

FIREHORN

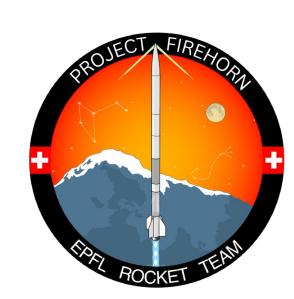
Systems Engineering at EPFL Rocket Team

Monday, 23.09.2024

AGENDA

01 EPFL Rocket Team
and its SEs

02 SE at ERT


03 Applying ECSS

04 Requirements

05 Verification

06 LV Sizing

EPFL Rocket Team and its SEs

Quick Introduction to the ERT

Michael Fuser - Ryan Svoboda - Samuel Wahba

Our mission:

"Engaging students in space technology projects in collaboration with academia and industry partners"

THE EPFL ROCKET TEAM BY THE NUMBERS:

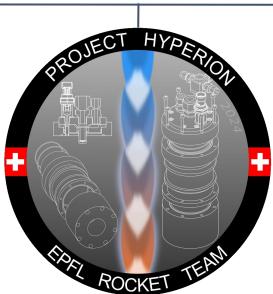
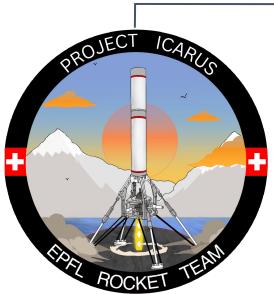
200+

Students

50+

Launches

7



Scientific publications

7

Awards in Competition

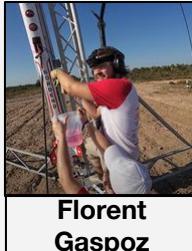
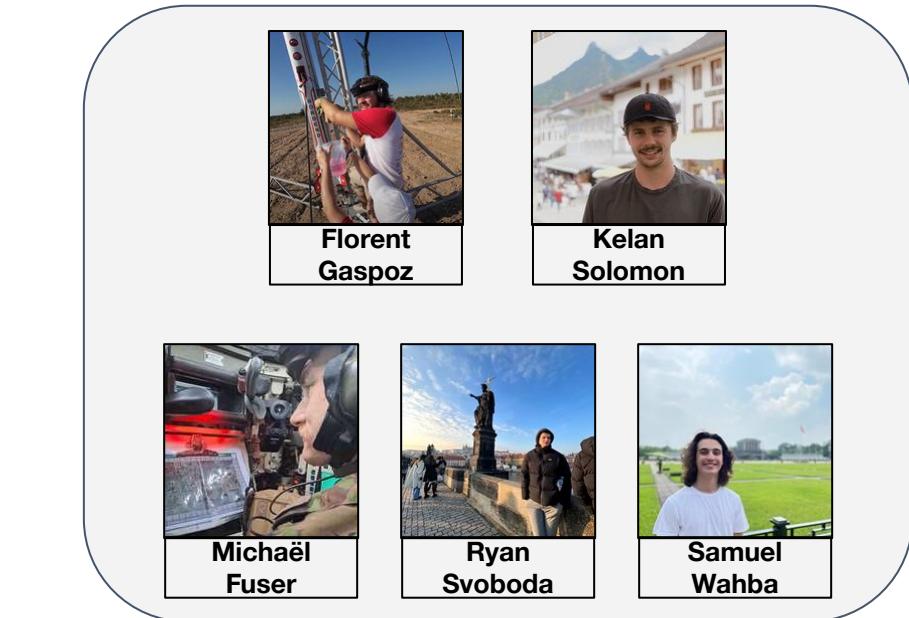
ERT SE Team

Michael Fuser - Ryan Svoboda - **Samuel Wahba**

Antoine
Marchand

Axel
Juaneda

Guillaume
Hueber



Damien
Delespaul

Leonard
Bongiovanni

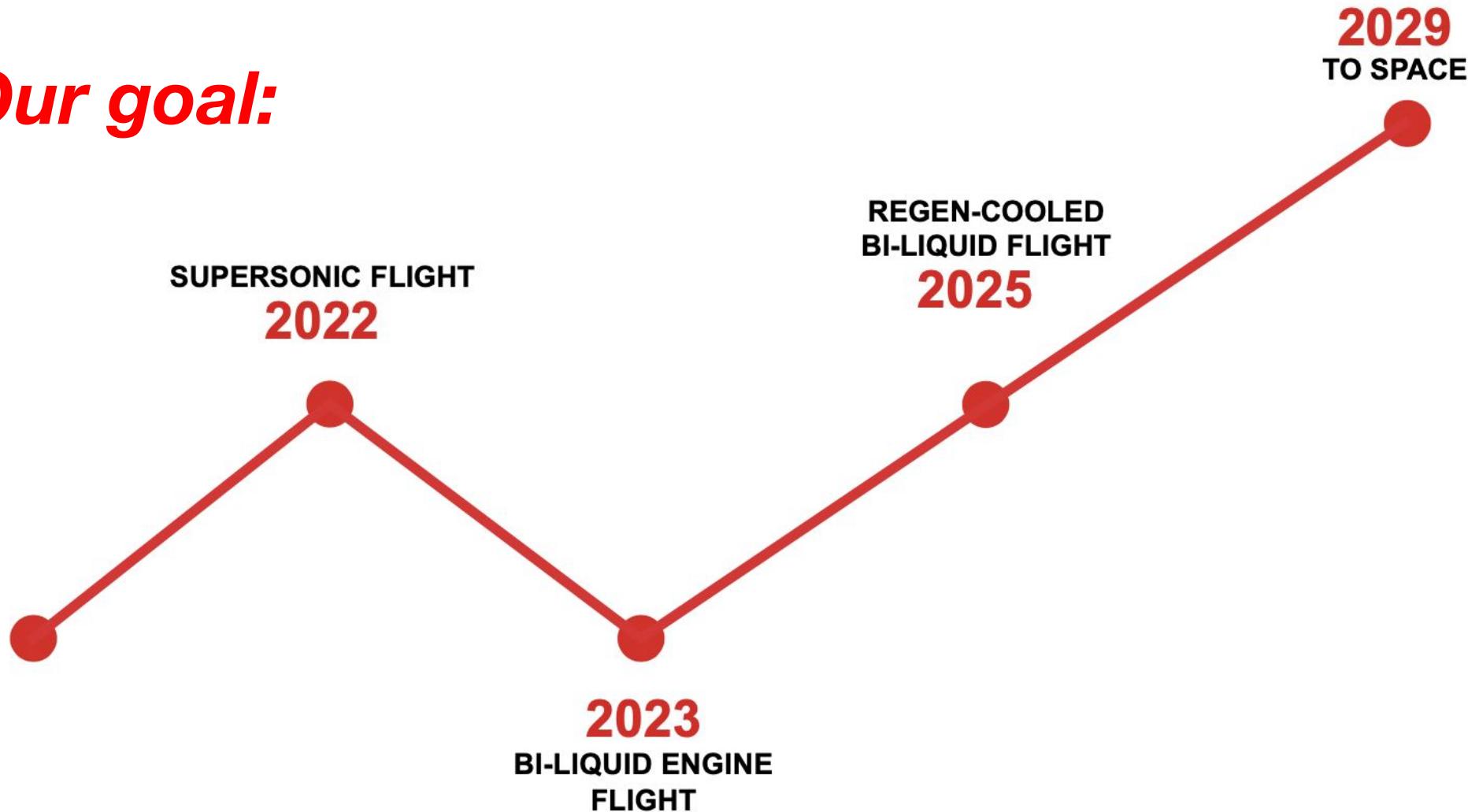
Matthieu
Tonneau

Florent
Gaspoz

Kelan
Solomon

Michaël
Fuser

Ryan
Svoboda



Samuel
Wahba

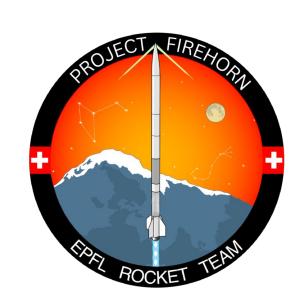
Quick Introduction to the ERT

Michael Fuser - Ryan Svoboda - Samuel Wahba

Our goal:

Quick Introduction to the ERT

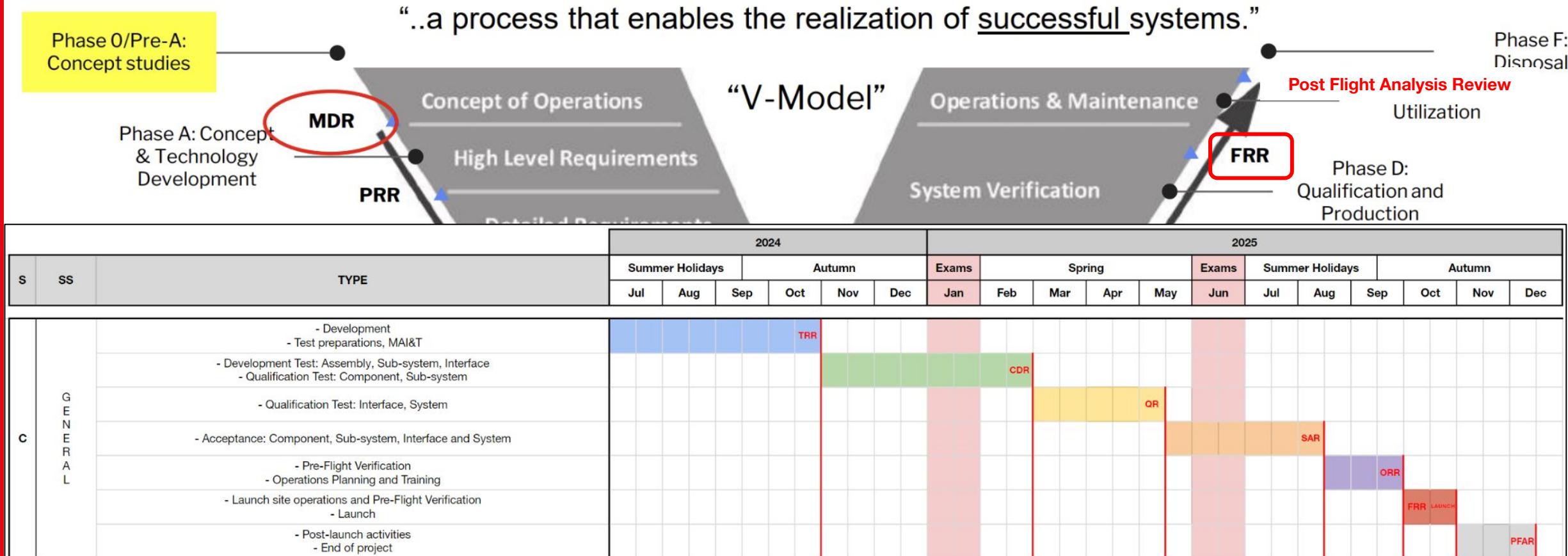
Michael Fuser - Ryan Svoboda - Samuel Wahba


Missions objectives

- Launch at 9[km] in 2025 with a biliquid engine
- Be ready to launch to 30[km] in 2026
- Promote learning opportunities for students
- Bring association closer to space

How we intend to proceed

- 'Class' of single stage launch vehicle
- Architecture dimensioned for 30[km]
- Modular design with internal structure for flexibility
- Supersonic flight
- EthaLOx propulsion

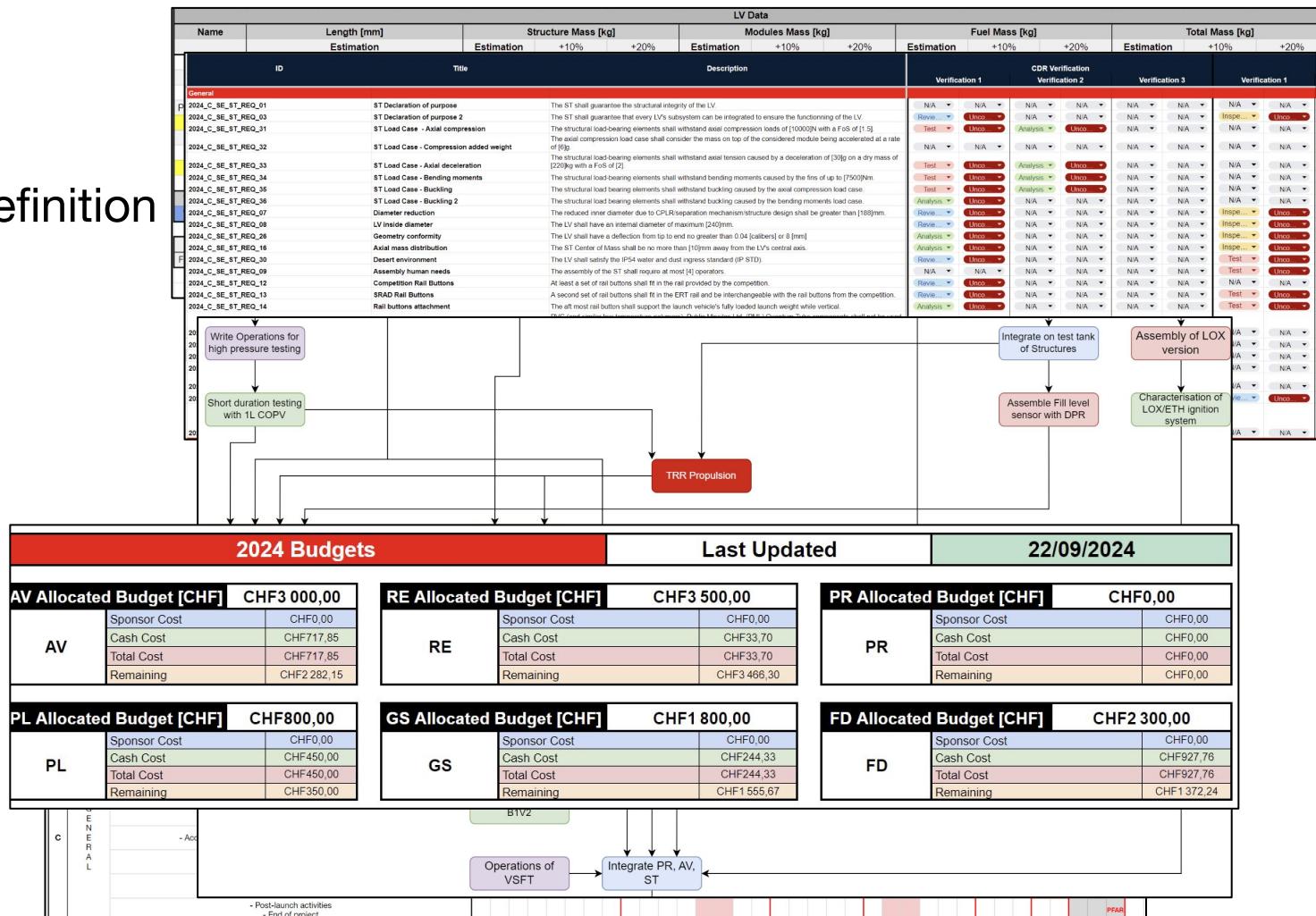


ERT SEs

Difference in Project Phases

Michael Fuser - Ryan Svoboda - Samuel Wahba

Theoretical VS In Practice



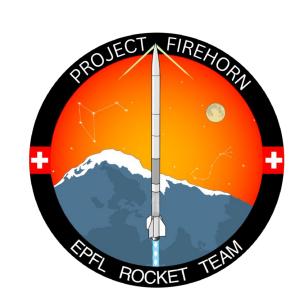
Systems Engineering at ERT

Michael Fuser - Ryan Svoboda - Samuel Wahba

Main SE Tasks at ERT

- Systems Engineering
 - High-Level System Design
 - Requirements/Verification definition
 - Documentation plan
 - Interface Management
 - Operations
 - ...
- Project Management
 - Definition of timeline
 - Allocation of resources
 - Preparation of reviews
 - Logistics
 - ...

Systems Engineering at ERT

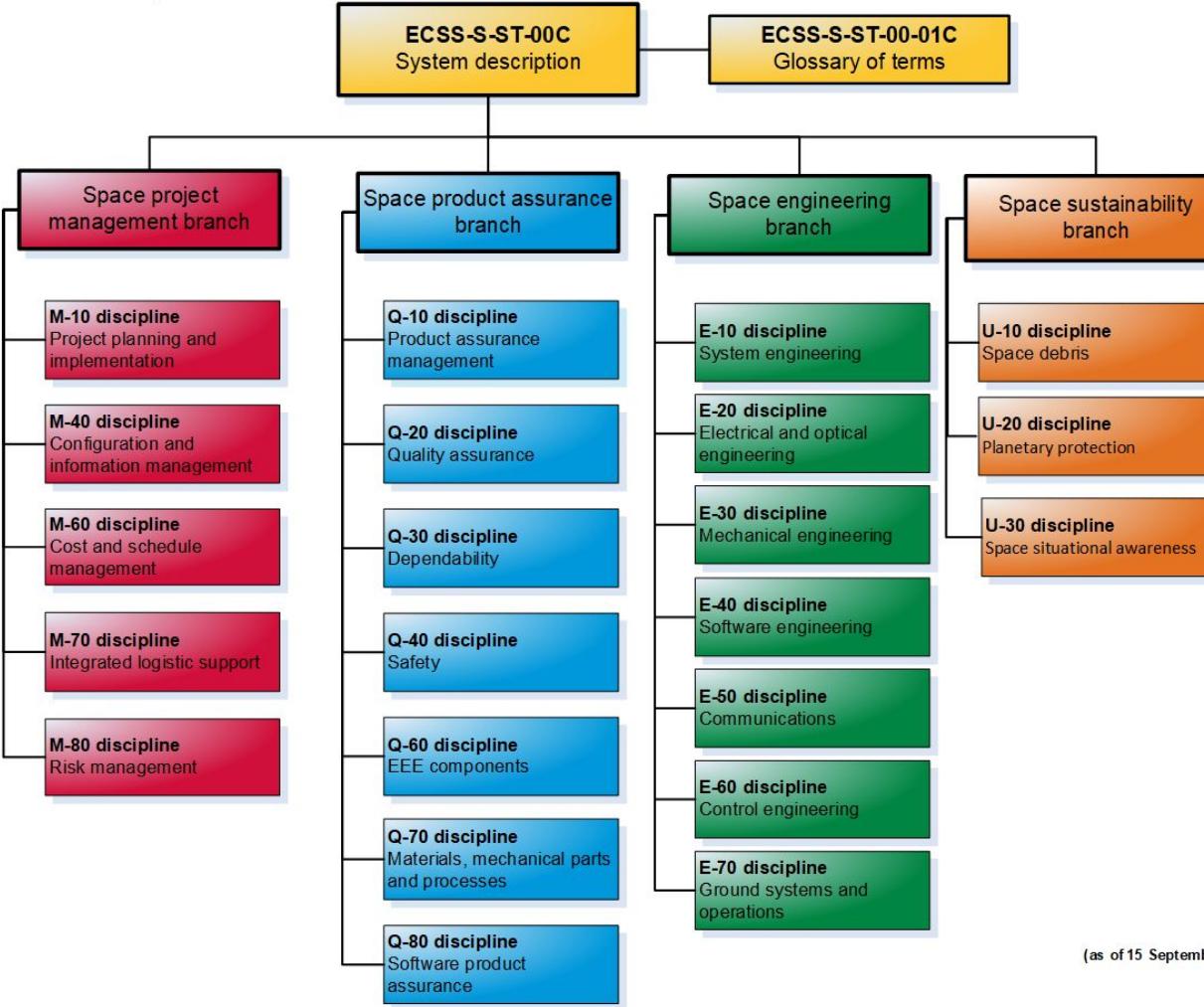

Michael Fuser - Ryan Svoboda - Samuel Wahba

Doing it for the first time and learning by doing

Working with engineers who are also doing their job for the first time

Working on much tighter timelines and very limited resources

Everyone is voluntary and does their job next to their studies


Applying ECSS

Applying ECSS

Michael Fuser - Ryan Svoboda - Samuel Wahba

E-10 discipline System engineering
ECSS-E-ST-10C Rev.1 System engineering general requirements
ECSS-E-ST-10-02C Rev.1 Verification
ECSS-E-ST-10-03C Rev.1 Testing
ECSS-E-ST-10-04C Rev.1 Space environment
ECSS-E-ST-10-06C Technical requirements specification
ECSS-E-ST-10-09C Reference coordinate system
ECSS-E-ST-10-11C Human factors engineering
ECSS-E-ST-10-12C +Corr.1 Method for the calculation of radiation received and its effects, and a policy for design margins
ECSS-E-ST-10-24C Interface management
ECSS-E-ST-10-24C Rev.1
ECSS-E-AS-11C Adoption Notice of ISO 16290 - Definition of TRLs and their criteria of assessment

ECSS Disciplines

(as of 15 September 2021)

Applying ECSS

Michael Fuser - Ryan Svoboda - Samuel Wahba

ECSS-E-ST-10C Rev.1
15 February 2017

5.2 Requirement engineering

5.2.1 General

- a. The system engineering **function** shall analyse the requirements for the system issued by the customer.

NOTE 1 This analysis enables **the transformation of customer requirements into the supplier's system solution**.

NOTE 2 The level of the required analysis and form of any deliverable is expressed in the business agreement.

- b. The system engineering **function** shall derive, generate, control and maintain the set of requirements for the lower level elements, defining their design and operational constraints and the parameters of functionality, performance, and verification necessary to meet the system requirements issued by the customer.
- c. The system engineering **function** shall ensure consistency of the requirements at system level, at lower levels, as well as amongst levels.

NOTE Consistency of requirements of different system engineering sub-functions at the same level is the responsibility of the higher level system engineering function.

- d. The system engineering **function** shall ensure **requirements generated in 5.2.1b. are in** conformance with characteristics specified in ECSS-E-ST-10-06 clause 8.

- e. The system engineering **function** shall ensure that each requirement for the lower level elements has a justification reflected in the requirement justification file in conformance with Annex O.

NOTE Tailoring of a standard in a list of applicable standards, or of a requirement in an applicable standard, is possible where each tailoring measure is duly justified.

ECSS-E-HB-10-02A
17 December 2010

4

Verification principles

4.1 Introduction

ECSS-E-ST-10 states that verification demonstrates, through a dedicated process, that the deliverable system meets the specified requirements and is capable of sustaining its operational role during the project life cycle.

ECSS-E-ST-10-02 establishes the requirements for the verification of a space system product. It specifies the fundamental concepts of the verification process, the criteria for defining the verification strategy and the requirements for the implementation of the verification programme. It is intended to apply to different products at different levels, from single equipment to the overall system (including space segment hardware and software, ground segment, launchers and transportation systems, Verification tools and GSE).

Concerning the scope of the standard, it is useful to address at this point some frequently asked questions posed by users, in order to emphasize certain concepts and definitions imposed by higher level standards and by the accepted European practices enshrined within the standard.

4.2 Verification versus Validation

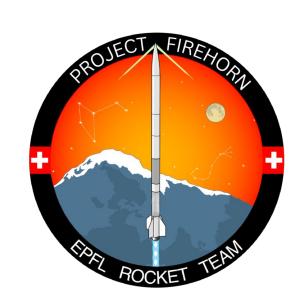
A question often posed is why, within European space projects, we mandate a "verification" programme as opposed to a "verification and validation" programme, as practiced in other engineering disciplines (e.g. software, ground segment).

In general terms verification addresses whether a product satisfies the requirements placed upon it, whilst validation addresses whether a product will satisfy the needs of its users, or as is often more simply said,

Verification proves the product is right.

Validation proves it is the right product.

The Verification Standard does not mandate the need for a separate programme of validation of space products, since product verification is performed against a set of requirements that also address the suitability of the product to fulfil the needs of its intended use. However, the standard does not prevent the execution of a separate validation activity if this is considered appropriate, as is practiced for example, in the operation or ground segment domains. Essentially the process to be followed is the same, although it addresses mainly the use of the product.


Applying ECSS

Michael Fuser - Ryan Svoboda - Samuel Wahba

Main Differences

- Structure
- No customers
- Working on their spare time
- Short timeline
- Hard deadline
- Less people involved

Requirements

Requirements

Michael Fuser - Ryan Svoboda - Samuel Wahba

ID	Title	Description	Source	Author	Justification	Criticality	Compliance	Verification Status	Assignee	TRI Verification			CDR Verification			GRT Verification			BAR Verification		
										Verification 1	Verification 2	Verification 3	Verification 1	Verification 2	Verification 3	Verification 1	Verification 2	Verification 3	Verification 1	Verification 2	Verification 3
General																					
2024_C_SE_AV_REQ_01	RE - AV declaration of purpose	The AV shall trigger and power the recovery events.				High	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_02	PIR - AV declaration of purpose	The AV shall be able to activate the propulsion system.				High	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_03	AI data streaming declaration of purpose	The AV shall be able to stream data to the GRS.				High	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_04	AI data storage declaration of purpose	The AV shall be able to save all of the data collected.				High	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_05	OS - AV declaration of purpose	The AV shall be able to send data to the GRS.				High	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_06	Coding rules	[DEPRECATED] Shall follow the ERT Coding Rules (RD08).				TBD	TBD	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_07	Power course	The AV shall be self-powered during the flight.				High	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_08	Assembly human needs	The assembly of the AV shall require at most [2] operators.				Medium	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_09	On-board power systems and rail standby time	The type of power system, the charging strategy as well as the charge level management shall be implemented in the LV shall comply with the standard 3.4 of the IEC60068-2-20.				TBD	TBD	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_10	Frequency management	Teams should be able to change GPS frequencies on their transmitting and receiving stations on site, within less than an hour.				Low	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_11	Electronics thermal design	The electronics present in the LV shall implement cooling or venting procedures to ensure that one temperature sensor representative of the electronics temperature.				Low	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_12	Electronics thermal testing	All electronics implemented in the LV shall be tested to know the reliable operating temperature range.				Medium	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_13	Official attitude logging and tracking system	The AV shall feature a multi-functional COTS Vesper Flight Computer for official attitude logging and landing site tracking.				Low	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_14	CATT transmitter cell sign	The cell sign assigned to the CATT transmitter shall comply with the rules presented in subsection 3.5.3 of [RD02].				Low	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_15	Battery state reading	The battery state of the battery shall be displayed and visible from the exterior of the LV.				Medium	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_16	Battery state logging	The battery voltage shall be measured, stored and sent to the GRS.				Low	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_17	Aeronautics Test	The avionics system shall have [100] hours of hardware-in-the-loop simulated flight time before launch.				TBD	TBD	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_18	Aeronautics minimum Temperature test	This avionics system shall be able to run at and after being held at 0deg celcius for 2 hours.				Low	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_19	Aeronautics maximum temperature test	The avionics shall be able to run at and after being held at 80 deg celcius for 2 hours.				Low	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_20	Current output safety factor	All current outputs shall be able to run at twice expected amperage.				Medium	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_21	Current output time safety factor	All current outputs shall be able to run twice the expected time.				Medium	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_22	Output channels safety factor	All output channels shall have at least 2 spare output channels per type (pin...).				Low	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_23	Backup assembly	If a 1st backup avionics shall be assembled.				Medium	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_24	Itemized information	Every AV board design shall have its version number and Kzcat file location enscribed on it.				Low	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_25	Cable insulation	Each cable shall be insulated with a silicon sheath.				Medium	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_26	Length of cables	All cables used for DC or SP4 or UART communication shall be no longer than 10 cm.				Medium	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_27	Communication protocol	All BRAID boards shall communicate using a single protocol.				High	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_28	RF Connectors	All RF connectors shall be of the SMA type.				Medium	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_29	Number of debugging operators	All least 3 operators shall be able to debug the code.				N/A	N/A	N/A		N/A	N/A	N/A									
2024_C_SE_AV_REQ_30	On rail reprogrammability	All board shall be able to be reprogrammed when the LV is on the launch rail after removing any planes.				High	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_31	Swappable boards	Any BRAID board shall be able to be swapped when the LV is on the launch rail.				High	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_REQ_32	LV flight test	The final flight configuration of the avionics system shall be tested during a LV flight before launch.				Low	Uninst.	IRREP1		N/A	N/A	N/A									
Mechanical																					
2024_C_SE_AV_MECHANICAL_REQ_01	AV length	The avionics assembly located in the AV bay shall fit in a cylinder of [195]mm diameter and [300]mm height.				High	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_MECHANICAL_REQ_02	Mess	The mass of the entire AV module (located in the AV Bay) shall be less than [3000]g.				Medium	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_MECHANICAL_REQ_03	Axial mass distribution	The center of mass of the AV Bay shall be no more than [10]mm from the LV's central axis.				Medium	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_MECHANICAL_REQ_04	Electronics accessibility	All switch, connectors and otherwise useful-to-tester-with electronics should be accessible on the launch rail when the external panels supporting the launch rails are removed.				Low	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_MECHANICAL_REQ_05	Cable management	All safety critical wiring/cables connections shall be sufficiently secure to prevent de-mating due to expected launch loads.				Medium	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_MECHANICAL_REQ_06	Secure connections	All wiring or harnesses passing within close proximity of a cryogenic tank (e.g. a propellant tank) shall be secured with cryogenic tie-wraps.				Medium	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_MECHANICAL_REQ_07	Cryo-compatible wire insulation	Any wiring or harnesses passing close proximity of a cryogenic tank (e.g. a propellant tank) shall be secured with cryogenic tie-wraps.				High	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_MECHANICAL_REQ_08	Energetic device caging and arming	All arming and de-arming features shall be externally accessible/controllable.				High	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_MECHANICAL_REQ_09	Recovery systems energetic devices	All energetic device arming features shall be located on the airframe and not be triggered by the recovery devices. Any device that releases/rearms by these devices will not impact personnel arming them.				Medium	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_MECHANICAL_REQ_10	Arming device location				High	Uninst.	IRREP1		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Recovery																					
2024_C_SE_AV_RECOVERY_REQ_01	COTS avionics	At least one of the electronics triggering RE's events shall be COTS.				Low	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_RECOVERY_REQ_02	First event triggering	The first event shall occur within [30]-2s after the LV reaches its apogee.				High	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_RECOVERY_REQ_03	Second event triggering	The second event shall occur between [400] m and [100] m AGL.				High	Uninst.	IRREP1		N/A	N/A	N/A									
2024_C_SE_AV_RECOVERY_REQ_04	Redundant recovery electronics	Launch vehicles shall implement redundant recovery system electronics, including samping/communications and "electric initiators" - assuming initiation by a backup system, with a separate power supply (i.e. battery, if the primary system fails).				Medium	Uninst.	IRREP1		N/A	N/A	N/A									

Requirements

Michael Fuser - Ryan Svoboda - Samuel Wahba

2024_C_SE_REQ_DRAFT

ID: Title

Description: Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute iure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Source: EuRoC PTS_EDU_EuRoC_ST_000455
Author: Ryan
Assignee: Florent Piton

Justification

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute iure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Compliance

Compliant
Unknown
Uncompliant

Criticality

Low
Medium
High

(Requirement Criticality Definition)

Verification

Verification 1

Method: Review of Design
Deadline: RBR
Status: Complete
Report: 2024_C_ST_ENGINE-BAY_DJR

Verification 2

Method: Test
Deadline: CDR
Status: Complete
Report: 2024_C_ST_PARA_TRP

Verification X

Method:
Deadline:
Status:
Report:

Mentioned in

2024_C_ST_ENGINE-BAY_DJR
2024_C_ST_ENGINE-BAY_DDF
2024_C_ST_PARA_DDF
2024_C_ST_PARA_TRP

General Design Requirements List

General

2024_C_SE_REQ_01

LV declaration of purpose

The LV shall be a mean of testing spaceshot technologies and participate in the L9 flight category at the 2025 EuRoC competition ([9000]m apogee).

2024_C_SE_REQ_02

LV declaration of purpose

The LV shall be upgradable to fly at an [30000m] apogee outside of EuRoC competition

2024_C_SE_REQ_03

Apogee Precision

The LV shall reach apogee within a precision of [+/-5%] - ie[+/-450m].

2024_C_SE_REQ_04

Data collection

The LV shall log all raw and processed data.

2024_C_SE_REQ_05

Propulsion type

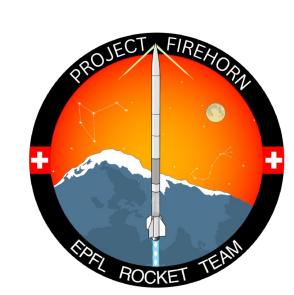
The LV shall be propelled by a bi-liquid pressure fed LV engine (9000m).

2024_C_SE_REQ_06

Icarus Upgradable

The LV shall be upgradable to include an Icarus developed active control module.

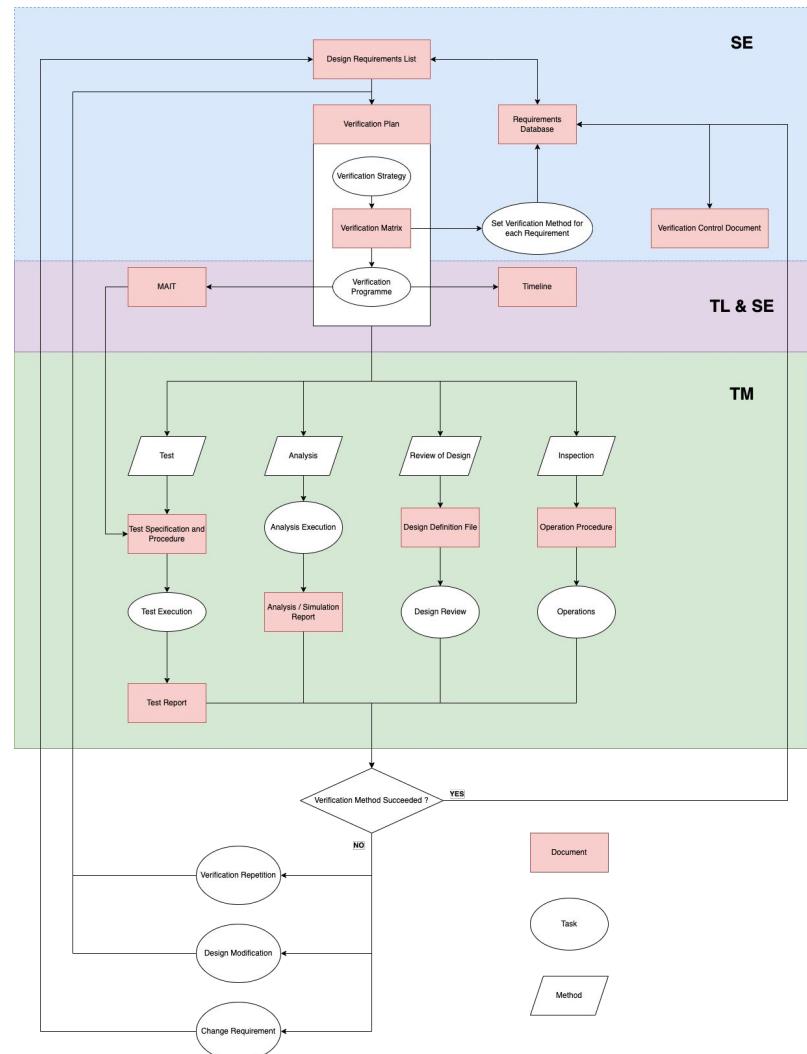
2024_C_SE_REQ_07

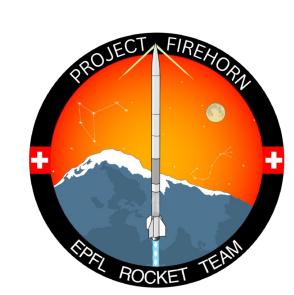

Payload type

The LV shall be able to carry a payload following the CubeSat standard [RD01] within the [3]U format.

2024_C_SE_REQ_08

Independent Payload


The LV shall not rely on the Payload to ensure a nominal flight.



Verification

Verification

Michael Fuser - **Ryan Svoboda** - Samuel Wahba

LV Sizing

LVS Overview

Michael Fuser - Ryan Svoboda - Samuel Wahba

Content

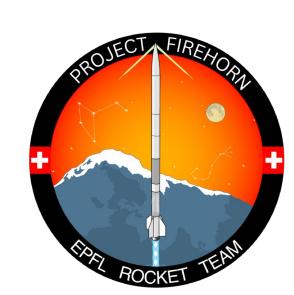
- Mission-wise
 - Apogee
 - Ascent Time
 - Exit Velocity
 - ...
- Mechanical
 - Length
 - Mass
 - ...
- Elec
 - Power Budget
 - Link Budget
 - ...

Nouveautés R05: Changé format pour uniquement considérer estimations de masse/longueur qui découlent de l'IR1, retiré les cases devenues obsolètes, ajout calculateur masse AC dans poids module MB															
Name	Length [mm]			Structure Mass [kg]			Modules Mass [kg]			Fuel Mass [kg]			Total Mass [kg]		
	Estimation	+10%	+20%	Estimation	+10%	+20%	Estimation	+10%	+20%	Estimation	+10%	+20%	Estimation	+10%	+20%
Nosecone	1 000	1,60	1,76	1,92	4,00	4,40	4,80			0,00			5,60	6,16	6,72
RE Bay	770	6,64	7,30	7,97	6,55	7,21	7,86			0,00			13,19	14,51	15,83
AV Bay	350	5,00	5,50	6,00	3,50	3,85	4,20			0,00			8,50	9,35	10,20
Pressurant Bay	750	5,82	6,40	6,98	6,50	7,15	7,80	1,50	1,50	1,50	13,82	15,05	16,28		
ETH Tank	625	7,40	8,14	8,88	0,00	0,00	0,00	14,40	15,30	16,20	21,80	23,44	25,08		
Mid Bay	280	3,13	3,44	3,76	2,63	2,89	3,16			0,00			5,76	6,34	6,91
Aerocover	2 128	0,70	0,77	0,84	0,95	1,05	1,14			0,00			0,00		
LOx Tank	625	7,40	8,14	8,88	0,00	0,00	0,00	20,88	22,19	23,49	28,28	30,33	32,37		
Engine Bay	995	8,00	8,80	9,60	11,11	12,22	13,33	0,00	0,00	0,00	19,11	21,02	22,93		
TOTAL (dry)	5 395,00	45,69	50,26	54,83	35,24	38,76	42,29	0,00	0,00	0,00	80,93	89,02	97,12		
TOTAL (wet)	5 395,00	45,69	50,26	54,83	35,24	38,76	42,29	36,78	38,99	41,19	117,71	126,01	138,31		

*Everything goes in
the sizer(s)*

LVS Overview

Michael Fuser - Ryan Svoboda - Samuel Wahba


Peak at LVS under construction

- LVS = tailor-made tool
- More precision = Better
- Fill in the data as the project goes

Battery Characteristics Overview		
Characteristic	Low Power Circuit	High Power
Series Configuration (S) [-]		
Nominal Voltage [V]	0	0
Voltage@Full Capacity [V]	0	0
Nominal Capacity [Ah]		
Cont. Discharge Rate (C) [-]		
Burst Discharge Rate (C) [-]		
Nominal Current [A]	0	0
Burst Current [A]	0	0
Min. Charge Level [%]	20%	20%
Max. Charge Level [%]	80%	80%
Nominal Power Capacity [Wh]	0	0
Nominal Power Delivery [W]	0	0

Power Consumption Analysis - Navigation Sensors Board		
Characteristic	Standby/Shutdown	Operating
ADXL375 Voltage Supply [V]	3,3	3,3
ADXL375 Current Supply [A]		
ADXL375 Consumption [W]	0	0
BMI08 Voltage Supply [V]	3,3	3,3
BMI08 Current Supply [A]		
BMI08 Consumption [W]	0	0
BMP03 Voltage Supply [V]	3,3	3,3
BMP03 Current Supply [A]		
BMP03 Consumption [W]	0	0
LT3960 Voltage Supply [V]		
LT3960 Current Supply [A]		
LT3960 Consumption [W]	0	0

Thank you !