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§ Roles of structures
§ Challenges of structures

• Strength, including buckling
• Mass
• Deformations, including thermo-elastic deformations

§ How to create structures, how to improve structures

Part 1 Summary
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§ Support the load
• Functional loads
• Launch loads

§ Static acceleration
§ Vibrations
§ Shocks
§ Acoustic pressure

§ Limited deformation under load
• Elastic deformation
• Permanent deformation

§ Plasticity
§ Creep

§ Limited Thermo-Elastics deformation
§ Adapted interfaces
§ Adapted materials

• Temperature range
• Environment

§ Mass constrains: reducing the mass

Properties of Structures
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§ Bolts
• Stainless steel: e.g. A 286 / E-Z 6 NCT 25 (1.4944)
• Titanium Ti6Al4V
• Inconel 718
• Preload (elastic, 50% - 80%)
• Coating (e.g. MoS2)
• Various standards: NF-L 22xxx, LN, ASNA, R-sat, …

• ECSS-E-HB-32-23A Rev.1 Space engineering - Threaded fasteners handbook

§ Rivets
§ Welding
§ Gluing

Assembly of Structures
EE
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Source: Rabourdin.fr

Source: Cherry Aerospace

Source: G. Bianchi et al., “Optimization of Bolted Joints Connecting Honeycomb Panels”, 1st CEAS, 2007

Source: Boudjemai et al. “Thermo-
mechanical design of honeycomb panel 
with fully-potted inserts used for spacecraft 
design”, 6th RAST, 2013
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§ Securing Bolts

Assembly of Structures – Bolts under vibrations
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Source: Boudjemai et al. “Thermo-
mechanical design of honeycomb panel 
with fully-potted inserts used for spacecraft 
design”, 6th RAST, 2013

Why locking?



§ The mechanism is attached to a platform
• The level of vibration is imposed by the platform

• The mechanism react to the vibrations (resonator)
§ Eigenfrequencies

• Several vibration modes
§ Amplification of the movement at certain frequencies (overload)
§ Damping

Vibration loads
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Specified spectral density

Mechanism

Platform

Elastic 
coupling

Dampingm



§ Sizing: worst case!
• Highest load
• Largest deformation
• Worst case environmental conditions

§ If Tmax is specified on orbit, but launch temperature is TL, use TL for the 
vibration load calculation.

§ This is not always obvious in the requirements

§ Harmonic oscillator
• Numerous references exist e.g.:

§ “Mécanique Vibratoire, Systèmes discrets linéaires”, Michel Del Pedro, Pierre 
Pahud, 1992, EPFL PRESS [5.3]

§ "Engineering Vibration", 4th Edition, Daniel J. Inman, University of Michigan, 
2014, Pearson [5.4]

§ …

Vibration loads
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Challenge the requirements!!!



§ Inertia:
§ Elastic force

• Linear stiffness: k [N/m]
§ Noticeable relationship:

Where 𝜔0: eigenfrequency of the undamped harmonic oscillator
m: oscillating mass

• Stiffness may not be linear!

§ Dissipative forces
• Friction coefficient: 𝜇

§ Damping
• Damping coefficient: c

• Relative damping coefficient: 𝜂

ccr: critical damping coefficient 𝜔0: eigenfrequency of the undamped oscillator

• Damping can be non-linear (e.g. Coulomb damping/dry friction …)

Harmonic oscillator: reminder
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𝐹 = 𝑚 ) '
!)
'*! = 𝑚 ) 𝑥̈

𝐹+ = −𝑘 ) 𝑥
𝑘 = 𝜔,- ) 𝑚

𝐹. = 𝜇 ) 𝐹/

𝐹0 = −𝑐 )
𝑑𝑥
𝑑𝑡

= −𝑐 ) 𝑥̇

Fs
F𝜂

Ff FN

x
dx/dt

m

𝜂 =
𝑐
𝑐1"

=
𝑐

2 ) 𝑚 ) 𝜔,
=

𝑐
2 𝑘 ) 𝑚

[nondimensional]

[N·s/m]

[nondimensional]



§ Equation of motion

where f(t) is the external force imposed on the system

• Note: the introduction of non-linear parameters, like static friction, requires a 
more complex treatment

§ Simple harmonic oscillator solutions (free vibrations), i.e. neither 
driven (f(t) = 0) nor damped (c = 0):

Harmonic oscillator: reminder
EE

-5
80

 - 
20

25
 -T

he
m

e 
5

9

𝑚 ) 𝑥̈ + 𝑐 ) 𝑥̇ + 𝑘 ) 𝑥 = 𝑓(𝑡)

𝑥 = 𝑋 ) cos(𝜔, ) 𝑡 + 𝜑)

m

f(t)

x

𝑚 ) 𝑥̈ + 𝑐 ) 𝑥̇ + 𝜔,- ) 𝑚 ) 𝑥 = 𝑓(𝑡)



§ Dissipative case (c ≠ 0), but not driven (f(t) = 0):

Harmonic oscillator: reminder
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𝑥 = 𝐴 $ 𝑒!!"# + 𝐵 $ 𝑒!""#

𝑟$ = 𝜔% $ (−𝜂 + 𝜂& − 1)

𝑟& = 𝜔% $ (−𝜂 − 𝜂& − 1)

A,	B: constants depending on 𝜂

• 𝜂 > 1: overdamped
• 𝜂 = 1: critical damping
• 𝜂 < 1: underdamped

𝜂 =
𝑐

2 ) 𝑚 ) 𝜔,

Cf. previously (relative damping coefficient):



§ Dissipative case (c ≠ 0) and driven (f(t) ≠ 0, i.e. forced vibrations)
• Sine applied external force F:

§ The general solution becomes:

Harmonic oscillator: reminder
EE
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𝑚 $ 𝑥̈ + 𝑐 $ 𝑥̇ + 𝜔%& $ 𝑚 $ 𝑥 = 𝐹 $ 𝑐𝑜𝑠(𝜔 $ 𝑡)

𝑥 = 𝑋 $ 𝑐𝑜𝑠(𝜔 $ 𝑡 − 𝜑)

with: 𝑋 =
𝐹
𝑘

1 − ( 𝜔𝜔%
)&

&
+ 4 $ 𝜂& $ ( 𝜔𝜔%

)&

tg 𝜑 =
2 $ 𝜂 $ 𝜔𝜔%
1 − ( 𝜔𝜔%

)&
=

𝜔 $ 𝑐
𝑘 − 𝜔& $ 𝑚 𝑘 = 𝜔%& $ 𝑚with:

Note:
𝜔0:eigenfrequency
𝜔: driving frequency



§ Dissipative case (c ≠ 0) and driven (f(t) ≠ 0) - continued

Harmonic oscillator: reminder
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𝑥 =
𝐹
𝑘
$ 𝑐𝑜𝑠(𝜔 $ 𝑡) if 𝜔 ≪ 𝜔%

𝑥 =
𝐹

2 $ 𝑘 $ 𝜂
$ 𝑐𝑜𝑠(𝜔% $ 𝑡 +

𝜋
2
) if 𝜔 = 𝜔%

𝑥 =
𝜔%&𝐹
𝜔&𝑘 $ 𝑐𝑜𝑠 𝜔 $ 𝑡 + 𝜋 =

𝐹
𝑚𝜔& $ 𝑐𝑜𝑠(𝜔 $ 𝑡) if 𝜔 ≫ 𝜔%

1)

2)

3)

1) Spring controlled
2) Damper controlled
3) Mass controlled



§ Dynamic amplification factor (overload)
• The ratio between the dynamic amplitude X and the static one (elastic 

deformation under a static force F) is the amplification factor

• More damping = less overload
• Maximum amplification factor (resonance):

Harmonic oscillator: reminder
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𝜻 =
𝑋
B𝐹 𝑘

=
1

(1 − 𝛽&)&+4 $ 𝜂& $ 𝛽&

with:

(𝛽 relative angular frequency) 

𝜷 =
𝜔
𝜔%

Reminder: 𝜔 is the driving frequency, 𝜔0 is the eigenfrequency 
of the undamped harmonic oscillator and 𝜂 is the 
relative damping coefficient

𝜻𝒎𝒂𝒙 =
1

2 $ 𝜂 1 − 𝜂&

𝜁 ≈
1
2 $ 𝜂 if 𝜂 << 1 if 𝛽 ≈ 1: 𝜁*+,→

[nondimensional]

1
2 5 𝜂 = 𝑄Note:



𝜁 =
𝑋
!𝐹 𝑘

§ Shape of the amplitude and phase of the vibration as a function of the 
relative angular frequency 𝛽 and the relative damping coefficient 𝜂:

Harmonic oscillator: reminder
EE
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Source: Michel Del Pedro, Pierre Pahud, 
“Mécanique Vibratoire, Systèmes discrets
linéaires”, EPFL PRESS, 1992 [5.3]

Eigenfrequency (𝜔0)



§ Stable oscillator: limited amplitude
• |x|	=	f(t)→	limited

• Mass m, stiffness k and damping coefficient c > 0

§ Unstable oscillator: diverging
• |x|	=	f(t)→	∞

• Stiffness k or damping coefficient c < 0

• Example:

§ Inverted pendulum (inverted pendulum maintained by a spring)

§ Wing of a plane (flutter instability)

Stability - Instability
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divergent instability

flutter instability
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§ Parameters
• M: concentrated mass (at center mass) [kg]
• m: distributed mass (on the length or on the surface) [kg/m] or [kg/m2]
• L,	a,	b: characteristics lengths [m]
• k: stiffness [N/m]
• 𝜌: specific weight [kg/m3]
• g: terrestrial acceleration [9.81 m/s2]
• E: Young’s modulus [N/m2]
• I: area moment of inertia (second moment of area) [m4]

§ Eigenfrequencies of:
• Simple gravity pendulum
• Loaded spring
• Beams

Useful formulas
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Useful formulas
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17Source: Roark's Formulas for Stress and Strain (9th Edition), 
Budynas, R.G., Sadegh, A.M., Mc Graw Hill, 2020, 
ISBN 9781260453751

𝜔 =
𝑔
𝐿

𝜔 =
𝑘
𝑀

L

𝜔" = 15.4
𝐸 5 𝐼
𝑚 5 𝐿#

𝜔$ = 50
𝐸 5 𝐼
𝑚 5 𝐿#

𝜔% = 104
𝐸 5 𝐼
𝑚 5 𝐿#

𝜔" = 3.52
𝐸 5 𝐼
𝑚 5 𝐿#

𝜔$ = 22
𝐸 5 𝐼
𝑚 5 𝐿#

𝜔 =
𝑘
𝑀

𝜔% = 61.7
𝐸 5 𝐼
𝑚 5 𝐿#

𝜔" =
3 5 𝐸 5 𝐼

𝑀 5 𝐿& + 0.236 5 𝑚 5 𝐿#

m ~ 0

m > 0



Random vibrations
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§ General dissipative case: arbitrary driving force F(t)
• Vibrations generated by the launcher:
• F(t) random
• Vibration amplitude that varies with the frequency and 

characterized by its Acceleration Spectral Density 
(ASD)

Source: Swiss Space Center
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Random vibration - Example
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Frequencies

[Hz]

Amplitude
(ASD)
[g2/Hz]

Slope

[dB/octave]

20 to 50 0.01 to 0.4 12.12

50 to 200 0.4 to 0.4 0

200 to 250 0.4 to 0.16 -12.36

250 to 800 0.16 to 0.16 0

800 to 2000 0.16  to 0.018 -7.2

Envelope: 15.2 grms

Source: Siemens

ASD: Acceleration Spectral Density, i.e. specified value



Random vibration – Why g2/Hz?
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PSD: Power Spectral Density, i.e. measured signal (e.g. accelerometer)

Frequency resolution:
PSD @ 1 Hz
PSD @ 4 Hz
PSD @ 8 Hz

Hz

g2
/H

z
A

m
pl

itu
de𝐴"

#

∆𝑓PSD:

Note: if periodic signal, all energy distributed on specific 
spectral lines => amplitude depends on frequency 
resolution if using PSD! PSD is not for periodic signal.

Source: Siemens (https://community.sw.siemens.com/s/article/what-is-a-power-spectral-density-psd) Frequency resolution:
1 Hz finer
4 Hz
8 Hz coarser

g
Am

pl
itu

de
 (R

M
S)

Hz

g
Am

pl
itu

de
 (R

M
S)

Hz

Frequency resolution:
1 Hz
4 Hz
8 Hz

https://community.sw.siemens.com/s/article/what-is-a-power-spectral-density-psd


Test equipment: shaker
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HYDRA 6DOF ESA Hydraulic shaker
Electrodynamic shaker

Source: ESA

Source: Data Physics Corporation



Vibration Test: example of a test
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Vibration tests along two axes

Source: Mecanex SA



Vibration Test: example of a test
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§ The vibration amplitude varies randomly as a function of time

§ Use of the Fourier transform in order to get a function frequency:

Random vibrations
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𝑋̈(𝜈) = 𝐻(𝜈) $ 𝑈̈(𝜈)

x(t) does not help a lot for the characterization

𝑋(𝜈) = J
-.

.
𝑥(𝑡) $ 𝑒-&/"0"1"#𝑑𝑡

𝑈(𝜈) = J
-.

.
𝑢(𝑡) $ 𝑒-&/"0"1"#𝑑𝑡

Fourier transforms of the induced x(t) and 
injected u(t) displacements

𝑋̈ 𝜈 = −(2𝜋 $ 𝜐)&$ 𝑋(𝜈)

𝑈̈ 𝜈 = −(2𝜋 $ 𝜐)&$ 𝑈(𝜈)

The second derivatives of the 
displacements (property of Fourier 
transform) give the induced and injected 
accelerations



§ H(𝜈): frequency transfer function linking together the amplitudes of
the induced and injected accelerations.

• Complex function which corresponds to the amplification factor 𝜁 (cf. before), 
but for random amplitudes

§ Root mean square (rms) of the induced amplitude:

• The power spectral density Wx(𝜈) is calculated from this mean value by 
using the Fourier transform:

Random vibrations
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𝑥(𝑡)& =
1
𝑇
J
%

2
𝑥(𝑡) $ 𝑥(𝑡)∗𝑑𝑡

𝑥(𝑡)& = J
%

. 2
𝑇 $ 𝑋(𝜈) $ 𝑋(𝜈)

∗𝑑𝜈

𝑊,(𝜈) =
2
𝑇
$ 𝑋(𝜈) $ 𝑋(𝜈)∗with



§ In a similar way it is possible to define the injected Acceleration 
Spectral Density (ASD) WÜ(𝜈):

Random vibrations
EE

-5
80

 - 
20

25
 -T

he
m

e 
5

27

𝑢̈(𝑡)& = J
%

. 2
𝑇 $ 𝑈̈	(𝜈) $ 𝑈̈	(𝜈)

∗𝑑𝜈

𝑥̈!*4 = J
%

.
𝐻(𝜈)& $ 𝑊6̈(𝜈) $ 𝑑𝜈

𝑊6̈(𝜈) =
2
𝑇 $ 𝑈̈	(𝜈) $ 𝑈̈	(𝜈)

∗with

§ Root mean square of the induced acceleration using ASD and 
transfer function H(𝜈):

[g2/Hz]



§ Miles Formula (John W. Miles in Journal of the Aeronautical Sciences, 1954):
• For systems with one dominant vibration mode of frequency 𝜈, the root mean 

square of the acceleration is given through an approximation, the Miles 
formula (in [g]):

Random vibrations: Miles Formula
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𝑥̈!*4 =
𝜋 $ 𝑄 $ 𝜈 $ 𝑊6̈(𝜈)

2

• With

• n: envelope factor (normally 3 for Raleigh distribution 3𝜎)
§ Acceleration may be much higher! For gaussian distribution of the amplitudes:

• Amplitude 1𝜎 corresponds to 
• Acceptable amplitude for dimensioning: 3𝜎 (i.e. 99.7% of all amplitudes)

• This formula is important for the pre-dimensioning of mechanisms

𝑄 =
1
2 $ 𝜂 Q factor, i.e. max. amplification factor (overload)

𝑥̈78+9 = 𝑛 $
𝜋 $ 𝑄 $ 𝜈 $ 𝑊6̈(𝜈)

2

𝑥̈$%&



§ Miles Formula

Random vibrations: Miles Formula
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𝑈̈(𝑡)

𝑋(𝑡)m

moving base

SDOF

SDOF: Single Degree Of Freedom oscillator

𝑊6̈(𝜈)

𝜈

[g2/Hz]

[Hz]
White noise



§ The ASD envelope shall be known 
through the mechanism requirements

§ Define a value for Q (hypothesis, in 
general 10 to 20)

§ If an eigenfrequency of the 
mechanism is known, use this 
frequency in the Miles formula. If not, 
search the worst case (cf. example 
here)

§ The amplitude of Miles is expressed in 
[g = 9.81m/s2]

Use of Miles formula
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𝑀𝑖𝑙𝑒𝑠 = 3 )
𝜋 ) 𝑄 ) 𝜈 ) 𝐴𝑆𝐷(𝜈)

2



§ Use
• Design: to estimate the loads due to random vibration (3𝜎)
• Test: estimate the overall RMS acceleration at resonant peak of interest

Miles formula
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§ Not use
• Does not work in reverse: accelerations cannot be determined during random 

vibration testing using Miles' Equation
• Does not give an equivalent static load: 
𝐺"G+(𝜈"#+) ) 𝑚 ≠ 𝐹+*H*%1

• May not be conservative for a shaped 
input spectrum
⚠ input spectrum with high ASD

levels at 𝜈 < 𝜈resonance



§ Acceleration: [m/s2] or [g] (= 9.81 m/s2)
§ Amplitude of the sine vibrations:

• Normally: [g]
• For very low frequency (< 20 Hz): [mm]

§ Acceleration/Power Spectral Density (ASD/PSD): [g2/Hz]
§ Variation of ASD/PSD: [dB/oct] or [dB/decade]

• 1 octave: doubling of frequency
• 1 decade: 10x the frequency
• Define straight lines in the log scale representation of ASD/PSD

Vibrations: units
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#	𝑂𝑐𝑡𝑎𝑣𝑒 =
log( !𝜐I 𝜐J)
log(2)

𝑥 = 𝑥, ) cos(𝜔 ) 𝑡)

𝑥̈ = −𝜔-𝑥, ) cos(𝜔 ) 𝑡)

𝑥̈
𝑥
= 𝜔-



Vibration of deformable structures
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F
s

F𝜂

F
f

FN

x
dx/dt

m

Simple oscillator

Real part
(Finite Element Model)

Coupled oscillator

Vibrating beam
Distributed mass

Model for calculation
Concentrated masses



Source: ESA

Compliant Mechanisms
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Source: FreeFlex Pivot

Source: CSEM

Source: Ruland

Source: Almatech



Compliant Mechanisms
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Source: CSEM

Source:
P. Spanoudakis et al. “Design and Production of the METOP Satellite IASI Corner Cube 
Mechanisms”, European Space Mechanisms and Tribology Symposium, San Sebastian (2003)



§ Maximum bending moment

§ Elastic deformation

§ Area moment of inertia

§ Maximum bending stress

Bending beam
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𝑀*+, =
𝐹 $ 𝑙
2

𝑑 =
𝐹 $ 𝑙:

12𝐸𝐼

𝐼 =
𝑏 $ 𝑡:

12

=
𝑀*+,

𝐼 $
𝑡
2 =

3𝐹𝑙
𝑏 $ 𝑡&

𝒅 =
𝒍𝟐

𝟑𝒕 $
𝝈𝒇
𝑬

or

=
𝟑𝒅 $ 𝒕
𝒍𝟐 $ 𝑬𝜎*+,𝝈𝒎𝒂𝒙

Top end guided, bottom end fixed



§ High allowable strength to Young’s modulus ratio

§ Reducing thickness lowering max stress

§ Thin, long structure are best suited

§ Max deformation and max stress are independent from beam width

Bending beam
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𝝈𝒎𝒂𝒙 =
𝟑𝒅 $ 𝒕
𝒍𝟐 $ 𝑬 𝒅 =

𝒍𝟐

𝟑𝒕 $
𝝈𝒇
𝑬

𝜎=
𝐸



Selecting the material
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Source:
Michael F. Ashby “Material and Process Selection Charts”, CES 
Edupack, Granta Design (2009)

Reference:
Michael F. Ashby “Materials Selection in 
Mechanical Design” 3rd edition, Elsevier-
Butterworth Heinemann, Oxford (2005)

𝜎"
𝐸

• Elastic hinges:

Better

𝜎"#

𝐸

• Springs, elastic 
energy storage per 
unit volume:



§ Friction free
• No wear particle
• No lubricant

§ Fewer parts
§ Potential saving on material and production costs
§ Infinite life
§ Low energy dissipation
§ High precision movement

Advantages of Compliant Mechanisms
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§ Design complexity
§ Analysis complexity

• Large displacement
• Non-linearity
• Fatigue limit
• Strength limitation
• Vibrations (amplification factor)

§ Limited movements
§ Limited out of plane stiffness
§ Energy Retention

Drawbacks of Compliant Mechanisms
EE

-5
80

 - 
20

25
 -T

he
m

e 
5

40



§ Roles of structures
§ Assembly of structures
§ Mechanical properties: stress, deformation, mass
§ Vibrations

• Harmonic oscillator (refresher)
• Sine Vibrations
• Dynamic amplification factor (overload)
• Random Vibrations
• Miles’s Formula

§ Compliant Mechanisms

Theme 5 Summary
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§ Theme 6 – Components: Introduction and the ball-bearings

Note:

§ Mini Project part 2 Architecture: functions and components
(cf. EE580_MP2_2025_v1 Architecture.pdf)
Due date (next week): April 10th, 11:00

Next Week
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