EE-608: Deep Learning For Natural
Language Processing

James Henderson

sssssssssssssssss

Idiap Research Institute

DLNLP, Lecture 1

Outline

Course Introduction

Course Overview

Word Embeddings

Outline

Course Introduction

EE-608: Deep Learning For Natural Language
Processing

Lecturer: James Henderson
TAs: Melika Behjati, Andrei Coman, and Fabio Fehr
Emails: first.last@idiap.ch

Lectures: Wednesdays 10:15-12:00, DIAOO3
Slides will be uploaded before each lecture.

Exercises: Wednesdays 13:15-15:00, DIA0O3

(starting next week)
Exercises will be distributed at least a week before they are
discussed.

Course website:
https://moodle.epfl.ch/course/view.php?id=16062

Exercises

No Exercise session today. An exercise will be distributed today
for next week.

» We will be using PyTorch
> Exercise sessions for an introduction to PyTorch

> Exercise sessions for training and running existing models
for important NLP tasks

» Exercise sessions for help with projects

Evaluation

We will do evaluation with a course project
» Started around midway through the course
» Teams of 1-3 people
» Written report on the project (60% of grade)
» Oral presentation and answers to questions (40% of grade)

What do we plan to teach?

Provide an overview of neural network methods applied to text

» An understanding of the basic properties of human
language
» structured, unbounded
» categorical and continuous, large vocabulary

» An understanding of the deep learning methods commonly
used for language
» word embeddings
» RNN, LSTM, Seg2Seq
> attention, Transformers
» multi-task learning, pretraining, BERT, chatGPT

» The ability to build systems for some NLP tasks (in
PyTorch)
» Language modelling
» Machine translation
> Syntactic parsing
» Natural Language Inference

This course is contiually changing

» Based on the Stanford course “Natural Language
Processing with Deep Learning” by C. Manning

» See http://web.stanford.edu/class/cs224n/ for
further reading and some alternative topics

> We need student feedback to help develop the course

http://web.stanford.edu/class/cs224n/

Expected Student Background

» What are you studying?

» What topics do you already know?
» Calculus, linear algebra
» Probability and statistics
» Basic machine learning
» Neural networks
» Natural language processing

» What programming experience do you have?

» Python, NumPy
» PyTorch

Outline

Course Overview

Deep Learning is Representation Learning

The most important property of deep learning models is their
ability to learn their own latent representations.

» vector representations embed features and categories
(and possibly more) in a low-dimensional continuous
vector space

» bag-of-vectors representations can also embed
relationships between vectors, and can be arbitrarily large

» sequence-of-vectors representations add an explicit
ordering on vectors

» graphs-of-vectors add explicit graph relations between
vectors

Deep Learning is Representation Learning

Backpropagation training allows both the encoding into a
representation and the decoding from a representation to be
trained jointly. Any encoding and decoding functions can be
used, provided they are differentiable.

» multi-layered perceptrons
> resnets

» attention functions

> ...

When the decoding for one learned representation is the
encoding of another, it is a deep model.

Deep Learning For Natural Language Processing

Models

Properties

NLP Tasks

word embeddings
RNN, LSTM
BiLSTM with
pooling

Seq2Seq

attention

Transformer

continuous space,
semantic similarity

unbounded sequences,
induced state

unbounded input

unbounded output,
end-to-end training

unbounded memory,
content-based access

bag-of-vector representa-
tions, deep

information access
language modelling
text classification

machine translation
machine translation

machine translation

Deep Learning For Natural Language Processing

Models Properties NLP Tasks

NN transition- structured prediction, syntactic parsing
based parsing unfactorised

NN graph-based | structured prediction, syntactic parsing
parsing conditionally factorised

language-model | representation learning many tasks
pretraining

BERT, GPTn, | transfer learning many tasks
chatGPT

Outline

Word Embeddings

How do we represent the meaning of a word?

Definition: meaning (Webster dictionary)

* theidea thatis represented by a word, phrase, etc.

* theidea that a person wants to express by using words, signs, etc.
* theidea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

[signifier (symbol) < signified (idea or thing)]

= denotational semantics

[tree & {, @, W, e} }

Slide from Christopher Manning

16

How do we have usable meaning in a computer?

Previously commonest NLP solution: Use, e.g., WordNet, a thesaurus containing lists of
synonym sets and hypernyms (“is a” relationships)
e.g., synonym sets containing “good”: e.g., hypernyms of “panda”:

from nltk.corpus import wordnet as wn from nltk.corpus import wordnet as wn
poses = { 'n':'noun’, 'v':'verb', 's':'adj (s)', 'a':'adj', 'r':'adv'} B = (oG
for synset in wn.synsets("good"): P S W] P e
print("{}: {}".fornat(poses[synset.pos()], hyper = lanbda s: s.hypernyms()
", ".join([1.name() for 1 in synset.lemmas()]))) list(panda.closure(hyper))

noun: good

noun: good, goodness

noun: good, goodness

noun: commodity, trade_good, good

[Synset('procyonid.n.01'),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset('mammal.n.01'),

adj: good ' .
adj (sat): full, good zynSEEEIV:Ft:b;at&;i?; Ds
adj: good ynset('chordate.n. s

Synset('animal.n.01'),
Synset('organism.n.01'),
Synset('living_thing.n.01"),
Synset('whole.n.02"),
Synset('object.n.01'),
Synset('physical_entity.n.01'),
Synset('entity.n.01')]

adj (sat): estimable, good, honorable, respectable
adj (sat): beneficial, good

adj (sat): good

adj (sat): good, just, upright

adverb: well, good
adverb: thoroughly, soundly, good

17

Slide from Christopher Manning

Problems with resources like WordNet

* A useful resource but missing nuance:

* e.g., “proficient” is listed as a synonym for “good”
This is only correct in some contexts

* Also, WordNet list offensive synonyms in some synonym sets without any
coverage of the connotations or appropriateness of words

* Missing new meanings of words:
* e.g., wicked, badass, nifty, wizard, genius, ninja, bombest
* Impossible to keep up-to-date!
* Subjective
* Requires human labor to create and adapt
* Can’t be used to accurately compute word similarity (see following slides)

18

Slide from Christopher Manning

Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel — a localist representation

| Means one 1, the rest Os |

Such symbols for words can be represented by one-hot vectors:
motel=[000000000010000]
hotel=[000000010000000]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

19

Slide from Christopher Manning

Problem with words as discrete symbols

Example: in web search, if a user searches for “Seattle motel”, we would like to match
documents containing “Seattle hotel”

But:

motel=[000000000010000]
hotel=[000000010000000]

These two vectors are orthogonal
There is no natural notion of similarity for one-hot vectors!

Solution:
* Could try to rely on WordNet’s list of synonyms to get similarity?
* But it is well-known to fail badly: incompleteness, etc.

* Instead: learn to encode similarity in the vectors themselves
20

Slide from Christopher Manning

Representing words by their context

21

Distributional semantics: A word’s meaning is given
by the words that frequently appear close-by

* “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)
* One of the most successful ideas of modern statistical NLP!

When a word w appears in a text, its context is the set of words that appear nearby
(within a fixed-size window).

We use the many contexts of w to build up a representation of w

...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...

N\ /

These context words will represent banking

Slide from Christopher Manning

Word vectors

We will build a dense vector for each word, chosen so that it is similar to vectors of words
that appear in similar contexts, measuring similarity as the vector dot (scalar) product

N 4 N
0.286 0.413
0.792 0.582
-0.177 -0.007
banking = -0.107 monetary = 0.247
0.109 0.216
-0.542 -0.718
0.349 0.147
_ 0.271/ _ 0.051/

Note: word vectors are also called (word) embeddings or (neural) word representations
They are a distributed representation

22

Slide from Christopher Manning

Word meaning as a neural word vector — visualization

0.286

0.792

-0.177

-0.107

expect = 0.109
-0.542

0.349

0.271

0.487

23

Slide from Christopher Manning

need
come
o
take
el
qive keep
make get
e
meet cee continue
expect want become
think
say remain
be
being
been
had s
have

help

3. Word2vec: Overview

Word2vec (Mikolov et al. 2013) is a framework for learning word vectors

Idea:
* We have a large corpus (“body”) of text: a long list of words
» Every word in a fixed vocabulary is represented by a vector

* Go through each position t in the text, which has a center word ¢ and context
(“outside”) words o

* Use the similarity of the word vectors for c and o to calculate the probability of o given
¢ (or vice versa)

* Keep adjusting the word vectors to maximize this probability

24

Slide from Christopher Manning

Word2Vec Overview

Example windows and process for computing P(WH]- | wt)

P(wi—z | we) P(Weio | We)

P(Weyq | we)

problems turning banking crises as

L)
T E T ! L g

T
outside context words center word outside context words
in window of size 2 at position t in window of size 2

25

Slide from Christopher Manning

Word2Vec Overview

Example windows and process for computing P(WH]- | wt)

P(we_z | wy) P(Wegz | We)

problems turning into crises as

L T J
T T

S
outside context words center word outside context words
in window of size 2 at position t in window of size 2

26

Slide from Christopher Manning

Word2vec: objective function

For each position t = 1, ..., T, predict context words within a window of fixed size m,
given center word w,. Data Iikelihood

Likelihood = i(f)—l_[1_[P(wesj | we; 0)

—-msjsm
j#0

6 is all variables
to be optimized

sometimes called a cost or /oss function |

The objective function J(8) is the (average) negative log likelihood:

](9)———10gL(6)———z Z log P(e+; | we; 0)

-msjsm
j#0

Minimizing objective function & Maximizing predictive accuracy

27

Slide from Christopher Manning

Word2vec: objective function

* We want to minimize the objective function:
T

1
J@ ==2>" > logP(wes; | wi;6)
t=1-msjsm
j#0

* Question: How to calculate P(WH,]- | we; 6) ?

* Answer: We will use two vectors per word w:
* 1, when wis a center word
* u, when wis a context word

* Then for a center word ¢ and a context word o:

_ exp(ugve)
P(O|C) a ZWEV eXP(ua/Uc)

28

Slide from Christopher Manning

Word2Vec with Vectors

29

* Example windows and process for computing P(Wt+j | wt)

. P(upmblems | vinm) short for P(problems | into ; Uproblems» uim,e)

P(uprablems V‘nm)

problems turning

L J

L

I

All words vectors 6
appear in denominator

P(ucrisis |Vinto)

banking crises

J

T

T
outside context words center word outside context words

in window of size 2

Slide from Christopher Manning

Y

at position t

in window of size 2

as

Word2vec: prediction function

() Exponentiation makes anything positive
(@ Dot product compares similarity of o and c.

2Ty — 4 , — ' 5
T u'v=uv =35 w;
exp(Uo UC)/ Larger dot product = larger probability

2iwev exp(Uyve)
3 Normalize over entire vocabulary

to give probability distribution

P(o|c) =

* This is an example of the softmax function R™ — (0,1)" ~—_ Open
EXp(Xi) region
— Lt —y
ep(y)

* The softmax function maps arbitrary values x; to a probability distribution p;

softmax(x;) =

* “max” because amplifies probability of largest x;
P :) " \ But sort of a weird name
» “soft” because still assigns some probability to smaller x; because it returns a distribution!

* Frequently used in Deep Learning

30

Slide from Christopher Manning

To train the model: Optimize value of parameters to minimize loss

To train a model, we gradually adjust parameters to minimize a loss

* Recall: 6 represents all the r q o]

. Vaardvark e -
model parameters, in one v
a ~ X
long vector . X
* In our case, with oo "/
. . _ zebra 20V .|
d-dimensional vectors and 0= w eR
aardvark
V-many words, we have > u
a N\
* Remember: every word has : o -
two vectors .
L Uzebra

* We optimize these parameters by walking down the gradient (see right figure)

* We compute all vector gradients!
31

Slide from Christopher Manning

5. Optimization: Gradient Descent

* We have a cost function J(6) we want to minimize
» Gradient Descent is an algorithm to minimize J(6)

« Idea: for current value of 9, calculate gradient of /(8), then take small step in direction
of negative gradient. Repeat.

Cost

A Note: Our
objectives
may not
be convex
like this ®

Learning step

But life turns
out to be
okay ©

Minimum

\/
@

Random
initial value

D>

36

Slide from Christopher Manning

Gradient Descent

* Update equation (in matrix notation):

grew = 9ol — aVy.J(6)
1

I a = step size or learning rate I

» Update equation (for single parameter):

03 = 0519 — o J (6)

* Algorithm:

while True:
theta grad = evaluate gradient(J,corpus,theta)
theta = theta - alpha * theta grad

37

Slide from Christopher Manning

Stochastic Gradient Descent

Problem: /(0) is a function of all windows in the corpus (potentially billions!)
+ So VgJ(0) is very expensive to compute
* You would wait a very long time before making a single update!

* Very bad idea for pretty much all neural nets!
 Solution: Stochastic gradient descent (SGD)

* Repeatedly sample windows, and update after each one
* Algorithm:

while True:
window = sample_window(corpus)
theta grad = evaluate_gradient(J,window,theta)
theta = theta - alpha * theta grad

38

Slide from Christopher Manning

The skip-gram model with negative sampling (HW2)

The normalization term is computationally expensive (when many output classes):

exp(udvc)

ZWEV exp (u?,[,vc) ‘—' A big sum over words

e P(olc) =

* Hence, in standard word2vec and HW2 you implement the skip-gram model with
negative sampling

* Main idea: train binary logistic regressions to differentiate a true pair (center word and
a word in its context window) versus several “noise” pairs (the center word paired with
a random word)

Slide from Christopher Manning

Word2vec algorithm family (Mikolov et al. 2013): More details

Why two vectors? - Easier optimization. Average both at the end
* But can implement the algorithm with just one vector per word ... and it helps a bit
Two model variants:
1. Skip-grams (SG)
Predict context (“outside”) words (position independent) given center word
2. Continuous Bag of Words (CBOW)

Predict center word from (bag of) context words
We presented: Skip-gram model

Loss functions for training:
1. Naive softmax (simple but expensive loss function, when many output classes)
2. More optimized variants like hierarchical softmax
3. Negative sampling

So far, we explained naive softmax
9

Slide from Christopher Manning

The skip-gram model with negative sampling (HW2)
* Introduced in: “Distributed Representations of Words and Phrases and their

Compositionality” (Mikolov et al. 2013)
* Overall objective function (they maximize)' J(0) = % Z,‘Tﬂ Ji(0)

Ji(0) = 1oga(u Ve +Z]E]Np(w) [loga(uTUC)}

=1
1 e
* The logistic/sigmoid function: J(:L‘) = 1-1-% ,/
(we’ll become good friends soon) o5t
* We maximize the probability of two words //
co-occurring in first log and minimize probability el

of noise words in second part
10

Slide from Christopher Manning

The skip-gram model with negative sampling (HW2)
* Using notation consistent with this class and HW2:

— T
Jneg-sample (uo, v, U) = —log o(ufv,) — Z log o (uyv.)
ke{K sampled indices}

1

X)=——
* We take k negative samples (using word probabilities) e

* Maximize probability that real outside word appears;
minimize probability that random words appear around center word

+ Sample with P(w)=U(w)3/4/Z, the unigram distribution U(w) raised to the 3/4 power
(We provide this function in the starter code).

* The power makes less frequent words be sampled more often
11

Slide from Christopher Manning

Stochastic gradients with negative sampling [aside]

* We iteratively take gradients at each window for SGD
e In each window, we only have at most 2m + 1 words plus 2km negative

words with negative sampling, so VgJ(0) is very sparse!
. ;
vvhkc

VgJi(G) = 0 S RQdV
Vau,

v

Ulearning

12

Slide from Christopher Manning

Stochastic gradients with with negative sampling [aside]

* We might only update the word vectors that actually appear!

* Solution: either yc.>u need sparse matrix l.deate qperatlons to Rows not columns
only update certain rows of full embedding matrices U and V, «— inactual DL
or you need to keep around a hash for word vectors packages!

d
[J [J [e o
[J [J [e o
V|| ® e o e o
[[([] e o
- o Thisis also a
* If you have millions of word vectors and do distributed particular issue with
computing, it is important to not have to send gigantic more advanced
optimization
updates around! methods in the
Adagrad family

13

Slide from Christopher Manning

3. Why not capture co-occurrence counts directly?

There’s something weird about iterating through the whole corpus (perhaps many times);
why don’t we just accumulate all the statistics of what words appear near each other?!?

Building a co-occurrence matrix X
e 2 options: windows vs. full document

* Window: Similar to word2vec, use window around each word = captures some
syntactic and semantic information (“word space”)

* Word-document co-occurrence matrix will give general topics (all sports terms will
have similar entries) leading to “Latent Semantic Analysis” (“document space”)

14

Slide from Christopher Manning

Example: Window based co-occurrence matrix

e Window length 1 (more common: 5-10)
e Symmetric (irrelevant whether left or right context)

e Example corpus:
e |like deep learning
e |like NLP

e lenjoy flying

[comts |1k nior | doap L ioaing | nip i |- |

lear
NLP
B

o O » O B O O N
© B O O O ©O O ¥
P O O ©O © © » O
o B B B O O O O

0
2
1
0
0
0
0
0

O ©O © B O O ¥
=, O O ©O » ©O O
P O O © © » O

15

Slide from Christopher Manning

Co-occurrence vectors

* Simple count co-occurrence vectors
* Vectors increase in size with vocabulary
* Very high dimensional: require a lot of storage (though sparse)
* Subsequent classification models have sparsity issues = Models are less robust

* Low-dimensional vectors

* ldea: store “most” of the important information in a fixed, small number of
dimensions: a dense vector

e Usually 25-1000 dimensions, similar to word2vec
e How to reduce the dimensionality?

16

Slide from Christopher Manning

Classic Method: Dimensionality Reduction on X (HW1)

Singular Value Decomposition of co-occurrence matrix X

Factorizes X into USVT, where U and V are orthonormal

[+ * % %
¥ % % % X% L] ¥ X kX
¥ ¥ ¥ ¥ ¥| =[x % L] f f f f f
¥ % % % A k% [X ox K x
N J N N\ J
K v Y Lx * *x %
X U) \ ,
VT

Retain only k singular values, in order to generalize.

X is the best rank k approximation to X, in terms of least squares.

Classic linear algebra result. Expensive to compute for large matrices.
17

Slide from Christopher Manning

Hacks to X (several used in Rohde et al. 2005 in COALS)

* Running an SVD on raw counts doesn’t work well!!!

* Scaling the counts in the cells can help a lot
* Problem: function words (the, he, has) are too frequent = syntax has too much

impact. Some fixes:
* logthe frequencies
* min(X, t), with t = 100
e Ignore the function words

* Ramped windows that count closer words more than further away words

* Use Pearson correlations instead of counts, then set negative values to 0

* Etc.

18

Slide from Christopher Manning

Interesting semantic patterns emerge in the scaled vectors

DRIVER
© JANITOR
ofRIVE SWIMMER
© STUDENT
OCLEAN TEACHER
©DOCTOR
BRIDE
oSWIM
PRIEST
Y A /
IARRY
OTREAT OPRAY

COALS model from
Rohde et al. ms., 2005. An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence

19

Slide from Christopher Manning

GloVe [Pennington, Socher, and Manning, EMNLP 2014]:
Encoding meaning components in vector differences

Q: How can we capture ratios of co-occurrence probabilities as
linear meaning components in a word vector space?

A: Log-bilinear model: w; - w; = log P(i]j)

with vector differences Wy - (wg — wp) = log

\%4
Loss: J = Z f (Xij) (WiTWj +b; +Bj - logXif)2
i,j=1

e Fast training

e Scalable to huge corpora

Slide from Christopher Manning

4. How to evaluate word vectors?

* Related to general evaluation in NLP: Intrinsic vs. extrinsic
¢ Intrinsic:
« Evaluation on a specific/intermediate subtask
* Fast to compute
* Helps to understand that system
* Not clear if really helpful unless correlation to real task is established
e Extrinsic:
* Evaluation on a real task
« Can take a long time to compute accuracy
* Unclear if the subsystem is the problem or its interaction or other subsystems
« If replacing exactly one subsystem with another improves accuracy > Winning!

21

Slide from Christopher Manning

Intrinsic word vector evaluation

* Word Vector Analogies

man:woman :: king:?

* Evaluate word vectors by how well
their cosine distance after addition
captures intuitive semantic and
syntactic analogy questions

e Discarding the input words from the
search (!)

¢ Problem: What if the information is
there but not linear?

22

Slide from Christopher Manning

d = arg max
2

(Tp — x40 + Ec)T T

sz — Xq + I(;II

0.75

0.5

0.25

woman

GloVe Visualization

T T T T T T T T T
051 rheiress 7
i
04f ” 4
il | - countess
03 -aunt / ! ; duchess|
1 %iste?l i ! /
/
02 oy ! ! empress
1 [e
| / /
oal - !+ madam ro i
- I | ol
I heir Y
i ! 4
ok) nepH‘ew h S i
| ! ; woman ! v
| I i / loar!]
-0.1 h Luncle X , + qued
! brother ! / I /dduke
-0.2[i ! [i
I / i /’
/ emperor
_o03l ! , I P i
/ i
I / !
0.4 ! / | 1
/ Isir |
05+ {man king 4
. . . . L L L L
-05 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5

23
Slide from Christopher Manning

Meaning similarity: Another intrinsic word vector evaluation

* Word vector distances and their correlation with human judgments
e Example dataset: WordSim353 http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Word 1 Word 2__Human (mean) |

tiger cat 7.35
tiger tiger 10

book paper 7.46
computer internet 7.58
plane car 5.77
professor doctor 6.62
stock phone 1.62
stock CcD 1.31
stock jaguar 0.92

24

Slide from Christopher Manning

Correlation evaluation

* Word vector distances and their correlation with human judgments
Model Size |WS353 MC RG SCWS RW
SVD 6B | 353 35.1 425 383 256
SVD-S 6B | 565 715 71.0 53.6 347
SVD-L 6B 65.7 727 75.1 56.5 37.0
CBOW' 6B 572 656 682 570 325
SGT 6B 62.8 652 69.7 58.1 372
GloVe 6B | 658 727 778 539 38.1
SVD-L 42B| 740 764 741 583 399
GloVe 42B| 759 83.6 829 59.6 47.8
CBOW* 100B| 684 79.6 754 59.4 455

* Some ideas from Glove paper have been shown to improve skip-gram (SG) model also
(e.g., average both vectors)

25

Slide from Christopher Manning

Extrinsic word vector evaluation

¢ One example where good word vectors should help directly: named entity recognition: identifying
references to a person, organization or location: Chris Manning lives in Palo Alto.

Model | Dev Test ACE MUC7
Discrete | 91.0 854 77.4 73.4
SVD 90.8 857 773 737
SVD-S | 91.0 855 776 743
SVD-L | 90.5 848 73.6 715
HPCA | 926 88.7 81.7 807
HSMN | 90.5 857 787 174.7
CwW 922 874 81.7 802
CBOW | 93.1 882 822 8l.1
GloVe |93.2 883 829 822

* Subsequent NLP tasks in this class are other examples. So, more examples soon.

26

Slide from Christopher Manning

5. Word senses and word sense ambiguity

* Most words have lots of meanings!
* Especially common words
* Especially words that have existed for a long time

* Example: pike

* Does one vector capture all these meanings or do we have a mess?

27

Slide from Christopher Manning

pike

* A sharp point or staff

* Atype of elongated fish

* Arailroad line or system

* Atype of road

* The future (coming down the pike)

* Atype of body position (as in diving)
* To kill or pierce with a pike

* To make one’s way (pike along)

* In Australian English, pike means to pull out from doing something: / reckon he could
have climbed that cliff, but he piked!

28

Slide from Christopher Manning

Improving Word Representations Via Global Context And
Multiple Word Prototypes (Huang et al. 2012)

* ldea: Cluster word windows around words, retrain with each word assigned to multiple
different clusters bank;, bank,, etc.

oy
venton | Comersaton .
converbs " sl magazios
<inod hrase meaning
vansat
es R S 7 .
sense reason -
desire o mang microson
retoion
nats
e k plevision
Wy g cetetration
laundering camera | venue g consteltion
ransacion st Soepn e orace
“ schedule g mars sun
nance sting L s an. asteroid
banking Keyboard>*® PRRBsal jalaxy moon
e sone [
secret
cumeney "
L, machine . hisa
s estate
iy figiing uard Saval
coupl?" chesle ighting regiment
S
cont Bk 4
september nding 3 n
iy adgust PG b8y Riiepa sdgomarine undergraduate
april e e P . port
i e st
ago " ter eriory
g
W RHap0e
1971 o
1obs. 1948 goider e s goddess
e =] 0
oreifun s o

29

Slide from Christopher Manning

Linear Algebraic Structure of Word Senses, with
Applications to Polysemy (arora, .., Ma, .., TACL 2018)

« Different senses of a word reside in a linear superposition (weighted
sum) in standard word embeddings like word2vec

* Vpike = @1Vpike, T ®2Vpike,* ¥3Vpike,

* Where a; = etc., for frequency f

fi
fitfatfs
e Surprising result:
» Because of ideas from sparse coding you can actually separate out
the senses (providing they are relatively common)!

tie
trousers | season scoreline | wires operatic
blouse |teams goalless | cables soprano
waistcoat | winning equaliser |wiring |mezzo
skirt league clinching |electrical | contralto
sleeved | finished scoreless | wire baritone
30 pants championship | replay cable coloratura

Slide from Christopher Manning

Summary of Word Embeddings (part1)

» Similarity of word meanings is a continuous,
multi-dimentional phenomenon which is hard to define
» This is addressed by embedding words in a continuous

vector space, called “word embeddings”, and using the dot
product to predict word similarity

» Word embeddings can be learned automatically by training
them to predict word coocurrance in (very) large corpora

» Words are similar if they have similar distributions of
context words

Summary of Word Embeddings (part 2)

» |n fact, word embeddings are low dimensional
factorisations of a word coocurrance matrix

» Different transforms of the matrix and different optimisers
give different word embeddings, but they all perform
similarly

» Intrinsic evaluations measure useful properties in word
embeddings (e.g. similarity as dot product, analogy as
vector difference)

» Extrinsic evaluations test embeddings for their usefulness
in other tasks

» Some aspects of word ambiguity are better modelled as
discrete

	Course Introduction
	Course Overview
	Word Embeddings

