

<http://tiny.cc/EE580Q03>

- An ADR thin section super duplex bearing WAD725 has been selected to support a cantilever axis, on which is applied a pure force $F_{applied} = 235$ N, with an angle $\alpha = 30^\circ$. The selected super duplex bearing has a contact angle of 15° (O-mount). What is the estimated nominal life of this super duplex bearing?

- Hint: use ADR catalogue ([6.3] on MOODLE)

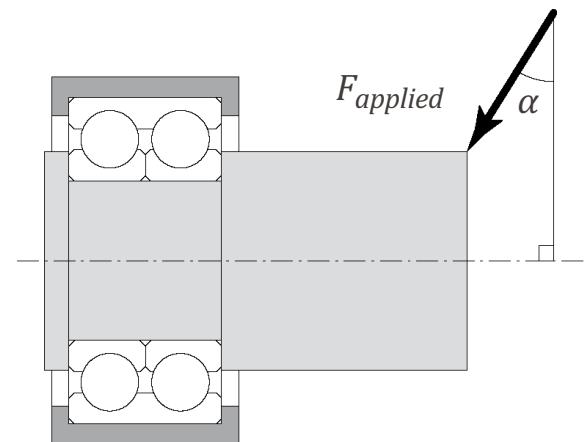
- The stiffness of a structure is measured by:

- The ratio of a force by a surface
- The ratio of torque by an angle
- The ratio of a length by a length
- The ratio of a force by a length
- The ratio of a stress by a strain

$$\text{Stress: } \sigma = E \cdot \varepsilon$$

$$\text{Angular stiffness: } \gamma = \frac{M}{\alpha}$$

$$\text{Strain: } \varepsilon = \frac{\Delta l}{l}$$


$$\text{Stiffness: } k = \frac{F}{\Delta l}$$

$$\text{Young's modulus: } E = \frac{\sigma}{\varepsilon}$$

- In the list below what are the preferred materials used for space ball-bearings?
 - 100Cr6 / SAE 52100
 - X105CrMo17 / AISI 440
 - 80MoCrV40 / M50
 - X115CrMoV14.4.1 / AMS 5749
 - HS 18-0-1 / AMS 5626

- An ADR thin section super duplex bearing WAD725 has been selected to support a cantilever axis, on which is applied a pure force $F_{applied} = 235$ N, with an angle $\alpha = 30^\circ$. The selected super duplex bearing has a contact angle of 15° (O-mount). What is the estimated nominal life of this super duplex bearing?

■ 373 million revolutions

- Hint: use ADR catalogue ([6.3] on MOODLE)

$$F_{\text{Axial}} = F_{\text{Applied}} \sin(30^\circ) = 117.5 \text{ N}$$

$$F_{\text{Radial}} = F_{\text{Applied}} \cos(30^\circ) = 203.5 \text{ N}$$

Source: ADR

Basic designation	Dimensions in inches in mm						Basic load rating ² N			Mean ² mass	
	Radial			Axial							
	Dyn.	Stat.	static	Cax	g						
	d	D	B	d1	D1	r ¹	C	Co	Cax	g	
WAD710	.625 15,875	1.0625 26,9875	.375 9,525	.7661 19,46	.8827 22,42	.015 0,38	2200	2100	1620	21	
WAD712	.75 19,05	1.1875 30,1625	.375 9,525	.8909 22,63	1.0075 25,59	.015 0,38	2300	2340	1840	24	
WAD713	.8125 20,6375	1.25 31,75	.375 9,525	.9535 24,22	1.0701 27,18	.015 0,38	2340	2460	1950	25	
WAD714	.875 22,225	1.3125 33,3375	.375 9,525	1.0161 25,81	1.1327 28,77	.015 0,38	2390	2590	2070	27	
WAD717	1.0625 26,9875	1.5 38,1	.375 9,525	1.2035 30,57	1.3201 33,53	.015 0,38	2510	2950	2400	31	
WAD721	1.3125 33,3375	1.75 44,45	.375 9,525	1.4535 36,92	1.5701 39,88	.015 0,38	2720	3570	2960	37	
WAD725	1.5625 39,6875	2 50,8	.375 9,525	1.7035 43,27	1.8201 46,23	.015 0,38	2840 4060	4060 3410	3410 43		

$$\frac{2 \cdot F_{\text{Axial}}}{C_0} = 0.0579$$

$$\frac{F_{\text{Axial}}}{F_{\text{radial}}} = 0.58 > e$$

$$P = 0.72 \cdot F_{\text{radial}} + 2.11 \cdot F_{\text{axial}} = 395.5 \text{ [N]}$$

Factors X and Y and Factors X_0 and Y_0

In the table below, note that:

- 1 • For the DO or DX pairs, take $2F_a$ and the value C_0 of the pair.
- 2 • For the DO or DX pairs, X_0 and Y_0 are to be multiplied by 2.
- 3 • The values of X, Y and e to be retained for intermediate contact angles are obtained by linear interpolation.

Source: ADR

Contact ³ angle	$\frac{F_a}{C_0}$	e	Single bearing or DT pair						DO or DX pairs			
			$\frac{F_a}{F_r} \leq e$		$\frac{F_a}{F_r} > e$		X_0^2	Y_0^2	X	Y	$\frac{F_a}{F_r} \leq e$	$\frac{F_a}{F_r} > e$
			X	Y	X	Y						
5°	0.014	0.23					2.30		2.78		3.74	
	0.028	0.26					1.99		2.40		3.23	
	0.056	0.30					1.71		2.07		2.78	
	0.085	0.34					1.55		1.87		2.52	
	0.110	0.36	1	0	0.56	0.45	0.6	0.5	1	1.75	0.78	2.36
	0.170	0.40					1.31		1.58		2.13	
	0.280	0.45					1.15		1.39		1.87	
	0.420	0.50					1.04		1.26		1.69	
	0.560	0.52					1.00		1.21		1.63	
	0.014	0.29					1.88		2.18		3.06	
10°	0.029	0.32					1.71		1.98		2.78	
	0.057	0.36					1.52		1.76		2.47	
	0.086	0.38					1.41		1.63		2.29	
	0.110	0.40	1	0	0.46	1.34	0.6	0.5	1	1.55	0.75	2.18
	0.170	0.44					1.23		1.42		2.00	
	0.290	0.49					1.10		1.27		1.79	
	0.430	0.54					1.01		1.17		1.64	
	0.570	0.54					1.00		1.16		1.63	
	0.015	0.38					1.47		1.65		2.39	
	0.029	0.40					1.40		1.57		2.28	
15°	0.058	0.43					1.30		1.46		2.11	
	0.087	0.46					1.23		1.38		2.00	
	0.120	0.47	1	0	0.44	1.19	0.5	0.46	1	1.34	0.72	1.93
	0.170	0.50					1.12		1.26		1.82	
	0.290	0.55					1.02		1.14		1.66	
	0.440	0.56					1.00		1.12		1.63	
	0.580	0.56					1.00		1.12		1.63	