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Machine Translation
Machine Translation (MT) is the task of translating a sentence x from one language (the

source language) to a sentence y in another language (the target language).

X: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

— Rousseau
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1990s-2010s: Statistical Machine Translation

¢ Core idea: Learn a probabilistic model from data
* Suppose we’re translating French - English.
* We want to find best English sentence y, given French sentence x

argmax, P(y|r)
* Use Bayes Rule to break this down into two components to be learned
separately:

= argmaxyP(w\y)P(y)
H_/H_/

~

Translation Model Language Model

Models how words and phrases Models how to write
should be translated (fidelity). good English (fluency).

Learned from parallel data. Learned from monolingual data.

Slide from Christopher Manning



What happens in translation isn’t trivial to model!

| Morgenl | fliegel i | nach Kanadal Izur Konferenz I

| Tomorrowl Iwill fly ” to the conferencel Iin Canada |

15196004 UL F ANES R FEM, HMER/LE SO
B RFE, RXREBEMINRE=222,

In 1519, six hundred Spaniards landed in Mexico to conquer the Aztec Empire with a
population of a few million. They lost two thirds of their soldiers in the first clash.

translate.google.com (2009): 1519 600 Spaniards landed in Mexico, millions of people to
conquer the Aztec empire, the first two-thirds of soldiers against their loss.
translate.google.com (2013): 1519 600 Spaniards landed in Mexico to conquer the Aztec
empire, hundreds of millions of people, the initial confrontation loss of soldiers two-thirds.
translate.google.com (2015): 1519 600 Spaniards landed in Mexico, millions of people to
conquer the Aztec empire, the first two-thirds of the loss of soldiers they clash.
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1990s-2010s: Statistical Machine Translation

* SMT was a huge research field
* The best systems were extremely complex
* Hundreds of important details
* Systems had many separately-designed subcomponents
* Lots of feature engineering
* Need to design features to capture particular language phenomena
* Required compiling and maintaining extra resources
« Like tables of equivalent phrases
¢ Lots of human effort to maintain
* Repeated effort for each language pair!

45
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Outline

Sequence To Sequence Neural MT



Neural Machine Translation: Idea

» Like many tasks, MT is a sequence-to-sequence problem.

» We know how to encode sequences of words with
recurrent neural networks.

» We know how to conditionally generate sequences of
words with recurrent neural networks.

» Why not simply encode the source sentence and condition
on that to generate the target sentence?



What is Neural Machine Translation?

* Neural Machine Translation (NMT) is a way to do Machine Translation with a single
end-to-end neural network

* The neural network architecture is called a sequence-to-sequence model (aka seq2seq)
and it involves two RNNs

46
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Neural Machine Translation (NMT)

The sequence-to-sequence model

Target sentence (output)
Encoding of the source sentence. A

. R 4
Provides initial hidden state . . .
for Decoder RNN. he hit me with a pie <END>

N\

= ?
o [e]
5 8
b e
X
c Z
w =
il a m’ entarté <START> he hit  me with a pie
N J
Y
Source sentence (input) Decoder RNN is a Language Model that generates
target sentence, conditioned on encoding.
Encoder RNN produces
an encoding of the
. source sentence.
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Sequence-to-sequence is versatile!

* The general notion here is an encoder-decoder model
* One neural network takes input and produces a neural representation
* Another network produces output based on that neural representation
* If the input and output are sequences, we call it a seq2seq model

* Sequence-to-sequence is useful for more than just MIT
* Many NLP tasks can be phrased as sequence-to-sequence:
* Summarization (long text = short text)
* Dialogue (previous utterances - next utterance)
* Parsing (input text - output parse as sequence)
» Code generation (natural language = Python code)

48
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Neural Machine Translation (NMT)

* The sequence-to-sequence model is an example of a Conditional Language Model
* Language Model because the decoder is predicting the next word of the target sentence y
 Conditional because its predictions are also conditioned on the source sentence x

» NMT directly calculates P(y|z) :

P(ylz) = P(y1lx) P(yaly1, x) P(ysly1, y2,2) ... P(yrlys,. .., Y11, )

Probability of next target word, given
target words so far and source sentence x

* Question: How to train an NMT system?
* (Easy) Answer: Get a big parallel corpus...
* But there is now exciting work on “unsupervised NMT”, data augmentation, etc.

49
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Training a Neural Machine Translation system

= negative log = negative log = negative log
prob of “he” prob of “with” prob of <END>

T
1
]=thljt = Jil+ T2+ 3 [ Jal+ Js + Jo + J7

o P Vi D

=3
5
>
<
N

{ i

0000
0000
0000
-
0000
0000
—

Encoder RNN

il a m’  entarté <START> he hit me  with a pie
\ J \ J
Y Y
Source sentence (from corpus) Target sentence (from corpus)

NNY 19p0d3q

Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.
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Multi-layer deep encoder-decoder machine translation net

[Sutskever et al. 2014; Luong et al. 2015] The hidden states from RNN layer i

51

are the inputs to RNN layer i+1

Translation
The | protests escalated over the | weekend <EOS> generated
Encoder:
Builds u|
P Decoder
sentence
meaning
Source Die  Proteste waren am Wochenende eskaliert <E0S>  The esca Q eekend FEEding in
sentence last word
Conditionin
Bottlenec
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Decoding: Greedy decoding

* We saw how to generate (or “decode”) the target sentence by taking argmax on each
step of the decoder

he hit me with a pie <END>

<START> he hit  me with a pie

* Thisis greedy decoding (take most probable word on each step)
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Problems with greedy decoding

* Greedy decoding has no way to undo decisions!
* Input: il a m’entarté  (he hit me with a pie)
- >he__
* >hehit____
* >hehita___ (whoops! no going back now...)

e How to fix this?
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Exhaustive search decoding

* Ideally, we want to find a (length T) translation y that maximizes
P(ylz) = P(y1|z) P(yaly1, z) P(ysly1, y2, %) - - -, P(yrlys, - - -, yr-1,)

T
= HP(yt‘ylw . 7yt—17x)
t=1

* We could try computing all possible sequences y

* This means that on each step t of the decoder, we’re tracking Vt possible partial
translations, where Vis vocab size

e This O(VT) complexity is far too expensive!
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Beam search decoding

» Core idea: On each step of decoder, keep track of the kK most probable partial
translations (which we call hypotheses)
e kisthe beam size (in practice around 5 to 10, in NMT)

* A hypothesis Y1, -.,Yt has ascore which is its log probability:

t
score(y1, - .-, yt) = log Pom(y1, - -, yelz) = Y log Pom(uilyn, - - -, 9i-1, @)
i=1
« Scores are all negative, and higher score is better
* We search for high-scoring hypotheses, tracking top k on each step

* Beam search is not guaranteed to find optimal solution

e But much more efficient than exhaustive search!
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Beam search decoding: example
Beam size = k = 2. Blue numbers = score(y1,...,y) = ZlogPLM(yilyl, ey Yie1,T)

i=1

t

Calculate prob
dist of next word
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Beam search decoding: example
Beam size = k = 2. Blue numbers = score(y1,...,y) = ZlogPLM(yilyl, ey Yie1,T)

i=1

t

-0.7 =log P (he|<START>)

-0.9 = log P,y (/| <START>)

Take top k words
and compute scores
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Beam search decoding: example
Beam size = k = 2. Blue numbers = score(y1,...,y) = ZlogPLM(yilyl, ey Yie1,T)

i=1

t

-1.7 =log Py (hit|<START> he) + -0.7

-2.9 = log P (struck | <START> he) + -0.7

-1.6 = log P (was|<START> [) +-0.9

-1.8 = log P,,(got|<START> ) +-0.9

For each of the k hypotheses, find
10 top k next words and calculate scores
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Beam search decoding: example
Beam size = k = 2. Blue numbers = score(y1,...,y) = ZlogPLM(yilyl, ey Yie1,T)

i=1

t

-1.8

Of these k? hypotheses,
11 just keep k with highest scores
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Beam search decoding: example
Beam size = k = 2. Blue numbers = score(y1,...,y) = ZlogPLM(yilyl, ey Yie1,T)

i=1

t

-2.8 =log P,\(a|<START> he hit) +-1.7

-2.5 =log P,\,(me|<START> he hit) +-1.7

-2.9 = log P y(hit|<START> | was) + -1.6

-0.9 -3.8 = log Py (struck|<START> | was) +-1.6

For each of the k hypotheses, find
12 top k next words and calculate scores
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Beam search decoding: example
Beam size = k = 2. Blue numbers = score(y1,...,y) = ZlOgPLM(yilyh ey Yie1,T)

i=1

t

Of these k? hypotheses,
13 just keep k with highest scores
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Beam search decoding: example
Beam size = k = 2. Blue numbers = score(y1,...,y) = ZIOgPLM(yilyh ey Yie1,T)

i=1

t

-4.0

For each of the k hypotheses, find
14 top k next words and calculate scores
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Beam search decoding: example

Beam size = k = 2. Blue numbers = score(y1,...,y) = ZIOgPLM(yilyh ey Yie1,T)
=1

t

Of these k% hypotheses,
15 just keep k with highest scores
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Beam search decoding: example )
Beam size = k = 2. Blue numbers = score(y1,...,y) = ZIOgPLM(yilyh ey Yie1,T)

=1

-4.0 -4.8
tart in

pie with ‘
-3.4 -4.5
-3.3 -3.7
with a ‘

on one
-3.5 -4.3

For each of the k hypotheses, find
top k next words and calculate scores

16
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Beam search decoding: example )
Beam size = k = 2. Blue numbers = score(y1,...,y) = ZIOgPLM(yilyh ey Yie1,T)

=1
-4.0 -4.8
tart in
pie with ‘
-3.4 -4.5
-3.3 -3.7
with a ‘
on one
3.5 -4.3

Of these k? hypotheses,
just keep k with highest scores

17

Slide from Christopher Manning



Beam search decoding: example

18

t

Beam size = k = 2. Blue numbers = score(y1,...,y) = ZIOgPLM(yilyh ey Yie1,T)

Slide from Christopher Manning

i=1

-4.0 -4.8
tart in
pie with
-3.4 -4.5
-3.3 -3.7
with a
on one
3.5 -4.3

For each of the k hypotheses, find
top k next words and calculate scores




Beam search decoding: example )
Beam size = k = 2. Blue numbers = score(y1,...,y) = ZlogPLM(yAyl, ey Yie1,T)

=1

-4.0 -4.8
tart ‘ in ‘
pie
-3.4
-3.3
with

on one
-3.5 -4.3

This is the top-scoring hypothesis! ‘

19
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Beam search decoding: example )
Beam size = k = 2. Blue numbers = score(y1,...,y) = ZIOgPLM(yilyh ey Yie1,T)

=1

-4.0 -4.8
tart in
pie with
-3.4 -4.5
-3.3 -3.7
with a

on one
-3.5 -4.3

| Backtrack to obtain the full hypothesis |

20
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Beam search decoding: stopping criterion

* In greedy decoding, usually we decode until the model produces an <END> token
* For example: <START> he hit me with a pie <END>

* In beam search decoding, different hypotheses may produce <END> tokens on
different timesteps
* When a hypothesis produces <END>, that hypothesis is complete.
* Place it aside and continue exploring other hypotheses via beam search.

* Usually we continue beam search until:
* We reach timestep T (where T is some pre-defined cutoff), or
* We have at least n completed hypotheses (where n is pre-defined cutoff)

21
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Beam search decoding: finishing up

* We have our list of completed hypotheses.
* How to select top one?

* Each hypothesis y1, ..., y: onour list has a score

t
score(yl, s 7yt) = log PLM(y17 cee 7yt|$) = Z log PLM(leylv s 7?/1'—171‘)
i=1

* Problem with this: longer hypotheses have lower scores

* Fix: Normalize by length. Use this to select top one instead:

1 ¢ See also discussion of
n E 10g PLM (yilyl, e Yie1, :B) sampling-based decoding
¢ i=1 in the NLG lecture

22
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How do we evaluate Machine Translation?

You’ll see BLEU in detail in
Assignment 4!

BLEU (Bilingual Evaluation Understudy)

* BLEU compares the machine-written translation to one or several human-written
translation(s), and computes a similarity score based on:

* Geometric mean of n-gram precision (usually for 1, 2, 3 and 4-grams)
* Plus a penalty for too-short system translations

e BLEU is useful but imperfect
* There are many valid ways to translate a sentence

* So a good translation can get a poor BLEU score because it has low n-gram overlap
with the human translation ®

See discussion of
evaluation in NLG lecture

23 Source: "BLEU: a Method for Automatic Evaluation of Machine Translation", Papineni et al, 2002. http://aclweb.org/anthology/P02-1040
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BLEU score against 4 reference translations

Reference translation 1: Reference translation 2:
(The)u.s. istand of Guam is mamlammg

e transfation:
erican [7](njefhational a\rp)rﬂ/

Reference translation 3:

vouid be Cloonamsig i 1o Suam
public places as airporf . Airport and other public places . Guam
authority has been o . R . needs to be in high precaution about
i & [Papineni et al. 2002] | el einnishe
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MT progress over time

[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal; NMT 2019 FAIR on newstest2019]

45 M Phrase-based SMT
40
B Syntax-based SMT
35
30 = Neural MT
25
20
15
10
5
0
2013 2014 2015 2016 2017 2018 2019
Sources: http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf & http://matrix.statmt.org/
25
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Advantages of NMT
Compared to SMT, NMT has many advantages:

* Better performance
* More fluent
* Better use of context
* Better use of phrase similarities

* Asingle neural network to be optimized end-to-end
* No subcomponents to be individually optimized

* Requires much less human engineering effort
* No feature engineering
* Same method for all language pairs

26
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Disadvantages of NMT?
Compared to SMT:

* NMT is less interpretable
* Hard to debug

* NMT is difficult to control
* For example, can’t easily specify rules or guidelines for translation
* Safety concerns!

« Invention of content not in source
« Systematic gender biases

27
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NMT: the first big success story of NLP Deep Learning

Neural Machine Translation went from a fringe research attempt in 2014 to the leading
standard method in 2016

* 2014: First seq2seq paper published [Sutskever et al. 2014]

* 2016: Google Translate switches from SMT to NMT — and by 2018 everyone has

BE Microsoft &svsran  Google
Baitme EBwus  Tencentiil  (©)mmigx:
e This is amazing!
* SMT systems, built by hundreds of engineers over many years, outperformed by

NMT systems trained by small groups of engineers in a few months

28
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Summary of Sequence 2 Sequence NMT

> Seqg2seq NMT models model the probability of the target
sentence conditioned on the source sentence
» Seqg2seq models have two components

» an encoder model converts the input sequence into a
vector (or vectors)

» a decoder model generates the output sequence
conditioned on the encoding vector (or vectors)

» Searching the space of output sequences (also called
“decoding”) can be done with beam search



Outline

Attention in NMT



Attention in NMT: Idea

» For long sentences, a fixed-length vector encoding
introduces a bottleneck.

» Even for shorter sentences, conditioning on the entire
sentence is hard.

» Solution: reintroduce a model of latent alignment, as in
SMT.

> Attention is a soft latent alignment.



2. Why attention? Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.

Target sentence (output)
A

N\
he hit me  with a pie <END>

z &
=
< ]
] Q
3 ]
)
c E
w =
il a m’  entarté <START> he hit me  with a pie

Source sentence (input)

Problems with this architecture?

29
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1. Why attention? Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.

This needs to capture all Target sentence (output)
information about the Ie A \
source sentence. he hit me  with a pie <END>
Information bottleneck!
=z —— &
g 8
5 a
3 o
2 z
w =z
il a m’  entarté <START> he hit me  with a pie

Source sentence (input)

30
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Attention

» Attention provides a solution to the bottleneck problem.

» Core idea: on each step of the decoder, use direct connection to the encoder to focus
on a particular part of the source sequence

* First, we will show via diagram (no equations), then we will show with equations

31
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Sequence-to-sequence with attention

Core idea: on each step of the decoder, use direct connection to the encoder to focus on a
particular part of the source sequence
dot product

{
{EHH

il a m’  entarté <START>

\ﬁr—/

2 Source sentence (input)

Attention
scores

Encoder
NN

(0000]
H(_/
NNY 42p039a
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Sequence-to-sequence with attention

dot product

Attention
scores

Encoder
RNN

il a m’  entarté <START>

%{—J

33 Source sentence (input)

Slide from Christopher Manning
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Sequence-to-sequence with attention

dot product

Attention
scores

Encoder
RNN

il a m’  entarté <START>

%{—J

3 Source sentence (input)

Slide from Christopher Manning
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Sequence-to-sequence with attention

dot product

Attention
scores

Encoder
RNN
—

il a m’  entarté <START>

%{—J

35 Source sentence (input)

Slide from Christopher Manning
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Sequence-to-sequence with attention

36

On this decoder timestep, we're

mostly focusing on the first
/ encoder hidden state (“he”)

Attention
distribution

Take softmax to turn the scores
into a probability distribution

Attention
scores

Encoder
NN

il a m’  entarté <START>

%{—J

Source sentence (input)

Slide from Christopher Manning
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Sequence-to-sequence with attention

37

Attention |

output

Attention
distribution

Attention
scores

Encoder
NN

il a m’  entarté

%{—J

Source sentence (input)

Slide from Christopher Manning

<START>

Use the attention distribution to take a

weighted sum of the encoder hidden states.

The attention output mostly contains
information from the hidden states that
received high attention.

NNY J2p0daq




Sequence-to-sequence with attention

38

Attention
output

Attention
distribution

Attention
scores

Encoder
NN

,

il a m’  entarté

%{—J

Source sentence (input)
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<START>

Concatenate attention output
with decoder hidden state, then
use to compute ¥, as before

NNY J2p0daq



Sequence-to-sequence with attention

39

Attention
output

Attention
distribution

Attention
scores

Encoder
NN

,

il a m’  entarté

%{—J

Source sentence (input)
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V2

<START> he /

Sometimes we take the
attention output from the
previous step, and also
feed it into the decoder
(along with the usual
decoder input). We do
this in Assignment 4.

NNY J2p0daq



Sequence-to-sequence with attention

Attention me

Attention
distribution

Attention
scores

Encoder
NN

il a m’  entarté <START> he

%{—J

P Source sentence (input)
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Sequence-to-sequence with attention

Attention

Attention
distribution

Attention
scores

Encoder
NN

il a m’  entarté <START> he

%{—J

“ Source sentence (input)
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me

NNY 43p0d2Q



Sequence-to-sequence with attention

Attention

Attention
distribution

Attention
scores

Encoder
NN

il a m’  entarté <START> he

%{—J

9 Source sentence (input)

Slide from Christopher Manning
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Sequence-to-sequence with attention

Attention

Attention
distribution

Attention
scores

Encoder
NN

il a m’  entarté <START> he

%{—J

23 Source sentence (input)
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Attention: in equations

44

We have encoder hidden states 1, ...,hy € R"
On timestep t, we have decoder hidden state s; € R
We get the attention scores e’ for this step:

e =[sThy,...,sThy] e RV

We take softmax to get the attention distribution a! for this step (this is a probability distribution and
sums to 1)

o' = softmax(e’) € RY

We use o' totake a weighted sum of the encoder hidden states to get the attention output a;
N
a; = Z afhi eR"
i=1

Finally we concatenate the attention output a; with the decoder hidden
state st and proceed as in the non-attention seq2seq model

[as; s¢] € R
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Attention is great!

™

* Attention significantly improves NMT performance / - )

 It’s very useful to allow decoder to focus on certain parts of the source
* Attention provides a more “human-like” model of the MT process

* You can look back at the source sentence while translating, rather than needing to remember it all
* Attention solves the bottleneck problem

» Attention allows decoder to look directly at source; bypass bottleneck
* Attention helps with the vanishing gradient problem

« Provides shortcut to faraway states
* Attention provides some interpretability

* By inspecting attention distribution, we see what the decoder was focusing on

©

with

= 2
£ _E

pie

il
* We get (soft) alignment for free! aH
* This is cool because we never explicitly trained an alignment system

m

* The network just learned alignment by itself

entarté

45
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There are several attention variants

+ We have some values hq,...,hy € R% andaquery s € R%

* Attention always involves: There are

1. Computing the attention scores e € RN «—— multiple ways
to do this

2. Taking softmax to get attention distribution a:

a = softmax(e) € RN

3. Using attention distribution to take weighted sum of values:
N

a= Zalhl € R%

i=1

thus obtaining the attention output a (sometimes called the context vector)

46
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You’ll think about the relative

Attention va ria ntS advantages/disadvantages of these in Assignment 4!

There are several ways you can compute e € RY from hi,...,hy € R¥and s € R% :

« Basic dot-product attention: e; = sThi eR

* Note: this assumes di1 = dz. This is the version we saw earlier.

e Multiplicative attention: e; = sTWhi € R [Luong, Pham, and Manning 2015]
* Where W e R%*% js g weight matrix. Perhaps better called “bilinear attention”

+  Reduced-rank multiplicative attention: e; = sT(UTV)h; = (Us)T(Vh;) «—| Remember this when we look

R xd kxd at Transformers next week!
* For low rank matrices U € R**%2, V € R**%*1, k < dy,d,

« Additive attention: e; = thanh(Wlhi + Wss) € R [Bahdanau, Cho, and Bengio 2014]
« Where W, € R¥%*d1 W, ¢ Rés%d2 gre weight matrices and v € R% is a weight vector.
* dj (the attention dimensionality) is a hyperparameter
« “Additive” is a weird/bad name. It’s really using a feed-forward neural net layer.

More information: “Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017, https://arxiv.org/pdf/1703.03906.pdf

47
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Query-Key-Value Attention

» Given a sequence-of-vectors (hy, ..., hy)
and a state vector s;,

» and three parameter matrices W9, Wk, WV,
W9s:)T Wkh;

= (
= softmax(e)

N
ar = Z Oz,t- th,'
i=1

t
> €
ol

Attention function:
» permutation invariant, so (hy, ..., hy) is a set
> size invariant, so (hy, ..., hy) is unbounded
» normalised weighting, so (a!,...,al) is a distribution



Understanding Attention

> Attention function is permutation invariant in the vectors

Attn(u, 2) Za,z, .

exp(fuz,) N
Sy exp( 5 uz))

i =

4/15



Understanding Attention

> Attention function is permutation invariant in the vectors
» Attention imposes a normalised weighting over vectors

Attn(u, Z) Za,z,

1 i + //)////,//////)/
&= m v, P s \
g exp(J542) \ - -

Vd

5/15



Understanding Attention

> Attention function is permutation invariant in the

vectors

> Attention imposes a normalised weighting over vectors

> Attention supports a variable number of vectors

Attn(u, Z) = Za,z, . L

ex p( NG| uz; ) + - -

o ST exp( ) \ ‘

6/15



Understanding Attention

> Attention function is permutation invariant in the vectors
> Attention imposes a normalised weighting over vectors
> Attention supports a variable number of vectors

Like a nonparametric mixture of impulse distributions

n
Attn(u, Z) =Y aiz; . L
p

L eelfue) . \
S exp( ) \ -

7/15



Understanding Attention

The attention function is query denoising with a
nonparametric mixture of impulse distributions
> Attention takes a sequence of vectors and a query vector
and returns an attention vector
» Denoising takes a prior distribution and a noisy
observation and returns its expected value

Attn(u, 2) Za,z,

a= _eXp (J5u21) + ts //‘/::/x
Y 1 exp(J5uz)) \ -

8/15



Attention is a general Deep Learning technique

* We've seen that attention is a great way to improve the sequence-to-sequence model
for Machine Translation.

* However: You can use attention in many architectures
(not just seq2seq) and many tasks (not just MT)

* More general definition of attention:

* Given a set of vector values, and a vector query, attention is a technique to compute
a weighted sum of the values, dependent on the query.

* We sometimes say that the query attends to the values.

* For example, in the seq2seq + attention model, each decoder hidden state (query)
attends to all the encoder hidden states (values).

48
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Attention is a general Deep Learning technique

¢ More general definition of attention:

* Given a set of vector values, and a vector query, attention is a technique to compute
a weighted sum of the values, dependent on the query.

Intuition:

* The weighted sum is a selective summary of the information contained in the values,
where the query determines which values to focus on.

* Attention is a way to obtain a fixed-size representation of an arbitrary set of
representations (the values), dependent on some other representation (the query).

Upshot:

* Attention has become the powerful, flexible, general way pointer and memory

manipulation in all deep learning models. A new idea from after 2010! From NMT!
49
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Summary of Attention in NMT

» Attention in NMT learns a soft alignment between output
and input tokens

> Attention uses a (non-parametric) set-of-vector
representation, instead of a (parametric) vector
representation, which is more appropriate for representing
language

» Attention accesses vectors in the set based only on their
content

> Attention is very effective whenever conditioning on
(arbitrarily long) text



Outline

Attention instead of Recurrence



Today: Same goals, different building blocks

* Last week, we learned about sequence-to-sequence problems and

encoder-decoder models.

e Today, we're not trying to motivate entirely new ways of looking at
problems (like Machine Translation)

* Instead, we're trying to find the best building blocks to plug into our
models and enable broad progress.

o

H

2014-2017ish
Recurrence

Slide from John Hewitt

Lots of trial
and error

2021
72??



Issues with recurrent models: Linear interaction distance

* RNNs are unrolled “left-to-right”.
* This encodes linear locality: a useful heuristic!
* Nearby words often affect each other’s meanings

tasty pizza
* Problem: RNNs take O(sequence length) steps for
distant word pairs to interact.

0(sequence length)

Iﬁlﬂ:ﬁ:

The chef who ...
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Issues with recurrent models: Linear interaction distance

e O(sequence length) steps for distant word pairs to interact means:
* Hard to learn long-distance dependencies (because gradient problems!)

* Linear order of words is “baked in”; we already know linear order isn’t the
right way to think about sentences...

—000 — | 000 — —’I

oL

— 000 — — 000

The chef who ... / was

Info of chef has gone through
O(sequence length) many layers!

Slide from John Hewitt



Issues with recurrent models: Lack of parallelizability

e Forward and backward passes have O(sequence length)
unparallelizable operations

* GPUs can perform a bunch of independent computations at once!

» But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

* Inhibits training on very large datasets!

—000® — —> 000 — —*H

F * t
F ——o00| — —— ooo—»i—»i

hy h,

‘ Numbers indicate min # of steps before a state can be computed
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If not recurrence, then what? How about attention?

Attention treats each word’s representation as a query to access and
incorporate information from a set of values.

* We saw attention from the decoder to the encoder; today we’ll think about
attention within a single sentence.

Number of unparallelizable operations does not increase with sequence length.
Maximum interaction distance: O(1), since all words interact at every layer!

All words attend
attention l

to all words in
attention previous layer;

most arrows here

embedding . . . . . . . . are omitted
hy h, h

T
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Attention as a soft, averaging lookup table

We can think of attention as performing fuzzy lookup in a key-value store.

In a lookup table, we have a table of keys
that map to values. The matches
one of the keys, returning its value.

keys values

a vl
b v2
query
d [¢ v3
output
d v4 % v4
e v5

Slide from John Hewitt

In attention, the

keys values

k1
k2

query
q k3
k4
k5

matches all keys softly,
to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

vl

v2

v3

v4

v5

Weighted

Sum

output

>—



Self-Attention Hypothetical Example

attention
weights
for
I “learned”
i I i

went to Stanford 224n and learned

10
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Self-Attention: keys, queries, values from the same sequence
Let wy.,, be a sequence of words in vocabulary V, like Zuko made his uncle tea.
For each w;, let x; = Ew;, where E € RVl is an embedding matrix.
1. Transform each word embedding with weight matrices Q, K,V , each in R4*¢
q; = Qx; (queries) k; = Kx; (keys) v; = Vx; (values)

2. Compute pairwise similarities between keys and queries; normalize with softmax

Sum

>—

X s
B LCT
1y = L
J J 2 exp(e;;r)
keys values Weighted
3. Compute output for each word as weighted sum of values i v
query k| v
0; :Zaijvi 4 e
- k4 v4
l kS v5
11
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Barriers and solutions for Self-Attention as a building block

Barriers Solutions

¢ Doesn’t have an inherent
notion of order!

12
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Fixing the first self-attention problem: sequence order

13

Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

Consider representing each sequence index as a vector

p; ERY, fori € {1,2, ..., n} are position vectors

Don’t worry about what the p; are made of yet!
Easy to incorporate this info into our self-attention block: just add the p; to our inputs!
Recall that x; is the embedding of the word at index i. The positioned embedding is:

~ In deep self-attention

X = X; + | 3 networks, we do this at the
first layer! You could
concatenate them as well,
but people mostly just add...

Slide from John Hewitt



Position representation vectors through sinusoids

Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

sin(i/100002*1/4) ‘:
cos(i/10000%1/4) 5
pi = :
L] d g
sin(i/lOOOOz*%/d)
Cos(i/lOOOOZ*f/d) Index in the sequence
* Pros:

* Periodicity indicates that maybe “absolute position” isn’t as important
* Maybe can extrapolate to longer sequences as periods restart!
* Cons:

* Not learnable; also the extrapolation doesn’t really work!

14 Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encodin
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Position representation vectors learned from scratch

15

Learned absolute position representations: Let all p; be learnable parameters!
Learn a matrix p € R%*", and let each p; be a column of that matrix!

Pros:

* Flexibility: each position gets to be learned to fit the data
Cons:

* Definitely can’t extrapolate to indices outside 1, ..., n.
Most systems use this!

Sometimes people try more flexible representations of position:

* Relative linear position attention [Shaw et al., 2018
* Dependency syntax-based position [Wang et al., 2019

Slide from John Hewitt



Barriers and solutions for Self-Attention as a building block

Barriers Solutions

* Doesn’t have an inherent * Add position representations to
notion of order! the inputs

* No nonlinearities for deep
learning! It's all just weighted ———
averages

16
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Adding nonlinearities in self-attention

* Note that there are no elementwise F ! * !
nonlinearities in self-attention;
stacking more self-attention layers FF FF FF FF
just re-averages value vectors ! ! if ! . !
(Why? Look at the notes!) self-attention
* Easy fix: add a feed-forward network FF EF EF EF
to post-process each output vector. 1 t i
self-attention
m; = MLP(output;) B [ | [ | cee [ |
= W, x ReLU(W; output; + b;) + b, wq w, ws Wh
The chef who food

17 ‘ Intuition: the FF network processes the result of attention
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Barriers and solutions for Self-Attention as a building block

Barriers

¢ Doesn’t have an inherent
notion of order!

* No nonlinearities for deep
learning magic! It’s all just
weighted averages

¢ Need to ensure we don’t
“look at the future” when
predicting a sequence

¢ Like in machine translation

* Or language modeling
18

Slide from John Hewitt

Solutions

* Add position representations to
the inputs

* Easy fix: apply the same
_— feedforward network to each self-
attention output.



Masking the future in self-attention

19

To use self-attention in
decoders, we need to ensure
we can’t peek at the future.

At every timestep, we could
change the set of keys and
queries to include only past
words. (Inefficient!)

To enable parallelization, we
mask out attention to future
words by setting attention

- T, i<
scores to —oo. N kj,]Sl

ei]

Slide from John Hewitt

We can look at these
(not greyed out) words

< |
K A\
\5’«P~ <% c‘\é\ *‘\(\o

[START]

The
For encoding
these words

chef

—

who

—0,j >



Barriers and solutions for Self-Attention as a building block

Barriers

¢ Doesn’t have an inherent
notion of order!

* No nonlinearities for deep
learning magic! It’s all just _—
weighted averages

¢ Need to ensure we don’t
“look at the future” when _—
predicting a sequence

« Like in machine translation
* Or language modeling
20
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Solutions

* Add position representations to
the inputs

* Easy fix: apply the same
feedforward network to each self-
attention output.

* Mask out the future by artificially
setting attention weights to 0!



Necessities for a self-attention building block:

21

.

Self-attention:

* the basis of the method.
* Position representations:

 Specify the sequence order, since self-attention
is an unordered function of its inputs.

¢ Nonlinearities:

* At the output of the self-attention block

* Frequently implemented as a simple feed-
forward network.

e Masking:

* In order to parallelize operations while not
looking at the future.

* Keeps information about the future from
“leaking” to the past.

Slide from John Hewitt

Repeat for number
of encoder blocks

Probabilities
Softmax
N

Linear
~

Feed-Forward

Masked Self-
Attention

Block

Add Position
Embeddings
»

Embeddings
Inputs



Summary of Attention instead of Recurrence

> Attention is all you need

» Plus a represention of sequence order, with absolute (or
relative) positions

» Plus layers of nonlinearity, for a fixed number of layers

» Plus causal masking, to similate running multiple models
on the same computation graph
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