
EE-608: Deep Learning For Natural
Language Processing

James Henderson

Idiap Research Institute

DLNLP, Lecture 1

Outline

Course Introduction

Course Overview

Word Embeddings

Outline

Course Introduction

Course Overview

Word Embeddings

EE-608: Deep Learning For Natural Language
Processing

Lecturer: James Henderson

TAs: Melika Behjati, Andrei Coman, and Fabio Fehr

Emails: first.last@idiap.ch

Lectures: Wednesdays 10:15–12:00, DIA003
Slides will be uploaded before each lecture.

Exercises: Wednesdays 13:15–15:00, DIA003
(starting next week)

Exercises will be distributed at least a week before they are
discussed.

Course website:
https://moodle.epfl.ch/course/view.php?id=16062

Exercises

No Exercise session today. An exercise will be distributed today
for next week.
▶ We will be using PyTorch
▶ Exercise sessions for an introduction to PyTorch
▶ Exercise sessions for training and running existing models

for important NLP tasks
▶ Exercise sessions for help with projects

Evaluation

We will do evaluation with a course project
▶ Started around midway through the course
▶ Teams of 1-3 people
▶ Written report on the project (60% of grade)
▶ Oral presentation and answers to questions (40% of grade)

What do we plan to teach?

Provide an overview of neural network methods applied to text
▶ An understanding of the basic properties of human

language
▶ structured, unbounded
▶ categorical and continuous, large vocabulary

▶ An understanding of the deep learning methods commonly
used for language
▶ word embeddings
▶ RNN, LSTM, Seg2Seq
▶ attention, Transformers
▶ multi-task learning, pretraining, BERT, chatGPT

▶ The ability to build systems for some NLP tasks (in
PyTorch)
▶ Language modelling
▶ Machine translation
▶ Syntactic parsing
▶ Natural Language Inference

This course is contiually changing

▶ Based on the Stanford course “Natural Language
Processing with Deep Learning” by C. Manning

▶ See http://web.stanford.edu/class/cs224n/ for
further reading and some alternative topics

▶ We need student feedback to help develop the course

http://web.stanford.edu/class/cs224n/

Expected Student Background

▶ What are you studying?
▶ What topics do you already know?

▶ Calculus, linear algebra
▶ Probability and statistics
▶ Basic machine learning
▶ Neural networks
▶ Natural language processing

▶ What programming experience do you have?
▶ Python, NumPy
▶ PyTorch

Outline

Course Introduction

Course Overview

Word Embeddings

Deep Learning is Representation Learning

The most important property of deep learning models is their
ability to learn their own latent representations.
▶ vector representations embed features and categories

(and possibly more) in a low-dimensional continuous
vector space

▶ bag-of-vectors representations can also embed
relationships between vectors, and can be arbitrarily large

▶ sequence-of-vectors representations add an explicit
ordering on vectors

▶ graphs-of-vectors add explicit graph relations between
vectors

Deep Learning is Representation Learning

Backpropagation training allows both the encoding into a
representation and the decoding from a representation to be
trained jointly. Any encoding and decoding functions can be
used, provided they are differentiable.
▶ multi-layered perceptrons
▶ resnets
▶ attention functions
▶ . . .

When the decoding for one learned representation is the
encoding of another, it is a deep model.

Deep Learning For Natural Language Processing

Models Properties NLP Tasks

word embeddings continuous space,
semantic similarity

information access

RNN, LSTM unbounded sequences,
induced state

language modelling

BiLSTM with
pooling

unbounded input text classification

Seq2Seq unbounded output,
end-to-end training

machine translation

attention unbounded memory,
content-based access

machine translation

Transformer bag-of-vector representa-
tions, deep

machine translation

Deep Learning For Natural Language Processing

Models Properties NLP Tasks

NN transition-
based parsing

structured prediction,
unfactorised

syntactic parsing

NN graph-based
parsing

structured prediction,
conditionally factorised

syntactic parsing

language-model
pretraining

representation learning many tasks

BERT, GPTn,
chatGPT

transfer learning many tasks

.

Outline

Course Introduction

Course Overview

Word Embeddings

How do we represent the meaning of a word?

16

Definition: meaning (Webster dictionary)

• the idea that is represented by a word, phrase, etc.

• the idea that a person wants to express by using words, signs, etc.

• the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

signifier (symbol) ⟺ signified (idea or thing)

= denotational semantics

tree ⟺ {🌳, 🌲, 🌴, …}

Slide from Christopher Manning

How do we have usable meaning in a computer?

17

Previously commonest NLP solution: Use, e.g., WordNet, a thesaurus containing lists of
synonym sets and hypernyms (“is a” relationships)

[Synset('procyonid.n.01'),

Synset('carnivore.n.01'),

Synset('placental.n.01'),

Synset('mammal.n.01'),

Synset('vertebrate.n.01'),

Synset('chordate.n.01'),

Synset('animal.n.01'),

Synset('organism.n.01'),

Synset('living_thing.n.01'),

Synset('whole.n.02'),

Synset('object.n.01'),

Synset('physical_entity.n.01'),

Synset('entity.n.01')]

noun: good

noun: good, goodness

noun: good, goodness

noun: commodity, trade_good, good

adj: good

adj (sat): full, good

adj: good

adj (sat): estimable, good, honorable, respectable

adj (sat): beneficial, good

adj (sat): good

adj (sat): good, just, upright

…

adverb: well, good

adverb: thoroughly, soundly, good

e.g., synonym sets containing “good”: e.g., hypernyms of “panda”:
from nltk.corpus import wordnet as wn

poses = { 'n':'noun', 'v':'verb', 's':'adj (s)', 'a':'adj', 'r':'adv'}

for synset in wn.synsets("good"):

print("{}: {}".format(poses[synset.pos()],

", ".join([l.name() for l in synset.lemmas()])))

from nltk.corpus import wordnet as wn

panda = wn.synset("panda.n.01")

hyper = lambda s: s.hypernyms()

list(panda.closure(hyper))

Slide from Christopher Manning

Problems with resources like WordNet

18

• A useful resource but missing nuance:

• e.g., “proficient” is listed as a synonym for “good”
This is only correct in some contexts

• Also, WordNet list offensive synonyms in some synonym sets without any
coverage of the connotations or appropriateness of words

• Missing new meanings of words:

• e.g., wicked, badass, nifty, wizard, genius, ninja, bombest

• Impossible to keep up-to-date!

• Subjective

• Requires human labor to create and adapt

• Can’t be used to accurately compute word similarity (see following slides)

Slide from Christopher Manning

Representing words as discrete symbols

19

In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel – a localist representation

Such symbols for words can be represented by one-hot vectors:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Means one 1, the rest 0s

Slide from Christopher Manning

Problem with words as discrete symbols

Example: in web search, if a user searches for “Seattle motel”, we would like to match
documents containing “Seattle hotel”

But:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

These two vectors are orthogonal

There is no natural notion of similarity for one-hot vectors!

Solution:

• Could try to rely on WordNet’s list of synonyms to get similarity?

• But it is well-known to fail badly: incompleteness, etc.

• Instead: learn to encode similarity in the vectors themselves

Sec. 9.2.2

20

Slide from Christopher Manning

Representing words by their context

21

• Distributional semantics: A word’s meaning is given
by the words that frequently appear close-by

• “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

• One of the most successful ideas of modern statistical NLP!

• When a word w appears in a text, its context is the set of words that appear nearby
(within a fixed-size window).

• We use the many contexts of w to build up a representation of w

…government debt problems turning into banking crises as happened in 2009…

…saying that Europe needs unified banking regulation to replace the hodgepodge…

…India has just given its banking system a shot in the arm…

These context words will represent banking

Slide from Christopher Manning

Word vectors

22

We will build a dense vector for each word, chosen so that it is similar to vectors of words
that appear in similar contexts, measuring similarity as the vector dot (scalar) product

Note: word vectors are also called (word) embeddings or (neural) word representations
They are a distributed representation

banking =

0.286
0.792

−0.177
−0.107

0.109
−0.542

0.349
0.271

monetary =

0.413
0.582

−0.007
0.247
0.216

−0.718
0.147
0.051

Slide from Christopher Manning

Word meaning as a neural word vector – visualization

0.286
0.792

−0.177
−0.107

0.109
−0.542

0.349
0.271
0.487

expect =

23

Slide from Christopher Manning

3. Word2vec: Overview

Word2vec (Mikolov et al. 2013) is a framework for learning word vectors

Idea:

• We have a large corpus (“body”) of text: a long list of words

• Every word in a fixed vocabulary is represented by a vector

• Go through each position t in the text, which has a center word c and context
(“outside”) words o

• Use the similarity of the word vectors for c and o to calculate the probability of o given
c (or vice versa)

• Keep adjusting the word vectors to maximize this probability

24

Slide from Christopher Manning

Word2Vec Overview

Example windows and process for computing 𝑃 𝑤𝑡+𝑗 | 𝑤𝑡

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

𝑃 𝑤𝑡+1 | 𝑤𝑡

𝑃 𝑤𝑡+2 | 𝑤𝑡

𝑃 𝑤𝑡−1 | 𝑤𝑡

𝑃 𝑤𝑡−2 | 𝑤𝑡

25

Slide from Christopher Manning

Word2Vec Overview

Example windows and process for computing 𝑃 𝑤𝑡+𝑗 | 𝑤𝑡

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

𝑃 𝑤𝑡+1 | 𝑤𝑡

𝑃 𝑤𝑡+2 | 𝑤𝑡

𝑃 𝑤𝑡−1 | 𝑤𝑡

𝑃 𝑤𝑡−2 | 𝑤𝑡

26

Slide from Christopher Manning

Word2vec: objective function

27

For each position 𝑡 = 1,… , 𝑇, predict context words within a window of fixed size m,
given center word 𝑤𝑡. Data likelihood:

𝐿 𝜃 =ෑ

𝑡=1

𝑇

ෑ
−𝑚≤𝑗≤𝑚

𝑗≠0

𝑃 𝑤𝑡+𝑗 | 𝑤𝑡; 𝜃

The objective function 𝐽 𝜃 is the (average) negative log likelihood:

𝐽 𝜃 = −
1

𝑇
log 𝐿(𝜃) = −

1

𝑇
෍

𝑡=1

𝑇

෍
−𝑚≤𝑗≤𝑚

𝑗≠0

log 𝑃 𝑤𝑡+𝑗 | 𝑤𝑡; 𝜃

Minimizing objective function ⟺ Maximizing predictive accuracy

Likelihood =

𝜃 is all variables
to be optimized

sometimes called a cost or loss function

Slide from Christopher Manning

Word2vec: objective function

28

• We want to minimize the objective function:

𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍
−𝑚≤𝑗≤𝑚

𝑗≠0

log 𝑃 𝑤𝑡+𝑗 | 𝑤𝑡; 𝜃

• Question: How to calculate 𝑃 𝑤𝑡+𝑗 | 𝑤𝑡; 𝜃 ?

• Answer: We will use two vectors per word w:
• 𝑣𝑤 when w is a center word

• 𝑢𝑤 when w is a context word

• Then for a center word c and a context word o:

𝑃 𝑜 𝑐 =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑤∈𝑉 exp(𝑢𝑤
𝑇 𝑣𝑐)

Slide from Christopher Manning

Word2Vec with Vectors

• Example windows and process for computing 𝑃 𝑤𝑡+𝑗 | 𝑤𝑡

• 𝑃 𝑢𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 | 𝑣𝑖𝑛𝑡𝑜 short for P 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 | 𝑖𝑛𝑡𝑜 ; 𝑢𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠, 𝑣𝑖𝑛𝑡𝑜 , 𝜃

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

𝑃 𝑢𝑏𝑎𝑛𝑘𝑖𝑛𝑔 |𝑣𝑖𝑛𝑡𝑜

𝑃 𝑢𝑐𝑟𝑖𝑠𝑖𝑠 |𝑣𝑖𝑛𝑡𝑜

𝑃 𝑢𝑡𝑢𝑛𝑖𝑛𝑔 | 𝑣𝑖𝑛𝑡𝑜

𝑃 𝑢𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 | 𝑣𝑖𝑛𝑡𝑜

29

All words vectors 𝜃
appear in denominator

Slide from Christopher Manning

Word2vec: prediction function

𝑃 𝑜 𝑐 =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑤∈𝑉 exp(𝑢𝑤
𝑇 𝑣𝑐)

• This is an example of the softmax function ℝ𝑛 → (0,1)𝑛

softmax 𝑥𝑖 =
exp(𝑥𝑖)

σ𝑗=1
𝑛 exp(𝑥𝑗)

= 𝑝𝑖

• The softmax function maps arbitrary values 𝑥𝑖 to a probability distribution 𝑝𝑖
• “max” because amplifies probability of largest 𝑥𝑖
• “soft” because still assigns some probability to smaller 𝑥𝑖
• Frequently used in Deep Learning

① Dot product compares similarity of o and c.
𝑢𝑇𝑣 = 𝑢. 𝑣 = σ𝑖=1

𝑛 𝑢𝑖𝑣𝑖
Larger dot product = larger probability

③ Normalize over entire vocabulary
to give probability distribution

30

② Exponentiation makes anything positive

Open
region

But sort of a weird name
because it returns a distribution!

Slide from Christopher Manning

To train the model: Optimize value of parameters to minimize loss

31

To train a model, we gradually adjust parameters to minimize a loss

• Recall: 𝜃 represents all the
model parameters, in one
long vector

• In our case, with
d-dimensional vectors and
V-many words, we have →

• Remember: every word has
two vectors

• We optimize these parameters by walking down the gradient (see right figure)

• We compute all vector gradients!

Slide from Christopher Manning

5. Optimization: Gradient Descent

• We have a cost function 𝐽 𝜃 we want to minimize

• Gradient Descent is an algorithm to minimize 𝐽 𝜃

• Idea: for current value of 𝜃, calculate gradient of 𝐽 𝜃 , then take small step in direction
of negative gradient. Repeat.

Note: Our
objectives
may not
be convex
like this 

But life turns
out to be
okay ☺

36

Slide from Christopher Manning

• Update equation (in matrix notation):

• Update equation (for single parameter):

• Algorithm:

Gradient Descent

𝛼 = step size or learning rate

37

Slide from Christopher Manning

Stochastic Gradient Descent

• Problem: 𝐽 𝜃 is a function of all windows in the corpus (potentially billions!)

• So is very expensive to compute

• You would wait a very long time before making a single update!

• Very bad idea for pretty much all neural nets!

• Solution: Stochastic gradient descent (SGD)
• Repeatedly sample windows, and update after each one

• Algorithm:

38

Slide from Christopher Manning

The skip-gram model with negative sampling (HW2)

• The normalization term is computationally expensive (when many output classes):

• 𝑃 𝑜 𝑐 = !"#(%!"&#)
∑$∈& !"#(%$

" &#)

• Hence, in standard word2vec and HW2 you implement the skip-gram model with
negative sampling

• Main idea: train binary logistic regressions to differentiate a true pair (center word and
a word in its context window) versus several “noise” pairs (the center word paired with
a random word)

8

A big sum over words

Slide from Christopher Manning

Word2vec algorithm family (Mikolov et al. 2013): More details

Why two vectors? à Easier optimization. Average both at the end
• But can implement the algorithm with just one vector per word … and it helps a bit

Two model variants:
1. Skip-grams (SG)

Predict context (“outside”) words (position independent) given center word

2. Continuous Bag of Words (CBOW)
Predict center word from (bag of) context words

We presented: Skip-gram model

Loss functions for training:
1. Naïve softmax (simple but expensive loss function, when many output classes)
2. More optimized variants like hierarchical softmax
3. Negative sampling

So far, we explained naïve softmax
9

Slide from Christopher Manning

The skip-gram model with negative sampling (HW2)

10

• Introduced in: “Distributed Representations of Words and Phrases and their
Compositionality” (Mikolov et al. 2013)

• Overall objective function (they maximize):

• The logistic/sigmoid function:
(we’ll become good friends soon)

• We maximize the probability of two words
co-occurring in first log and minimize probability
of noise words in second part

Slide from Christopher Manning

The skip-gram model with negative sampling (HW2)

• Using notation consistent with this class and HW2:

𝐽+,-./0123, 𝒖4, 𝒗5, 𝑈 = − log 𝜎 𝒖4*𝒗5 − 9
6∈{9 /0123,: ;+:;5,/}

log 𝜎(𝒖6*𝒗5)

• We take k negative samples (using word probabilities)
• Maximize probability that real outside word appears;

minimize probability that random words appear around center word

• Sample with P(w)=U(w)3/4/Z, the unigram distribution U(w) raised to the 3/4 power
(We provide this function in the starter code).

• The power makes less frequent words be sampled more often
11

𝜎 𝑥 =
1

1 + 𝑒!"

Slide from Christopher Manning

Stochastic gradients with negative sampling [aside]

• We iteratively take gradients at each window for SGD
• In each window, we only have at most 2m + 1 words plus 2km negative

words with negative sampling, so ∇C𝐽D(𝜃) is very sparse!

12

Slide from Christopher Manning

Stochastic gradients with with negative sampling [aside]

• We might only update the word vectors that actually appear!

• Solution: either you need sparse matrix update operations to
only update certain rows of full embedding matrices U and V,
or you need to keep around a hash for word vectors

• If you have millions of word vectors and do distributed
computing, it is important to not have to send gigantic
updates around!

[]|V|

d

13

Rows not columns
in actual DL
packages!

This is also a
particular issue with
more advanced
optimization
methods in the
Adagrad family

Slide from Christopher Manning

3. Why not capture co-occurrence counts directly?

14

There’s something weird about iterating through the whole corpus (perhaps many times);
why don’t we just accumulate all the statistics of what words appear near each other?!?

Building a co-occurrence matrix X
• 2 options: windows vs. full document
• Window: Similar to word2vec, use window around each word à captures some

syntactic and semantic information (“word space”)
• Word-document co-occurrence matrix will give general topics (all sports terms will

have similar entries) leading to “Latent Semantic Analysis” (“document space”)

Slide from Christopher Manning

Example: Window based co-occurrence matrix

15

• Window length 1 (more common: 5–10)
• Symmetric (irrelevant whether left or right context)

• Example corpus:
• I like deep learning
• I like NLP
• I enjoy flying

counts I like enjoy deep learning NLP flying .

I 0 2 1 0 0 0 0 0

like 2 0 0 1 0 1 0 0

enjoy 1 0 0 0 0 0 1 0

deep 0 1 0 0 1 0 0 0

learning 0 0 0 1 0 0 0 1

NLP 0 1 0 0 0 0 0 1

flying 0 0 1 0 0 0 0 1

. 0 0 0 0 1 1 1 0

Slide from Christopher Manning

Co-occurrence vectors

16

• Simple count co-occurrence vectors
• Vectors increase in size with vocabulary
• Very high dimensional: require a lot of storage (though sparse)
• Subsequent classification models have sparsity issues à Models are less robust

• Low-dimensional vectors
• Idea: store “most” of the important information in a fixed, small number of

dimensions: a dense vector
• Usually 25–1000 dimensions, similar to word2vec
• How to reduce the dimensionality?

Slide from Christopher Manning

Classic Method: Dimensionality Reduction on X (HW1)

17

Singular Value Decomposition of co-occurrence matrix X
Factorizes X into UΣVT, where U and V are orthonormal

Retain only k singular values, in order to generalize.
$𝑋 is the best rank k approximation to X , in terms of least squares.
Classic linear algebra result. Expensive to compute for large matrices.

kX

Slide from Christopher Manning

Hacks to X (several used in Rohde et al. 2005 in COALS)

18

• Running an SVD on raw counts doesn’t work well!!!

• Scaling the counts in the cells can help a lot
• Problem: function words (the, he, has) are too frequent à syntax has too much

impact. Some fixes:
• log the frequencies
• min(X, t), with t ≈ 100
• Ignore the function words

• Ramped windows that count closer words more than further away words
• Use Pearson correlations instead of counts, then set negative values to 0
• Etc.

Slide from Christopher Manning

Interesting semantic patterns emerge in the scaled vectors
Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence

DRIVE

LEARN

DOCTOR

CLEAN

DRIVER

STUDENT

TEACH

TEACHER

TREAT PRAY

PRIEST

MARRY

SWIM
BRIDE

JANITOR
SWIMMER

Figure 13: Multidimensional scaling for nouns and their associated verbs.

Table 10
The 10 nearest neighbors and their percent correlation similarities for a set of nouns, under the COALS-14K model.

gun point mind monopoly cardboard lipstick leningrad feet
1) 46.4 handgun 32.4 points 33.5 minds 39.9 monopolies 47.4 plastic 42.9 shimmery 24.0 moscow 59.5 inches
2) 41.1 firearms 29.2 argument 24.9 consciousness 27.8 monopolistic 37.2 foam 40.8 eyeliner 22.7 sevastopol 57.7 foot
3) 41.0 firearm 25.4 question 23.2 thoughts 26.5 corporations 36.7 plywood 38.8 clinique 22.7 petersburg 52.0 metres
4) 35.3 handguns 22.3 arguments 22.4 senses 25.0 government 35.6 paper 38.4 mascara 20.7 novosibirsk 45.7 legs
5) 35.0 guns 21.5 idea 22.2 subconscious 23.2 ownership 34.8 corrugated 37.2 revlon 20.3 russia 45.4 centimeters
6) 32.7 pistol 20.1 assertion 20.8 thinking 22.2 property 32.3 boxes 35.4 lipsticks 19.6 oblast 44.4 meters
7) 26.3 weapon 19.5 premise 20.6 perception 22.2 capitalism 31.3 wooden 35.3 gloss 19.5 minsk 40.2 inch
8) 24.4 rifles 19.3 moot 20.4 emotions 21.8 capitalist 31.0 glass 34.1 shimmer 19.2 stalingrad 38.4 shoulders
9) 24.2 shotgun 18.9 distinction 20.1 brain 21.6 authority 30.7 fabric 33.6 blush 19.1 ussr 37.8 knees
10) 23.6 weapons 18.7 statement 19.9 psyche 21.3 subsidies 30.5 aluminum 33.5 nars 19.0 soviet 36.9 toes

Table 11
The 10 nearest neighbors for a set of verbs, according to the COALS-14K model.

need buy play change send understand explain create
1) 50.4 want 53.5 buying 63.5 playing 56.9 changing 55.0 sending 56.3 comprehend 53.0 understand 58.2 creating
2) 50.2 needed 52.5 sell 55.5 played 55.3 changes 42.0 email 53.0 explain 46.3 describe 50.6 creates
3) 42.1 needing 49.1 bought 47.6 plays 48.9 changed 40.2 e-mail 49.5 understood 40.0 explaining 45.1 develop
4) 41.2 needs 41.8 purchase 37.2 players 32.2 adjust 39.8 unsubscribe 44.8 realize 39.8 comprehend 43.3 created
5) 41.1 can 40.3 purchased 35.4 player 30.2 affect 37.3 mail 40.9 grasp 39.7 explained 42.6 generate
6) 39.5 able 39.7 selling 33.8 game 29.5 modify 35.7 please 39.1 know 39.0 prove 37.8 build
7) 36.3 try 38.2 sells 32.3 games 28.3 different 33.3 subscribe 38.8 believe 38.2 clarify 36.4 maintain
8) 35.4 should 36.3 buys 29.0 listen 27.1 alter 33.1 receive 38.5 recognize 37.1 argue 36.4 produce
9) 35.3 do 34.0 sale 26.8 playable 25.6 shift 32.7 submit 38.0 misunderstand 37.0 refute 35.4 integrate
10) 34.7 necessary 31.5 cheap 25.0 beat 25.1 altering 31.5 address 37.9 understands 35.9 tell 35.2 implement

Table 12
The 10 nearest neighbors for a set of adjectives, according to the COALS-14K model.

high frightened red correct similar fast evil christian
1) 57.5 low 45.6 scared 53.7 blue 59.0 incorrect 44.9 similiar 43.1 faster 24.3 sinful 48.5 catholic
2) 51.9 higher 37.2 terrified 47.8 yellow 37.7 accurate 43.2 different 41.2 slow 23.4 wicked 48.1 protestant
3) 43.4 lower 33.7 confused 45.1 purple 37.5 proper 40.8 same 37.8 slower 23.2 vile 47.9 christians
4) 43.2 highest 33.3 frustrated 44.9 green 36.3 wrong 40.6 such 28.2 rapidly 22.5 demons 47.2 orthodox
5) 35.9 lowest 32.6 worried 43.2 white 34.1 precise 37.7 specific 27.3 quicker 22.3 satan 47.1 religious
6) 31.5 increases 32.4 embarrassed 42.8 black 32.9 exact 35.6 identical 26.8 quick 22.3 god 46.4 christianity
7) 30.7 increase 32.3 angry 36.8 colored 30.7 erroneous 34.6 these 25.9 speeds 22.3 sinister 43.8 fundamentalist
8) 29.2 increasing 31.6 afraid 35.6 orange 30.6 valid 34.4 unusual 25.8 quickly 22.0 immoral 43.5 jewish
9) 28.7 increased 30.4 upset 33.5 grey 30.6 inaccurate 34.1 certain 25.5 speed 21.5 hateful 43.2 evangelical
10) 28.3 lowering 30.3 annoyed 32.4 reddish 29.8 acceptable 32.7 various 24.3 easy 21.3 sadistic 41.2 mormon

24

19

COALS model from
Rohde et al. ms., 2005. An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence

Slide from Christopher Manning

A: Log-bilinear model:

with vector differences

GloVe [Pennington, Socher, and Manning, EMNLP 2014]:
Encoding meaning components in vector differences

Q: How can we capture ratios of co-occurrence probabilities as
linear meaning components in a word vector space?

• Fast training
• Scalable to huge corpora

Loss:

Slide from Christopher Manning

4. How to evaluate word vectors?

• Related to general evaluation in NLP: Intrinsic vs. extrinsic
• Intrinsic:

• Evaluation on a specific/intermediate subtask
• Fast to compute
• Helps to understand that system
• Not clear if really helpful unless correlation to real task is established

• Extrinsic:
• Evaluation on a real task
• Can take a long time to compute accuracy
• Unclear if the subsystem is the problem or its interaction or other subsystems
• If replacing exactly one subsystem with another improves accuracy à Winning!

21

Slide from Christopher Manning

Intrinsic word vector evaluation

• Word Vector Analogies

• Evaluate word vectors by how well
their cosine distance after addition
captures intuitive semantic and
syntactic analogy questions

• Discarding the input words from the
search (!)

• Problem: What if the information is
there but not linear?

man:woman :: king:?

a:b :: c:?

king

man
woman

22

Slide from Christopher Manning

GloVe Visualization

23

Slide from Christopher Manning

Meaning similarity: Another intrinsic word vector evaluation

• Word vector distances and their correlation with human judgments
• Example dataset: WordSim353 http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

24

Word 1 Word 2 Human (mean)
tiger cat 7.35
tiger tiger 10
book paper 7.46
computer internet 7.58
plane car 5.77
professor doctor 6.62
stock phone 1.62
stock CD 1.31
stock jaguar 0.92

Slide from Christopher Manning

Correlation evaluation

• Word vector distances and their correlation with human judgments

• Some ideas from Glove paper have been shown to improve skip-gram (SG) model also
(e.g., average both vectors)

the sum W +W̃ as our word vectors. Doing so typ-
ically gives a small boost in performance, with the
biggest increase in the semantic analogy task.

We compare with the published results of a va-
riety of state-of-the-art models, as well as with
our own results produced using the word2vec
tool and with several baselines using SVDs. With
word2vec, we train the skip-gram (SG†) and
continuous bag-of-words (CBOW†) models on the
6 billion token corpus (Wikipedia 2014 + Giga-
word 5) with a vocabulary of the top 400,000 most
frequent words and a context window size of 10.
We used 10 negative samples, which we show in
Section 4.6 to be a good choice for this corpus.

For the SVD baselines, we generate a truncated
matrix Xtrunc which retains the information of how
frequently each word occurs with only the top
10,000 most frequent words. This step is typi-
cal of many matrix-factorization-based methods as
the extra columns can contribute a disproportion-
ate number of zero entries and the methods are
otherwise computationally expensive.

The singular vectors of this matrix constitute
the baseline “SVD”. We also evaluate two related
baselines: “SVD-S” in which we take the SVD ofp

Xtrunc, and “SVD-L” in which we take the SVD
of log(1+ Xtrunc). Both methods help compress the
otherwise large range of values in X .7

4.3 Results
We present results on the word analogy task in Ta-
ble 2. The GloVe model performs significantly
better than the other baselines, often with smaller
vector sizes and smaller corpora. Our results us-
ing the word2vec tool are somewhat better than
most of the previously published results. This is
due to a number of factors, including our choice to
use negative sampling (which typically works bet-
ter than the hierarchical softmax), the number of
negative samples, and the choice of the corpus.

We demonstrate that the model can easily be
trained on a large 42 billion token corpus, with a
substantial corresponding performance boost. We
note that increasing the corpus size does not guar-
antee improved results for other models, as can be
seen by the decreased performance of the SVD-

7We also investigated several other weighting schemes for
transforming X ; what we report here performed best. Many
weighting schemes like PPMI destroy the sparsity of X and
therefore cannot feasibly be used with large vocabularies.
With smaller vocabularies, these information-theoretic trans-
formations do indeed work well on word similarity measures,
but they perform very poorly on the word analogy task.

Table 3: Spearman rank correlation on word simi-
larity tasks. All vectors are 300-dimensional. The
CBOW⇤ vectors are from the word2vec website
and differ in that they contain phrase vectors.

Model Size WS353 MC RG SCWS RW
SVD 6B 35.3 35.1 42.5 38.3 25.6

SVD-S 6B 56.5 71.5 71.0 53.6 34.7
SVD-L 6B 65.7 72.7 75.1 56.5 37.0
CBOW† 6B 57.2 65.6 68.2 57.0 32.5

SG† 6B 62.8 65.2 69.7 58.1 37.2
GloVe 6B 65.8 72.7 77.8 53.9 38.1
SVD-L 42B 74.0 76.4 74.1 58.3 39.9
GloVe 42B 75.9 83.6 82.9 59.6 47.8

CBOW⇤ 100B 68.4 79.6 75.4 59.4 45.5

L model on this larger corpus. The fact that this
basic SVD model does not scale well to large cor-
pora lends further evidence to the necessity of the
type of weighting scheme proposed in our model.

Table 3 shows results on five different word
similarity datasets. A similarity score is obtained
from the word vectors by first normalizing each
feature across the vocabulary and then calculat-
ing the cosine similarity. We compute Spearman’s
rank correlation coefficient between this score and
the human judgments. CBOW⇤ denotes the vec-
tors available on the word2vec website that are
trained with word and phrase vectors on 100B
words of news data. GloVe outperforms it while
using a corpus less than half the size.

Table 4 shows results on the NER task with the
CRF-based model. The L-BFGS training termi-
nates when no improvement has been achieved on
the dev set for 25 iterations. Otherwise all config-
urations are identical to those used by Wang and
Manning (2013). The model labeled Discrete is
the baseline using a comprehensive set of discrete
features that comes with the standard distribution
of the Stanford NER model, but with no word vec-
tor features. In addition to the HPCA and SVD
models discussed previously, we also compare to
the models of Huang et al. (2012) (HSMN) and
Collobert and Weston (2008) (CW). We trained
the CBOW model using the word2vec tool8.
The GloVe model outperforms all other methods
on all evaluation metrics, except for the CoNLL
test set, on which the HPCA method does slightly
better. We conclude that the GloVe vectors are
useful in downstream NLP tasks, as was first

8We use the same parameters as above, except in this case
we found 5 negative samples to work slightly better than 10.

25

Slide from Christopher Manning

Extrinsic word vector evaluation

• One example where good word vectors should help directly: named entity recognition: identifying
references to a person, organization or location: Chris Manning lives in Palo Alto.

• Subsequent NLP tasks in this class are other examples. So, more examples soon.

Table 4: F1 score on NER task with 50d vectors.
Discrete is the baseline without word vectors. We
use publicly-available vectors for HPCA, HSMN,
and CW. See text for details.

Model Dev Test ACE MUC7
Discrete 91.0 85.4 77.4 73.4

SVD 90.8 85.7 77.3 73.7
SVD-S 91.0 85.5 77.6 74.3
SVD-L 90.5 84.8 73.6 71.5
HPCA 92.6 88.7 81.7 80.7
HSMN 90.5 85.7 78.7 74.7

CW 92.2 87.4 81.7 80.2
CBOW 93.1 88.2 82.2 81.1
GloVe 93.2 88.3 82.9 82.2

shown for neural vectors in (Turian et al., 2010).

4.4 Model Analysis: Vector Length and
Context Size

In Fig. 2, we show the results of experiments that
vary vector length and context window. A context
window that extends to the left and right of a tar-
get word will be called symmetric, and one which
extends only to the left will be called asymmet-
ric. In (a), we observe diminishing returns for vec-
tors larger than about 200 dimensions. In (b) and
(c), we examine the effect of varying the window
size for symmetric and asymmetric context win-
dows. Performance is better on the syntactic sub-
task for small and asymmetric context windows,
which aligns with the intuition that syntactic infor-
mation is mostly drawn from the immediate con-
text and can depend strongly on word order. Se-
mantic information, on the other hand, is more fre-
quently non-local, and more of it is captured with
larger window sizes.

4.5 Model Analysis: Corpus Size
In Fig. 3, we show performance on the word anal-
ogy task for 300-dimensional vectors trained on
different corpora. On the syntactic subtask, there
is a monotonic increase in performance as the cor-
pus size increases. This is to be expected since
larger corpora typically produce better statistics.
Interestingly, the same trend is not true for the se-
mantic subtask, where the models trained on the
smaller Wikipedia corpora do better than those
trained on the larger Gigaword corpus. This is
likely due to the large number of city- and country-
based analogies in the analogy dataset and the fact
that Wikipedia has fairly comprehensive articles
for most such locations. Moreover, Wikipedia’s

50

55

60

65

70

75

80

85
OverallSyntacticSemantic

Wiki2010
1B tokens

Ac
cu

ra
cy

 [%
]

Wiki2014
1.6B tokens

Gigaword5
4.3B tokens

Gigaword5 +
Wiki2014
6B tokens

Common Crawl
42B tokens

Figure 3: Accuracy on the analogy task for 300-
dimensional vectors trained on different corpora.

entries are updated to assimilate new knowledge,
whereas Gigaword is a fixed news repository with
outdated and possibly incorrect information.

4.6 Model Analysis: Run-time

The total run-time is split between populating X
and training the model. The former depends on
many factors, including window size, vocabulary
size, and corpus size. Though we did not do so,
this step could easily be parallelized across mul-
tiple machines (see, e.g., Lebret and Collobert
(2014) for some benchmarks). Using a single
thread of a dual 2.1GHz Intel Xeon E5-2658 ma-
chine, populating X with a 10 word symmetric
context window, a 400,000 word vocabulary, and
a 6 billion token corpus takes about 85 minutes.
Given X , the time it takes to train the model de-
pends on the vector size and the number of itera-
tions. For 300-dimensional vectors with the above
settings (and using all 32 cores of the above ma-
chine), a single iteration takes 14 minutes. See
Fig. 4 for a plot of the learning curve.

4.7 Model Analysis: Comparison with
word2vec

A rigorous quantitative comparison of GloVe with
word2vec is complicated by the existence of
many parameters that have a strong effect on per-
formance. We control for the main sources of vari-
ation that we identified in Sections 4.4 and 4.5 by
setting the vector length, context window size, cor-
pus, and vocabulary size to the configuration men-
tioned in the previous subsection.

The most important remaining variable to con-
trol for is training time. For GloVe, the rele-
vant parameter is the number of training iterations.
For word2vec, the obvious choice would be the
number of training epochs. Unfortunately, the
code is currently designed for only a single epoch:

26

Slide from Christopher Manning

5. Word senses and word sense ambiguity

• Most words have lots of meanings!
• Especially common words
• Especially words that have existed for a long time

• Example: pike

• Does one vector capture all these meanings or do we have a mess?

27

Slide from Christopher Manning

pike

• A sharp point or staff
• A type of elongated fish
• A railroad line or system
• A type of road
• The future (coming down the pike)
• A type of body position (as in diving)
• To kill or pierce with a pike
• To make one’s way (pike along)
• In Australian English, pike means to pull out from doing something: I reckon he could

have climbed that cliff, but he piked!

28

Slide from Christopher Manning

Improving Word Representations Via Global Context And
Multiple Word Prototypes (Huang et al. 2012)

• Idea: Cluster word windows around words, retrain with each word assigned to multiple
different clusters bank1, bank2, etc.

29

Slide from Christopher Manning

Linear Algebraic Structure of Word Senses, with
Applications to Polysemy (Arora, …, Ma, …, TACL 2018)

• Different senses of a word reside in a linear superposition (weighted
sum) in standard word embeddings like word2vec

• 𝑣pike = 𝛼!𝑣pike# + 𝛼"𝑣pike$+ 𝛼#𝑣pike%

• Where 𝛼! =
$#

$#%$$%$%
, etc., for frequency f

• Surprising result:
• Because of ideas from sparse coding you can actually separate out

the senses (providing they are relatively common)!

30

Slide from Christopher Manning

Summary of Word Embeddings (part1)

▶ Similarity of word meanings is a continuous,
multi-dimentional phenomenon which is hard to define

▶ This is addressed by embedding words in a continuous
vector space, called “word embeddings”, and using the dot
product to predict word similarity

▶ Word embeddings can be learned automatically by training
them to predict word coocurrance in (very) large corpora

▶ Words are similar if they have similar distributions of
context words

Summary of Word Embeddings (part 2)

▶ In fact, word embeddings are low dimensional
factorisations of a word coocurrance matrix

▶ Different transforms of the matrix and different optimisers
give different word embeddings, but they all perform
similarly

▶ Intrinsic evaluations measure useful properties in word
embeddings (e.g. similarity as dot product, analogy as
vector difference)

▶ Extrinsic evaluations test embeddings for their usefulness
in other tasks

▶ Some aspects of word ambiguity are better modelled as
discrete

	Course Introduction
	Course Overview
	Word Embeddings

