

Theme 5:
Structures – Part 2

Introduction to the Design of Space Mechanisms

Gilles Feusier

- Roles of structures
- Challenges of structures
 - Strength, including buckling
 - Mass
 - Deformations, including thermo-elastic deformations
- How to create structures, how to improve structures

- Support the load
 - Functional loads
 - Launch loads
 - Static acceleration
 - Vibrations
 - Shocks
 - Acoustic pressure
- Limited deformation under load
 - Elastic deformation
 - Permanent deformation
 - Plasticity
 - Creep
- Limited Thermo-Elastics deformation
- Adapted interfaces
- Adapted materials
 - Temperature range
 - Environment
- Mass constrains: reducing the mass

Assembly of Structures

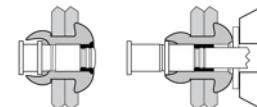
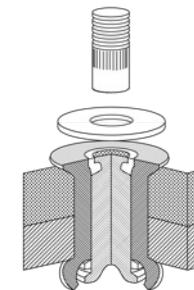
- **Bolts**

- Stainless steel: e.g. A 286 / E-Z 6 NCT 25 (1.4944)
- Titanium Ti6Al4V
- Inconel 718
- Preload (elastic, $\sigma_{pre}/\sigma_{yield} \cong 50\% - 80\%$)
- Coating (e.g. MoS₂)
- Various standards: NF-L 22xxx, LN, ASNA, R-sat, ...
- ECSS-E-HB-32-23A Rev.1 Space engineering - Threaded fasteners handbook

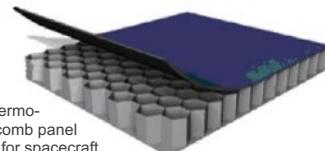
Source: Rabourdin.fr

- **Rivets**
- **Welding**
- **Gluing**

Source: Cherry Aerospace



Source: Boudjemai et al. "Thermo-mechanical design of honeycomb panel with fully-potted inserts used for spacecraft design", 6th RAST, 2013



Source: G. Bianchi et al., "Optimization of Bolted Joints Connecting Honeycomb Panels", 1st CEAS, 2007

Why locking?

Unsecured Nut

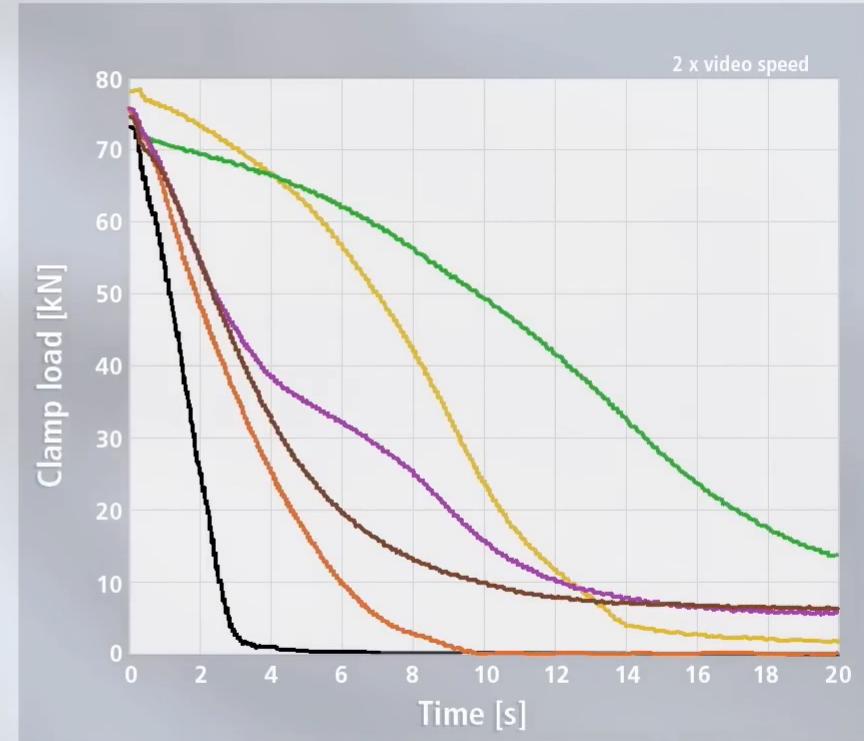
Plain Washer

Helical Spring Washer

Check Lock Nut

Nylon Insert Nut

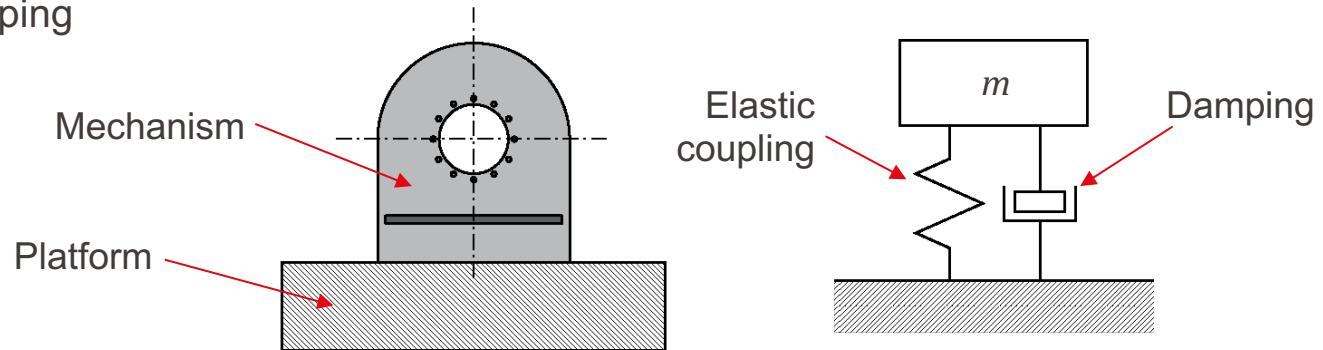
Double Nut



- The mechanism is attached to a platform
 - The level of vibration is imposed by the platform

Specified spectral density

- The mechanism reacts to the vibrations (resonator)
 - Eigenfrequencies
 - Several vibration modes
 - Amplification of the movement at certain frequencies (overload)
 - Damping



- Sizing: worst case!
 - Highest load
 - Largest deformation
 - Worst case environmental conditions
 - If T_{max} is specified on orbit, but launch temperature is T_L , use T_L for the vibration load calculation.
 - This is not always obvious in the requirements

Challenge the requirements!!!

- Harmonic oscillator
 - Numerous references exist e.g.:
 - "Mécanique Vibratoire, Systèmes discrets linéaires", Michel Del Pedro, Pierre Pahud, 1992, EPFL PRESS [5.3]
 - "Engineering Vibration", 4th Edition, Daniel J. Inman, University of Michigan, 2014, Pearson [5.4]
 - ...

Harmonic oscillator: reminder

- Inertia: $F = m \cdot \frac{d^2x}{dt^2} = m \cdot \ddot{x}$

- Elastic force

- **Linear stiffness:** k [N/m] $F_s = -k \cdot x$

- Noticeable relationship: $k = \omega_0^2 \cdot m$

Where ω_0 : eigenfrequency of the undamped harmonic oscillator

m: oscillating mass

- Stiffness may not be linear!

- Dissipative forces

- **Friction coefficient:** μ $F_f = \mu \cdot F_N$ [nondimensional]

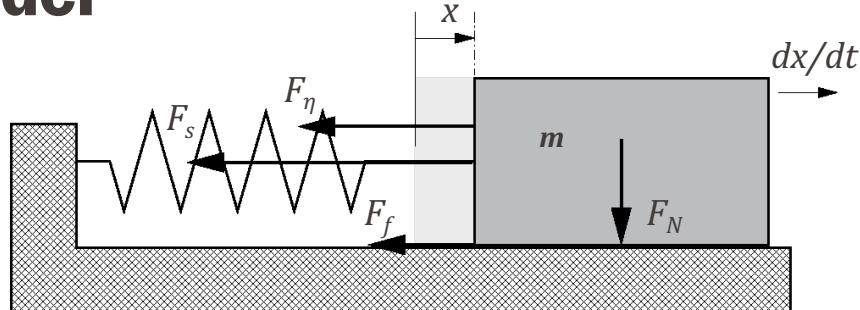
- Damping

- **Damping coefficient:** c $F_\eta = -c \cdot \frac{dx}{dt} = -c \cdot \dot{x}$ [N·s/m]

- **Relative damping coefficient:** η $\eta = \frac{c}{c_{cr}} = \frac{c}{2 \cdot m \cdot \omega_0} = \frac{c}{2\sqrt{k \cdot m}}$ [nondimensional]

c_{cr} : critical damping coefficient ω_0 : eigenfrequency of the undamped oscillator

- Damping can be non-linear (e.g. Coulomb damping/dry friction ...)



Harmonic oscillator: reminder

- Equation of motion

$$m \cdot \ddot{x} + c \cdot \dot{x} + k \cdot x = f(t)$$

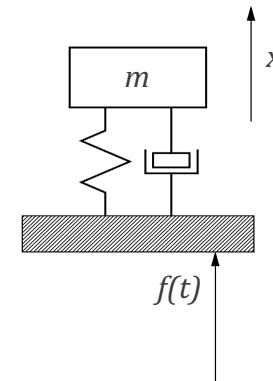
$$\rightarrow m \cdot \ddot{x} + c \cdot \dot{x} + \omega_0^2 \cdot m \cdot x = f(t)$$

where $f(t)$ is the external force imposed on the system

- Note: the introduction of non-linear parameters, like static friction, requires a more complex treatment

- **Simple harmonic oscillator** solutions (free vibrations), i.e. neither driven ($f(t) = 0$) nor damped ($c = 0$):

$$x = X \cdot \cos(\omega_0 \cdot t + \varphi)$$



Harmonic oscillator: reminder

- **Dissipative case ($c \neq 0$), but not driven ($f(t) = 0$):**

$$x = A \cdot e^{r_1 \cdot t} + B \cdot e^{r_2 \cdot t}$$

$$r_1 = \omega_0 \cdot (-\eta + \sqrt{\eta^2 - 1})$$

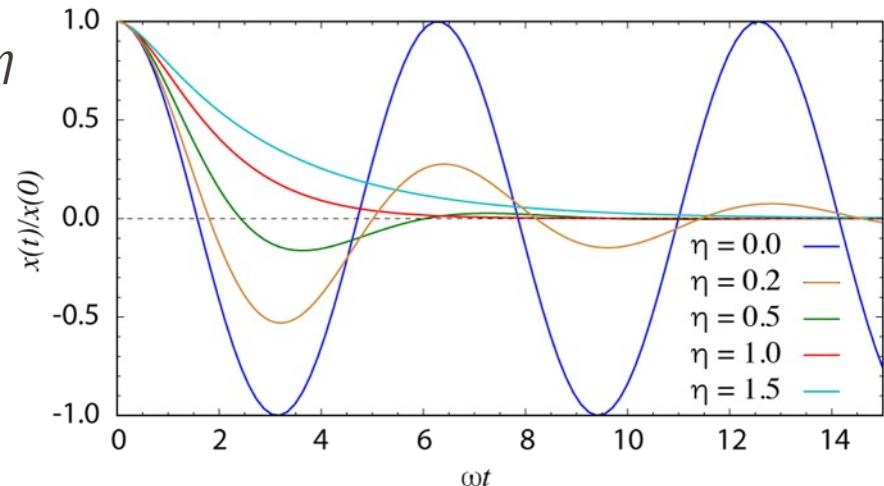
$$r_2 = \omega_0 \cdot (-\eta - \sqrt{\eta^2 - 1})$$

A, B : constants depending on η

- $\eta > 1$: overdamped
- $\eta = 1$: critical damping
- $\eta < 1$: underdamped

Cf. previously (relative damping coefficient):

$$\eta = \frac{c}{2 \cdot m \cdot \omega_0}$$



- **Dissipative case ($c \neq 0$) and driven ($f(t) \neq 0$, i.e. forced vibrations)**
 - Sine applied external force F :

$$m \cdot \ddot{x} + c \cdot \dot{x} + \omega_0^2 \cdot m \cdot x = F \cdot \cos(\omega \cdot t)$$

Note:

ω_0 : eigenfrequency
 ω : driving frequency

- The general solution becomes:

$$x = X \cdot \cos(\omega \cdot t - \varphi)$$

$$\text{with: } X = \frac{F}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_0}\right)^2\right]^2 + 4 \cdot \eta^2 \cdot \left(\frac{\omega}{\omega_0}\right)^2}}$$

$$\operatorname{tg}(\varphi) = \frac{2 \cdot \eta \cdot \frac{\omega}{\omega_0}}{1 - \left(\frac{\omega}{\omega_0}\right)^2} = \frac{\omega \cdot c}{k - \omega^2 \cdot m}$$

$$\text{with: } k = \omega_0^2 \cdot m$$

- Dissipative case ($c \neq 0$) and driven ($f(t) \neq 0$) - continued

$$1) \quad x = \frac{F}{k} \cdot \cos(\omega \cdot t) \quad \text{if } \omega \ll \omega_0$$

$$2) \quad x = \frac{F}{2 \cdot k \cdot \eta} \cdot \cos(\omega_0 \cdot t + \frac{\pi}{2}) \quad \text{if } \omega = \omega_0$$

$$3) \quad x = \frac{\omega_0^2 F}{\omega^2 k} \cdot \cos(\omega \cdot t + \pi) = \frac{F}{m\omega^2} \cdot \cos(\omega \cdot t) \quad \text{if } \omega \gg \omega_0$$

- 1) Spring controlled
- 2) Damper controlled
- 3) Mass controlled

Harmonic oscillator: reminder

- Dynamic amplification factor (overload)
 - The ratio between the dynamic amplitude X and the static one (elastic deformation under a static force F) is the amplification factor

$$\zeta = \frac{X}{F/k} = \frac{1}{\sqrt{(1 - \beta^2)^2 + 4 \cdot \eta^2 \cdot \beta^2}} \quad [\text{nondimensional}]$$

with: $\beta = \frac{\omega}{\omega_0}$
 $(\beta \text{ relative angular frequency})$

Reminder: ω is the driving frequency, ω_0 is the eigenfrequency of the undamped harmonic oscillator and η is the relative damping coefficient

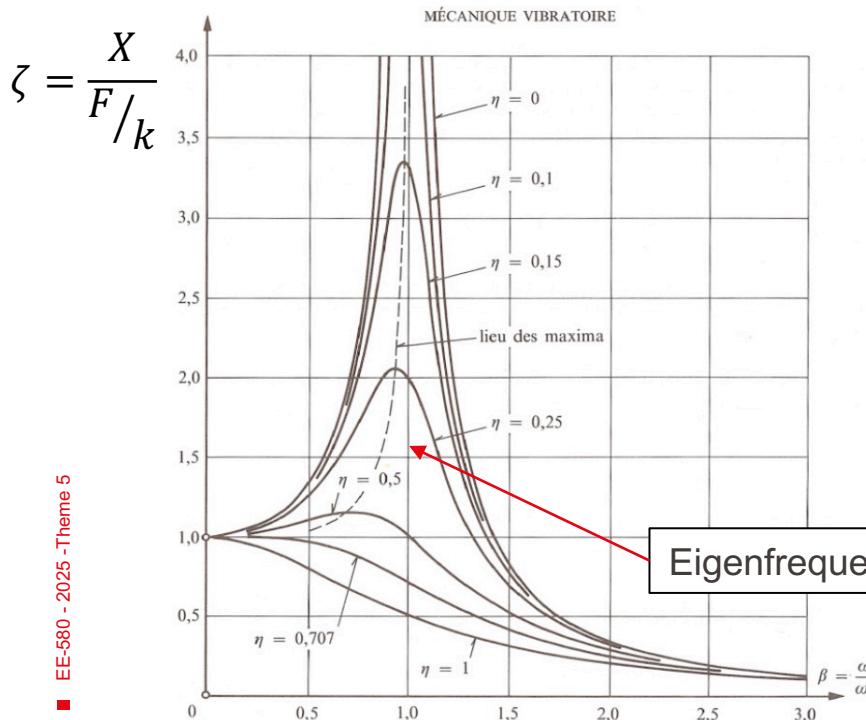
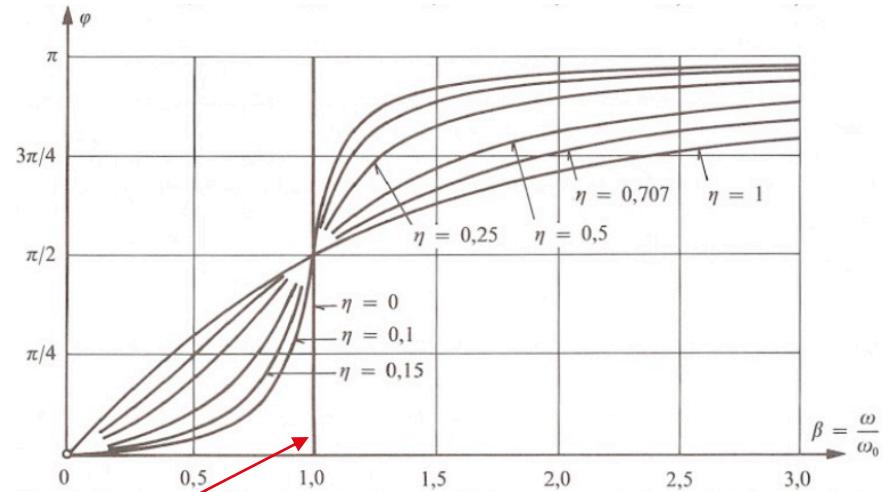
- More damping = less overload
- Maximum amplification factor (resonance): $\zeta_{max} = \frac{1}{2 \cdot \eta \sqrt{1 - \eta^2}}$

if $\beta \approx 1$: $\zeta \approx \frac{1}{2 \cdot \eta} \rightarrow \zeta_{max}$ if $\eta \ll 1$

Note: $\frac{1}{2 \cdot \eta} = Q$

Harmonic oscillator: reminder

- Shape of the amplitude and phase of the vibration as a function of the relative angular frequency β and the relative damping coefficient η :



Source: Michel Del Pedro, Pierre Pahud, "Mécanique Vibratoire, Systèmes discrets linéaires", EPFL PRESS, 1992 [5.3]

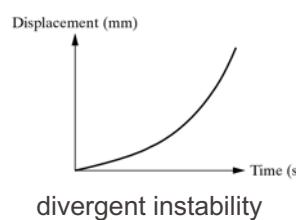
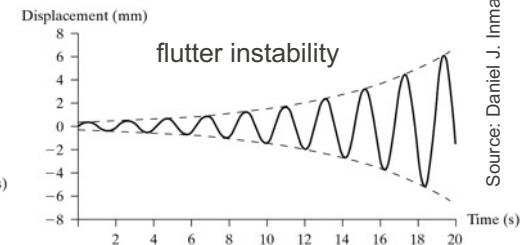
- **Stable** oscillator: limited amplitude

- $|x| = f(t) \rightarrow$ limited
- Mass m , stiffness k and damping coefficient $c > 0$

- **Unstable** oscillator: diverging

- $|x| = f(t) \rightarrow \infty$
- Stiffness k or damping coefficient $c < 0$
- Example:

- Inverted pendulum (inverted pendulum maintained by a spring)
- Wing of a plane (flutter instability)



- Parameters

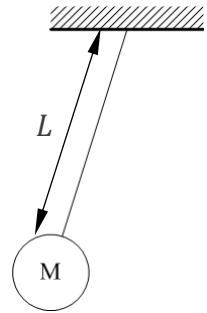
- M : concentrated mass (at center mass) [kg]
- m : distributed mass (on the length or on the surface) [kg/m] or [kg/m²]
- L, a, b : characteristics lengths [m]
- k : stiffness [N/m]
- ρ : specific weight [kg/m³]
- g : terrestrial acceleration [9.81 m/s²]
- E : Young's modulus [N/m²]
- I : area moment of inertia (second moment of area) [m⁴]

- Eigenfrequencies of:

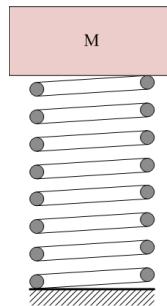
- Simple gravity pendulum
- Loaded spring
- Beams

Useful formulas

Source: Roark's Formulas for Stress and Strain (9th Edition),
 Budynas, R.G., Sadegh, A.M., Mc Graw Hill, 2020,
 ISBN 9781260453751



$$\omega = \sqrt{\frac{g}{L}}$$

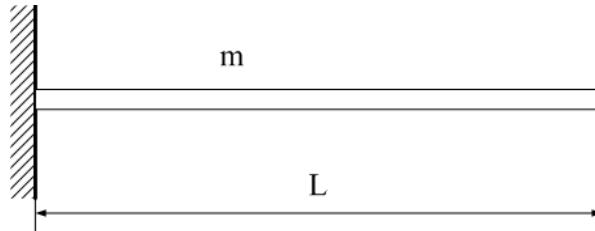


$$\omega = \sqrt{\frac{k}{M}}$$

$$\omega_0 = 15.4 \sqrt{\frac{E \cdot I}{m \cdot L^4}} \quad \omega_1 = 50 \sqrt{\frac{E \cdot I}{m \cdot L^4}} \quad \omega_2 = 104 \sqrt{\frac{E \cdot I}{m \cdot L^4}}$$

$$m \sim 0$$

$$\omega = \sqrt{\frac{k}{M}}$$



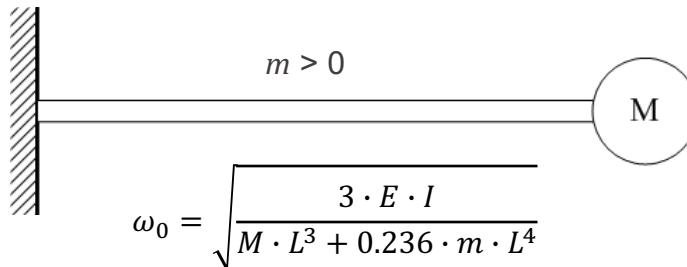
$$m$$

$$L$$

$$\omega_0 = 3.52 \sqrt{\frac{E \cdot I}{m \cdot L^4}}$$

$$\omega_1 = 22 \sqrt{\frac{E \cdot I}{m \cdot L^4}}$$

$$\omega_2 = 61.7 \sqrt{\frac{E \cdot I}{m \cdot L^4}}$$

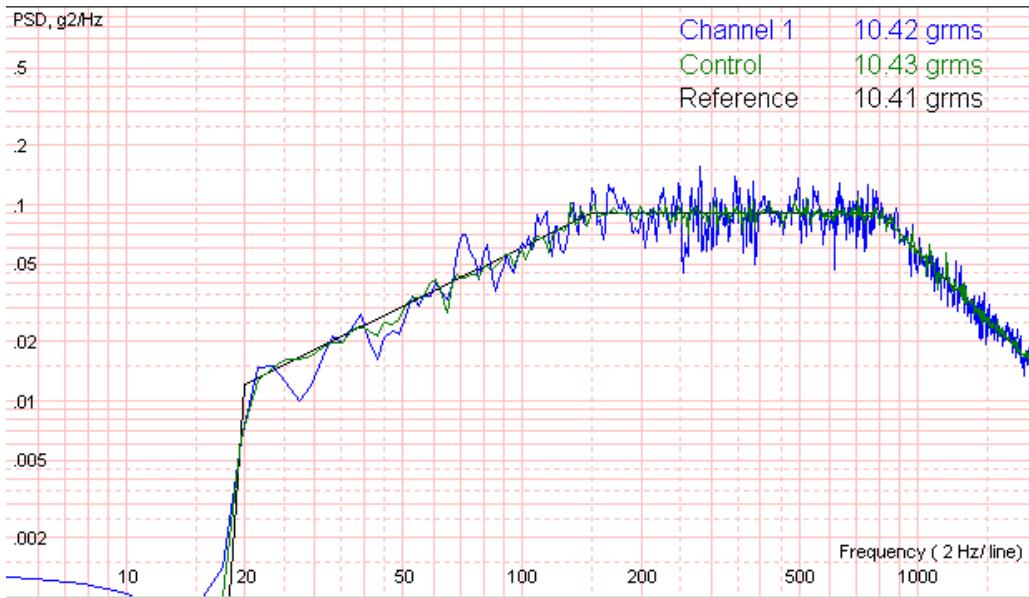
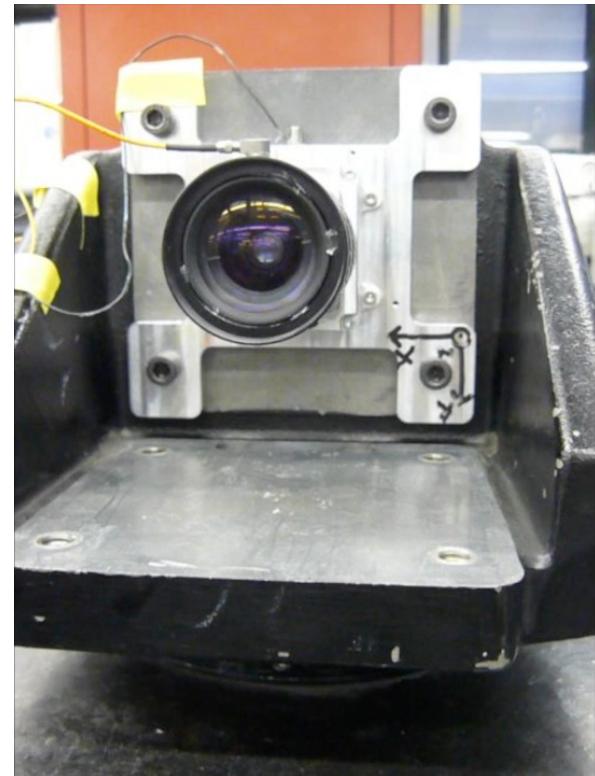


$$m > 0$$

$$\omega_0 = \sqrt{\frac{3 \cdot E \cdot I}{M \cdot L^3 + 0.236 \cdot m \cdot L^4}}$$

Random vibrations

- General dissipative case: arbitrary driving force $F(t)$
 - Vibrations generated by the launcher:
 - $F(t)$ random
 - Vibration amplitude that varies with the frequency and characterized by its Acceleration Spectral Density (ASD)

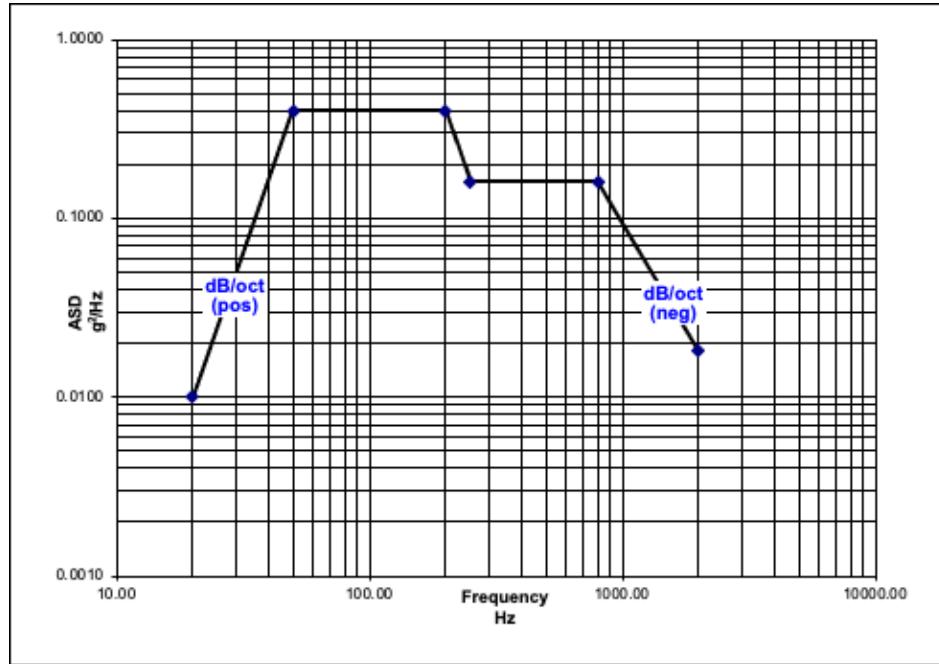


Source: Swiss Space Center

Random vibration - Example

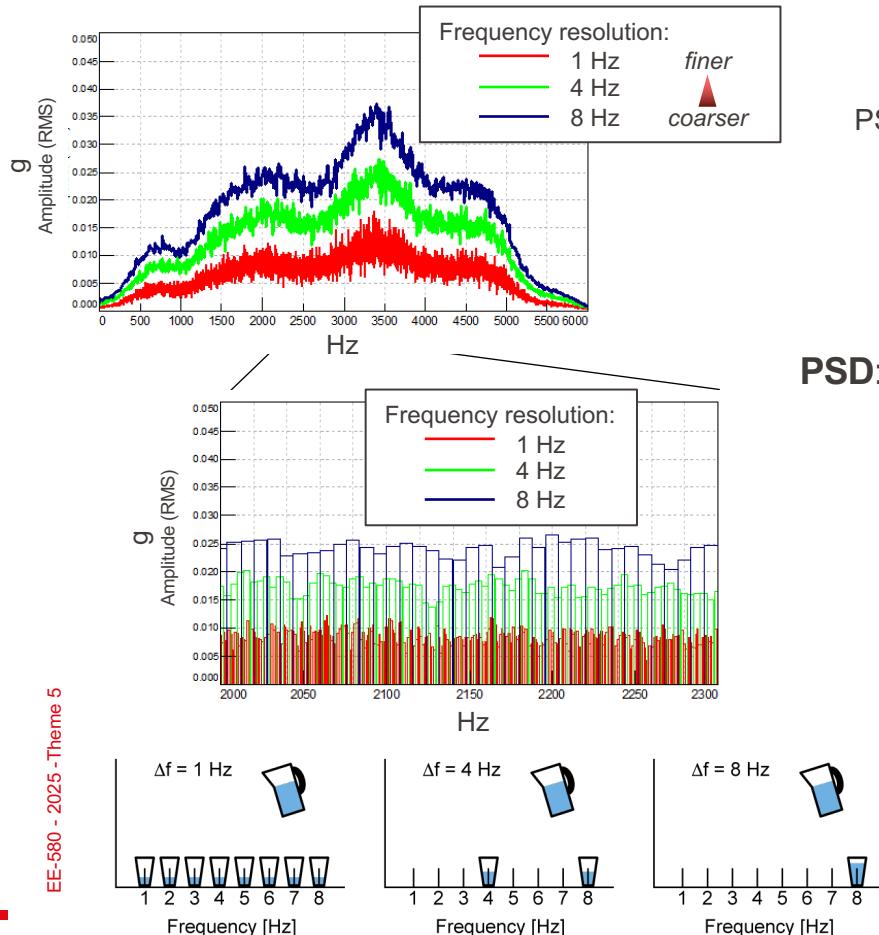
Frequencies [Hz]	Amplitude (ASD) [g ² /Hz]	Slope [dB/octave]
20 to 50	0.01 to 0.4	12.12
50 to 200	0.4 to 0.4	0
200 to 250	0.4 to 0.16	-12.36
250 to 800	0.16 to 0.16	0
800 to 2000	0.16 to 0.018	-7.2

Envelope: 15.2 g_{rms}



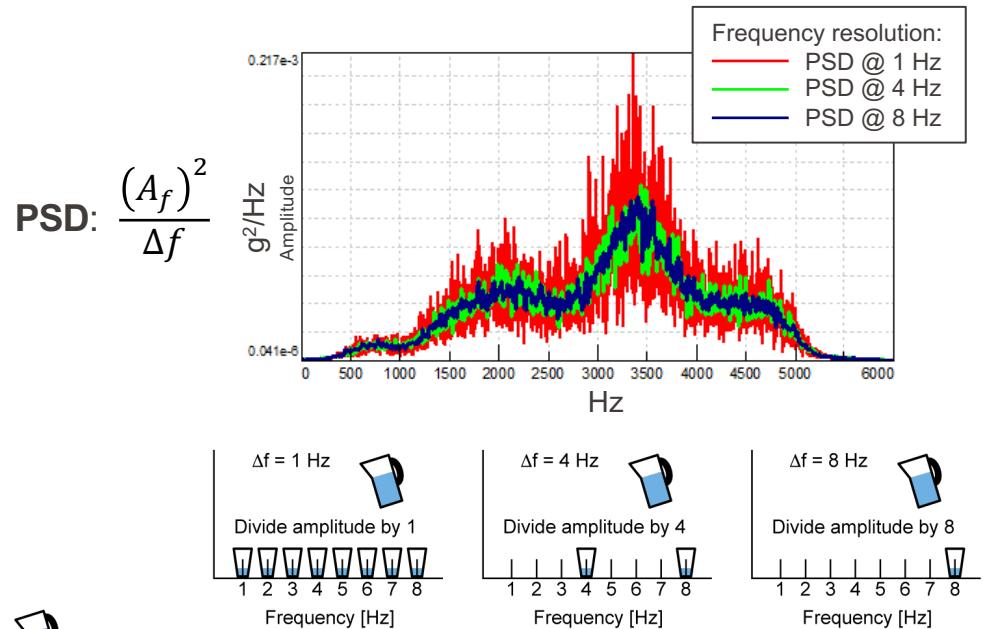
ASD: Acceleration Spectral Density, i.e. specified value

Random vibration – Why g^2/Hz ?



Source: Siemens (<https://community.sw.siemens.com/s/article/what-is-a-power-spectral-density-psd>)

PSD: Power Spectral Density, i.e. measured signal (e.g. accelerometer)



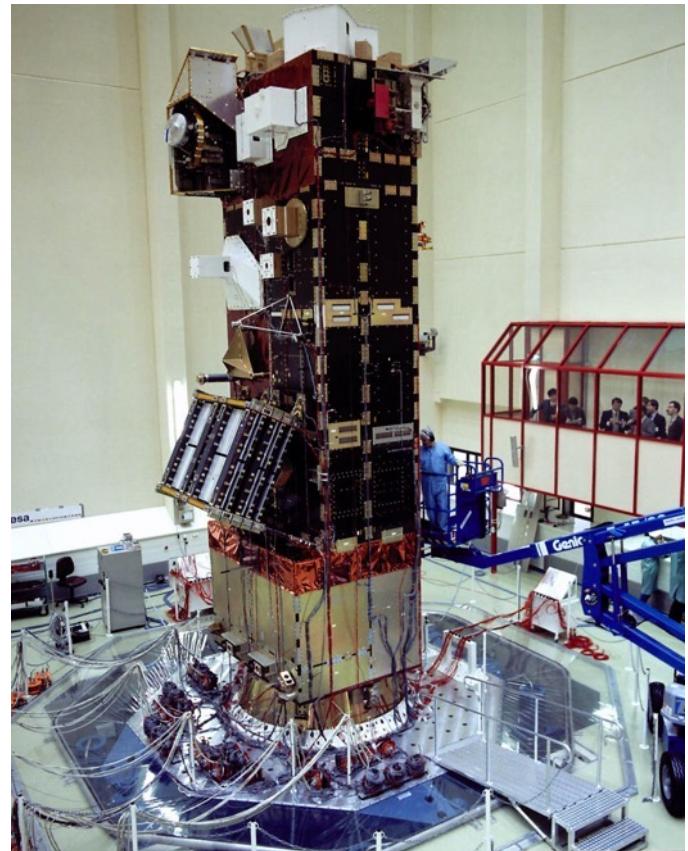
Note: if periodic signal, all energy distributed on specific spectral lines => amplitude depends on frequency resolution if using PSD! **PSD is not for periodic signal.**

Test equipment: shaker

Electrodynamic shaker

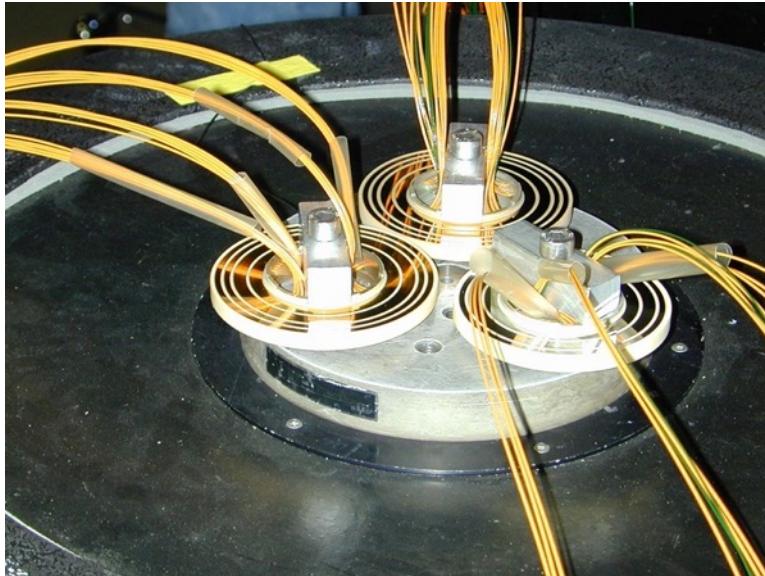
Source: Data Physics Corporation

HYDRA 6DOF ESA Hydraulic shaker



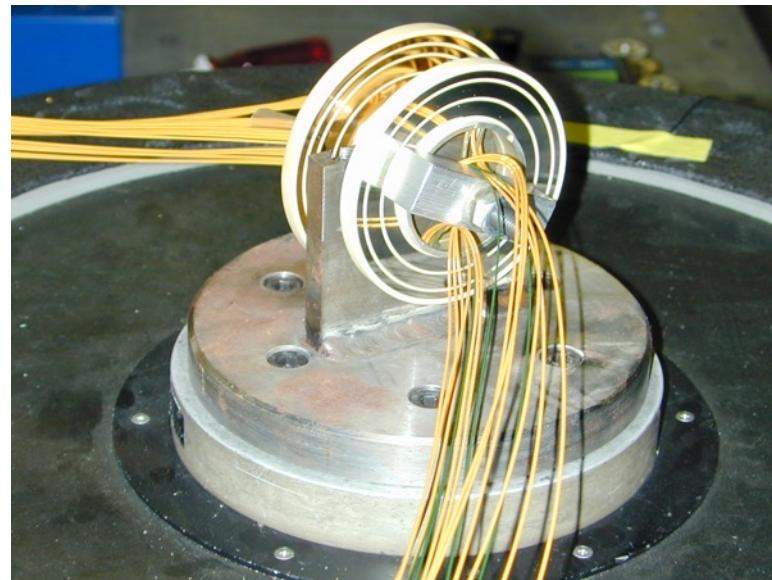
Source: ESA

Vibration Test: example of a test

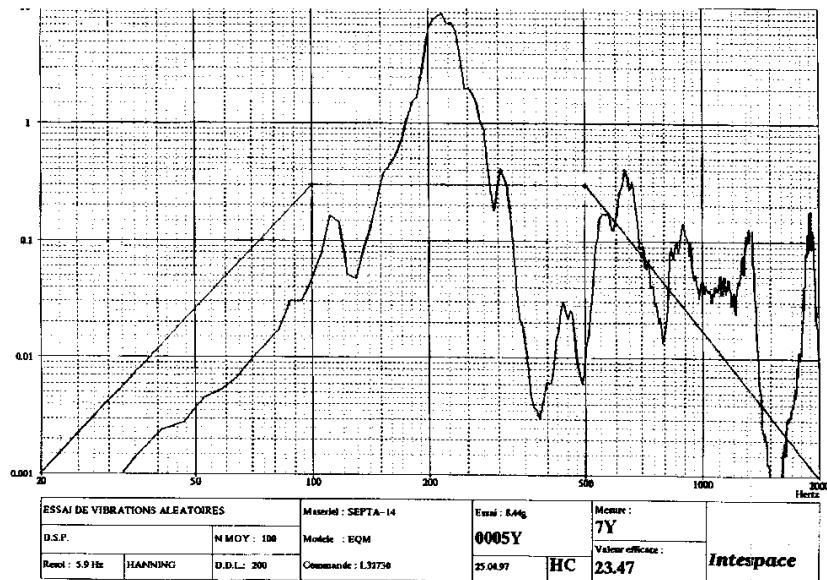


Source: Mecanex SA

Vibration tests along two axes

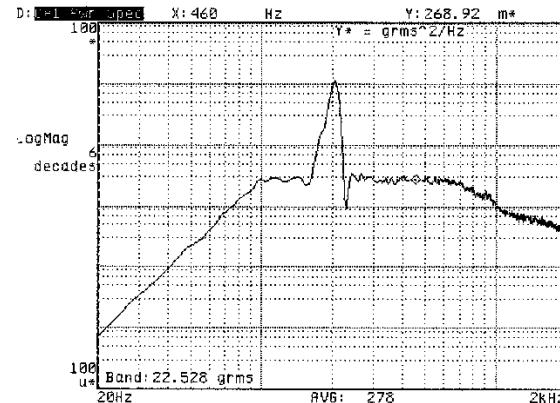


Vibration Test: example of a test



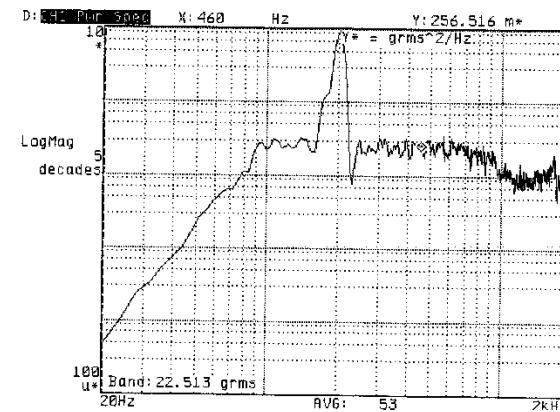
MODULE SEPTA-14 VERTICAL

Date: 99 11 19 Time: 16:25:00



MODULE SEPTA-14 RADIAL

Date: 99 11 19 Time: 16:49:00



- The vibration amplitude varies randomly as a function of time
 - $x(t)$ does not help a lot for the characterization
- Use of the **Fourier transform** in order to get a **function frequency**:

$$\ddot{X}(\nu) = H(\nu) \cdot \ddot{U}(\nu)$$

$$X(\nu) = \int_{-\infty}^{\infty} x(t) \cdot e^{-2\pi \cdot i \cdot \nu \cdot t} dt$$

$$U(\nu) = \int_{-\infty}^{\infty} u(t) \cdot e^{-2\pi \cdot i \cdot \nu \cdot t} dt$$

$$\ddot{X}(\nu) = -(2\pi \cdot \nu)^2 \cdot X(\nu)$$

$$\ddot{U}(\nu) = -(2\pi \cdot \nu)^2 \cdot U(\nu)$$

Fourier transforms of the induced $x(t)$ and injected $u(t)$ displacements

The second derivatives of the displacements (property of Fourier transform) give the **induced and injected accelerations**

- $H(\nu)$: **frequency transfer** function linking together the amplitudes of the induced and injected accelerations.
 - Complex function which corresponds to the amplification factor ζ (cf. before), but for random amplitudes
- Root mean square (rms) of the **induced amplitude**:

$$\overline{x(t)^2} = \frac{1}{T} \int_0^T x(t) \cdot x(t)^* dt$$

- The **power spectral density** $W_x(\nu)$ is calculated from this mean value by using the Fourier transform:

$$\overline{x(t)^2} = \int_0^{\infty} \frac{2}{T} \cdot X(\nu) \cdot X(\nu)^* d\nu$$

$$\text{with } W_x(\nu) = \frac{2}{T} \cdot X(\nu) \cdot X(\nu)^*$$

- In a similar way it is possible to define the **injected Acceleration Spectral Density (ASD)** $W_{\ddot{U}}(\nu)$:

$$\overline{\ddot{u}(t)^2} = \int_0^{\infty} \frac{2}{T} \cdot \ddot{U}(\nu) \cdot \ddot{U}(\nu)^* d\nu$$

with $W_{\ddot{U}}(\nu) = \frac{2}{T} \cdot \ddot{U}(\nu) \cdot \ddot{U}(\nu)^*$ [g²/Hz]

- Root mean square of the induced acceleration using ASD and transfer function $H(\nu)$:

$$\ddot{x}_{rms} = \sqrt{\int_0^{\infty} H(\nu)^2 \cdot W_{\ddot{U}}(\nu) \cdot d\nu}$$

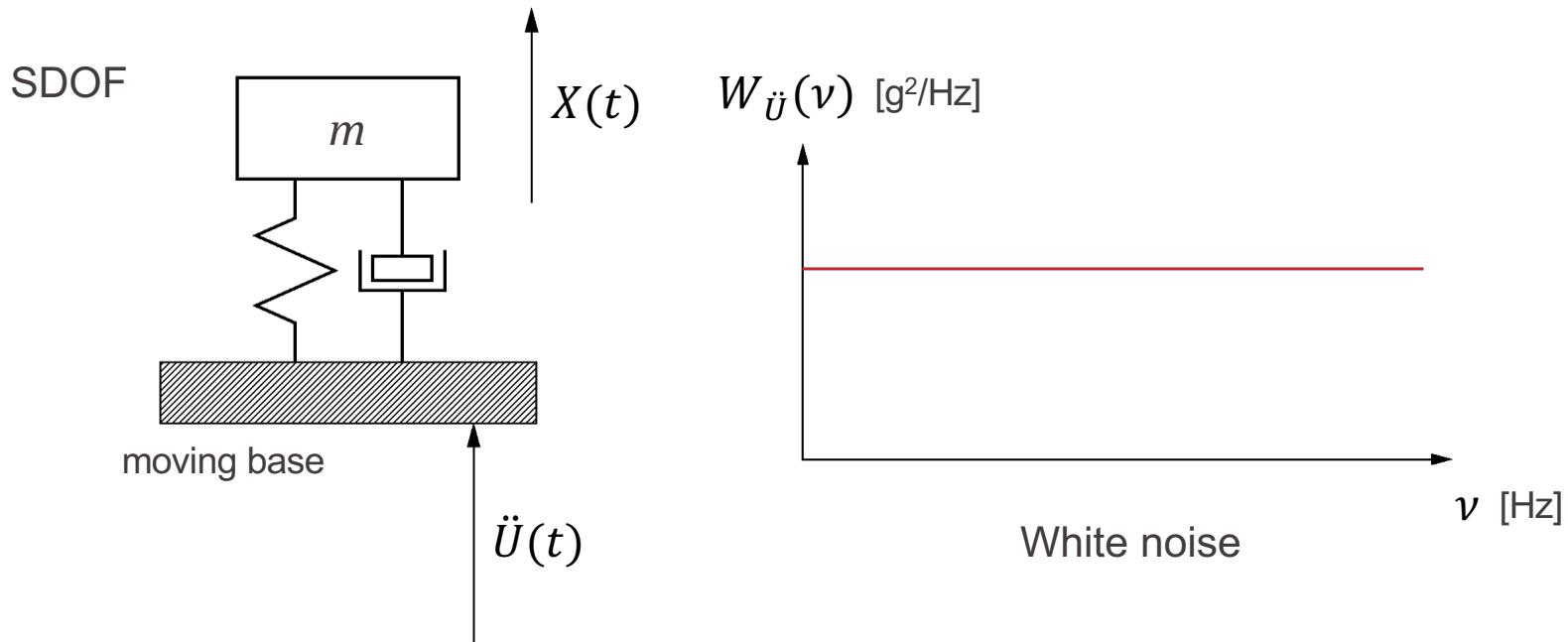
- **Miles Formula** (John W. Miles in Journal of the Aeronautical Sciences, 1954):

- For systems with one dominant vibration mode of frequency ν , the root mean square of the acceleration is given through an approximation, the Miles formula (in [g]):

$$\ddot{x}_{rms} = \sqrt{\frac{\pi \cdot Q \cdot \nu \cdot W_{\ddot{U}}(\nu)}{2}} \quad \xrightarrow{\text{.....}} \quad \ddot{x}_{peak} = n \cdot \sqrt{\frac{\pi \cdot Q \cdot \nu \cdot W_{\ddot{U}}(\nu)}{2}}$$

- With $Q = \frac{1}{2 \cdot \eta}$ Q factor, i.e. max. amplification factor (overload)
- n : envelope factor (normally 3 for Raleigh distribution 3σ)
 - Acceleration may be much higher! For gaussian distribution of the amplitudes:
 - Amplitude 1σ corresponds to \ddot{x}_{rms}
 - Acceptable amplitude for dimensioning: 3σ (i.e. 99.7% of all amplitudes)
- This formula is important for the pre-dimensioning of mechanisms

▪ Miles Formula

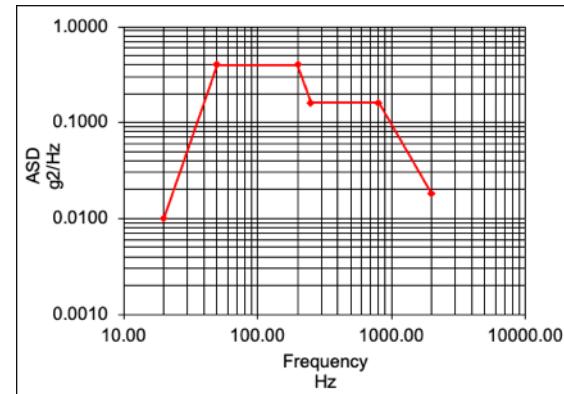
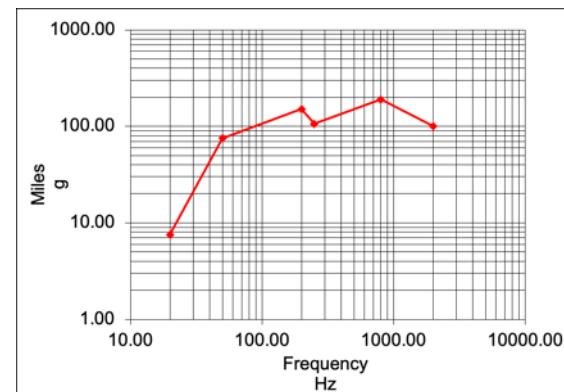


SDOF: Single Degree Of Freedom oscillator

Use of Miles formula

- The *ASD* envelope shall be known through the mechanism requirements
- Define a value for Q (hypothesis, in general 10 to 20)
- If an eigenfrequency of the mechanism is known, use this frequency in the Miles formula. If not, search the worst case (cf. example here)
- The amplitude of Miles is expressed in [$g = 9.81 \text{m/s}^2$]

$$Miles = 3 \cdot \sqrt{\frac{\pi \cdot Q \cdot \nu \cdot ASD(\nu)}{2}}$$

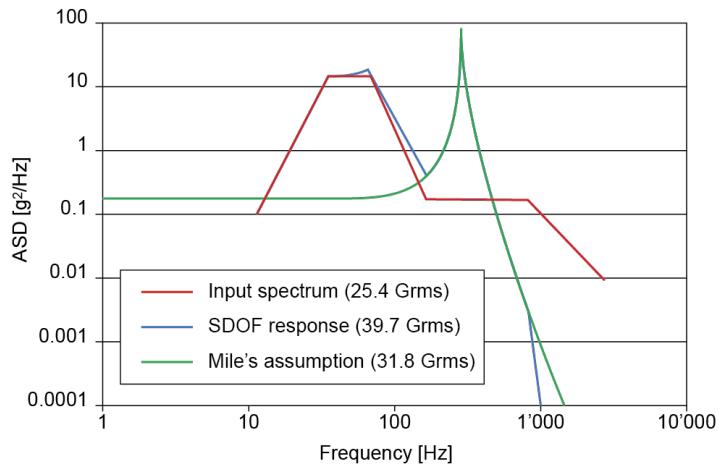


▪ Use

- **Design:** to estimate the loads due to random vibration (3σ)
- **Test:** estimate the overall RMS acceleration at resonant peak of interest

▪ Not use

- Does not work in reverse: accelerations cannot be determined during random vibration testing using Miles' Equation
- Does not give an equivalent static load:
$$G_{rms}(\nu_{res}) \cdot m \neq F_{static}$$
- May not be conservative for a shaped input spectrum
 input spectrum with high ASD levels at $\nu < \nu_{resonance}$



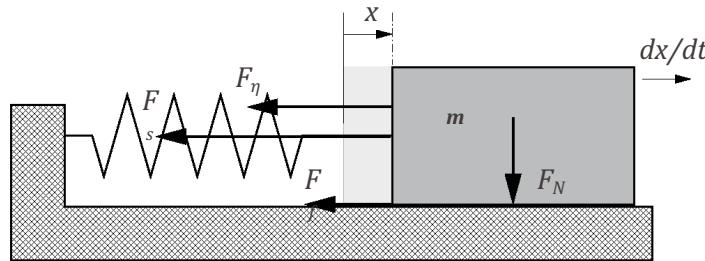
- Acceleration: [m/s²] or [g] (= 9.81 m/s²)
- Amplitude of the sine vibrations:
 - Normally: [g]
 - For very low frequency (< 20 Hz): [mm]

$$x = x_0 \cdot \cos(\omega \cdot t) \quad \left| \frac{\ddot{x}}{x} \right| = \omega^2$$
$$\ddot{x} = -\omega^2 x_0 \cdot \cos(\omega \cdot t)$$

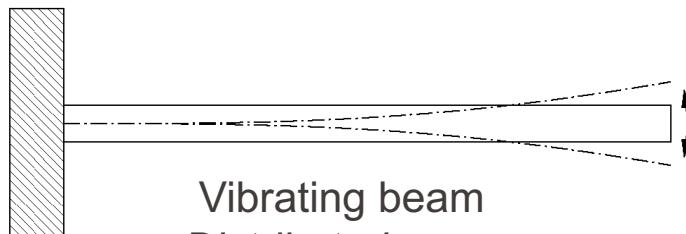
- Acceleration/Power Spectral Density (ASD/PSD): [g²/Hz]
- Variation of ASD/PSD: [dB/oct] or [dB/decade]
 - 1 octave: doubling of frequency
 - 1 decade: 10x the frequency
 - Define straight lines in the log scale representation of ASD/PSD

$$\# Octave = \frac{\log(v_H/v_L)}{\log(2)}$$

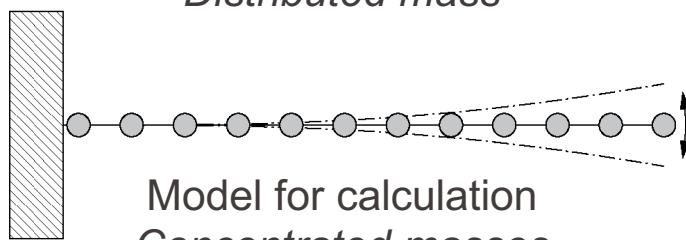
Vibration of deformable structures



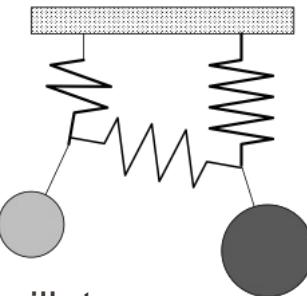
Simple oscillator



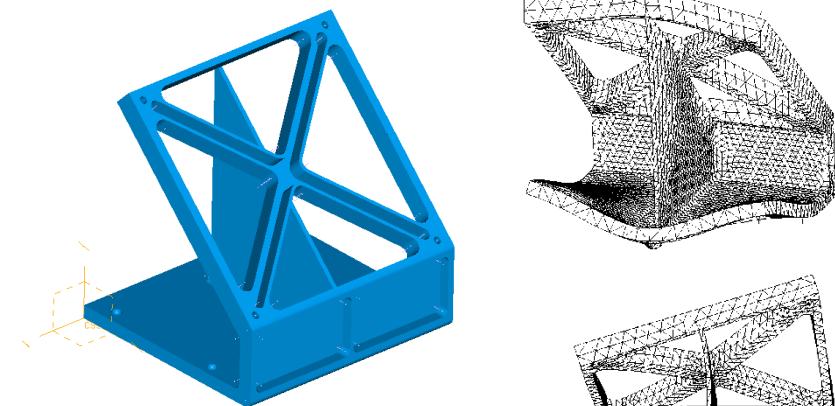
Vibrating beam
Distributed mass



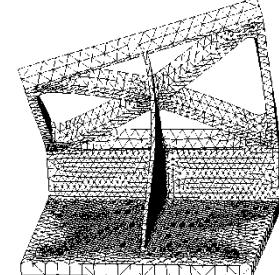
Model for calculation
Concentrated masses



Coupled oscillator



Real part
(Finite Element Model)

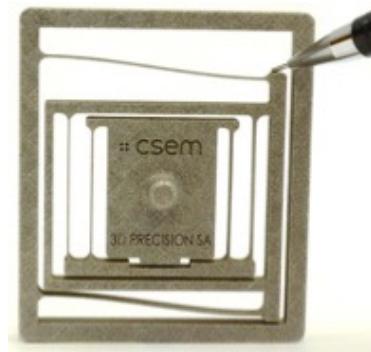


Compliant Mechanisms

Source: FreeFlex Pivot

Source: Ruland

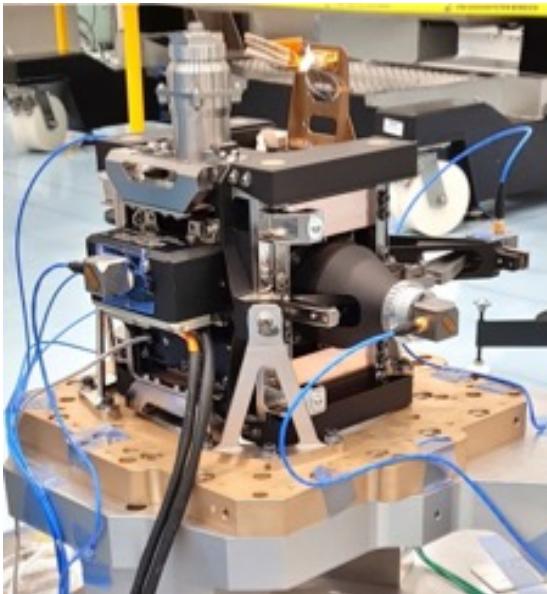
Source: Almatech



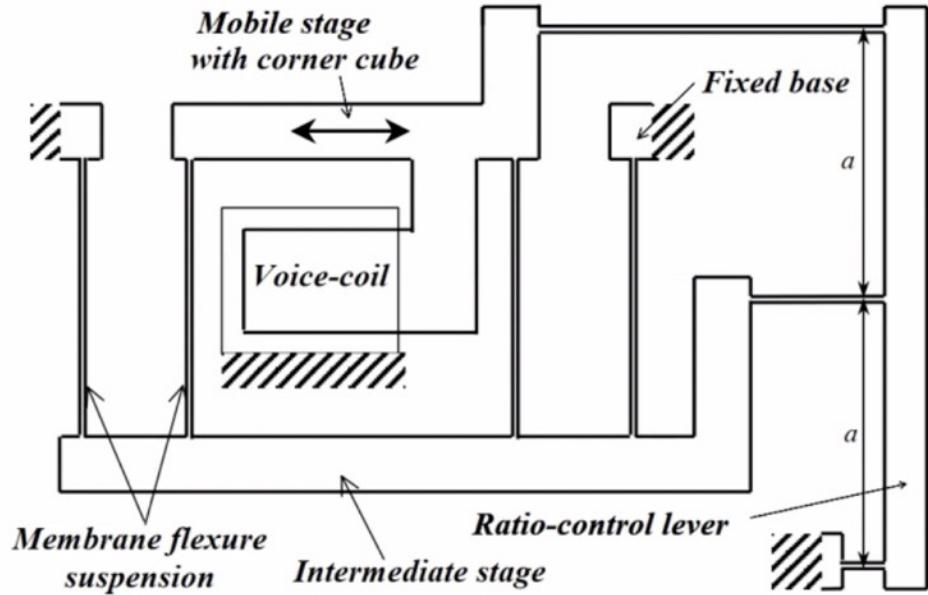
Source: CSEM

Source: ESA

Compliant Mechanisms



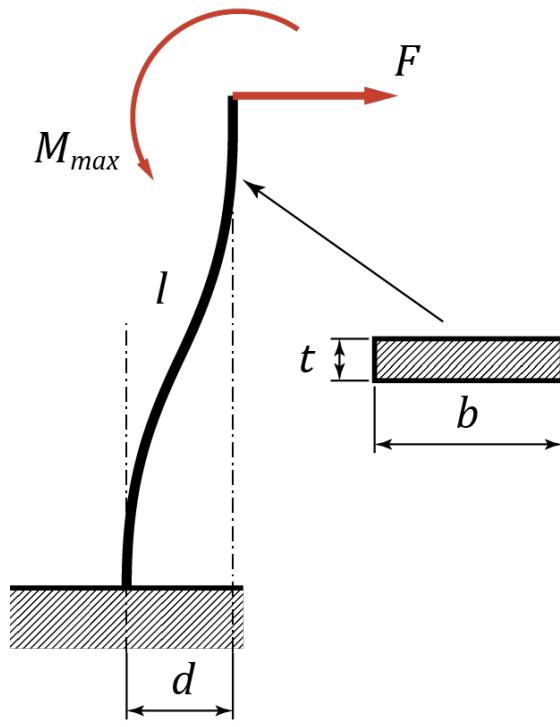
Source: CSEM



Source:

P. Spanoudakis et al. "Design and Production of the METOP Satellite IASI Corner Cube Mechanisms", European Space Mechanisms and Tribology Symposium, San Sebastian (2003)

Bending beam



Top end guided, bottom end fixed

- Maximum bending moment $M_{max} = \frac{F \cdot l}{2}$
- Elastic deformation $d = \frac{F \cdot l^3}{12EI}$
- Area moment of inertia $I = \frac{b \cdot t^3}{12}$
- Maximum bending stress

$$\sigma_{max} = \frac{M_{max}}{I} \cdot \frac{t}{2} = \frac{3Fl}{b \cdot t^2} = \frac{3d \cdot t}{l^2} \cdot E$$

or

$$d = \frac{l^2}{3t} \cdot \frac{\sigma_f}{E}$$

Bending beam

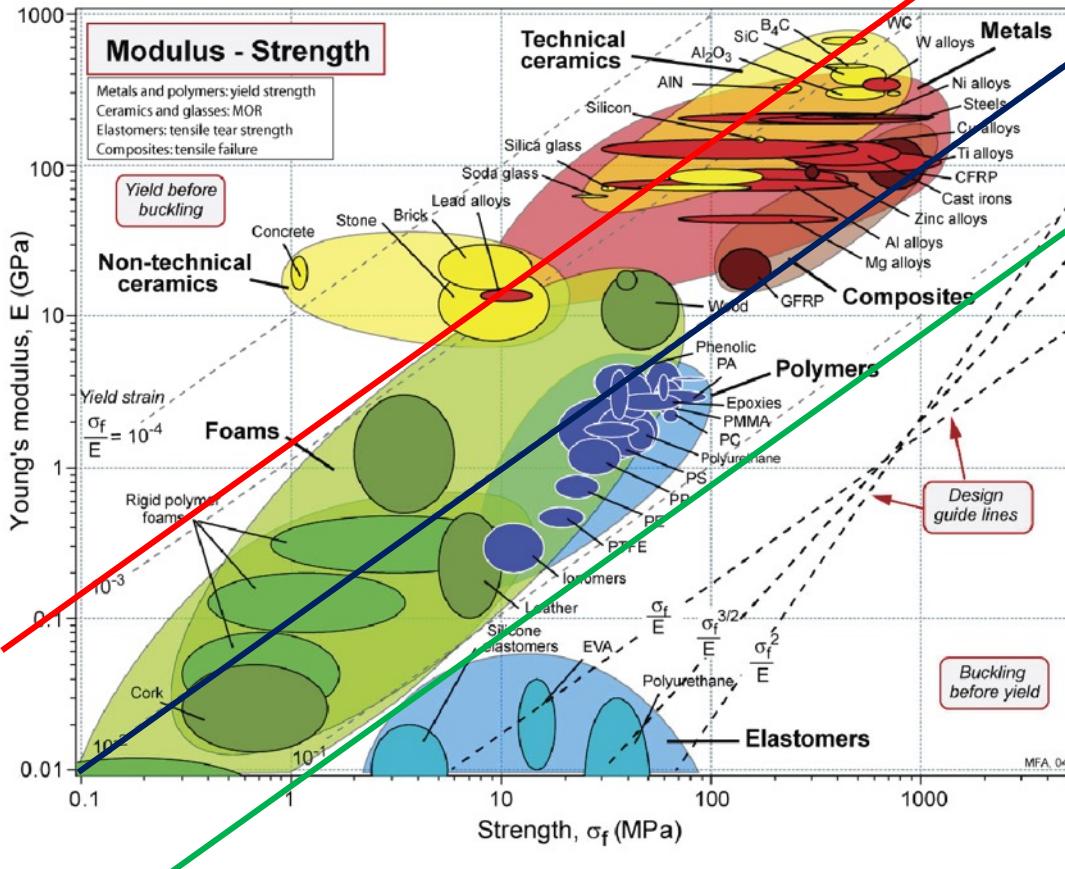
$$\sigma_{max} = \frac{3d \cdot t}{l^2} \cdot E$$

$$d = \frac{l^2}{3t} \cdot \frac{\sigma_f}{E}$$

$$\frac{\sigma_f}{E}$$

- High allowable strength to Young's modulus ratio
- Reducing thickness lowering max stress
- Thin, long structure are best suited
- Max deformation and max stress are independent from beam width

Selecting the material



Better

- Elastic hinges: $\frac{\sigma_f}{E}$
- Springs, elastic energy storage per unit volume: $\frac{\sigma_f^2}{E}$

Source:
Michael F. Ashby "Material and Process Selection Charts", CES Edupack. Granta Design (2009)

References

Michael F. Ashby "Materials Selection in Mechanical Design" 3rd edition, Elsevier-Butterworth Heinemann, Oxford (2005)

- Friction free
 - No wear particle
 - No lubricant
- Fewer parts
- Potential saving on material and production costs
- Infinite life
- Low energy dissipation
- High precision movement

- Design complexity
- Analysis complexity
 - Large displacement
 - Non-linearity
 - Fatigue limit
 - Strength limitation
 - Vibrations (amplification factor)
- Limited movements
- Limited out of plane stiffness
- Energy Retention

- Roles of structures
- Assembly of structures
- Mechanical properties: stress, deformation, mass
- Vibrations
 - Harmonic oscillator (refresher)
 - Sine Vibrations
 - Dynamic amplification factor (overload)
 - Random Vibrations
 - Miles's Formula
- Compliant Mechanisms

- Theme 6 – Components: Introduction and the ball-bearings

Note:

- Mini Project part 2 Architecture: functions and components
(cf. EE580_MP2_2025_v1_Architecture.pdf)
Due date (next week): **April 10th, 11:00**