
EE-608: Deep Learning For Natural
Language Processing:

Transformers

James Henderson

Idiap Research Institute

DLNLP, Lecture 4

Outline

Attention instead of Recurrence (review)

Transformer Architecture

Transformer Results

Transformer Variants

Pretrained Transformers (preview)

Overview of Transformers

▶ Multiple layers, each outputting one vector per token
▶ Self-attention between layers (often bidirectional, depicted)
▶ All positions share the same parameters

Outline

Attention instead of Recurrence (review)

Transformer Architecture

Transformer Results

Transformer Variants

Pretrained Transformers (preview)

Today: Same goals, different building blocks

• Last week, we learned about sequence-to-sequence problems and
encoder-decoder models.

• Today, we’re not trying to motivate entirely new ways of looking at
problems (like Machine Translation)

• Instead, we’re trying to find the best building blocks to plug into our
models and enable broad progress.

4

2014-2017ish
Recurrence

Lots of trial
and error

2021
??????

Slide from John Hewitt

Issues with recurrent models: Linear interaction distance

• RNNs are unrolled “left-to-right”.

• This encodes linear locality: a useful heuristic!

• Nearby words often affect each other’s meanings

• Problem: RNNs take O(sequence length) steps for
distant word pairs to interact.

5

tasty pizza

The chef waswho …

O(sequence length)

Slide from John Hewitt

Issues with recurrent models: Linear interaction distance

• O(sequence length) steps for distant word pairs to interact means:

• Hard to learn long-distance dependencies (because gradient problems!)

• Linear order of words is “baked in”; we already know linear order isn’t the
right way to think about sentences…

6

The waschef who …

Info of chef has gone through
O(sequence length) many layers!

Slide from John Hewitt

Issues with recurrent models: Lack of parallelizability

• Forward and backward passes have O(sequence length)
unparallelizable operations

• GPUs can perform a bunch of independent computations at once!

• But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

• Inhibits training on very large datasets!

7

h1

0

1 n

hTh2

1

2

2

3

Numbers indicate min # of steps before a state can be computed

Slide from John Hewitt

If not recurrence, then what? How about attention?

• Attention treats each word’s representation as a query to access and
incorporate information from a set of values.

• We saw attention from the decoder to the encoder; today we’ll think about
attention within a single sentence.

• Number of unparallelizable operations does not increase with sequence length.

• Maximum interaction distance: O(1), since all words interact at every layer!

embedding 0 0 0 0 0 0 0 0

h1 h2 hT

2 2 2 2 2 2 2 2
attention

attention
1 1 1 1 1 1 1 1

All words attend
to all words in
previous layer;
most arrows here
are omitted

8

Slide from John Hewitt

Attention as a soft, averaging lookup table

9

We can think of attention as performing fuzzy lookup in a key-value store.

In a lookup table, we have a table of keys
that map to values. The query matches
one of the keys, returning its value.

In attention, the query matches all keys softly,
to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

Slide from John Hewitt

Self-Attention Hypothetical Example

10

Slide from John Hewitt

Self-Attention: keys, queries, values from the same sequence

11

Let 𝒘1:𝑛 be a sequence of words in vocabulary 𝑉, like Zuko made his uncle tea.

For each 𝒘𝑖 , let 𝒙𝑖 = 𝐸𝒘𝒊, where 𝐸 ∈ ℝ𝑑×|𝑉| is an embedding matrix.

1. Transform each word embedding with weight matrices Q, K, V , each in ℝ𝑑×𝑑

2. Compute pairwise similarities between keys and queries; normalize with softmax

𝒆𝑖𝑗 = 𝒒𝒊
⊤𝒌𝒋 𝜶𝑖𝑗 =

exp(𝒆𝑖𝑗)

σ𝑗′ exp(𝒆𝑖𝑗′)

3. Compute output for each word as weighted sum of values

𝒒𝑖 = 𝑄𝒙𝒊 (queries) 𝒌𝑖 = 𝐾𝒙𝒊 (keys) 𝒗𝑖 = 𝑉𝒙𝒊 (values)

𝒐𝑖 =෍

𝒋

𝜶𝑖𝑗 𝒗𝑖

Slide from John Hewitt

Barriers
• Doesn’t have an inherent

notion of order!

Barriers and solutions for Self-Attention as a building block

12

Solutions

Slide from John Hewitt

Fixing the first self-attention problem: sequence order

• Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝒑𝑖 ∈ ℝ𝑑, for 𝑖 ∈ {1,2, … , 𝑛} are position vectors

• Don’t worry about what the 𝑝𝑖 are made of yet!

• Easy to incorporate this info into our self-attention block: just add the 𝒑𝑖 to our inputs!

• Recall that 𝒙𝑖 is the embedding of the word at index 𝑖. The positioned embedding is:

෥𝒙𝑖 = 𝒙𝑖 + 𝒑𝑖
In deep self-attention
networks, we do this at the
first layer! You could
concatenate them as well,
but people mostly just add…

13

Slide from John Hewitt

• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

• Pros:

• Periodicity indicates that maybe “absolute position” isn’t as important

• Maybe can extrapolate to longer sequences as periods restart!

• Cons:

• Not learnable; also the extrapolation doesn’t really work!

Position representation vectors through sinusoids

cos(𝑖/100002∗1/𝑑)
𝒑𝑖 =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗
𝑑
2
/𝑑)

cos(𝑖/100002∗
𝑑
2/𝑑)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence
D

im
en

si
o

n

14

Slide from John Hewitt

• Learned absolute position representations: Let all 𝑝𝑖 be learnable parameters!

Learn a matrix 𝒑 ∈ ℝ𝑑×𝑛, and let each 𝒑𝑖 be a column of that matrix!

• Pros:

• Flexibility: each position gets to be learned to fit the data

• Cons:

• Definitely can’t extrapolate to indices outside 1,… , 𝑛.

• Most systems use this!

• Sometimes people try more flexible representations of position:

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

Position representation vectors learned from scratch

15

Slide from John Hewitt

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning! It’s all just weighted
averages

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to

the inputs

16

Slide from John Hewitt

Adding nonlinearities in self-attention

• Note that there are no elementwise
nonlinearities in self-attention;
stacking more self-attention layers
just re-averages value vectors
(Why? Look at the notes!)

• Easy fix: add a feed-forward network
to post-process each output vector.

𝑚𝑖 = 𝑀𝐿𝑃 output𝑖
= 𝑊2 ∗ ReLU 𝑊1 output𝑖 + 𝑏1 + 𝑏2

The

𝑤1 𝑤2

chef

𝑤3

who

𝑤𝑛

food

…
self-attention

Intuition: the FF network processes the result of attention

FF FF FF FF

…
self-attention

FF FF FF FF

17

Slide from John Hewitt

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning magic! It’s all just
weighted averages

• Need to ensure we don’t
“look at the future” when
predicting a sequence

• Like in machine translation

• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to

the inputs

• Easy fix: apply the same
feedforward network to each self-
attention output.

18

Slide from John Hewitt

Masking the future in self-attention

• To use self-attention in
decoders, we need to ensure
we can’t peek at the future.

• At every timestep, we could
change the set of keys and
queries to include only past
words. (Inefficient!)

• To enable parallelization, we
mask out attention to future
words by setting attention
scores to −∞.

The

chef

who

[START]

For encoding
these words

We can look at these
(not greyed out) words

𝑒𝑖𝑗 = ൝
𝑞𝑖
⊤𝑘𝑗 , 𝑗 ≤ 𝑖

−∞, 𝑗 > 𝑖

−∞

−∞−∞

−∞−∞ −∞

19

Slide from John Hewitt

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning magic! It’s all just
weighted averages

• Need to ensure we don’t
“look at the future” when
predicting a sequence

• Like in machine translation

• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to

the inputs

• Easy fix: apply the same
feedforward network to each self-
attention output.

• Mask out the future by artificially
setting attention weights to 0!

20

Slide from John Hewitt

• Self-attention:

• the basis of the method.

• Position representations:

• Specify the sequence order, since self-attention
is an unordered function of its inputs.

• Nonlinearities:

• At the output of the self-attention block

• Frequently implemented as a simple feed-
forward network.

• Masking:

• In order to parallelize operations while not
looking at the future.

• Keeps information about the future from
“leaking” to the past.

Necessities for a self-attention building block:

21

Slide from John Hewitt

Summary of Attention instead of Recurrence

▶ Attention is all you need
▶ Plus a represention of sequence order, with absolute (or

relative) positions
▶ Plus layers of nonlinearity, for a fixed number of layers
▶ Plus causal masking, to similate running multiple models

on the same computation graph

Outline

Attention instead of Recurrence (review)

Transformer Architecture

Transformer Results

Transformer Variants

Pretrained Transformers (preview)

The Transformer Decoder

23

• A Transformer decoder is how
we’ll build systems like
language models.

• It’s a lot like our minimal self-
attention architecture, but
with a few more components.

• The embeddings and position
embeddings are identical.

• We’ll next replace our self-
attention with multi-head self-
attention.

Transformer Decoder

Slide from John Hewitt

Recall the Self-Attention Hypothetical Example

24

Slide from John Hewitt

Hypothetical Example of Multi-Head Attention

25

Slide from John Hewitt

Sequence-Stacked form of Attention

• Let’s look at how key-query-value attention is computed, in matrices.

• Let 𝑋 = 𝑥1; … ; 𝑥𝑛 ∈ ℝ𝑛×𝑑 be the concatenation of input vectors.

• First, note that 𝑋𝐾 ∈ ℝ𝑛×𝑑, 𝑋𝑄 ∈ ℝ𝑛×𝑑, 𝑋𝑉 ∈ ℝ𝑛×𝑑.

• The output is defined as output = softmax 𝑋𝑄 𝑋𝐾 ⊤ 𝑋𝑉 ∈∈ ℝ𝑛×𝑑.

= 𝑋𝑄𝐾⊤ 𝑋⊤

∈ ℝ𝑛×𝑛

All pairs of
attention scores!

output ∈ ℝ𝑛×𝑑

=

𝐾⊤ 𝑋⊤

𝑋𝑄

First, take the query-key dot
products in one matrix
multiplication: 𝑋𝑄 𝑋𝐾 ⊤

Next, softmax, and
compute the weighted
average with another
matrix multiplication.

𝑋𝑄𝐾⊤ 𝑋⊤softmax 𝑋𝑉

26

Slide from John Hewitt

Multi-headed attention

• What if we want to look in multiple places in the sentence at once?

• For word 𝑖, self-attention “looks” where 𝑥𝑖
⊤𝑄⊤𝐾𝑥𝑗 is high, but maybe we want

to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V matrices

• Let, 𝑄ℓ, 𝐾ℓ, 𝑉ℓ ∈ ℝ𝑑×
𝑑

ℎ, where ℎ is the number of attention heads, and ℓ ranges
from 1 to ℎ.

• Each attention head performs attention independently:

• outputℓ = softmax 𝑋𝑄ℓ𝐾ℓ
⊤𝑋⊤ ∗ 𝑋𝑉ℓ, where outputℓ ∈ ℝ

𝑑/ℎ

• Then the outputs of all the heads are combined!

• output = output1; … ; outputℎ 𝑌, where 𝑌 ∈ ℝ𝑑×𝑑

• Each head gets to “look” at different things, and construct value vectors
differently.

27

Slide from John Hewitt

Multi-head self-attention is computationally efficient

• Even though we compute ℎ many attention heads, it’s not really more costly.

• We compute 𝑋𝑄 ∈ ℝ𝑛×𝑑, and then reshape to ℝ𝑛×ℎ×𝑑/ℎ. (Likewise for 𝑋𝐾, 𝑋𝑉.)

• Then we transpose to ℝℎ×𝑛×𝑑/ℎ; now the head axis is like a batch axis.

• Almost everything else is identical, and the matrices are the same sizes.

28

𝑋𝑄

First, take the query-key dot
products in one matrix
multiplication: 𝑋𝑄 𝑋𝐾 ⊤

𝐾⊤ 𝑋⊤

Next, softmax, and
compute the weighted
average with another
matrix multiplication.

softmax 𝑋𝑉𝑋𝑄𝐾⊤ 𝑋⊤ 𝑋𝑉

output ∈ ℝ𝑛×𝑑

=
𝑃

=

mix

∈ ℝ3×𝑛×𝑛

3 sets of all pairs of
attention scores!𝑋𝑄𝐾⊤ 𝑋⊤=

Slide from John Hewitt

Scaled Dot Product [Vaswani et al., 2017]

• “Scaled Dot Product” attention aids in training.

• When dimensionality 𝑑 becomes large, dot products between vectors tend to
become large.

• Because of this, inputs to the softmax function can be large, making the
gradients small.

• Instead of the self-attention function we’ve seen:

outputℓ = softmax 𝑋𝑄ℓ𝐾ℓ
⊤𝑋⊤ ∗ 𝑋𝑉ℓ

• We divide the attention scores by 𝑑/ℎ, to stop the scores from becoming large

just as a function of 𝑑/ℎ (The dimensionality divided by the number of heads.)

outputℓ = softmax
𝑋𝑄ℓ𝐾ℓ

⊤𝑋⊤

𝑑/ℎ
∗ 𝑋𝑉ℓ

29

Slide from John Hewitt

The Transformer Decoder

30

• Now that we’ve replaced self-
attention with multi-head self-
attention, we’ll go through two
optimization tricks that end up
being :

• Residual Connections

• Layer Normalization

• In most Transformer diagrams,
these are often written
together as “Add & Norm”

Transformer Decoder

Slide from John Hewitt

The Transformer Encoder: Residual connections [He et al., 2016]

• Residual connections are a trick to help models train better.

• Instead of 𝑋(𝑖) = Layer(𝑋 𝑖−1) (where 𝑖 represents the layer)

• We let 𝑋(𝑖) = 𝑋(𝑖−1) + Layer(𝑋 𝑖−1) (so we only have to learn “the residual”
from the previous layer)

• Gradient is great through the residual
connection; it’s 1!

• Bias towards the identity function!

𝑋(𝑖−1)
Layer 𝑋(𝑖)

𝑋(𝑖−1)
Layer 𝑋(𝑖)+

[no residuals] [residuals]

[Loss landscape visualization,

Li et al., 2018, on a ResNet]31

Slide from John Hewitt

The Transformer Encoder: Layer normalization [Ba et al., 2016]

• Layer normalization is a trick to help models train faster.

• Idea: cut down on uninformative variation in hidden vector values by normalizing
to unit mean and standard deviation within each layer.

• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

• Let 𝑥 ∈ ℝ𝑑 be an individual (word) vector in the model.

• Let 𝜇 = σ𝑗=1
𝑑 𝑥𝑗; this is the mean; 𝜇 ∈ ℝ.

• Let 𝜎 =
1

𝑑
σ𝑗=1
𝑑 𝑥𝑗 − 𝜇

2
; this is the standard deviation; 𝜎 ∈ ℝ.

• Let 𝛾 ∈ ℝ𝑑 and 𝛽 ∈ ℝ𝑑 be learned “gain” and “bias” parameters. (Can omit!)

• Then layer normalization computes:

output =
𝑥 − 𝜇

𝜎 + 𝜖
∗ 𝛾 + 𝛽

Normalize by scalar
mean and variance

Modulate by learned
elementwise gain and bias

32

Slide from John Hewitt

The Transformer Decoder

33

• The Transformer Decoder is a
stack of Transformer Decoder
Blocks.

• Each Block consists of:

• Self-attention

• Add & Norm

• Feed-Forward

• Add & Norm

• That’s it! We’ve gone through
the Transformer Decoder.

Transformer Decoder

Slide from John Hewitt

The Transformer Encoder

34

• The Transformer Decoder
constrains to unidirectional
context, as for language
models.

• What if we want bidirectional
context, like in a bidirectional
RNN?

• This is the Transformer
Encoder. The only difference is
that we remove the masking
in the self-attention.

Transformer DecoderNo Masking!

Slide from John Hewitt

The Transformer Encoder-Decoder

35

• Recall that in machine
translation, we processed the
source sentence with a
bidirectional model and
generated the target with a
unidirectional model.

• For this kind of seq2seq
format, we often use a
Transformer Encoder-Decoder.

• We use a normal Transformer
Encoder.

• Our Transformer Decoder is
modified to perform cross-
attention to the output of the
Encoder.

Slide from John Hewitt

Cross-attention (details)

• We saw that self-attention is when keys,
queries, and values come from the same
source.

• In the decoder, we have attention that
looks more like what we saw last week.

• Let ℎ1, … , ℎ𝑛 be output vectors from the
Transformer encoder; 𝑥𝑖 ∈ ℝ𝑑

• Let 𝑧1, … , 𝑧𝑛 be input vectors from the
Transformer decoder, 𝑧𝑖 ∈ ℝ𝑑

• Then keys and values are drawn from the
encoder (like a memory):

• 𝑘𝑖 = 𝐾ℎ𝑖, 𝑣𝑖 = 𝑉ℎ𝑖.

• And the queries are drawn from the
decoder, 𝑞𝑖 = 𝑄𝑧𝑖.

36

ℎ1, … , ℎ𝑛

𝑧1, … , 𝑧𝑛

Slide from John Hewitt

Outline

Attention instead of Recurrence (review)

Transformer Architecture

Transformer Results

Transformer Variants

Pretrained Transformers (preview)

Great Results with Transformers

[Vaswani et al., 2017]

Not just better Machine
Translation BLEU scores

Also more efficient to
train!

First, Machine Translation from the original Transformers paper!

[Test sets: WMT 2014 English-German and English-French]39

Slide from John Hewitt

Great Results with Transformers

[Liu et al., 2018]; WikiSum dataset

Transformers all the way down.

Next, document generation!

The old standard

40

Slide from John Hewitt

Great Results with Transformers

[Liu et al., 2018]

Before too long, most Transformers results also included pretraining, a method we’ll
go over on Thursday.

Transformers’ parallelizability allows for efficient pretraining, and have made them
the de-facto standard.

On this popular aggregate
benchmark, for example:

All top models are
Transformer (and
pretraining)-based.

More results Thursday when we discuss pretraining.
41

Slide from John Hewitt

Outline

Attention instead of Recurrence (review)

Transformer Architecture

Transformer Results

Transformer Variants

Pretrained Transformers (preview)

• Quadratic compute in self-attention (today):

• Computing all pairs of interactions means our computation grows
quadratically with the sequence length!

• For recurrent models, it only grew linearly!

• Position representations:

• Are simple absolute indices the best we can do to represent position?

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

What would we like to fix about the Transformer?

43

Slide from John Hewitt

• One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

• However, its total number of operations grows as 𝑂 𝑛2𝑑 , where 𝑛 is the
sequence length, and 𝑑 is the dimensionality.

Quadratic computation as a function of sequence length

44

= 𝑋𝑄𝐾⊤ 𝑋⊤

∈ ℝ𝑛×𝑛

Need to compute all
pairs of interactions!
𝑂 𝑛2𝑑𝐾⊤ 𝑋⊤

𝑋𝑄

• Think of 𝑑 as around 𝟏, 𝟎𝟎𝟎 (though for large language models it’s much larger!).

• So, for a single (shortish) sentence, 𝑛 ≤ 30; 𝑛2 ≤ 𝟗𝟎𝟎.

• In practice, we set a bound like 𝑛 = 512.

• But what if we’d like 𝒏 ≥ 𝟓𝟎, 𝟎𝟎𝟎? For example, to work on long documents?

Slide from John Hewitt

• Considerable recent work has gone into the question, Can we build models like
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, Linformer [Wang et al., 2020]

Work on improving on quadratic self-attention cost

45

Key idea: map the
sequence length
dimension to a lower-
dimensional space for
values, keys In

fe
re

n
ce

 t
im

e
(s

)
Sequence length / batch size

Slide from John Hewitt

• As Transformers grow larger, a larger and larger percent of compute is outside
the self-attention portion, despit the quadratic cost.

• In practice, almost no large Transformer language models use anything but the
quadratic cost attention we’ve presented here.

• The cheaper methods tend not to work as well at scale.

• So, is there no point in trying to design cheaper alternatives to self-attention?

• Or would we unlock much better models with much longer contexts (>100k
tokens?) if we were to do it right?

Do we even need to remove the quadratic cost of attention?

46

Slide from John Hewitt

Do Transformer Modifications Transfer?

47

• "Surprisingly, we find that most modifications do not meaningfully improve
performance."

Slide from John Hewitt

Fixing position representations:
Relative position encoding

In language, absolute positions are not very meaningful, but
relative positions are important
▶ Relative positions are properties of pairs of tokens
▶ The attention mechanism processes pairs of tokens
⇒ Input relative position to the attention weight computation

▶ Given relative position embeddings R ∈ Rn×dk , where
Rij is the embedding of length j−i , [Shaw et al 2018]

Eij(Q,K ,R) = Qi(Kj + Rij)
T

A(Q,K ,V ,R) = softmax
(

E(Q,K ,R)√
dk

)
V

with queries Q ∈ Rn×dk , keys K ∈ Rn×dk , values V ∈ Rn×dv

https://arxiv.org/abs/1803.02155

Machine Translation (Shaw et al, 2018)

Model Position
Representati
on

BLEU
En-De

BLEU
En-Fr

Transformer Big Absolute 27.9 41.3

Transformer Big Relative 29.2 41.5

Slide from Ashish Vaswani and Anna Huang

Fixing sequence inputs: Graph-to-Graph Transformers

Instead of sequence-to-sequence Transformers, can we have
graph-to-graph Transformers?
Yes! [Mohammadshahi and Henderson 2021, 2020]

▶ One “token” for each node of the graph
▶ Graph edges are properties of pairs of tokens
⇒ Input edge labels to the attention weight computation

▶ Given edge label embeddings R ∈ Rn×dk , where
Rij is the embedding of length j−i ,

Eij(Q,K ,R) = Qi(Kj + Rij)
T

A(Q,K ,V ,R) = softmax
(

E(Q,K ,R)√
dk

)
V

with queries Q ∈ Rn×dk , keys K ∈ Rn×dk , values V ∈ Rn×dv

https://doi.org/10.1162/tacl_a_00358
https://www.aclweb.org/anthology/2020.findings-emnlp.294

Fixing unknown words: subword inputs

There are always new words you have never seen before. And
for some languages words are not the natural way to segment
the input.
▶ input subwords rather than whole words
▶ choose the subword vocabulary based on frequency, so

there are never any unknown subwords

Word structure and subword models

Let’s take a look at the assumptions we’ve made about a language’s vocabulary.

We assume a fixed vocab of tens of thousands of words, built from the training set.

All novel words seen at test time are mapped to a single UNK.

word vocab mapping embedding

hat → pizza (index)

learn → tasty (index)

taaaaasty → UNK (index)

laern → UNK (index)

Transformerify→ UNK (index)

3

Common
words

Variations

misspellings

novel items

Slide from John Hewitt

Word structure and subword models

Finite vocabulary assumptions make even less sense in many languages.

• Many languages exhibit complex morphology, or word structure.

• The effect is more word types, each occurring fewer times.

4

Example: Swahili verbs can have
hundreds of conjugations, each
encoding a wide variety of
information. (Tense, mood,
definiteness, negation, information
about the object, ++)

Here’s a small fraction of the
conjugations for ambia – to tell.

[Wiktionary]

Slide from John Hewitt

The byte-pair encoding algorithm

Subword modeling in NLP encompasses a wide range of methods for reasoning about
structure below the word level. (Parts of words, characters, bytes.)

• The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens).

• At training and testing time, each word is split into a sequence of known subwords.

Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary.

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.

2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword.

3. Replace instances of the character pair with the new subword; repeat until desired vocab size.

Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained
models.

5 [Sennrich et al., 2016, Wu et al., 2016]

Slide from John Hewitt

Word structure and subword models

Common words end up being a part of the subword vocabulary, while rarer words are split
into (sometimes intuitive, sometimes not) components.

In the worst case, words are split into as many subwords as they have characters.

word vocab mapping embedding

hat → hat

learn → learn

taaaaasty → taa## aaa## sty

laern → la## ern##

Transformerify→ Transformer## ify

6

Common
words

Variations

misspellings

novel items

Slide from John Hewitt

Summary of Transformers

▶ Transformers are multi-layer attention-based sequence
models

▶ Use bidirectional self-attention: Each token at one layer
uses attention over all tokens at the layer below

▶ Use multiple attention heads
▶ Use bag-of-vector representations, with sequential position

encoded in the input vectors (or relative position in
attention vectors)

▶ Decoder transformers can be used to generate text
▶ Transformers can be generalised to graphs

Outline

Attention instead of Recurrence (review)

Transformer Architecture

Transformer Results

Transformer Variants

Pretrained Transformers (preview)

Overview of Pretraining Models

We saw with word embeddings that the distributions in large
text corpora have a lot of information about the meaning of text.
Can we also exploit this information in contextualised word
representations for transfer to a new task?

▶ BERT:
▶ Transformer trained on predicting masked words
▶ Fine-tuned to perform a new task

▶ GPT (2,3):
▶ Transformer trained as a left-to-right language model
▶ Mined for information implicit in the language model

Outline

1. A brief note on subword modeling

2. Motivating model pretraining from word embeddings

3. Model pretraining three ways

1. Encoders

2. Encoder-Decoders

3. Decoders

4. What do we think pretraining is teaching?

7

Slide from John Hewitt

Motivating word meaning and context

Recall the adage we mentioned at the beginning of the course:

“You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

This quote is a summary of distributional semantics, and motivated word2vec. But:

“… the complete meaning of a word is always contextual,

and no study of meaning apart from a complete context

can be taken seriously.” (J. R. Firth 1935)

Consider I record the record: the two instances of record mean different things.

8 [Thanks to Yoav Goldberg on Twitter for pointing out the 1935 Firth quote.]

Slide from John Hewitt

Where we were: pretrained word embeddings

Circa 2017:

• Start with pretrained word embeddings (no
context!)

• Learn how to incorporate context in an LSTM
or Transformer while training on the task.

Some issues to think about:

• The training data we have for our
downstream task (like question answering)
must be sufficient to teach all contextual
aspects of language.

• Most of the parameters in our network are
randomly initialized!

9

… the movie was …

ෝ𝒚

Not pretrained

pretrained
(word embeddings)

[Recall, movie gets the same word embedding,
no matter what sentence it shows up in]

Slide from John Hewitt

Where we’re going: pretraining whole models

In modern NLP:

• All (or almost all) parameters in NLP
networks are initialized via pretraining.

• Pretraining methods hide parts of the input
from the model, and train the model to
reconstruct those parts.

• This has been exceptionally effective at
building strong:

• representations of language

• parameter initializations for strong NLP
models.

• Probability distributions over language that
we can sample from

10

… the movie was …

ෝ𝒚

Pretrained jointly

[This model has learned how to represent
entire sentences through pretraining]

Slide from John Hewitt

What can we learn from reconstructing the input?

11

Stanford University is located in __________, California.

Slide from John Hewitt

What can we learn from reconstructing the input?

12

I put ___ fork down on the table.

Slide from John Hewitt

What can we learn from reconstructing the input?

13

The woman walked across the street,

checking for traffic over ___ shoulder.

Slide from John Hewitt

What can we learn from reconstructing the input?

14

I went to the ocean to see the fish, turtles, seals, and _____.

Slide from John Hewitt

What can we learn from reconstructing the input?

15

Overall, the value I got from the two hours watching

it was the sum total of the popcorn and the drink.

The movie was ___.

Slide from John Hewitt

What can we learn from reconstructing the input?

16

Iroh went into the kitchen to make some tea.

Standing next to Iroh, Zuko pondered his destiny.

Zuko left the ______.

Slide from John Hewitt

What can we learn from reconstructing the input?

17

I was thinking about the sequence that goes

1, 1, 2, 3, 5, 8, 13, 21, ____

Slide from John Hewitt

Pretraining through language modeling [Dai and Le, 2015]

Recall the language modeling task:

• Model 𝑝𝜃 𝑤𝑡 𝑤1:𝑡−1), the probability
distribution over words given their past
contexts.

• There’s lots of data for this! (In English.)

Pretraining through language modeling:

• Train a neural network to perform language
modeling on a large amount of text.

• Save the network parameters.

18

Decoder
(Transformer, LSTM, ++)

Iroh goes to make tasty tea

goes to make tasty tea END

Slide from John Hewitt

The Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

19

(Transformer, LSTM, ++)

Iroh goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language modeling)

Lots of text; learn general things!

Step 2: Finetune (on your task)

Not many labels; adapt to the task!

(Transformer, LSTM, ++)

☺/

… the movie was …

Slide from John Hewitt

Stochastic gradient descent and pretrain/finetune

Why should pretraining and finetuning help, from a “training neural nets” perspective?

• Consider, provides parameters ෠𝜃 by approximating min
𝜃

ℒpretrain 𝜃 .

• (The pretraining loss.)

• Then, finetuning approximates min
𝜃

ℒfinetune 𝜃 , starting at ෠𝜃.

• (The finetuning loss)

• The pretraining may matter because stochastic gradient descent sticks (relatively)

close to ෠𝜃 during finetuning.

• So, maybe the finetuning local minima near ෠𝜃 tend to generalize well!

• And/or, maybe the gradients of finetuning loss near ෠𝜃 propagate nicely!

20

Slide from John Hewitt

	Attention instead of Recurrence (review)
	Transformer Architecture
	Transformer Results
	Transformer Variants
	Pretrained Transformers (preview)

