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Gravitational well



Gravitational field

An a large object of mass M exerts a force F⃗r on a
small object of mass m at distance r

Fr = G
Mm
r 2 = gr m Gravitational force

gr = G
M
r 2 =

µ

r 2 Gravitational acceleration

where

• G = 6.67259 × 10−11 m3kg−1s−2 is the
gravitational constant

• µ = GM is the standard gravitational
parameter

The force is the same as if the whole mass was
located at the center of the sphere. R

~FR

~FR

r

b

b

On the surface of the
Earth (at distance R⊕):

FR⊕ = G
Mm
R2

⊕
= g0m

g0 = G
M⊕

R2
⊕

=
µ⊕

R2
⊕

g0 = 9.81 m/s2 = 32.2 ft/s2

R⊕ = 6.378 × 106 m

M⊕ = 5.9742 × 1024 m

EE-585 – W02 2



Gravitational acceleration profile inside and outside Earth

Consider a cavity at a certain distance r from the center of Earth, we
determine the gravitational acceleration at this point. The shell, which
is outside between r and R⊕ has a no influence, gravitationally, on any
object located in this cavity.

ginside =

(
r

R⊕

)
g0

So the gravitational acceleration inside the cavity is linear with r , from
zero to g0 = 9.81 m/s2, which is the gravitational acceleration on the
surface of the Earth.

Outside, acceleration decreases with the square of the distance to the
center of the body

goutside =

(
R⊕

r

)2

g0
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Gravitational figures for bodies in the solar system

Body Gravity Time to fall
(Earth = 1) 4.9 m. (s)

Sun 28 0.2
Mercury 0.26 2
Venus 0.9 1.1
Earth 1 1
Moon 0.16 2.5
Mars 0.38 1.6
Phobos* 0.001 30
Jupiter 2.65 0.6
Ganymede* 0.2 2
Saturn 1.14 0.9
Titan* 0.2 2
Uranus 0.96 1
Neptune 1 1

* Approximate figures
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The concept of gravitational well

Credits: Wikipedia, AllenMcC

• A gravitational well is a conceptual model of the gravitational field surrounding a body.

• Entering space from the surface means climbing out of the gravitational well.

• The deeper a gravitational well is, the more energy it takes to escape from it.
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Work and gravitational well from the surface

Work performed to bring a unit mass to infinity from the surface

WR⊕ =

∫
F⃗ · d⃗r =

∫ ∞

R⊕

µ

r2 dr =
µ

R⊕
=

µ

R2
⊕

R⊕ = g0R⊕

→ The work necessary to lift a unit mass from the surface
of Earth to infinity is the constant gravitational acceleration g0
times the Earth’s radius.

WR⊕ = g0R⊕

The depth of the Earth’s gravitational well is equal to the radius
of the Earth R⊕
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Work and gravitational well from distance r

Starting at a distance r from the Earth’s center, the work performed is

W (r) = g(r) · r =
g(r)
g0

r
R⊕

WR⊕ =
R⊕
r

WR⊕

The work necessary to lift a unit mass from the distance r , larger than the radius of
the Earth (r > R⊕), to infinity is equal to the work from the surface of the Earth
WR⊕ multiplied by the factor R⊕/r .

→ The profile of the gravitational well is in 1/r
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Earth’s gravitational well: depth = R⊕
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Moon’s gravitational well: depth = RMoon

The work needed to bring a unit
mass from the surface of the Moon
to infinity is equal to the work done
to take that unit mass from the sur-
face of the Moon to the radius of the
Moon away from the Moon’s surface,
with a constant force equal to the
gravitational force on the surface.

WMoon = g0,MoonRMoon
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Normalised gravitational well

Considering that the gravitational accel-
eration on the Moon is only 1/6 of the
value on Earth, the normalised depth of
the gravitational well of the Moon is the
radius of the Moon divided by 6.

The depth of gravitational well of any spherical object, is always normalised to the
gravitational acceleration of the Earth for comparison purposes. It is the radius of that
object, multiplied by the ratio between the gravitational acceleration on the surface of that
object and the one on the surface of the Earth:

WMoon = RMoongMoon
g0

g0
= RMoon

gMoon

g0︸ ︷︷ ︸
normalised depth

g0

EE-585 – W02 10



Comparison of gravitational wells

From left to right: at the same scale, gravitational well of
the Earth, non-normalised gravitational well of the Moon
(equal to the radius of the Moon) and normalised gravi-
tational well of the Moon.
For a very small object like an asteroid or the nucleus of
a comet, the normalised depth of the gravitational well
could be equal to less than one meter or even a few
centimeters.

• Moon’s gravitational well depth
normalised to g0 is equal to 287 km.

• It is small in comparison with the
R⊕ = 6378 km and
RMoon = 1738 km.
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Profile of Earth’s and Moon’s gravitational wells

Normalised profile of grav-
itational well of the Earth
with a profile of 1/r and of
the Moon

Credits: Adapted from “Ascent to Orbit”, Arthur C.

Clarke
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Escape and transfer velocities



Concept of escape velocity

• Escape velocity is the velocity at which a spacecraft has to leave the surface
of the Earth in order to reach infinity with a zero velocity (in the absence of
perturbations).

• If velocity at infinity is not zero, you have done more than what is needed to
just escape the gravitational influence of the Earth.

• The work needed to bring a unit mass (the spacecraft) from the surface of the
Earth to infinity is equal to the initial kinetic energy.

• How to escape from the Earth’s gravitational influence?
◦ A slow method that moves a unit mass in phases is inefficient.
◦ Rapid, with a single impulse is the escape velocity concept, VEsc.
◦ Using the conservation of total energy at the Earth’s surface and infinity:

Etot = cst = Ekin + Epot =
1
2

V 2 − µ

r
=

1
2

V 2
Esc −

µ

R⊕︸ ︷︷ ︸
at Earth’s surface

= 0 + 0︸ ︷︷ ︸
at ∞

=⇒ VEsc =

√
2µ
R⊕
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Escape velocity from distance r > R

• Work performed to bring a unit mass from the Earth’s
surface to infinity W = g0R

• Generally, for a distance r from the centre of the Earth

1
2

V 2
Esc(r) = gr r

=⇒ VEsc(r) =
√

2gr r =

√
2µ
r
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Circular velocity

A satellite on a circular low Earth Orbit has a
velocity of the order of 7.7 to 7.8 km/s, that is
going around the Earth in about 90 minutes.

The centrifugal force resulting from the curved
orbital trajectory is equal in magnitude to the
gravitational force on the orbiting object-

FCentr = Fgrav

=⇒
V 2

Circ
r

=
µ

r2

=⇒ VCirc =

√
µ

r
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Gravitational figures for bodies in the solar system

Body Gravity Time to fall Escape velocity Circ. velocity at surface

Earth = 1 4.9 m. (s)
√

2µ
R , km/s

√
µ
R , km/s

Sun 28 0.2 618 437
Mercury 0.26 2 3.5 2.5
Venus 0.9 1.1 10.4 7.3
Earth 1 1 11.2 7.9
Moon 0.16 2.5 2.3 1.6
Mars 0.38 1.6 5 3.6
Phobos* 0.001 30 0.01 0.01
Jupiter 2.65 0.6 60 42.5
Ganymede* 0.2 2 3 2
Saturn 1.14 0.9 36 25
Titan* 0.2 2 3 2
Uranus 0.96 1 22 15.5
Neptune 1 1 23 16

* Approximate figuresEE-585 – W02 16



Gravitational well in term of transfer velocity

The transfer velocity, for a given planet,
is the velocity that has to be added to
the planet’s circular velocity for a trans-
fer to infinity from this location in the
Sun’s gravitational well, i.e. as if to
leave the solar system.

To determine the “two steps” escape
velocity out of the solar system from the
surface of a planet, the escape velocity
from the planet itself should be added
and is illustrated by the depth of the “ici-
cles” around each planet. Typically, for
the Earth the icicle has an amplitude of
VEsc,⊕ = 11.2 km/s.
Credits: Adapted from “Ascent to Orbit”, Arthur C. Clarke
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Example of escape velocity from a planet

• Escape velocity out of the solar system from Mercury’s orbit: 68 km/s.

• Average orbital velocity of Mercury: 48 km/s.

• Transfer velocity out of the solar system from Mercury’s orbit:
68 - 48 = 20 km/s.

• Escape velocity from the surface of Mercury: 3.5 km/s.

• “Two steps” escape velocity out of the solar system from the surface of
Mercury: 20 + 3.5 = 23.5 km/s.
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Escape velocity versus direction of escape

• The escape velocity is independent of the direction
of the initial impulse (as long as escape really takes
place).

• If the initial impulse is horizontal (from a point just
outside of the Earth’s atmosphere, or a little above
100 km altitude) :

◦ If V = VEsc = 11.2 km/s the trajectory will be
parabolic

◦ If V > VEsc, the trajectory will be hyperbolic
◦ If V < VEsc, it will be an elliptical orbit (degrading

because of low perigee)
◦ At ∼ 8 km/s the trajectory will be initially a circular

orbit (but rapidly degrading)
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Reference frames and calendars



Geographic coordinate system

The geographic coordinate system
(longitude, latitude) is used to specify
a location on the surface of the Earth.

This is an Earth-centred - Earth-fixed
(ECEF) frame
→ coordinates of a fixed object on
Earth’s surface does not depend on
time.
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Geocentric-inertial coordinate system (celestial coordinate system)

An inertial frame is an orthogonal frame of reference XYZ, with
respect to which the laws of motion are valid.

The centre of the geocentric inertial coordinate system is the
centre of the Earth.

The plane of reference is the plane of the Equator, where the
direction of X is the direction of the vernal equinox.

The vernal equinox x is a point on the Equator that the Sun
crosses when it goes from the southern celestial hemisphere to
the northern celestial hemisphere around the 21st of March.

This point is very slowly migrating to the west (precession of equinoxes, about
0.014°/yr =⇒ Tprecession ≈ 26000 yr), so, when using the geocentric-inertial coordinate system, the
year shall be specified. Currently the reference is the year 2000 (epoch J2000.0).

This is an Earth-centered inertial (ECI) frame. Every 24 hours, the ECEF and ECI are aligned.
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Heliocentric-inertial coordinate system

The heliocentric-inertial coordinate
system has the same X-direction
as the geocentric-inertial coordinate
system, that is the vernal equinox x.

The centre of this coordinate system
is in the centre of the Sun.

The plane of reference is the plane of
the ecliptic, or plane of the Earth’s or-
bit around the Sun.

You can define the axis with respect
to distant astronomical objects (i.e.
objects that do not have a significant
motion on the sky).
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Precession of the equinoxes

Earth’s rotational axis has a tilt of 23.5° vs.
a perpendicular to the ecliptic plane

Axial precession is the displacement of the
rotational axis of an astronomical body.

Earth goes through one such complete pre-
cessional cycle in about 26 000 years.

The precession of the equinoxes induces a
difference between the solar year and the
sidereal year.

The Earth is not a perfect sphere, but has
an equatorial bulge, and the gravitational
force, from the Sun and the Moon, on a
non-spherical body, causes the precession.

Credits: NASA GSFC, R. SimmonEE-585 – W02 23



Precession of Earth’s axis

Precession of Earth’s axis
around the south ecliptic pole

Precession of Earth’s axis
around the north ecliptic pole

Credits: Widipedia
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Mean solar day

A way to measure time is based on the position of the Sun in the sky.

A (solar) day is defined by the synodic rotation period, that is the synodic day – the
time it takes for the Sun to pass over the same meridian.

The apparent solar day is the time between two consecutive noons. It is not
constant (i.e. ̸= 24h) because of

1. the eccentricity of Earth’s orbit (i.e. its the non-circularity)
2. the obliquity of Earth (i.e. its axial tilt, the angle between the perpendicular of

plane of the orbit and the axis of rotation)
→ this gives rise to the equation of time.

The mean solar time is the averaged duration of the apparent solar day over 1 yr.
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Mean solar day and sidereal day

T0 = 0h: A distant star (the small red circle) and the Sun are at
culmination, on the local astronomical meridian.

T1 = 1 sidereal day: the distant star is again at culmination.

T2 = 1 solar day: few minutes later the Sun is on the local
astronomical meridian again at culmination.

The sidereal day is the time it takes for the Earth to make one
full rotation with respect to the stars.

The mean solar day is the time it takes for the Earth to make
one full rotation with respect to the mean Sun.

The duration of the mean solar day is 24 hours, but the duration
of the sidereal day is about 4 minutes less.

Credits: Wikipedia, F.J.B. González
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Gregorian days vs. Julian days

Julian day is used in the Julian date (JD) system of time measurement for scientific
use by the astronomy community, presenting the interval of time in days and
fractions of a day since 01 JAN 4713 BC Greenwich noon.

Julian date is recommended for astronomical use by the International
Astronomical Union.

Julian days are counted as integers continuously until the present time. This
makes it very easy to compare relative times of events and do arithmetic.
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Modified Julian days

A disadvantage of Julian days is that the number of days elapsed since the original
date is large.

Variants of the Julian day have therefore been defined, such as the Modified Julian
Day (MJD), which shifts the original date to 17 NOV 1858 at 00:00.

The conversion between JD and MJD is given by:

MJD = JD − 2 400 000.5

Date (UTC) MJD JD

2020-01-01 00:00:00 58 848.5 2 458 849.0
2021-01-01 12:00:00 59 215.0 2 459 215.5
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Conversion of Gregorian days to Julian days

J = 367Y − 7

(
Y + M+9

12
4

)
+

275M
9

+ D + 1 721 013.5

where
• J is the Julian day number
• Y is the calendar year
• M is the calendar month number (e.g. September = 9)
• D is the calendar day and fraction

All divisions must be integer divisions. Only the integer is kept; the fraction is
discarded, good from 1901 to 2099.

There are many good converters out there, Python examples: Astropy, Skyfield.
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Time references

Standard Name Definition

UTC Coordinated Universal Time Based on TAI but with leap seconds added to stay
within ±0.9 s of mean solar day

TAI International Atomic Time Weighted average of atomic clocks based on
the definition of the second

UT1 Universal Time Based on Earth’s rotation
LT Local Time Legal local time, usually utc + time zone
MET Mission Elapsed Time Elapsed time since launch of spacecraft

An epoch is a moment in time used as a reference or measurement point.
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Orbital motion and Kepler’s laws



The two-body problem

• The two-body problem is to determine the motion of the two bodies that interact only
with each other.

• Common examples include a satellite orbiting a planet, a planet orbiting a star, two
stars orbiting each other (binary star).

Credits: NASA

EE-585 – W02 31



Relative motion in the 2-body problem

~rM

~r

m

M

~Fm

~rm

~FMF⃗m = −G
mM
||⃗r ||3

r⃗

where we denote r⃗ = r⃗m − r⃗M .

The force on mass M due to mass m is

F⃗M = G
Mm
||⃗r ||3

r⃗ = −F⃗m

This is an ordinary differential equation with 12 equations, r⃗m (3 degrees of freedom - dof),
r⃗M (3 dof), ˙⃗rM (3 dof), ˙⃗rM (3 dof). The nonlinearity comes from the 1/||⃗r ||3 term.
→ consider the relative motion with respect to largest object M

¨⃗r = ¨⃗rm − ¨⃗rM = − F⃗m

m
+

F⃗m

M
= −m + M

mM
G

mM
||⃗r ||3

r⃗ = G
m + M
||⃗r ||3

r⃗

=⇒ F⃗m = m¨⃗r = −G
(m + M)m

||⃗r ||3
r⃗
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Recovering the absolute position

How to recover the absolute position? → Use a coordinate system centred at centre of
mass (barycentre) such that

r⃗CoM =
r⃗mm + r⃗M

m + M
Then we can recover r⃗m from r⃗CoM

r⃗m = − M
m + M

r⃗

If M is the most massive body (e.g. Earth) and m is a satellite (i.e. negligible), then

m
m + M

≈ 0 and
M

m + M
≈ 1

→ the magnitude of the motion of the Earth due to the Moon is

mMoon

mMoon + m⊕
rMoon-⊕ ≈ 4652 km
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The N-body problem

There are many situations where the are more than two bodies (e.g. solar system,
the Earth-Moon system, the Milky Way, . . . )

In this case, the force on mass i due to all other masses is

mi
¨⃗ri = F⃗i = G

N∑
j=1
i ̸=j

mimj

||⃗rij ||3
r⃗ij

The centre of mass of a collection of point masses mi is

r⃗CoM =
1∑
i mi

N∑
i=1

mi r⃗i

→ the Earth-Moon centre of mass (4652 km from Earth’s centre) lies beneath the
surface of the Earth (R⊕ = 6378 km)
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The gravitational constant G

The computation of G is not easy, but it allows to easily compute the mass of any
object.

→ how to determine G?

In principle, if you know the mass of two objects (m1, m2), you can measure the
force F and then G = Fr2

m1m2

But if m are 1 kg and r = 1 cm, F ∼ 6.7 nN → very hard to measure!
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The Cavendish experiment

The first measurement of G was made by Cavendish in 1798.
• Suspend two small spheres of mass m, separated by

length L

• Move two large masses M within a known and small
distance r

• Gravity will create a torque

• Measure the torsion (using e.g. the deflection of a light
source by a mirror)

→ Compute G (for details look up e.g. Wikipedia)

θ

Torsion wire

m

F

F M

M m

r

L/2

Credits: Wikipedia, C. Burks

• G is not well known (about 22 ppm in 2022) and there are questions about
whether G is actually varying with time, G(t) ?
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Newton’s law and hypotheses for the rest of the course

→ Let’s go back to an easier problem.

Hypotheses. We will now consider:
• Central body of mass M + spacecraft only (we will relax this later).

• Mass of spacecraft m ≪ M the mass of the central body.

• Bodies are spherical and homogeneous (we will relax this later).

• No perturbations (we will relax this later).

F = G
Mm
r2 =

µm
r2
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Perturbations in Earth’s orbit

Body Acceleration [g]

Earth ∼ 0.9
Sun 6 × 10−4

Moon 3 × 10−6

Jupiter 3 × 10−8

Venus 2 × 10−8

The major perturbations in Earth orbit are
• Drag due to the residual atmosphere (valid for LEO)

• Non-sphericity of the Earth

• Gravitational perturbations by the Sun
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Kepler’s laws (1609-1619) – First law

The orbit of every planet is an ellipse with the Sun at one of the two foci.

Kepler’s laws were established at the beginning of the
17th century from observations of the motion of Mars in
the sky made by Tycho Brahe.

The first Kepler’s law can be generalised in the case of
a two-body problem: the orbit of the small body versus
the large body is, without perturbations, a conic, i.e. an
ellipse, a parabola, or hyperbola.
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Kepler’s laws (1609-1619) – Second law

A line joining a planet and the Sun sweeps equal areas during equal intervals of time.

Semi-major axis a

Aphelion Perihelion

A

B

CD

S

The conservation of angular momentum implies that if areas SAB and SCD are equal, the
time to go from A to B is equal to the time to go from C to D.

=⇒ The orbital velocity is the highest at perihelion, and the lowest at aphelion
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Kepler’s laws (1609-1619) – Third law

The square of the orbital period of a planet is proportional to the cube of the semi-major
axis of the orbit.

T 2 ∼ a3 =⇒ T = 2π

√
a3

µ
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Kepler’s laws (1609-1619) – Summary

Credits: Animations for Physics and Astronomy Education
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Orbits



The shape of the orbit

As the angular momentum (per unit of mass) h⃗ = r⃗ × V⃗ is constant over time (i.e.
˙⃗h = 0), the orbits in a two-body system remain in the same plane.

From the equation of relative motion,
¨⃗r = −

( µ

r3

)
r⃗

we can integrate to get a scalar equation that describes the motion. (Derivation: ¨⃗r × h⃗
and integrate to get r )

=⇒ r =
h2

µ

1
1 + e cosΘ

where Θ is the true anomaly (sometimes written
as ν) and e is the eccentricity.
→ This describes a trajectory based on a
conic section. → 1st Kepler’s law
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Conic sections

Credits: Wikipedia, JensVyff

1. Circles, e = 0

2. Ellipses, 0 < e < 1

3. Parabolas e = 1

4. Hyperbolas e > 1
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Elliptical orbits

• a semi-major axis
• b semi-minor axis
• c = ae, with eccentricity e < 1
• r the distance object-focus
• ra distance to apoapsis
• rp distance to the periapsis

• V⃗ velocity
• Θ True anomaly

Periapsis and apoapsis are general terms. Periastris and apoastris sometimes used for a
star as central body. If the Earth is the central body, we talk about perigee and apogee; if it
is the Sun, perihelion and aphelion. For the moon, the suffix is -lune.

The true anomaly is the angle between the direction of the periapsis and the radius vector
to the object.
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Orbital period

Velocity on a circular orbit is

FCentr = Fgrav =⇒ V 2

r
=

µ

r2 =⇒ V =

√
µ

r

The period for a circular orbit is

T =
2πr
V

= 2π

√
r3

µ

Orbits are very rarely circular, most of cases are elliptical

T = 2π

√
a3

µ
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Energy of the orbital motion

Energy of the orbital motion, per unit mass

ϵ =
V 2

2
− µ

r

The specific energy in terms of the semi-major axis a is

ϵ = − µ

2a

It depends only on the semi-major axis a.

• Total energy is the sum of the kinetic energy and the potential energy.

• If V < VEsc, which is the case for a closed orbit, elliptical or circular, ϵ < 0 (bound
orbit).

• In case of a very elongated ellipse, ϵ ≲ 0

• In the limit case of a parabolic orbit, ϵ = 0

• If the orbit is hyperbolic, ϵ > 0
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Orbital velocity

The orbital velocity at at distance r on an orbit can be derived from the total energy.

For an elliptical orbit,

V =

√
2µ
r

− µ

a
(Vis Viva equation)

(Derivation from the integration of the total energy conservation, i.e.
∫
ϵ̇ =

∫
0)

For a circular orbit, this reduces to

V =

√
µ

r
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Flight path angle γ

Angular momentum of a spacecraft h⃗ per unit
of mass, again,

h⃗ = r⃗ × V⃗

|h⃗| = r · V cos γ

where γ is the flight path angle.

The flight path angle is the angle between the direction of the velocity vector and
the perpendicular to the radius vector at the location of the spacecraft is.

EE-585 – W02 49



Variation of the flight path angle γ

The flight path angle is equal to zero at the apogee and perigee (or apoapsis and
periapsis). It is positive from the perigee to the apogee and negative from the
apogee to the perigee.
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Elliptical orbits – Useful formulas

Eccentricity e = c
a = ra−rp

ra+rp
= ra

a − 1 = 1 − rp
a = r2−r1

r1 cos θ1−r2 cos θ2

Flight path angle tan γ = e sin θ
1+e cos θ

Mean motion n =
√

µ
a3

Period T = 2π
n = 2π

√
a3

µ

Radius r = a(1−e2)
1+e cos θ

= rp(1+e)
1+e cos θ
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Elliptical orbits – Useful formulas

Apoapsis radius ra = a(1 + e) = 2a − rp = rp
1+e
1−e

Periapsis radius rp = a(1 − e) = 2a − ra = rp
1−e
1+e = r1(1+e cos θ1)

1+e

Semi-major axis a = ra+rp
2 = rp

1−e = ra
1+e

True anomaly cos θ = rp(1+e)
re − 1

e = a(1−e2)
re − 1

e

Eccentric anomaly cosE = e+cos θ
1+e cos θ

Velocity V =
√

2µ
r − µ

a rpVp = raVa
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Mean and ecentric anomaly

The mean anomal M is the mean fraction of
orbit elapsed since passed periapsis

M = nt

Credits: Wikipedia, Tfr000

E , the eccentric anomaly, is an angle that
defines the position on a tangent circle of an
object that is moving along an elliptical orbit.

Kepler’s equation is transcendental. It can-
not be solved for E but expresses the time
evolution of E since passing the periapsis:

t =
E − e sinE
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Elliptical orbits - Example

Determination of parameters of an elliptical orbit knowing two points on the orbit.

ri =
rp(1 + e)

1 + e cos θi

e =
c
a
=

r2 − r1

r1 cos θ1 − r2 cos θ2
rp =

r1(1 + e cos θ1)

1 + e
ra = rp

1 + e
1 − e

→ not quite orbit determination, see later discussion
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Classical orbital elements

Credits: Adapted from Wikipedia, Lasunnkty

e, a already defined
i inclination of the orbital plane
Ω longitude or Right Ascension of the As-
cending Node (RAAN) in the plane of ref-
erence
ω argument of periapsis

Tp time of periapsis transit
Current time t allowing a determination
of the exact position of the celestial body
or satellite.

The spacecraft is passing from the southern celestial hemisphere to the northern
on a point on the plane of reference called the ascending node. The descending
node is on the other side, when going from N to S.
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State vector ↔ Orbital elements

To define fully the position in 3 dimensions in the geocentric-inertial (or
heliocentric-inertial) coordinate system, you need

(X ,Y ,Z , Ẋ , Ẏ , Ż , t)

that is the position vector, the velocity vector and an epoch.

⇕
A formulation of the state vector in terms of classical orbital elements is equivalent

(a,e, i ,Ω, ω,Tp, t)

→ 6 parameters describing the orbit + time are required to write the state vector
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Interactive quiz

→ EchoPoll platform

• You can scan a QR code or go to the link

• EchoPoll is the EPFL-recommended solution

• You do not have to register, just skip entering a username and/or email
address
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