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Oral examination

Oral examination: Monday 20 Jan to Friday 24 Jan with Saturday 25 Jan as backup

Around mid-December, you will have the opportunity to book a slot (first come, first
served basis)
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Today’s outline

The deep space environment

Sphere of influence & patched conics approximation

Departure from a planet

Arrival to a planet

Aerodynamic braking manoeuvres

Rendezvous opportunities

Non-Hohmann trajectories & departure opportunities

Summary
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The deep space environment



The Astronomical Unit (AU)

Astronomical unit = average distance Sun - Earth.

The orbit of the Earth around the Sun is slightly el-
liptical, eccentricity e = 0.017.

At perihelion on 3 Jan, the Earth is about 147 mil-
lion km to the Sun, at aphelion, on 3 July, the dis-
tance is 152 million km to the Sun.

Mars has a 1.52 AU average distance to the Sun,
which means that its distance to Earth varies from
0.52 AU to 2.52 AU on average. Its orbit has a
large eccentricity of e = 0.094.

1AU = 149.5978707 · 106 km
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The Solar System

Omitted dwarf planets: Haumea, Makemake + ≳ 4 large transneptunian objects. Credits: NASA,JPL
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Orbital characteristics of planets

Planet Semi-major Perihelion Orbital Orbital Orbital
axis eccentricity inclination velocity

a [AU] rp [106 km] e i [deg] V [km/s]

Mercury 0.39 46.0 0.205 7.0 47.4
Venus 0.72 107.5 0.007 3.4 35.0
Earth 1.00 147.1 0.017 0.0 29.8
Mars 1.52 206.6 0.094 1.9 24.1
Jupiter 5.20 740.5 0.049 1.3 13.1
Saturn 9.65 1353.6 0.057 2.5 9.7
Uranus 19.20 2741.3 0.046 0.8 6.8
Neptune 30.04 4444.5 0.011 1.8 5.4

http://nssdc.gsfc.nasa.gov/planetary/factsheet/
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The deep space environment

The term “deep space” is not well defined, but it usu-
ally means beyond Earth’s influence. Travelling be-
yond GEO is often considered in deep space.

Deep space is exposed to unabated solar winds and
cosmic rays → radiation is higher than within the
Earth’s magnetosphere

Credits: NASA

In deep space (but in our solar system), the Sun dominates → the spacecraft must
be radiation hardened and be able to handle the effects of violent CMEs.

Planetary environments – like around Jupiter – can be much harsher in terms of
radiation than during the interplanetary transfer phase.
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Near-Earth Objects (NEOs) and asteroids (NEAs)

The density of objects in the solar system is very
low, but there are many objects out there (≳ 106

larger than 1 km in the solar system).

NEOs are celestial bodies, such as asteroids and
comets, which orbits that cross Earth’s trajectory,
posing a potential collision risk with our planet.

Planetary defence is the field of finding and poten-
tially deviating objects with an unacceptable prob-
ability of collision. Demonstration in 2022 with
NASA’s DART mission that nudged a double sys-
tem (and follow-up with ESA’s HERA mission). Credits: NASA
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Recent collisions – Tunguska in Siberia in 1908

Estimated size of the object 60 to
190 m, largest impact on Earth in
recent history. 3-10 megaton of
TNT (∼ 103× Hiroshima). It rates
at 8 on the Torino scale.

About 80 million trees knocked
down over an area of 2,150 square
kilometres

Explosion heard in Western Eu-
rope. Credits: PD, Wikipedia, CYD
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Recent collisions – Comet Shoemaker-Levy 9 impact on Jupiter in 1994

Comet Shoemaker-Levy 9 is
an example of object cap-
tured by Jupiter.

The comet had been in an or-
bit around Jupiter for a while,
then its nucleus was frag-
mented by tidal forces, and
the fragments plunged into
the planet between 16 July
and 22 July 1994.

Credits: WFPC2, HST, NASA, H. Hammel (MIT)
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Recent collisions – Meteor impact at Chelyabinsk, 15 Feb 2013

Probable size about 20 m.

Initial velocity of entry 19 km/s
=⇒ 0.5 megaton TNT.

Very shallow entry angle.
Exploded in the atmosphere.

Significant destruction and
injuries.

Credits: Wikipedia, Aleksandr Ivanov
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Sphere of influence & patched conics
approximation



Interplanetary trajectories - Strategy to solve the problem

To plan for and execute a mission to another planet, we consider the Sun, the planet of
departure (the Earth), the planet of destination, and the spacecraft.

It is a four-body problem (with 1 body almost massless) that we divide into three
segments, each of them a two-body problem.

Credits: Charles D. Brown, Elements of Spacecraft Design, AIAA

1. Departure phase
(planetocentric 1)

2. Cruise phase
(heliocentric)

3. Arrival phase
(planetocentric 2)
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Symbol convention for position and velocity

Uppercase variables, e.g. R, V , are heliocentric, i.e. described in the frame of
reference of the Sun.

R⃗S/C = r⃗S/C + R⃗P

V⃗S/C = v⃗S/C + V⃗P

Heliocentric movement of the S/C
=

Planetocentric movement of the S/C + Heliocentric movement of the planet

Lowercase variables, e.g. r , v , are planetocentric, i.e. described in the frame of
reference of the planet.

EE-585 – W08 12



Symbol convention for position and velocity
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Sphere of influence (1/2)

The sphere of influence is a region in which the gravitational influence of other bodies can
be neglected.

The acceleration on the vehicle (v) in heliocen-
tric frame is:

¨⃗Rv = A⃗⊙ + P⃗p

where A⃗⊙ = F⃗ (v)
s /mv is the gravitational accel-

eration on the vehicle due to the Sun (⊙) and
P⃗p = F⃗ (v)

p /mv is the gravitational perturbation of
the secondary object, the planet. Credits: Curtis, Orb. Mech. for Eng. Students

Similarly, in the planetocentric frame:

¨⃗r = a⃗p + p⃗⊙

where ap = µp
1
r2 and p⊙ = µ⊙ r

R3

EE-585 – W08 14



Sphere of influence (2/2)

For the motion relative to the planet, p⊙/ap is a measure of the deviation from a Keplerian
orbit (Keplerian motion =⇒ p⊙/ap = 0).

For the motion relative to the Sun, Pp/A⊙ is the mea-
sure of the planet’s influence on the orbit of the vehicle.

If
p⊙/ap < Pp/A⊙

then the perturbing effect of the Sun on the vehicle’s
orbit around the planet is less than the perturbing effect
of the planet on the vehicle’s orbit around the Sun.

Credits: Curtis, Orb. Mech. for Eng. Students

This leads to
r
R

<

(
mp

ms

)2/5

where R is the distance between the two massive objects (e.g. Sun and Earth).
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Radius of the sphere of influence

Sphere of influence = region around each body inside which the motion of a spacecraft
can be considered to be two-body Keplerian.

The radius of the sphere of influence rSOI is therefore:

rSOI = R
(
µplanet

µSun

) 2
5

where R is the distance between the two massive objects (e.g. Sun and Earth).
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Spheres of influence in the solar system

The concept of the sphere of influence is usable for the motion
of a spacecraft from the Earth to another planet.

For the Moon, the sphere of influence is calculated with R =
distance Earth-Moon. rSOI = 66,200 km = 38 Moon radii.

For all planets beyond Mercury, rSOI is really large and the
boundary of the SOI will often be considered as being a location
of zero potential energy with respect to the central body (= ∞).

Planet rSOI (106 km)

Mercury 0.111
Venus 0.616
Earth 0.924
Mars 0.577
Jupiter 48.157
Saturn 54.796
Uranus 51.954
Neptune 80.196
Moon 0.0662
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Earth’s sphere of influence

This is, to scale, Earth’s SOI with respect to the Sun:

Credits: Curtis, Orb. Mech. for Eng. Students

rSOI⊕ = 0.924 · 106 km = 144R⊕ = 0.6%d⊙⊕ → interplanetary voyages are on truly
large scales.
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Sphere of influence (SOI) and patched conics approximation

As long as the S/C is within the SOI of the Earth, its motion with respect to the Earth is a two-body
problem with the Earth as a central body. We can ignore the Sun’s gravitational influence.

When the S/C leaves SOI⊕, rSOI = 106 km, it comes on a heliocentric elliptical trajectory (Hohmann
transfer) towards the destination planet, either larger than the Earth’s orbit (outer planets), or smaller
(inner planets). The gravitational influence of both the departure and the destination planets is
negligible on this heliocentric arc.

Credits: Charles D. Brown, Elements of Spacecraft Design, AIAA

At the end its elliptic heliocentric arc,
in the vicinity of the destination planet,
the S/C enters the SOI of the destina-
tion planet, then we can ignore the Sun
and determine the S/C’s trajectory as a
two-body problem with the destination
planet as the only attracting body.
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Departure from a planet



Departure from a planet

An interplanetary journey can start with a
parking orbit around Earth (direct-ascent tra-
jectories are also possible).

The velocity is increased to reach the depar-
ture velocity, v⃗d , which is always larger than
the escape velocity for the altitude of the park-
ing orbit, v⃗Erd . The escape velocity is about
11.2 km/s at the surface. It decreases with
the altitude as vErd =

√
2µ/r .

On a planetocentric hyperbolic departure or-
bit, at a large distance from the Earth, the
spacecraft comes to a constant velocity called
the hyperbolic excess velocity v⃗∞

d .
v⃗d is the departure velocity
v⃗Erd is the escape velocity from the parking
orbit
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Reaching the sphere of influence

Sphere of influence

~Vp

A
sym

ptote

To the Sun

Apse line of thedeparture hyperbola

b

b

β

~v∞d

d∞

a
rp

Parking orbit

Periapsis of the
hyperbolaθ∞

The conservation of total energy implies that:

v2

2
− µ

r

∣∣∣∣
at departure, i.e. rp=rd

=
v2

2
− µ

r

∣∣∣∣
at SOI≈∞

v2
d

2
− µ

rp
=

(v∞
d )2

2

=⇒ v2
d = (v∞

d )2 +
2µ
rp

As vErd =
√

2µ
rp

, rd = rp,

v2
d = (v∞

d )2 + v2
Erd
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Departure from a planet

v∞ is the hyperbolic excess
velocity and

(v∞)2 = C3 the characteris-
tic energy, i.e. twice the ki-
netic energy at ∞.
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Hyperbola basics
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Vis-Viva equation – Velocities on elliptical and hyperbolic orbits

Ellipse v =

√
2µ
r

− µ

a
ϵ = − µ

2a

Hyperbola v =

√
2µ
r

+
µ

a
ϵ = +

µ

2a

The energy per unit mass ϵ on an elliptical or hyperbolic trajectory is only
dependent on the mass of the central object µ, and on the value of the semi-major
axis a, and not on the eccentricity e.

Note that as the trajectory is unbounded with respect to the planet, ϵ > 0.
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Velocity on the departure hyperbola

Sphere of influence

~Vp

A
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b
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~v∞d

d∞

a
rp

Parking orbit

Periapsis of the
hyperbolaθ∞

In this configuration, the Hohmann transfer is to
an outer planet. To a inner planet, v⃗∞ should be
in the anti-direction of V⃗p.

v =

√
2µ
r

+
µ

a

a ∼=
µ

(v∞
d )2

e =
a + rd

a
=

a + rp

a
=

c
a
> 1

θ∞ = arccos

(
−1

e

)

β = arccos

(
1
e

)
= arccos

 1

1 +
rp(v∞

d )2

µ


β gives the orientation of the apse line of the
hyperbola to the planet’s heliocentric velocity
vector.
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Locus of possible departure trajectories for a given v⃗∞
d and rp

Credits: Curtis, Orb. Mech. for Eng. Students
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Inclined parking orbits and departure trajectories

Possible departure points are reached once per orbit, a,b even on differently inclined
orbits, imin, imax.

Credits: Adapted from Curtis, Orb. Mech. for Eng. Students
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Heliocentric velocity right after crossing the sphere of influence

Sphere of influence
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Right after leaving the sphere of influence of
the planet, in the heliocentric frame of refer-
ence, the departure speed VD is

V⃗D = V⃗P + v⃗∞

where VP is the orbital of the planet.
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Sensitivity analysis (1/2)

The aphelion of the Hohmann transfer R2 between the planet is described by:

R2 =
h2

µ⊙

1
1 + e cosΘ

where h = R1VD is the angular momentum, VD = Vp,d + v∞
d and cosΘ = −1 as

Θ = 180◦.

Computing the change in VD due to variations in δrp and δvp of the burnout
position (= periapsis) and speed respetively leads to

δR2

R2
= f (δrp, δvp,R1,VD, rp, vp)
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Sensitivity analysis (2/2)

Plugging in values for an Earth-Mars transit,

δR2

R2
= 3.127

δrp

rp
+ 6.708

δvp

vp

This expression shows that a 0.01% variation (1.1 m/s) in the burnout speed vp
changes the target radius R2 by 0.067% or 153,000 km (≈ 45RMars)!

Likewise, an error of 0.01% (0.31 km) in burnout radius rp produces an error of
over 70,000 km (≈ 20RMars).

These small errors can be corrected by mid-course burns.
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Arrival to a planet



Definitions

On its journey to the planet of destination,
the spacecraft is on an elliptical heliocentric
trajectory, until it gets close to that planet.
The only massive body considered is the
Sun.

Then only the motion of the spacecraft with
respect to the destination planet is con-
sidered as hyperbolic trajectory inside the
sphere of influence of this arrival planet.

Flight controllers steer the spacecraft and
choose d∞, the impact parameter, and θ to
accomplish the mission objective, either a
flyby (and possible orbit insertion) or a di-
rect landing on the surface of the planet.

Arrival at velocity v⃗∞
a = V⃗S/C − V⃗P at

the sphere of influence of the destination
planet.
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On the arrival hyperbolic orbit

Procedure is very similar to the departure phase. The spaceraft enters the sphere
of influence of the destination planet on an hyperbolic trajectory.

Conservation of total energy → v2
p = (v∞

a )2 + vErp

As a ∼= µ
(v∞

a )2 , a2 + b2 = c2 = (a + rp)
2 and b = d∞

rp = − µ

(v∞
a )2 +

√
µ2

(v∞
a )4 + d2

∞

Note that the impact parameter d∞ is the only free pa-
rameter in the above.

We also have: cosβ = a
a+rp

= a
c
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B-Plane

The B-Plane is a planar coordinate system
that allows easy targeting for the hyperbolic
trajectory.

The impact parameter d∞ is the B-vector
which lies at the intersection of the B-plane
and the trajectory plane. It shows where
the hyperbolic asymptote intersects the B-
plane.

S⃗ is parallel to the arrival asymptote, i.e. v⃗∞
a

T⃗ is normal to the planet and to S⃗ and typi-
cally chosen to be in the plane of the ecliptic
R⃗ = S⃗ × T⃗

Planet
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~R

B-plane

Tr
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cto
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~v∞a Ar
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ot
e

~B

S/C trajectory

b

This is often generalised and used to compute a plane of reference for collision
assessment around the Earth.
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B-vector and mid-course corrections

B⃗ = bB̂ = d∞B̂, where b is the semi-minor
axis of the arrival hyperbola, also called im-
pact parameter.

The trajectory of the spacecraft is chosen to
target the B-vector (described using T⃗ , R⃗).

This is also used to compute the necessary
mid-course corrections burns, ∆Vs, while
still in the heliocentric and elliptical transfer
phase → Taylor expansion of the reference
parameters (BT ,BR) ∆BT

∆BR
∆tTime of flight

 =
[
∂B⃗
∂V⃗

]
∆V⃗
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On the arrival hyperbolic orbit

The braking manoeuvre ∆v⃗p,insert is the difference between the velocity at perigee
of the elliptic orbit v⃗p,insert and the velocity at perigee of the hyperbolic orbit v⃗p.

∣∣∆v⃗p,insert
∣∣ = ∣∣v⃗p

∣∣− ∣∣v⃗p,insert
∣∣

=

√
2µ
rp

+ (v∞
a )2−

√
2µ
rp

− µ

ainsert

where the subscript p stands
for periapsis and ainsert is the
semi-major axis of the elliptical
orbit at insertion.
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Aerodynamic braking manoeuvres



Aerodynamic braking manoeuvres

Aerocapture transfers the spacecraft from a hyperbolic approach trajectory to an elliptical
orbit around the target planet. Further loss of energy will occur at every subsequent
crossing of the periapsis (through aerobraking).

Aerobraking transfers the spacecraft from an initial elliptical orbit to a less energetic (i.e.
lower apoapsis) elliptical orbit. Involves relatively small ∆v .

Aeroentry transfers the spacecraft from either a hyperbolic, parabolic or elliptical
approach orbit to the planet surface.

The 3 techniques use braking through the atmosphere of a planet for capture by the
planet, or to change the trajectory, or cause a full entry in the atmosphere of the planet, to
a touch down.

Aeroentry is followed by the deployment of a parachute (e.g. Apollo CM, Soyuz, Orion), or
transition to atmospheric flight for a winged spacecraft (Shuttle).

A thermal shield is needed to avoid overheating during the braking manoeuvre.
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Aerocapture example

Aerocapture is a technique used to reduce velocity of
a spacecraft, arriving at a body on a hyperbolic trajec-
tory, in order to bring it in an orbit with an eccentricity
of less than 1.

This approach requires significant thermal protection
and precision closed-loop guidance during the ma-
noeuvre.

Aerocapture has never been used in practice.
If the spacecraft is too close to the planet and the
high-density layers of the atmosphere, with a higher
∆v than expected, the entry into the planet may be
uncontrolled.

Credits: NASA, In-Space Propulsion Technology (ISPT),

Michelle M. Munk & Tibor Kremic, March 24, 2008

If the spacecraft is too high, it may have a too small ∆v , and not be able to reach a
velocity under the escape velocity. It may still escape the planet → a good knowledge of
the atmosphere is important.
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Aerobraking example

Aerobraking is a process that reduces the apoapsis of
an elliptical orbit by flying the vehicle through the atmo-
sphere at periapsis.

The resulting drag slows the spacecraft at periapsis
which reduces the apoapsis.

Aerobraking is used when a spacecraft requires a low
orbit after arriving at a body with an atmosphere.

Credits: NASA, In-Space Propulsion

Technology (ISPT), Michelle M. Munk & Tibor

Kremic, March 24, 2008
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Aeroentry

Example of the Apollo Com-
mand Module coming back from
a 3 days journey from the Moon.

The velocity of entry of the Com-
mand Module with the three
crew members on board in the
high atmosphere was very high,
about 11 km/s.

Credits: NASA
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Rendezvous opportunities



Planetary phase angles

To determine the launch date, we need to know:

• The angular separtion of the departure and arrival planets, that is their phase angle

• The transit time, THoh/2

As we assumed circular orbits for
the planets,

n =
2π
T

The true anomaly, θ, is

θ = θ0 + nt

w.r.t. a reference true anomaly θ0.
For the 2 planets,

φ = θaP − θdP |t = φ0 + (na − nd )t

Sun

Destination planet
position at departure

Destination planet
position at arrival Departure planet

position at departure

Departure planet
position at arrival

Hohmann transfer ellipse

ϕd

ϕa
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Synodic period

How long do I need to wait for the phase angle to become φ0 again? This is the synodic
period.

That is, φ0 = φ0 − 2π if the departure planet has a larger orbital radius than at arrival (+2π
for the opposite case). We need to solve for Tsyn

φ0 ± 2π = φ0 + (na − nd )Tsyn

This yields:

Tsyn =
2π

|na − nd |
=

TdTa

|Td − Ta|
For Earth-Mars, the synodic period is 2.13 yr
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Phasing angle at departure and arrival

The period for the transfer is

Tda =
π

µ⊙

(
Rd + Ra

2

)3/2

During Tda, arrival planet moves by
naTda.

The initial phase angle is φd = π−naTda
The final phase angle of departure
planet: φa = π − ndTda.

φ

φ

φ

φ

φf = φa, φd = φ0, Credits: Curtis, Orb. Mech. for Eng. Students

At the start of the return trip, the relative phase angle is φ′
d .

As Tda = Tad =⇒ φ′
d = −φa
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Return and waiting time

The time required for the phase angle
to reach its proper value is the waiting
time twait. Starting the clock when the
spacecraft arrives at planet 2,

φ = φa + (na − nd )t

The waiting time is

−φa = φa + (na − nd )twait

φ

φ

φ

φ

φa = φa, φd = φ0, Credits: Curtis, Orb. Mech. for Eng. Students

Therefore

twait =
−2φa − 2πN

na − nd
if nd > na

twait =
−2φa + 2πN

na − nd
if nd < na

where N = 0,1,2, . . . is chosen to make twait positive.
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Example: min. waiting time for a Martian return trip to Earth

Assumption: Hohmann transfer

The transit time Tad = 258.8 days

nd = n⊕ ≈ 0.017′202 rad/day
na = nMars ≈ 0.009′133 rad/day

At the end of the outbound trip,
φf = −75◦.

With N = 1, twait = 453.8 days

φ

φ

φ

φ

φf = φa, φd = φ0, Credits: Curtis, Orb. Mech. for Eng. Students

The total time for the round trip is
troundtrip = Tda + twait + Tad = 258.8 + 453.8 + 258.8 = 2.66 yr

The phase angle for the outbound trip is φd = π − nMarsTad ≈ 44.6◦, this occurs every
synodic period, that is 2.13 yr.
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Non-Hohmann trajectories & departure
opportunities



Lambert’s problem, again

So far, Hohmann transfer was as-
sumed, but non-Hohmann transfer
are possible.

→ Solve Lambert’s problem!

In this case, Mars Global Surveyor
which was launched on 7 Nov 1996
took 309 days to reach Mars
(∼ 50 days more than Hohmann
transfer). Credits: Adapted from Curtis, Orb. Mech. for Eng. Students

→ This gives some margin in the departure phase angle and thus in launch
window.
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Porkchop plots

Porkchop plots show contour lines
of equal characteristic energy C3 (in
km/s).

They summarise all of the possible
solutions to Lambert’s problem.

They allow to evaluate whether a
launch window exists for any given
time.
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C3

Hohmann transfer
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Summary



Strategy for interplanetary transfer
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Data for interplanetary trajectories departing Earth

Venus Mars Jupiter Saturn

Semi-major axis of the planet Ra [AU] 0.723 1.523 5.204 9.554
Sidereal period of the planet Ta [years] 6.615 1.880 11.865 29.531
Periodicity of the Hohmann transfer Tsyn[years] 1.596 2.137 1.092 1.035
Transfer orbit periapsis radius Rp [AU] 0.723 1 1 1
Transfer orbit apoapsis radius Ra [AU] 1 1.523 5.204 9.554
Duration of the Hohmann transfer tHoh [years] 0.399 0.708 2.730 6.061
Heliocentric Earth departure velocity VD [km/s] 27.29 32.73 38.58 40.08
Earth departure excess velocity v∞

d [km/s] −2.50 2.94 8.79 10.29
Arrival helicentric velocity Va [km/s] 37.74 21.49 7.42 4.19
Destination planet heliocentric velocity VP [km/s] 35.02 24.13 13.06 9.64
Arrival excess velocity v∞

a [km/s] 2.71 −2.65 −5.64 −5.45
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Interactive quiz

→ EchoPoll platform

• You can scan a QR code or go to the link

• EchoPoll is the EPFL-recommended solution

• You do not have to register, just skip entering a username and/or email
address
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