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Orbital manoeuvres: Hohmann transfer and
plane change



Manoeuvres in-orbit

• A manoeuvre in orbit is an application of
external force on the spacecraft → vectorial
change of the velocity vector ∆v⃗ causing a
change of the orbital elements.

• We will use indifferently the terms
manoeuvre, “Delta-V” or “Burn”.

• We will focus first on instantaneous
manoeuvres, that is the ∆v occurs during a
very short time frame ∆t , that is ∆t ≪ T
the orbtial period.

• Continuous manoeuvres can exert a thrust
on the spacecraft for long period of time.
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Reminder: orbital velocity and altitude

• As orbital altitude increases, z ↗, orbital period increases ,T ↗, and orbital
velocity decreases, v ↘.

• Velocity is greatest at perigee and least at apogee.
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Single impulse orbital change

Assume a satellite is on a circular orbit at zi = 200 km.
The operator wants to change an elliptical orbit of zi =
zp = 200 × za = 500 km.

Initial velocity vi =
√

µ
R⊕+zi

≈ 7780 m/s

Semi-major of the elliptical orbit a = R⊕ + 350 km

Vis Viva equation v =
√

2µ
r − µ

a :

vf (zp) =

√
2µ

R⊕ + zp
− µ

a
≈ 7870 m/s

Velocity differential ∆v :

∆v = vf (zp)− vi ≈ 90 m/s

Posigrade ∆v to go to a higher orbit.
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Hohmann Transfer

The Hohmann transfer is a very common method of transfer from one circular orbit to
another, around the same central body. The transfer orbit is tangent to both the initial orbit
and the destination orbit.

Again, let’s start with the Vis Viva equation:

vperigee =

√
2µ
r1

− 2µ
r1 + r2

=

√
2µ(r1 + r2)− 2µr1

r1(r1 + r2)

=

√
2µr2

r1(r1 + r2)

=⇒ ∆vperigee =

√
2µr2

r1(r1 + r2)
− vcirc,1

Similarly, vapogee =
√

2µr1
r2(r1+r2)

=⇒ ∆vapogee = vcirc,2 − vapogee
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Hohmann Transfer

First burn: increase of the apogee

∆v1 =

√
2µr2

r1(r1 + r2)
−
√

µ

r1

and second burn: circularisation

∆v2 = −

√
2µr1

r2(r1 + r2)
+

√
µ

r2

The two ∆vs are posigrade for a transfer to a
higher orbit, and retrograde for a transfer to a
smaller orbit.

The Hohmann transfer is the most efficient transfer because the changes in velocity are
used entirely for changes in kinetic energy.
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Transit time and energy considerations

The transit time from the lower orbit to the higher
circular one is

ttransit = TT/2 = π

√
a3

T
µ

= π

√
(r1 + r2)3

8µ

The Hohmann transfer is the most efficient trans-
fer with 2 burns.

Reminder: the specific energy of an orbit is

ϵ = − µ

2a

So, the energy of the orbit increases ϵ1 < ϵT < ϵ2
from its initial to final orbit because
r1 < aT = r1+r2

2 < r2.

The energy remains ϵ < 0 (bound to the Earth)
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Hohmann Transfer – Case of small ∆v

b rr

∆~V

~Vcirc

~Vp

∆r∆r∆r∆r

If ∆r is small, e.g. ∆r/r < 10−3, we can linearise the
equation for ∆v .

The semi-major axis of the elliptical orbit is

a =
r + (r +∆r)

2
= r +

∆r
2

The velocity at perigee of the elliptical orbit is

vp =

√
2µ
r

− µ

a
=

√
µ

r

√
2 − 1

1 + ∆r
2r

≈
√

µ

r︸︷︷︸
=vcirc

√
2 −

(
1 − ∆r

2r

)
≈ vcirc

√
1 +

∆r
2r

≈ vcirc

(
1 +

∆r
4r

)

using
√

1 + x ≈ 1 + x
2 ∀x |x ≪ 1
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Hohmann Transfer – Case of small ∆v

b rr

∆~V

~Vcirc

~Vp

∆r∆r∆r∆r

Recalling that vp ≥ vcirc, for a slightly elliptical orbit we
have vp = vcirc +∆v ,

vp

vcirc
=

vcirc +∆v
vcirc

≈ 1 +
∆r
4r

=⇒
∆r
r

≈ 4
∆v
v

For LEO, where r ∼ R⊕ + 500 km and v ∼ 7.7 km/s,

∆r ≈ 3.5∆v LEO approximation

with ∆r in km and ∆v in m/s.
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Full transfer from one circular orbit to another

b rr

~Vcirc

~Vp

∆r∆r∆r∆r

∆~V

~Vcirc,2 ~Va

∆~V

For the full transfer from black to red orbit is twice
the LEO approximation:

∆vtotal ≈ 2∆v = 2×∆r
r

× v
4
=

1
2

v
r
∆r ≈ 0.57∆rcirc

or, rearranging to get ∆rcirc,

∆rcirc ≈ 3.5
2

∆vtotal

with ∆r in km and ∆v in m/s.
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Change of orbital plane

∆v⃗ → α → ∆Ω ↔ ∆i
A manoeuvre with an out-of-plane component,
typically a ∆v⃗ perpendicular to the orbital plane
will cause a change of several orbital parameters,
in particular Ω (RAAN) and i .

As illustrated here, the ∆v⃗ perpendicular to v⃗
causes a change of direction α in the instanta-
neous velocity vector. Changes in Ω and i involve
spherical trigonometry calculations which will not
be detailed here.

An orbital plane change is best performed at
equator crossing (simplicity and efficiency).
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∆V needed for a change of orbital plane

The simplest way to perform a plane change is to burn at one of the two crossing
points of the initial and final planes.

∆v can be computed by the law of cosines

∆v =
√

v2
i + v2

f − 2vivf cosα

if the magnitude of the velocity don’t change (i.e. pure rotation of the the orbital
plane), no other orbital parameter change:

∆v = v
√

2(1 − cosα) = v
√

2 · 2 sin2
(α

2

)
using the trigonometric identity cosα = 1 − sin2 α

2
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∆V needed for a change of orbital plane

Change of orbital plane best done at equator crossing → no change to other

orbital parameters

∆v = 2vi sin
(α

2

)
In LEO, v ∼ 7.7 km/s =⇒ plane change with an out-of-plane ∆v⃗ is expensive!
The specific energy does not change with pure plane change manoeuvres.
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Effects of out-plane burn on the orbit

• Plane change must be performed at intersection of two orbits (at the nodal
crossing).

• There are 2 opportunities per orbit.
• Plane change requires a large amount of propellant compared to in-plane

manoeuvres.
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Effects of in-plane burns on the orbit

• Posigrade burns increase altitude 180◦ from the burn point.
• Retrograde burns decrease altitude 180◦ from the burn point.
• Radial burns shift the semi-major axis without significantly altering other

orbital parameters.
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Strategy to reach the geostationary orbit

A satellite bound for GEO is usually launched into an inclined parking orbit in LEO or
directly on its transfer orbit. E.g. i = 7◦ for Kourou in French Guiana and 28.5◦ from Flordia.

Three burns are required to reach the GEO conditions:

1. A first Hohmann burn to get into the transit orbit.

2. A second Hohmann burn to circularise the orbit in GEO.

3. A plane change manoeuvre to bring i to 0.

Reminder, for GEO:

z ≈ 36′000 km
i = 0◦

e = 0
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∆v savings with a combined manoeuvre (1/2)

When should the plane changed be performed?

There are 3 options:
1. First, make the plane change and then Hohmann transfer.
2. A plane change at apogee and then a circularisation.
3. A combined manoeuvre that changes both the plane and circularises at

apogee.

→ since the plane change is ∆v = 2vi sin
(
α
2

)
and at apogee, vapo < vperi, it is

better to change the orbital plane high in the gravitational well, when v is low.

→ Not option 1
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∆v savings with a combined manoeuvre (2/2)

Example: combined maneuver at the apogee of the transfer orbit for insertion into GEO for
a launch from Kennedy Space Center, Florida (Lat. 28.5◦).

Separate manoeuvres: |∆v⃗tot, apo| = |∆v⃗2|+ |∆v⃗3| = 2.26 km/s
Combined manoeuvres: |∆v⃗tot, apo| = |∆v⃗2 +∆v⃗3| = 1.83 km/s

→ Option 3: a combined manoeuvre at apogee is more efficient.
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One-tangent burn manoeuvres

Final orbit

Initial orbit

Transfer ellipse

b

b

∆~Vf

~VT
~Vcirc,f

∆~Vi

γ

E

If the transit time needs to be shorter than the
Hohmann transfer or the satellite should intercept the
target orbit at a given true anomaly of the second orbit,
then one-tangent burn is the solution.

Recipe to analyse the one-tangent manoeuvre:

• Compute eT and aT , eccentric anomaly E

→ Get the time of flight

• Compute vT ,peri of the transfer orbit and vi,circ

→ Get ∆v⃗i

• Compte the flight path angle γ, vT , vf ,circ

→ Get ∆v⃗f

The time of flight might be shorter, but |∆v⃗i |+ |∆v⃗f | > ∆VHohmann
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Oberth effect or the powered flyby effect

The impact of a burn ∆v on the specific energy depends on the instantaneous
velocity v .

The increase in kinetic energy

∆KE = (v +∆v)2/2 − v2/2

is largest when v is largest (thus at periapsis, i.e. deep in the gravitational well).

In certain cases, it might be worth doing a 3-burn manoeuvre to go from a low
circular orbit to a very high circular orbit as the total ∆v spent is lower than a
Hohmann transfer → bi-elliptic manoeuvres.

In planetary flybys, this effect can give a very significant boost (! ̸= slingshot
manoeuvres).
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Lambert’s problem: finding complex transfer trajectories

Credits: Vallado, Fundamentals of Astrodynmaics and Applications, 4th edition

To change multiple orbital parameters
with a transfer orbit (combined manoeu-
vre or rotation of line of apsides, RAAN
change, . . . ), the best is to solve the so-
called Lambert problem.

The classical formulation of Lambert’s
problem finds the orbit between two
points (a,b) as a function of the time of
flight.

For transfer orbits, the ∆va and ∆vb can
be computed from the expected initial
and final velocity vectors.

Lambert’s problem can find the minimum-energy solution. It also handles multiple
revolution on the transfer orbit.

Many solutions (and algorithms) to the Lambert’s problem exist.
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A few remarks on orbital manoeuvres

1. A Hohmann transfer is the most efficient 2-burn manoeuvre.

2. Plane change. . .
◦ are costly, avoid if possible.
◦ should be made at equator crossing to rotate the plane only.
◦ should be made at apogee (you might consider raising the apogee before).

3. Make use of the perturbations to change the parameters of the orbit.

4. On a very non-circular orbit (e ̸= 0), the most efficient way to change the
energy of the orbit is to make a ∆v at perigee.
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A quick outlook: Continuous manoeuvre

If the ∆v is not instantaneous, but continuous, we have an additional acceleration to the
gravitational force in the budget of forces → the trajectory is a spiral. The distance
between each rotation will depend on the type of acceleration imparted to the spacecraft.

This approach can be used for propulsions that
have a continuous thrust.

It’s an approximation of the impact of the drag on
the orbit (although here it is not to scale and the
drag depends on the instantaneous distance to
the centre of the Earth.
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The Earth viewed from space and inversely



Earth geometry (1/3)

Credits: SMAD

What is the angular radius, ρ, of
the (spherical) Earth as soon from
a satellite?
The line from the satellite to Earth’s
horizon is ⊥ to Earth’s radius, thus

sin ρ = cosλ0 =
R⊕

R⊕ + z

where λ0 is the angle from the satel-
lite’s horizon to the spacecraft as
measured from the Earth’s centre.

Altitude [km] 400 500 800 1000 2000 20’000 36’000 Moon (400’000)
ρ [deg] 70 58 63 60 50 14 8.7 1.0
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Earth geometry (2/3)

Maximum distance to the horizon Dmax is

Dmax =
√
(R⊕ + z)2 − R2

⊕ = R⊕ tanλ0

That might be fine for some applications, but Earth is non-spherical, so more
complex modelling might be required (or numerical computations).

Credits: SMAD

In most applications, we cannot
look at/communicate with satellite
at too low elevation angle ε because
there might be terrain (e.g. moun-
tains) or too much loss due to the
atmosphere.

sin η = cos ε sin ρ

η + λ+ ε = 90◦

D = R⊕ sinλ/ sin η
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Earth geometry (3/3)

ISS seen from Space Shuttle Endeavour on 20
Feb 2010 Credits: NASA

First EUMETSAT MTG i1 image on 31 Mar 2023
Credits: EUMETSATEE-585 – W04 26



Swath

Typical εmin to communicate with a satellite is 5◦.

For Earth observation, εmin ∼ 40 − 50◦.

Credits: www.restec.or.jp

The minimum elevation angle, εmin, de-
fines the maximum swath, that is the
maximum area a satellite can observe.

It is often given as a width (in km) of, e.g.
the largest possible image.
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Apparent motion of satellite from the Earth’s surface in LEO

Even for a spherical Earth and circular orbit, the apparent motion of a satellite
across the sky is not simple to describe.

In circular LEO (such that the rotation of the Earth during the satellite’s transit can
be neglected), this is possible to compute the maximum angular rate Θ̇max at
which the satellite moves with respect to the observer. Typically
Θ̇max ∼ 10 − 15◦/min → this is fast for tracking.

Time in view of the station depend (heavily) on εmin and how far the observer is far
from the subsatellite ground track. For LEO, the useable pass duration is ∼ 7 − 12
minutes.

→ For general solutions, use simulations. Naive algorithm: predict the position for
the observer and satellite and compare to the terrain around the observer.
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Apparent motion of satellite from the Earth’s surface in GEO

Credits: SMAD

At satellite in GEO is fixed with reference
to the star → rotation period = sidereal
period.

Small variations may occur due to the
observer’s location.

Non-perfect GEO conditions (i.e.
e, i ̸= 0) =⇒ apparent motion in lati-
tude (i) and longitude (e and i).

The “slot” in GEO are agreed at the in-
ternational level by the ITU (see next lec-
tures) → size of slot in longitude ±0.1◦.
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Apparent motion of satellite: sky plot of a pass

Credits: Heavens-Above.com

A skyplot shows the trajectory
of a satellite across the sky as
viewed from an observer on
the surface.
Note that the apparent motion
across the sky is not uniform.EE-585 – W04 30



Orbit determination



Keeping track of a satellite’s position

Knowing the state vector of the satellite to a good enough accuracy is crucial for
mission operations

• pass prediction
• observability of targets
• timing of burns
• relative motion with respect to other satellites (rendezvous or avoidance

→ next lecture)

The orbit parameters determined at time t0 can be propagated to some future (or
past) time t1, but there are errors in the perturbations and the initial knowledge of
the orbit → need a measurement, this is orbit determination.

We will start by focussing on ground-based measurements before looking at
space-based methods.
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Initial orbit determination

Initial orbit determination describes the process of estimating an orbit or state based
solely on measurements and without a priori information.

You have a set of measurements of the position and its epoch of an object. (Initial) orbit
determination algorithms transform the measurements into a representation of the
trajectory, i.e. orbital parameters.

Initial orbit determination is the same for asteroids, planets, satellites, but does not model
orbit perturbations.

There are many possible algorithms that solve slightly different problems. It mainly
depends on the observables.

1. 2 or 3 position vectors, r⃗i with their epoch

2. 3 angular positions, (αi , δi , ti), i = 1,2,3 (α right ascension, δ declination)

The position of the site must be known to a good accuracy. Not accounting for the Earth’s
equatorial bulge results in errors on the order of 15 km!
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Angle-only methods

This is the most basic information: α right ascension, δ declination at different
time, but no range information (i.e. distance).

The methods require 3 sets of angular measurements to provide the six
independent quantities required for an orbit.

There are several methods: Laplace, Gauss, double-r iteration, Gooding, . . .
The most commonly used is Gooding.

The methods may need several iterations before converging. Some methods tend
to output biased parameters (e.g. hyperbolic orbits instead of elliptical)

Angle-only methods are still commonly used, because optical observations of
satellite do not yield the range!
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Gibbs Method from three position vectors

Credits: Vallado, Fundamentals of Astrodyn. and App., 4th

edition

Suppose that three observations are made of an
objects that yield the geocentric position vector,
r⃗1, r⃗2 and r⃗3 at t1, t2, t3.

Gibbs method computes v⃗1, v⃗2, v⃗3. This method
is solely based on vector analysis.

The Keplerian parameters can be computed
from any state vector (⃗ri , v⃗i , ti ).

The conservation of angular momentum =⇒ all position vectors lie in the same
plane and by performing vector analysis only you get an expression for
v⃗i = f (⃗r1, r⃗2, r⃗3).
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Lambert’s problem, revisited

Credits: H. Curtis, Orb. Mech. for Eng. Students, 4th Ed.

Suppose that 2 observations are made of an
objects that yield the geocentric position vector,
r⃗1, r⃗2 at t1, t2. What is the orbit?

This is exactly the same problem we encountered
to find a transfer trajectory between two arbitrary
orbits.

The solution space includes all orbit types, and
the elliptical transfers may also include multi-
revolution cases.
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Ground observatories: radar, satellite laser ranging

Radar data return angle and range data.

Main limitation is distance to objects → best for
LEO

Credits: LeoLabs

SLR is measures the two-way time-of-flight ∆t
of ultra-short laser pulses emitted from a ground
station (GS) to a satellite, which ideally has retro-
reflectors, and reflected back to the GS.

Angle and range data, but SLR needs good a pri-
ori knowledge. Credits: UNIBE
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Ground observatories: optical observations and Doppler

Optical images return angle only data.

Typical observation techique: sky staring and de-
tecting fast moving objects in a series of images.

Credits: s2a Systems, 1st batch of G60 Chinese SATCOM tracked

Doppler effect on the frequency of the radio sig-
nal received by a ground station. → works only
with active satellites.
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Spacecraft-based methods: GNSS, space-based observatories

Some satellites can observe other objects to
compute the relative position and generate pre-
cise orbits. Better observations because no at-
mosphere.

Credits: Vyoma

GNSS signals can be used to triangulate the po-
sition (and with a few points speed) of an object.
Has been shown to work up to GEO. Could be
pushed to the Moon.

Credits: ESA
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Two-line element set (ELSET) and other formats

1 44874U 19092B   24241.10321214  .00001103  00000-0  23511-3 0  9995

2 44874  98.1552 067.7941 0010818   6.7159 353.4185 14.60824634249775

line nb Check
sum

ELSET nbCat nb

Cat nb Inclination RAAN Eccentricity
(decimal assumed)

Class.

Intl designator Epoch
Year, day of year

1st derivative
mean motion

2nd derivative
mean motion

BSTAR
Drag term

Argument of 
perigee

Mean
Anomaly

Mean
Motion

(rev/day)

Nb of rev
at epoch

Ephemeris type

The two line element set (TLE, 2LE, sometimes 3LE with an initial comment line) are the
most common way of disseminating the orbital data.

Precision limited by the format and there is a limit on the epoch (YYDDD.ffffffff), no
indication on the errors.

Other formats: Orbit Mean-Element Message (OMM, json/xml extension of TLE),
ephemeris (state vectors), comprehensive with covariances or additional information.
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Orbit determination & data fusion

Data from the different sensors can be processed independently or together (“data
fusion”). This requires an analysis of the different sources of errors and a rigorous
combination. Not easy.

Fusing the data once the orbital data is disseminated is also possible → active area of
research.

Credits: AGI Orbit Determination Tool Kit (ODTK)EE-585 – W04 40



Location of the observatories

The number of observatories is exploding, but the number of objects is too. Orbit
determination (and error reduction) is demanding hardware and processing
capacity.

Observatories are located all over the World. High-North stations are interesting
because of the many SSO passes and relative proximity to population centres.

There is a hole in Central Asia and South-East Asia.

Orbit determination is needed for safe space mission operations (for manoeuvring
but also for collision avoidance).
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Positioning & station-keeping



Launch and early orbit phase (LEOP)

→ launch will be discussed in a later lecture

LEOP (also “commissioning”) starts after separation with the launch vehicle. It
contains – but is not limited to – solar panel deployment, system test and checks,
“first light” and calibration of instruments and positioning to the final operating orbit.

This is a critical phase of the mission. The operating team works on an extended
schedule and there might be additional contacts with the ground stations.

LEOP, especially with extended orbital changes, can be long. Typically weeks to
months.

Going from LEO to GEO on a Geo-transfer orbit (GTO) is an example of
positioning.

End of mission disposal (orbit raising to graveyard orbit or, e.g., perigee lowering)
are part of a dedicated end of life phase.EE-585 – W04 42



Example: Starlink group 6 batch 2

Data: Space-Track.org

21 satellites launched 19 Apr
2023. Injected at ∼ 300 km
in a train – all at the same
time. Positioning needs to:

• Check that the platform
is fine

• Check that the payload
is fine

• Raise the orbit to
∼ 550 km

• Distribute the satellites
in the orbital plane
(using a differential
RAAN drift)

1 failed early (light green),
a second one at the end
of the positioning manoeuvre
(orange).
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Station-keeping in LEO

The ∆v budget needed for station-keeping – that is maintaining the orbit within the
operational parameters – depends on the mission objectives, altitude and the Sun’s
activity.

WorldView 1 (optical Earth observation) operated by Maxar – Data: Space-Track.org

The example above shows a long-lived satellite that has almost gone through two solar
cycles. Both the amplitude, ∆a, and the separation between the manoeuvres, ∆t , are
varied to keep the satellite at z ≈ 492.5 km.
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Typical station-keeping in LEO

Credits: SMAD

The ∆v budget is given in m/s/yr to
compensate for atmospheric drag.

For other BCs, ∼ ∆v · BC/100 → if
BC is 10× lower, you need 10× the
∆v .

The main problem in LEO is to pre-
dict the solar activity.

Expect much longer lifetime if you
launch in early quiet activity period.
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Station-keeping in GEO

In GEO, frequent station-keeping manoeuvres are required to maintain the
longitudinal slot. There are two main effects:

• lunar & solar perturbations lead to ∆i ∼ 0.85◦/year
=⇒ ∼ 45 m/s/yr “North-South”
Maximum inclination of ∼ 15◦ reached after 26.5 years.

• Earth’s non-circularity & solar radiation lead to ∆a,∆e (respectively)
=⇒ ∼ 2 m/s/yr “East-West”
Depends on longitude because there are 2 stable equilibrium points + 2
unstable equilibrium points. Typically manoeuvre every ∼ 2 weeks.
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Station-keeping in GEO

Eutelsat 9B (SATCOM) – Data: Space-Track.org

EE-585 – W04 47



Station-keeping in GEO

End of operations (mid 2002) and no disposal in graveyard orbit.

INSAT 1D (SATCOM, weather) – Data: Space-Track.org
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Satellite re-positioning in GEO

To relocate a satellite from one GEO slot to another, the semi-major axis can be lowered
(→ relocation eastwards) or increased (→ westards) during a weeks- to months-long
coasting time.

The change in longitude in ◦/d, ∆L̇, is

∆L̇ = 360◦
(

1 − T
TS

)
= 360◦

(
1 − 2π

√
a3/µ

TS

)
with Ts = 86164.0905 s, the sidereal day.
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∆v budget

A typical ∆v budget must account for the following activities:

• positioning

• station-keeping/operational activities (∆a,∆e,∆i ,∆Ω, . . . )

• if applicable: mission phase transition (e.g. if there are different operational
altitudes)

• if applicable: attitude control (→ see subsequent lecture)

• disposal (re-entry, orbit raising to disposal orbit)

• margins!

Additional ∆v means additional storage and mass → linked to the mass and
structure budgets.

The satellite lifetime can be constrained by ∆v reserves or reliability of or
consumables for the payload.
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Interactive quiz

→ EchoPoll platform

• You can scan a QR code or go to the link

• EchoPoll is the EPFL-recommended solution

• You do not have to register, just skip entering a username and/or email
address
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