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Machine Translation

40

Machine Translation (MT) is the task of translating a sentence x from one language (the 
source language) to a sentence y in another language (the target language).

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

– Rousseau
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1990s-2010s: Statistical Machine Translation

• Core idea: Learn a probabilistic model from data
• Suppose we’re translating French → English.
• We want to find best English sentence y, given French sentence x

• Use Bayes Rule to break this down into two components to be learned 
separately:

Translation Model

Models how words and phrases 
should be translated (fidelity). 

Learned from parallel data.

Language Model 

Models how to write 
good English (fluency). 

Learned from monolingual data.43
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What happens in translation isn’t trivial to model!

1519年600名西班牙人在墨西哥登陆，去征服几百万人口
的阿兹特克帝国，初次交锋他们损兵三分之二。
In 1519, six hundred Spaniards landed in Mexico to conquer the Aztec Empire with a 
population of a few million. They lost two thirds of their soldiers in the first clash.

translate.google.com (2009): 1519 600 Spaniards landed in Mexico, millions of people to 
conquer the Aztec empire, the first two-thirds of soldiers against their loss.
translate.google.com (2013): 1519 600 Spaniards landed in Mexico to conquer the Aztec 
empire, hundreds of millions of people, the initial confrontation loss of soldiers two-thirds.
translate.google.com (2015): 1519 600 Spaniards landed in Mexico, millions of people to 
conquer the Aztec empire, the first two-thirds of the loss of soldiers they clash.
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1990s–2010s: Statistical Machine Translation

• SMT was a huge research field
• The best systems were extremely complex
• Hundreds of important details

• Systems had many separately-designed subcomponents 
• Lots of feature engineering
• Need to design features to capture particular language phenomena

• Required compiling and maintaining extra resources
• Like tables of equivalent phrases

• Lots of human effort to maintain
• Repeated effort for each language pair!

45
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Neural Machine Translation: Idea

▶ Like many tasks, MT is a sequence-to-sequence problem.
▶ We know how to encode sequences of words with

recurrent neural networks.
▶ We know how to conditionally generate sequences of

words with recurrent neural networks.
▶ Why not simply encode the source sentence and condition

on that to generate the target sentence?



What is Neural Machine Translation?

46

• Neural Machine Translation (NMT) is a way to do Machine Translation with a single
end-to-end neural network

• The neural network architecture is called a sequence-to-sequence model (aka seq2seq) 
and it involves two RNNs
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Neural Machine Translation (NMT)

<START>

Source sentence (input)

il      a       m’  entarté

The sequence-to-sequence model
Target sentence (output)

Decoder RN
N

Encoder RNN produces 
an encoding of the 
source sentence.

Encoding of the source sentence.
Provides initial hidden state 

for Decoder RNN.

Decoder RNN is a Language Model that generates 
target sentence, conditioned on encoding.

he

ar
gm

ax

he

ar
gm

ax

hit

hit

ar
gm

ax

me

Note: This diagram shows test time behavior: decoder 
output is fed in          as next step’s input

with     a        pie    <END>

me       with    a       pie

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax
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Sequence-to-sequence is versatile!

• The general notion here is an encoder-decoder model
• One neural network takes input and produces a neural representation
• Another network produces output based on that neural representation
• If the input and output are sequences, we call it a seq2seq model

• Sequence-to-sequence is useful for more than just MT
• Many NLP tasks can be phrased as sequence-to-sequence:
• Summarization (long text → short text)
• Dialogue (previous utterances → next utterance)
• Parsing (input text → output parse as sequence)
• Code generation (natural language → Python code)

48
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Neural Machine Translation (NMT)

• The sequence-to-sequence model is an example of a Conditional Language Model
• Language Model because the decoder is predicting the next word of the target sentence y
• Conditional because its predictions are also conditioned on the source sentence x

• NMT directly calculates            :

• Question: How to train an NMT system?
• (Easy) Answer: Get a big parallel corpus…
• But there is now exciting work on “unsupervised NMT”, data augmentation, etc.

Probability of next target word, given 
target words so far and source sentence x

49
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Training a Neural Machine Translation system
En

co
de

r R
N

N

Source sentence (from corpus)

<START>    he        hit         me      with         a         pieil a         m’      entarté

Target sentence (from corpus)

Seq2seq is optimized as a single system. Backpropagation operates “end-to-end”.

Decoder RN
N

"𝑦! "𝑦" "𝑦# "𝑦$ "𝑦% "𝑦& "𝑦'

𝐽! 𝐽" 𝐽# 𝐽$ 𝐽% 𝐽& 𝐽'

= negative log 
prob of “he”

𝐽 =
1
𝑇
(
()!

*

𝐽( =                 +          +         +         +          +         +

= negative log 
prob of <END>

= negative log 
prob of “with”

50
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Multi-layer deep encoder-decoder machine translation net

Die       Proteste    waren am  Wochenende eskaliert <EOS>      The       protests    escalated    over          the     weekend
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The      protests  escalated    over         the      weekend   <EOS>

Encoder:
Builds up 
sentence 
meaning 

Source 
sentence

Translation 
generated

Feeding in 
last word

Decoder

Conditioning =
Bottleneck

[Sutskever et al. 2014; Luong et al. 2015] The hidden states from RNN layer i
are the inputs to RNN layer i+1
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Decoding: Greedy decoding

• We saw how to generate (or “decode”) the target sentence by taking argmax on each 
step of the decoder

• This is greedy decoding (take most probable word on each step)

4

<START>

he

ar
gm

ax

he

ar
gm

ax

hit

hit
ar
gm

ax

me with      a       pie   <END>

me        with        a         pie

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax
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Problems with greedy decoding

• Greedy decoding has no way to undo decisions! 
• Input: il a m’entarté (he hit me with a pie)

• → he ____
• → he hit ____
• → he hit a ____  (whoops! no going back now…)

• How to fix this?

5
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Exhaustive search decoding

• Ideally, we want to find a (length T) translation y that maximizes 

• We could try computing all possible sequences y
• This means that on each step t of the decoder, we’re tracking Vt possible partial 

translations, where V is vocab size
• This O(VT) complexity is far too expensive!

6
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Beam search decoding

• Core idea: On each step of decoder, keep track of the k most probable partial 
translations (which we call hypotheses)
• k is the beam size (in practice around 5 to 10, in NMT)

• A hypothesis                      has a score which is its log probability:

• Scores are all negative, and higher score is better
• We search for high-scoring hypotheses, tracking top k on each step

• Beam search is not guaranteed to find optimal solution
• But much more efficient than exhaustive search!

7
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Beam search decoding: example
Beam size = k = 2. Blue numbers =

<START>

8

Calculate prob
dist of next word
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Beam search decoding: example
Beam size = k = 2. Blue numbers =

<START>

he

I

9

-0.7

-0.9

Take top k words 
and compute scores

= log PLM(he|<START>)

= log PLM(I|<START>)
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Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

<START>

he

I

10

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

For each of the k hypotheses, find 
top k next words and calculate scores

= log PLM(hit|<START> he) + -0.7

= log PLM(struck|<START> he) + -0.7

= log PLM(was|<START> I) + -0.9

= log PLM(got|<START> I) + -0.9
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Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

<START>

he

I

11

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

Of these k2 hypotheses,
just keep k with highest scores
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Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

<START>

he

I

12

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

For each of the k hypotheses, find 
top k next words and calculate scores

= log PLM(a|<START> he hit) + -1.7

= log PLM(me|<START> he hit) + -1.7

= log PLM(hit|<START> I was) + -1.6

= log PLM(struck|<START> I was) + -1.6
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Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

<START>

he

I

13

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

Of these k2 hypotheses,
just keep k with highest scores
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Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on<START>

he

I

14

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

For each of the k hypotheses, find 
top k next words and calculate scores
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Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on<START>

he

I

15

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

Of these k2 hypotheses,
just keep k with highest scores
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Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one<START>

he

I

16

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

For each of the k hypotheses, find 
top k next words and calculate scores
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Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one<START>

he

I

17

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

Of these k2 hypotheses,
just keep k with highest scores
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Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

18

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

-4.3

-4.6

-5.0

-5.3

For each of the k hypotheses, find 
top k next words and calculate scores
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Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

19

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

-4.3

-4.6

-5.0

-5.3

This is the top-scoring hypothesis!

Slide from Christopher Manning



Beam search decoding: example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

20

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

-4.3

-4.6

-5.0

-5.3

Backtrack to obtain the full hypothesis
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Beam search decoding: stopping criterion

• In greedy decoding, usually we decode until the model produces an <END> token
• For example: <START> he hit me with a pie <END>

• In beam search decoding, different hypotheses may produce <END> tokens on 
different timesteps
• When a hypothesis produces <END>, that hypothesis is complete. 
• Place it aside and continue exploring other hypotheses via beam search.

• Usually we continue beam search until:
• We reach timestep T (where T is some pre-defined cutoff), or
• We have at least n completed hypotheses (where n is pre-defined cutoff)

21
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Beam search decoding: finishing up

• We have our list of completed hypotheses. 
• How to select top one?

• Each hypothesis                     on our list has a score

• Problem with this: longer hypotheses have lower scores

• Fix: Normalize by length. Use this to select top one instead:

22

See also discussion of 
sampling-based decoding 

in the NLG lecture
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How do we evaluate Machine Translation?

BLEU (Bilingual Evaluation Understudy)

• BLEU compares the machine-written translation to one or several human-written 
translation(s), and computes a similarity score based on:
• Geometric mean of n-gram precision (usually for 1, 2, 3 and 4-grams)
• Plus a penalty for too-short system translations

• BLEU is useful but imperfect
• There are many valid ways to translate a sentence
• So a good translation can get a poor BLEU score because it has low n-gram overlap 

with the human translation L

23

You’ll see BLEU in detail in 
Assignment 4!

Source: ”BLEU: a Method for Automatic Evaluation of Machine Translation", Papineni et al, 2002. http://aclweb.org/anthology/P02-1040

See discussion of 
evaluation in NLG lecture
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Reference translation 1:
The U.S. island of Guam is maintaining 
a high state of alert after the Guam 
airport and its offices both received an 
e-mail from someone calling himself 
the Saudi Arabian Osama bin Laden 
and threatening a biological/chemical 
attack against public places such as 
the airport .

Reference translation 3:
The US International Airport of Guam 
and its office has received an email 
from a self-claimed Arabian millionaire 
named Laden , which threatens to 
launch a biochemical attack on such 
public places as airport . Guam 
authority has been on alert . 

Reference translation 4:
US Guam International Airport and its 
office received an email from Mr. Bin 
Laden and other rich businessman 
from Saudi Arabia . They said there 
would be biochemistry air raid to Guam 
Airport and other public places . Guam 
needs to be in high precaution about 
this matter . 

Reference translation 2:
Guam International Airport and its 
offices are maintaining a high state of 
alert after receiving an e-mail that was 
from a person claiming to be the 
wealthy Saudi Arabian businessman 
Bin Laden and that threatened to 
launch a biological and chemical attack 
on the airport and other public places .

Machine translation:
The American [?] international airport 
and its the office all receives one calls 
self the sand Arab rich business [?] 
and so on electronic mail , which 
sends out ;  The threat will be able 
after public place and so on the 
airport to start the biochemistry attack 
, [?] highly alerts after the 
maintenance.

Reference translation 1:
The U.S. island of Guam is maintaining 
a high state of alert after the Guam 
airport and its offices both received an 
e-mail from someone calling himself 
the Saudi Arabian Osama bin Laden 
and threatening a biological/chemical 
attack against public places such as 
the airport .

Reference translation 3:
The US International Airport of Guam 
and its office has received an email 
from a self-claimed Arabian millionaire 
named Laden , which threatens to 
launch a biochemical attack on such 
public places as airport . Guam 
authority has been on alert . 

Reference translation 4:
US Guam International Airport and its 
office received an email from Mr. Bin 
Laden and other rich businessman 
from Saudi Arabia . They said there 
would be biochemistry air raid to Guam 
Airport and other public places . Guam 
needs to be in high precaution about 
this matter . 

Reference translation 2:
Guam International Airport and its
offices are maintaining a high state of 
alert after receiving an e-mail that was 
from a person claiming to be the 
wealthy Saudi Arabian businessman 
Bin Laden and that threatened to 
launch a biological and chemical attack 
on the airport and other public places .

Machine translation:
The American [?] international airport 
and its the office all receives one calls 
self the sand Arab rich business [?] 
and so on electronic mail , which
sends out ;  The threat will be able 
after public place and so on the
airport to start the biochemistry attack
, [?] highly alerts after the
maintenance.

BLEU score against 4 reference translations

[Papineni et al. 2002]
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MT progress over time

25
Sources: http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf & http://matrix.statmt.org/

[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal; NMT 2019 FAIR on newstest2019]
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Advantages of NMT

Compared to SMT, NMT has many advantages:

• Better performance
• More fluent
• Better use of context
• Better use of phrase similarities

• A single neural network to be optimized end-to-end
• No subcomponents to be individually optimized

• Requires much less human engineering effort
• No feature engineering
• Same method for all language pairs

26
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Disadvantages of NMT?

Compared to SMT:

• NMT is less interpretable 
• Hard to debug

• NMT is difficult to control
• For example, can’t easily specify rules or guidelines for translation
• Safety concerns!
• Invention of content not in source
• Systematic gender biases

27
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NMT: the first big success story of NLP Deep Learning

28

Neural Machine Translation went from a fringe research attempt in 2014 to the leading 
standard method in 2016

• 2014: First seq2seq paper published [Sutskever et al. 2014]

• 2016: Google Translate switches from SMT to NMT – and by 2018 everyone has

• This is amazing!
• SMT systems, built by hundreds of engineers over many years, outperformed by 

NMT systems trained by small groups of engineers in a few months
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Summary of Sequence 2 Sequence NMT

▶ Seq2seq NMT models model the probability of the target
sentence conditioned on the source sentence

▶ Seq2seq models have two components
▶ an encoder model converts the input sequence into a

vector (or vectors)
▶ a decoder model generates the output sequence

conditioned on the encoding vector (or vectors)
▶ Searching the space of output sequences (also called

“decoding”) can be done with beam search



Outline

Machine Translation

Sequence To Sequence Neural MT

Attention in NMT

Attention instead of Recurrence



Attention in NMT: Idea

▶ For long sentences, a fixed-length vector encoding
introduces a bottleneck.

▶ Even for shorter sentences, conditioning on the entire
sentence is hard.

▶ Solution: reintroduce a model of latent alignment, as in
SMT.

▶ Attention is a soft latent alignment.



2. Why attention? Sequence-to-sequence: the bottleneck problem
En

co
de

r R
N

N

Source sentence (input)

<START>    he        hit        me       with        a         pieil a         m’      entarté

he        hit        me       with        a          pie    <END>

Decoder RN
N

Target sentence (output)

Problems with this architecture?

Encoding of the 
source sentence. 

29
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1. Why attention? Sequence-to-sequence: the bottleneck problem
En

co
de

r R
N

N

Source sentence (input)

<START>    he        hit        me       with        a         pieil a         m’      entarté

he        hit        me       with        a          pie    <END>

Decoder RN
N

Target sentence (output)

Encoding of the 
source sentence. 

This needs to capture all 
information about the 

source sentence.
Information bottleneck!

30
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Attention

• Attention provides a solution to the bottleneck problem.

• Core idea: on each step of the decoder, use direct connection to the encoder to focus 
on a particular part of the source sequence

• First, we will show via diagram (no equations), then we will show with equations

31
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Sequence-to-sequence with attention
En

co
de

r 
RN

N

Source sentence (input)

<START>il a         m’      entarté

Decoder RN
N

At
te

nt
io

n 
sc

or
es

dot product

32

Core idea: on each step of the decoder, use direct connection to the encoder to focus on a 
particular part of the source sequence
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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On this decoder timestep, we’re 
mostly focusing on the first 
encoder hidden state (”he”)
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Take softmax to turn the scores 
into a probability distribution
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Sequence-to-sequence with attention
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output
Use the attention distribution to take a 
weighted sum of the encoder hidden states.

The attention output mostly contains 
information from the hidden states that 
received high attention.
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Sequence-to-sequence with attention
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output
Concatenate attention output 
with decoder hidden state, then 
use to compute !𝑦! as before

!𝑦!

he
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Sequence-to-sequence with attention
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39

Sometimes we take the 
attention output from the 
previous step, and also
feed it into the decoder 
(along with the usual 
decoder input). We do 
this in Assignment 4.
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Sequence-to-sequence with attention
En

co
de

r 
RN

N

Source sentence (input)

<START>il a         m’      entarté

Decoder RN
N

At
te

nt
io

n 
sc

or
es

At
te

nt
io

n 
di

st
rib

ut
io

n
Attention 

output

he hit

!𝑦#

me

40

Slide from Christopher Manning
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Sequence-to-sequence with attention
En

co
de

r 
RN

N

Source sentence (input)

<START>il a         m’      entarté

Decoder RN
N

At
te

nt
io

n 
sc

or
es

At
te

nt
io

n 
di

st
rib

ut
io

n
Attention 

output

he hit with

!𝑦%

a

me

42

Slide from Christopher Manning



Sequence-to-sequence with attention
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Attention: in equations

• We have encoder hidden states 
• On timestep t, we have decoder hidden state 
• We get the attention scores         for this step:

• We take softmax to get the attention distribution        for this step (this is a probability distribution and 
sums to 1)

• We use to take a weighted sum of the encoder hidden states to get the attention output 

• Finally we concatenate the attention output        with the decoder hidden 
state      and proceed as in the non-attention seq2seq model

44
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Attention is great!

• Attention significantly improves NMT performance
• It’s very useful to allow decoder to focus on certain parts of the source

• Attention provides a more “human-like” model of the MT process
• You can look back at the source sentence while translating, rather than needing to remember it all

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with the vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we see what the decoder was focusing on
• We get (soft) alignment for free!
• This is cool because we never explicitly trained an alignment system
• The network just learned alignment by itself

45

he hi
t

m
e

w
ith

a pi
e

il

a

m’

entarté

Slide from Christopher Manning



There are several attention variants

• We have some values and a query

• Attention always involves:
1. Computing the attention scores  
2. Taking softmax to get attention distribution ⍺:

3. Using attention distribution to take weighted sum of values:

thus obtaining the attention output a (sometimes called the context vector)

46

There are 
multiple ways 

to do this
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Attention variants

There are several ways you can compute                from                                    and                :

• Basic dot-product attention:
• Note: this assumes               . This is the version we saw earlier.

• Multiplicative attention:                                     [Luong, Pham, and Manning 2015]
• Where                       is a weight matrix. Perhaps better called “bilinear attention”

• Reduced-rank multiplicative attention: 𝑒! = 𝑠" 𝑼"𝑽 ℎ! = (𝑼𝑠)"(𝑽ℎ!)
• For low rank matrices 𝑼 ∈ ℝ#×%', 𝑽 ∈ ℝ#×%(, 𝑘 ≪ 𝑑&, 𝑑'

• Additive attention: [Bahdanau, Cho, and Bengio 2014]
• Where                                                 are weight matrices and                is a weight vector. 
• d3 (the attention dimensionality) is a hyperparameter
• “Additive” is a weird/bad name. It’s really using a feed-forward neural net layer.

47

More information: “Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017, https://arxiv.org/pdf/1703.03906.pdf

You’ll think about the relative 
advantages/disadvantages of these in Assignment 4!

Remember this when we look 
at Transformers next week!
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Query-Key-Value Attention

▶ Given a sequence-of-vectors ⟨h1, . . . ,hN⟩
and a state vector st ,

▶ and three parameter matrices W q,W k ,W v ,

▶ et
i = (W qst)

T W khi

αt = softmax(et)

at =
N∑

i=1

αt
i W

v hi

Attention function:
▶ permutation invariant, so ⟨h1, . . . ,hN⟩ is a set
▶ size invariant, so ⟨h1, . . . ,hN⟩ is unbounded
▶ normalised weighting, so ⟨αt

1, . . . , α
t
N⟩ is a distribution



Understanding Attention

▶ Attention function is permutation invariant in the vectors

Attn(u,Z ) =
n∑

i=1

aiz i

ai =
exp( 1√

d
uz i)

∑n
i=1 exp(

1√
d

uz i)
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Understanding Attention

▶ Attention function is permutation invariant in the vectors
▶ Attention imposes a normalised weighting over vectors

Attn(u,Z ) =
n∑

i=1
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Understanding Attention

▶ Attention function is permutation invariant in the vectors
▶ Attention imposes a normalised weighting over vectors
▶ Attention supports a variable number of vectors

Attn(u,Z ) =
n∑

i=1

aiz i

ai =
exp( 1√

d
uz i)

∑n
i=1 exp(

1√
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Understanding Attention

▶ Attention function is permutation invariant in the vectors
▶ Attention imposes a normalised weighting over vectors
▶ Attention supports a variable number of vectors

Like a nonparametric mixture of impulse distributions

Attn(u,Z ) =
n∑

i=1

aiz i

ai =
exp( 1√

d
uz i)

∑n
i=1 exp(

1√
d

uz i)

7 / 15



Understanding Attention

The attention function is query denoising with a
nonparametric mixture of impulse distributions
▶ Attention takes a sequence of vectors and a query vector

and returns an attention vector
▶ Denoising takes a prior distribution and a noisy

observation and returns its expected value

Attn(u,Z ) =
n∑

i=1

aiz i

ai =
exp( 1√

d
uz i)

∑n
i=1 exp(

1√
d

uz i)
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Attention is a general Deep Learning technique

• We’ve seen that attention is a great way to improve the sequence-to-sequence model 
for Machine Translation.

• However: You can use attention in many architectures 
(not just seq2seq) and many tasks (not just MT)

• More general definition of attention:
• Given a set of vector values, and a vector query, attention is a technique to compute 

a weighted sum of the values, dependent on the query.

• We sometimes say that the query attends to the values.
• For example, in the seq2seq + attention model, each decoder hidden state (query) 

attends to all the encoder hidden states (values).

48

Slide from Christopher Manning



Attention is a general Deep Learning technique

49

• More general definition of attention:
• Given a set of vector values, and a vector query, attention is a technique to compute 

a weighted sum of the values, dependent on the query.

Intuition:
• The weighted sum is a selective summary of the information contained in the values, 

where the query determines which values to focus on.
• Attention is a way to obtain a fixed-size representation of an arbitrary set of 

representations (the values), dependent on some other representation (the query).

Upshot:
• Attention has become the powerful, flexible, general way pointer and memory 

manipulation in all deep learning models. A new idea from after 2010! From NMT!
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Summary of Attention in NMT

▶ Attention in NMT learns a soft alignment between output
and input tokens

▶ Attention uses a (non-parametric) set-of-vector
representation, instead of a (parametric) vector
representation, which is more appropriate for representing
language

▶ Attention accesses vectors in the set based only on their
content

▶ Attention is very effective whenever conditioning on
(arbitrarily long) text
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Today: Same goals, different building blocks

• Last week, we learned about sequence-to-sequence problems and 
encoder-decoder models.

• Today, we’re not trying to motivate entirely new ways of looking at 
problems (like Machine Translation)

• Instead, we’re trying to find the best building blocks to plug into our 
models and enable broad progress.

4

2014-2017ish 
Recurrence

Lots of trial 
and error

2021
??????
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Issues with recurrent models: Linear interaction distance

• RNNs are unrolled “left-to-right”.

• This encodes linear locality: a useful heuristic!

• Nearby words often affect each other’s meanings

• Problem: RNNs take O(sequence length) steps for 
distant word pairs to interact.

5

tasty pizza

The chef waswho  …

O(sequence length)
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Issues with recurrent models: Linear interaction distance

• O(sequence length) steps for distant word pairs to interact means:

• Hard to learn long-distance dependencies (because gradient problems!)

• Linear order of words is “baked in”; we already know linear order isn’t the 
right way to think about sentences…

6

The waschef who  …

Info of chef has gone through 
O(sequence length) many layers!
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Issues with recurrent models: Lack of parallelizability

• Forward and backward passes have O(sequence length) 
unparallelizable operations

• GPUs can perform a bunch of independent computations at once!

• But future RNN hidden states can’t be computed in full before past RNN 
hidden states have been computed

• Inhibits training on very large datasets!

7

h1

0

1 n

hTh2

1

2

2

3

Numbers indicate min # of steps before a state can be computed
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If not recurrence, then what? How about attention?

• Attention treats each word’s representation as a query to access and 
incorporate information from a set of values.

• We saw attention from the decoder to the encoder; today we’ll think about 
attention within a single sentence.

• Number of unparallelizable operations does not increase with sequence length.

• Maximum interaction distance: O(1), since all words interact at every layer!

embedding 0 0 0 0 0 0 0 0

h1 h2 hT

2 2 2 2 2 2 2 2
attention

attention
1 1 1 1 1 1 1 1

All words attend 
to all words in 
previous layer; 
most arrows here 
are omitted

8
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Attention as a soft, averaging lookup table

9

We can think of attention as performing fuzzy lookup in a key-value store.

In a lookup table, we have a table of keys
that map to values. The query matches 
one of the keys, returning its value.

In attention, the query matches all keys softly, 
to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.
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Self-Attention Hypothetical Example

10
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Self-Attention: keys, queries, values from the same sequence

11

Let 𝒘1:𝑛 be a sequence of words in vocabulary 𝑉, like Zuko made his uncle tea.

For each 𝒘𝑖 , let 𝒙𝑖 = 𝐸𝒘𝒊, where 𝐸 ∈ ℝ𝑑×|𝑉| is an embedding matrix.

1. Transform each word embedding with weight matrices Q, K, V , each in ℝ𝑑×𝑑

2. Compute pairwise similarities between keys and queries; normalize with softmax

𝒆𝑖𝑗 = 𝒒𝒊
⊤𝒌𝒋 𝜶𝑖𝑗 =

exp(𝒆𝑖𝑗)

σ𝑗′ exp(𝒆𝑖𝑗′)

3. Compute output for each word as weighted sum of values

𝒒𝑖 = 𝑄𝒙𝒊 (queries) 𝒌𝑖 = 𝐾𝒙𝒊 (keys) 𝒗𝑖 = 𝑉𝒙𝒊 (values)

𝒐𝑖 =෍

𝒋

𝜶𝑖𝑗 𝒗𝑖
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Barriers
• Doesn’t have an inherent 

notion of order! 

Barriers and solutions for Self-Attention as a building block

12

Solutions
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Fixing the first self-attention problem: sequence order

• Since self-attention doesn’t build in order information, we need to encode the order of the 
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝒑𝑖 ∈ ℝ𝑑, for 𝑖 ∈ {1,2, … , 𝑛} are position vectors

• Don’t worry about what the 𝑝𝑖 are made of yet!

• Easy to incorporate this info into our self-attention block: just add the 𝒑𝑖 to our inputs!

• Recall that 𝒙𝑖 is the embedding of the word at index 𝑖. The positioned embedding is:

෥𝒙𝑖 = 𝒙𝑖 + 𝒑𝑖
In deep self-attention 
networks, we do this at the 
first layer! You could 
concatenate them as well, 
but people mostly just add…

13
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• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

• Pros:

• Periodicity indicates that maybe “absolute position” isn’t as important

• Maybe can extrapolate to longer sequences as periods restart!

• Cons:

• Not learnable; also the extrapolation doesn’t really work!

Position representation vectors through sinusoids 

cos(𝑖/100002∗1/𝑑)
𝒑𝑖 =

sin(𝑖/100002∗1/𝑑)

sin(𝑖/100002∗
𝑑
2
/𝑑)

cos(𝑖/100002∗
𝑑
2/𝑑)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence
D

im
en

si
o

n

14
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• Learned absolute position representations: Let all 𝑝𝑖 be learnable parameters!

Learn a matrix 𝒑 ∈ ℝ𝑑×𝑛, and let each 𝒑𝑖 be a column of that matrix!

• Pros:

• Flexibility: each position gets to be learned to fit the data

• Cons:

• Definitely can’t extrapolate to indices outside 1,… , 𝑛.

• Most systems use this!

• Sometimes people try more flexible representations of position:

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

Position representation vectors learned from scratch

15
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Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning! It’s all just weighted 
averages

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

16
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Adding nonlinearities in self-attention

• Note that there are no elementwise 
nonlinearities in self-attention; 
stacking more self-attention layers 
just re-averages value vectors
(Why? Look at the notes!)

• Easy fix: add a feed-forward network
to post-process each output vector.

𝑚𝑖 = 𝑀𝐿𝑃 output𝑖
= 𝑊2 ∗ ReLU 𝑊1 output𝑖 + 𝑏1 + 𝑏2

The

𝑤1 𝑤2

chef

𝑤3

who

𝑤𝑛

food

…
self-attention

Intuition: the FF network processes the result of attention

FF FF FF FF

…
self-attention

FF FF FF FF

17
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Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning magic! It’s all just 
weighted averages

• Need to ensure we don’t 
“look at the future” when 
predicting a sequence

• Like in machine translation

• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

• Easy fix: apply the same 
feedforward network to each self-
attention output.

18
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Masking the future in self-attention

• To use self-attention in 
decoders, we need to ensure 
we can’t peek at the future.

• At every timestep, we could 
change the set of keys and 
queries to include only past 
words. (Inefficient!)

• To enable parallelization, we 
mask out attention to future 
words by setting attention 
scores to −∞.

The

chef

who

[START]

For encoding 
these words

We can look at these 
(not greyed out) words

𝑒𝑖𝑗 = ൝
𝑞𝑖
⊤𝑘𝑗 , 𝑗 ≤ 𝑖

−∞, 𝑗 > 𝑖

−∞

−∞−∞

−∞−∞ −∞

19
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Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning magic! It’s all just 
weighted averages

• Need to ensure we don’t 
“look at the future” when 
predicting a sequence

• Like in machine translation

• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

• Easy fix: apply the same 
feedforward network to each self-
attention output.

• Mask out the future by artificially 
setting attention weights to 0!

20
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• Self-attention:

• the basis of the method.

• Position representations:

• Specify the sequence order, since self-attention 
is an unordered function of its inputs.

• Nonlinearities:

• At the output of the self-attention block

• Frequently implemented as a simple feed-
forward network.

• Masking:

• In order to parallelize operations while not 
looking at the future.

• Keeps information about the future from 
“leaking” to the past.

Necessities for a self-attention building block:

21
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Summary of Attention instead of Recurrence

▶ Attention is all you need
▶ Plus a represention of sequence order, with absolute (or

relative) positions
▶ Plus layers of nonlinearity, for a fixed number of layers
▶ Plus causal masking, to similate running multiple models

on the same computation graph
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