John Hewitt

If not recurrence, then what? How about attention?

Attention treats each word’s representation as a query to access and
incorporate information from a set of values.

* We saw attention from the decoder to the encoder; today we’ll think about
attention within a single sentence.

Number of unparallelizable operations does not increase with sequence length.
Maximum interaction distance: O(1), since all words interact at every layer!

All words attend
attention l

to all words in
attention previous layer;

most arrows here

embedding are omitted
hy h, h

T

Slide from John Hewitt

Attention as a soft, averaging lookup table

We can think of attention as performing fuzzy lookup in a key-value store.

In a lookup table, we have a table of keys
that map to values. The matches
one of the keys, returning its value.

keys values

a vl
b v2
query
d [¢ v3
output
d v4 % v4
e v5

Slide from John Hewitt

In attention, the

keys values

k1
k2

query
q k3
k4
k5

matches all keys softly,
to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

vl

v2

v3

v4

v5

Weighted

Sum

output

>—

Self-Attention Hypothetical Example

attention
weights
for
I “learned”
i I i

went to Stanford 224n and learned

10

Slide from John Hewitt

Self-Attention: keys, queries, values from the same sequence
Let wy.,, be a sequence of words in vocabulary V, like Zuko made his uncle tea.
For each w;, let x; = Ew;, where E € RVl is an embedding matrix.
1. Transform each word embedding with weight matrices Q, K,V , each in R4*¢
q; = Qx; (queries) k; = Kx; (keys) v; = Vx; (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

Sum

>—

X s
B LCT
1y = L
J J 2 exp(e;;r)
keys values Weighted
3. Compute output for each word as weighted sum of values i v
query k| v
0; :Zaijvi 4 e
- k4 v4
l kS v5
11

Slide from John Hewitt

outp

Barriers and solutions for Self-Attention as a building block

Barriers Solutions

¢ Doesn’t have an inherent
notion of order!

12

Slide from John Hewitt

Fixing the first self-attention problem: sequence order

13

Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

Consider representing each sequence index as a vector

p; ERY, fori € {1,2, ..., n} are position vectors

Don’t worry about what the p; are made of yet!
Easy to incorporate this info into our self-attention block: just add the p; to our inputs!
Recall that x; is the embedding of the word at index i. The positioned embedding is:

~ In deep self-attention

X = X; + | 3 networks, we do this at the
first layer! You could
concatenate them as well,
but people mostly just add...

Slide from John Hewitt

Position representation vectors through sinusoids

Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

sin(i/100002*1/4) ‘:
cos(i/10000%1/4) 5
pi = :
L] d g
sin(i/lOOOOz*%/d)
Cos(i/lOOOOZ*f/d) Index in the sequence
* Pros:

* Periodicity indicates that maybe “absolute position” isn’t as important
* Maybe can extrapolate to longer sequences as periods restart!
* Cons:

* Not learnable; also the extrapolation doesn’t really work!

14 Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encodin

Slide from John Hewitt

Position representation vectors learned from scratch

15

Learned absolute position representations: Let all p; be learnable parameters!
Learn a matrix p € R%*", and let each p; be a column of that matrix!

Pros:

* Flexibility: each position gets to be learned to fit the data
Cons:

* Definitely can’t extrapolate to indices outside 1, ..., n.
Most systems use this!

Sometimes people try more flexible representations of position:

* Relative linear position attention [Shaw et al., 2018
* Dependency syntax-based position [Wang et al., 2019

Slide from John Hewitt

Barriers and solutions for Self-Attention as a building block

Barriers Solutions

* Doesn’t have an inherent * Add position representations to
notion of order! the inputs

* No nonlinearities for deep
learning! It's all just weighted ———
averages

16

Slide from John Hewitt

Adding nonlinearities in self-attention

* Note that there are no elementwise F ! * !
nonlinearities in self-attention;
stacking more self-attention layers FF FF FF FF
just re-averages value vectors ! ! if ! . !
(Why? Look at the notes!) self-attention
* Easy fix: add a feed-forward network FF EF EF EF
to post-process each output vector. 1 t i
self-attention
m; = MLP(output;) B [| [| cee [|
= W, x ReLU(W; output; + b;) + b, wq w, ws Wh
The chef who food

17 ‘ Intuition: the FF network processes the result of attention

Slide from John Hewitt

Barriers and solutions for Self-Attention as a building block

Barriers

¢ Doesn’t have an inherent
notion of order!

* No nonlinearities for deep
learning magic! It’s all just
weighted averages

¢ Need to ensure we don’t
“look at the future” when
predicting a sequence

¢ Like in machine translation

* Or language modeling
18

Slide from John Hewitt

Solutions

* Add position representations to
the inputs

* Easy fix: apply the same
_— feedforward network to each self-
attention output.

Masking the future in self-attention

19

To use self-attention in
decoders, we need to ensure
we can’t peek at the future.

At every timestep, we could
change the set of keys and
queries to include only past
words. (Inefficient!)

To enable parallelization, we
mask out attention to future
words by setting attention

- T, i<
scores to —oo. N kj,]Sl

ei]

Slide from John Hewitt

We can look at these
(not greyed out) words

< |
K A\
\5’«P~ <% c‘\é\ *‘\(\o

[START]

The
For encoding
these words

chef

—

who

—0,j >

Barriers and solutions for Self-Attention as a building block

Barriers

¢ Doesn’t have an inherent
notion of order!

* No nonlinearities for deep
learning magic! It’s all just _—
weighted averages

¢ Need to ensure we don’t
“look at the future” when _—
predicting a sequence

« Like in machine translation
* Or language modeling
20

Slide from John Hewitt

Solutions

* Add position representations to
the inputs

* Easy fix: apply the same
feedforward network to each self-
attention output.

* Mask out the future by artificially
setting attention weights to 0!

Necessities for a self-attention building block:

21

.

Self-attention:

* the basis of the method.
* Position representations:

 Specify the sequence order, since self-attention
is an unordered function of its inputs.

¢ Nonlinearities:

* At the output of the self-attention block

* Frequently implemented as a simple feed-
forward network.

e Masking:

* In order to parallelize operations while not
looking at the future.

* Keeps information about the future from
“leaking” to the past.

Slide from John Hewitt

Repeat for number
of encoder blocks

Probabilities
Softmax
N

Linear
~

Feed-Forward

Masked Self-
Attention

Block

Add Position
Embeddings
»

Embeddings
Inputs

Summary of Attention instead of Recurrence

> Attention is all you need

» Plus a represention of sequence order, with absolute (or
relative) positions

» Plus layers of nonlinearity, for a fixed number of layers

» Plus causal masking, to similate running multiple models
on the same computation graph

Outline

Transformer Architecture

The Transformer Decoder

23

* A Transformer decoder is how
we’ll build systems like
language models.

¢ It's a lot like our minimal self-
attention architecture, but
with a few more components.

¢ The embeddings and position
embeddings are identical.

* We'll next replace our self-
attention with multi-head self-
attention.

Slide from John Hewitt

Masked Multi-
Head Attention

Add Position
Embeddings

Embeddings

Transformer Decoder

Recall the Self-Attention Hypothetical Example

attention
weights
for
I “learned”
i I i

went to Stanford 224n and learned

24

Slide from John Hewitt

Hypothetical Example of Multi-Head Attention

Attention head 1
attends to entities

q
viviv v v v v v
k k k k k k k k
I went to Stanford cs 224n and learned
I went to Stanford

25

Slide from John Hewitt

Attention head 2 attends to
syntactically relevant words

q
viiv v ¥V NV ¥
k k k k k Kk Kk k

I went to Stanford Ccs 224n and learned

CS 224n and learned

Sequence-Stacked form of Attention

26

Let’s look at how key-query-value attention is computed, in matrices.

o Let X = [xy; ...; %,] € R™ be the concatenation of input vectors.
« First, note that XK € R™*%, XQ € R™¢, XV € R"*¢,

* The output is defined as output = softmax(XQ(XK)T)XV €€ R™*4,

First, take the query-key dot

All pairs of
products in one matrix X0 = xQKTXT attention scores!
multiplication: XQ(XK)T KT xT J—

Next, softmax, and

compute the weighted softmax| xokTxT | xv =

average with another xd
matrix multiplication. output € R

Slide from John Hewitt

Multi-headed attention

* What if we want to look in multiple places in the sentence at once?
* For word i, self-attention “looks” where xiTQTKxj is high, but maybe we want
to focus on different j for different reasons?
¢ We'll define multiple attention “heads” through multiple Q,K,V matrices

d
° Let,Qp Ky, Vp €]Rdxﬁ, where h is the number of attention heads, and £ ranges
from 1 to h.

* Each attention head performs attention independently:
* output, = softmax(XQ,K; XT) * XV,, where output, € R¥/"
e Then the outputs of all the heads are combined!

« output = [outputy; ...; output,]Y, where Y € R4x4

¢ Each head gets to “look” at different things, and construct value vectors
differently.

27

Slide from John Hewitt

Multi-head self-attention is computationally efficient

28

Even though we compute h many attention heads, it’s not really more costly.
* We compute XQ € R™4, and then reshape to R™*"*4/h_(Likewise for XK, XV.)
* Then we transpose to R™"X4/h: now the head axis is like a batch axis.

* Almost everything else is identical, and the matrices are the same sizes.

First, take the query-key dot

3 sets of all pairs of
products in one matrix X0 = XQKTXT attention scores!
o lication: T
multiplication: XQ (XK) KT xT R
Next, softmax, and
compute the weighted softmax| XxQkTXT | xv = =
average with another p x
matrix multiplication. output € R

mix
Slide from John Hewitt

Scaled Dot Product [Vaswani et al., 2017]

29

“Scaled Dot Product” attention aids in training.

When dimensionality d becomes large, dot products between vectors tend to
become large.

» Because of this, inputs to the softmax function can be large, making the
gradients small.
Instead of the self-attention function we’ve seen:
output, = softmax(XQ,K; XT) = XV,
We divide the attention scores by /d/h, to stop the scores from becoming large
just as a function of d/h (The dimensionality divided by the number of heads.)

_ XQgK}XT>
output, = softmax (7\/11_”1 * XV,

Slide from John Hewitt

The Transformer Decoder

* Now that we’ve replaced self-
attention with multi-head self-
attention, we’ll go through two
optimization tricks that end up
being :

* Residual Connections
* Layer Normalization

* In most Transformer diagrams,
these are often written
together as “Add & Norm”

30

Slide from John Hewitt

Add & Norm

Add & Norm

Masked Multi-
Head Attention

Add Position
Embeddings

Embeddings

Transformer Decoder

The Transformer Encoder: Residual connections [He et al., 2016]

* Residual connections are a trick to help models train better.

« Instead of X® = Layer(X 1) (where i represents the layer)

x®

XD — | ayer

« We let X® = X1 4 Layer(X¢~D) (so we only have to learn “the residual”
from the previous layer)

* Gradient is great through the residual
connection; it’s 1!

* Bias towards the identity function! [no residuals] [residuals]

[Loss landscape visualization,

31 Lietal., 2018, on a ResNet]

Slide from John Hewitt

The Transformer Encoder: Layer normalization [Ba et al., 2016]

32

* Layer normalization is a trick to help models train faster.

¢ ldea: cut down on uninformative variation in hidden vector values by normalizing
to unit mean and standard deviation within each layer.

* LayerNorm'’s success may be due to its normalizing gradients [Xu et al., 2019]
« Letx € R? be an individual (word) vector in the model.

o letu= Z?zlxj; this is the mean; u € R.

’ 2
e leto = % ?zl(xj — ,u) ; this is the standard deviation; o € R.

+ Lety € R and 8 € R% be learned “gain” and “bias” parameters. (Can omit!)
¢ Then layer normalization computes:

X —p
output = *y+p

og+e€
Normalize by scalar /\/_ \ Modulate by learned

mean and variance elementwise gain and bias

Slide from John Hewitt

Probabilities

The Transformer Decoder

Softmax
. N
¢ The Transformer Decoder is a LfreaTr
stack of Transformer Decoder N
Blocks. Add & Norm
N

* Each Block consists of: Feed-Forward

 Self-attention

* Add & Norm I Moo

. N
Feed-Forward e i

« Add & Norm Head Attention

Repeat for number
of encoder blocks

¢ That’s it! We've gone through

Block
the Transformer Decoder.

Add Position
Embeddings
/]\
Embeddings

Decoder Inputs
33

Slide from John Hewitt

Probabilities

The Transformer Encoder

Softmax
¢ The Transformer Decoder Li,:zm
constrains to unidirectional N
context, as for language Add & Norm
models. u -
29 Feed-Forward
* What if we want bidirectional £3
context, like in a bidirectional § g
RNN? f -§ Add %Norm
+ This is the Transformer %E rluttl";;::;‘:]d
Encoder. The only difference is & °

that we remove the masking
in the self-attention.

Block

Add Position
. Embeddings
No Masking! T

Embeddings

Decoder Inputs
34

Slide from John Hewitt

The Transformer Encoder-Decoder

35

¢ Recall that in machine
translation, we processed the
source sentence with a
bidirectional model and
generated the target with a
unidirectional model.

¢ For this kind of seq2seq
format, we often use a

Transformer Encoder-Decoder.

¢ We use a normal Transformer
Encoder.

e Our Transformer Decoder is
modified to perform cross-
attention to the output of the
Encoder.

Slide from John Hewitt

Add & Norm
N

Feed-Forward

Add & Norm
AN
Multi-Head
Attention
Block

Add Position
Embeddings
/r

Embeddings

Encoder Inputs

Probabilities

Softmax
~
Linear
N

Add & Norm
A~

Feed-Forward

Add & Norm

Multi-Head
Attention

Add & Norm

N
Masked Multi-
Head Attention

Block

Add Position
Embeddings
/P

Embeddings

Decoder Inputs

Cross-attention (details)

* We saw that self-attention is when keys,
queries, and values come from the same
source.

¢ Inthe decoder, we have attention that hl' e hn
looks more like what we saw last week.

Add & Norm
e Let hq, ..., h, be output vectors from the Add & Norm Multi/-hH.ead
Transformer encoder; x; € R? RG] — Z ;
* Lletzy, ..., z, be input vectors from the e R6. Ne) ey
Transformer decoder, z; € R? R e D
ttenton Head Attention

* Then keys and values are drawn from the

encoder (like a memory): el Block
* ki =Kh;, v; =Vh,. Add Position Gt Resilen
. Embeddings EDECEiigs
* And the queries are drawn from the T . b'Td‘d'
7 mbeddings
decoder, q; = Qz;. Embeddings
36 Encoder Inputs Decoder Inputs

Slide from John Hewitt

Outline

Transformer Results

Great Results with Transformers

First, Machine Translation from the original Transformers paper!

Model BLEU Training Cost (FLOPs)
ode EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 2375

Deep-Att + PosUnk [39] 39.2 1.0-10%°
GNMT + RL [38] 246 3992 2.3-101 1.4-10%
ConvS2S [9] 25.16 40.46 9.6-10"® 1.5-102°
MOoE [32] 2603 40.56 2.0-10% 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%°
GNMT + RL Ensemble [38] 2630 41.16 1.8-1020 1.1-10%!
ConvS2S Ensemble [9] 2636 41.29 7.7-10" 1.2-10*

39 [Test sets: WMT 2014 English-German and English-French]

Slide from John Hewitt

[Vaswani et al., 2017]

Great Results with Transformers

Next, document generation!

Model Test perplexity ROUGE-L
seq2seq-attention, L = 500 5.04952 12.7
Transformer-ED, L = 500 2.46645 342
Transformer-D, L = 4000 2.22216 33.6
Transformer-DMCA, no MoE-layer, L = 11000 2.05159 36.2
Transformer-DMCA, MoE-128, L = 11000 1.92871 379
Transformer-DMCA, MoE-256, L = 7500 1.90325 38.8

/

The old standard Transformers all the way down.

20 [Liu et al., 2018]; WikiSum dataset

Slide from John Hewitt

Great Results with Transformers

Before too long, most Transformers results also included pretraining, a method we’ll

go over on Thursday.

Transformers’ parallelizability allows for efficient pretraining, and have made them

the de-facto standard.

On this popular aggregate

benchmark, for example:

*IGLUE

All top models are
Transformer (and
pretraining)-based.

More results Thursday when we discuss pretraining.

41

Slide from John Hewitt

URL Score

Rank Name Model
1 DeBERTa Team - Microsoft DeBERTa / TuringNLRv4 g 908
2 HFLIFLYTEK MacALBERT + DKM 907
3 Alibaba DAMO NLP StructBERT + TAPT g 906
4 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 906
5 ERNIE Team - Baidu ERNIE g 90.4
6 T5Team - Google T5 g 903

[Liu et al., 2018]

Outline

Transformer Variants

What would we like to fix about the Transformer?

* Quadratic compute in self-attention (today):

* Computing all pairs of interactions means our computation grows
quadratically with the sequence length!

* For recurrent models, it only grew linearly!
* Position representations:
* Are simple absolute indices the best we can do to represent position?
* Relative linear position attention [Shaw et al., 2018
* Dependency syntax-based position [Wang et al., 2019

43

Slide from John Hewitt

Quadratic computation as a function of sequence length

One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

However, its total number of operations grows as 0(n?d), where n is the
sequence length, and d is the dimensionality.

Need to compute all
XQ = XQKT X7 pairs of interactions!
2
KTxT € R 0(n*d)

* Think of d as around 1,000 (though for large language models it's much larger!).
« So, for a single (shortish) sentence, n < 30; n? < 900.
* In practice, we set a bound like n = 512.

* But what if we’d like n > 50, 000? For example, to work on long documents?

44

Slide from John Hewitt

Work on improving on quadratic self-attention cost

* Considerable recent work has gone into the question, Can we build models like
Transformers without paying the 0(T?) all-pairs self-attention cost?

¢ For example, Linformer [Wang et al., 2020

120 —— Linformer, k=2048
—e— Linformer, k=1024
—&— Linformer, k=512
=== Linformer, k=256
—-= Linformer, k=128
Transformer

Key idea: map the
sequence length
dimension to a lower-
dimensional space for
values, keys

Inference time (s)
8
'

1 _ 1 1 1 1
512/128 1024/64 2048/32 4096/16 8192/ 16384/4 32768/2 65536/1
Sequence length / batch size

45

Slide from John Hewitt

Do we even need to remove the quadratic cost of attention?

46

* As Transformers grow larger, a larger and larger percent of compute is outside

the self-attention portion, despit the quadratic cost.

* In practice, almost no large Transformer language models use anything but the

quadratic cost attention we’ve presented here.
* The cheaper methods tend not to work as well at scale.

¢ So, is there no point in trying to design cheaper alternatives to self-attention?
* Or would we unlock much better models with much longer contexts (>100k

tokens?) if we were to do it right?

Slide from John Hewitt

Do Transformer Modifications Transfer?

» "Surprisingly, we find that most modifications do not meaningfully improve
performance."

Do Transformer Modifications Transfer Across Implementations
and Applications?

Sharan Narang® Hyung Won Chung Yi Tay William Fedus
Thibault Fevry! ~ Michael Matena! Karishma Malkan! ~ Noah Fiedel

Noam Shazeer Zhenzhong Lan' Yangi Zhou Wei Li

Nan Ding Jake Marcus Adam Roberts Colin Raffelt

47

Slide from John Hewitt

Fixing position representations:
Relative position encoding
In language, absolute positions are not very meaningful, but
relative positions are important
> Relative positions are properties of pairs of tokens
» The attention mechanism processes pairs of tokens
= Input relative position to the attention weight computation

» Given relative position embeddings R € R™ %, where
Rj; is the embedding of length j—i, [Shaw et al 2018]

Vi

with queries Q € R™ % keys K € R™ % values V € R"*%

A(Q,K, V,R) = softmax (E(Q’K’R)> 4

https://arxiv.org/abs/1803.02155

Machine Translation shaweta, 2018

Model Position
Representati
on

Transformer Big Absolute

Transformer Big Relative

Slide from Ashish Vaswani and Anna Huang

BLEU
En-De

27.9

29.2

BLEU
En-Fr

41.3

41.5

Fixing sequence inputs: Graph-to-Graph Transformers

Instead of sequence-to-sequence Transformers, can we have
graph-to-graph Transformers?
Yes! [Mohammadshahi and Henderson 2021, 2020]

» One “token” for each node of the graph

» Graph edges are properties of pairs of tokens

= Input edge labels to the attention weight computation

> Given edge label embeddings R € R"<%, where
Rj; is the embedding of length j—/,

Ej(Q.K,R) = Qi(K; + Ry)"

E(Q.K, R))
A(Q,K,V,R) =softmax | ——————= | V
() < a

with queries Q € R"<%, keys K € R"*% values V € R™%

https://doi.org/10.1162/tacl_a_00358
https://www.aclweb.org/anthology/2020.findings-emnlp.294

Fixing unknown words: subword inputs

There are always new words you have never seen before. And
for some languages words are not the natural way to segment
the input.

» input subwords rather than whole words

» choose the subword vocabulary based on frequency, so
there are never any unknown subwords

Word structure and subword models

Let’s take a look at the assumptions we’ve made about a language’s vocabulary.

We assume a fixed vocab of tens of thousands of words, built from the training set.

All novel words seen at test time are mapped to a single UNK.

word vocab mapping embedding
Common { hat >
words learn > tasty (index)
Variations { taaaaasty > UNK (index)
9
9

misspellings laern UNK (index)
novel items Transformerify UNK (index)

pizza (index)

Slide from John Hewitt

Word structure and subword models

Finite vocabulary assumptions make even /ess sense in many languages.
* Many languages exhibit complex morphology, or word structure.
* The effect is more word types, each occurring fewer times.

- oiilhe o™ togts
Example: Swabhili verbs can have T i L
WS

hundreds of conjugations, each R T

Polarity 1 v Wi ma y K
so. TV s 4 5] o "0 mla sty

encoding a wide variety of - - T
information. (Tense, mood,
definiteness, negation, information
about the object, ++)

Plural
ambiani

3

H

Here’s a small fraction of the
conjugations for ambia — to tell.

4 [Wiktionary]
Slide from John Hewitt

The byte-pair encoding algorithm

Subword modeling in NLP encompasses a wide range of methods for reasoning about
structure below the word level. (Parts of words, characters, bytes.)

¢ The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens).
¢ At training and testing time, each word is split into a sequence of known subwords.

Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary.

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.

2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword.
3. Replace instances of the character pair with the new subword; repeat until desired vocab size.

Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained
models.

5 [Sennrich et al., 2016, Wu et al., 2016]
Slide from John Hewitt

Word structure and subword models

Common words end up being a part of the subword vocabulary, while rarer words are split
into (sometimes intuitive, sometimes not) components.

In the worst case, words are split into as many subwords as they have characters.

word

Common hat
words learn

9
9
Variations { taaaaasty >
9
9

misspellings laern
novel items Transformerify

Slide from John Hewitt

vocab mapping
hat

learn

taa#t# aaa#t# sty
latt# ernttt
Transformer## ify

embedding

Summary of Transformers

» Transformers are multi-layer attention-based sequence
models

» Use bidirectional self-attention: Each token at one layer
uses attention over all tokens at the layer below

> Use multiple attention heads

» Use bag-of-vector representations, with sequential position
encoded in the input vectors (or relative position in
attention vectors)

» Decoder transformers can be used to generate text
» Transformers can be generalised to graphs

Outline

Pretrained Transformers (preview)

Overview of Pretraining Models

We saw with word embeddings that the distributions in large
text corpora have a lot of information about the meaning of text.
Can we also exploit this information in contextualised word
representations for transfer to a new task?

» BERT:
» Transformer trained on predicting masked words
» Fine-tuned to perform a new task

» GPT (2,3):

» Transformer trained as a left-to-right language model
» Mined for information implicit in the language model

Outline

Motivating model pretraining from word embeddings

wn e

Slide from John Hewitt

Motivating word meaning and context

Recall the adage we mentioned at the beginning of the course:
“You shall know a word by the company it keeps” (J. R. Firth 1957: 11)
This quote is a summary of distributional semantics, and motivated word2vec. But:
“... the complete meaning of a word is always contextual,
and no study of meaning apart from a complete context
can be taken seriously.” (J. R. Firth 1935)

Consider | record the record: the two instances of record mean different things.

8 [Thanks to Yoav Goldberg on Twitter for pointing out the 1935 Firth quote
Slide from John Hewitt

Where we were: pretrained word embeddings

Circa 2017:

e Start with pretrained word embeddings (no y
context!)

A
e Learn how to incorporate context in an LSTM I“’I“‘I“'I‘*I"’I)
Not pretrained

or Transformer while training on the task.

Some issues to think about: i i i i i i } pretrained
(word embeddings)
4

* The training data we have for our
downstream task (like question answering)
must be sufficient to teach all contextual
aspects of language.

... the movie was ...

[Recall, movie gets the same word embedding,
no matter what sentence it shows up in]
* Most of the parameters in our network are

randomly initialized!

Slide from John Hewitt

Where we’re going: pretraining whole models

In modern NLP:

e All (or almost all) parameters in NLP y
networks are initialized via pretraining. e .

e Pretraining methods hide parts of the input ‘-’I"I‘-'I‘*I‘-’I
from the model, and train the model to Pretrained jointly
reconstruct those parts. 1 R

* This has been exceptionally effective at i i i i i i

+
bui|ding strong: ... the movie was ...
* representations of language
* parameter initializations for strong NLP [This model has learned how to represent
models. entire sentences through pretraining]
* Probability distributions over language that
we can sample from
10

Slide from John Hewitt

What can we learn from reconstructing the input?

Stanford University is located in , California.

11

Slide from John Hewitt

What can we learn from reconstructing the input?

| put ___ fork down on the table.

12

Slide from John Hewitt

What can we learn from reconstructing the input?

The woman walked across the street,
checking for traffic over ___ shoulder.

13

Slide from John Hewitt

What can we learn from reconstructing the input?

| went to the ocean to see the fish, turtles, seals, and

14

Slide from John Hewitt

What can we learn from reconstructing the input?

Overall, the value | got from the two hours watching
it was the sum total of the popcorn and the drink.
The movie was ___.

15

Slide from John Hewitt

What can we learn from reconstructing the input?

Iroh went into the kitchen to make some tea.
Standing next to Iroh, Zuko pondered his destiny.
Zuko left the

16

Slide from John Hewitt

What can we learn from reconstructing the input?

| was thinking about the sequence that goes
1,1,2,3,5,8,13, 21,

17

Slide from John Hewitt

Pretraining through language modeling [Dai and Le, 2015]

Recall the language modeling task:

* Model pg(w¢|wy.t—1), the probability
distribution over words given their past goes to make tasty tea END
contexts.

* There’s lots of data for this! (In English.)

Pretraining through language modeling:

¢ Train a neural network to perform language
modeling on a large amount of text. roh goes to make tasty tea

¢ Save the network parameters.

18

Slide from John Hewitt

The Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

Step 1: Pretrain (on language modeling) Step 2: Finetune (on your task)
Lots of text; learn general things! Not many labels; adapt to the task!

goes to make tasty tea END

©/®

Iroh goes to make tasty tea ... the movie was ...

19

Slide from John Hewitt

Stochastic gradient descent and pretrain/finetune

Why should pretraining and finetuning help, from a “training neural nets” perspective?

+ Consider, provides parameters 8 by approximating mgin Lpretrain(8).
* (The pretraining loss.)
* Then, finetuning approximates mgin Leinetune(8), starting at 8.

* (The finetuning loss)

* The pretraining may matter because stochastic gradient descent sticks (relatively)
close to 8 during finetuning.

* So, maybe the finetuning local minima near 8 tend to generalize well!

+ And/or, maybe the gradients of finetuning loss near @ propagate nicely!

20

Slide from John Hewitt

	Attention instead of Recurrence (review)
	Transformer Architecture
	Transformer Results
	Transformer Variants
	Pretrained Transformers (preview)

