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Image and video coding

» Examples of applications
— Digital photography
- Digital TV /HDTV /3DTV
- DVD/ Blu-ray
- VCR, PTR, PVR
— Video surveillance
— Medical imaging
- Video conferencing
— Video streaming
— Multimedia enabled mobile phones
- Portable video recorders/players
- Multimedia PCs
— Computer / Robot vision
- Social media
- VR, AR, MR
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Image and video coding

* Relationship between image/video coding and other disciplines

, Numerical
) : \ analysis
Image/Video

Coding

Computer
science

physics X
science
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Image and video coding

* Relationship between Signal Processing, Image/Video Processing,

Image/Video Coding and Computer Vision

Signal Processing
|

Computer
Vision
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Systemics I/llI 5

* Conventional chain of image/video coding

-
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Systemics II/IlI 6

» Complete chain of image/video coding

Real Human
(4D) System

m m Multimedia Signal Processing Group
‘PG Ecole Polytechnique Fédérale de Lausanne E F F L




9/11/24

Systemics /111

» Complete chain of image/video coding

Real

(4D)

Vision

e
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Digital images

134 135 132 12 15..
133 134 133 133 11...
130 133 132 16 12...
137 135 13 14 13..
140 135 134 14 12...

e
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Canonical representation of a gray-level image

» An image is represented as a function f(x,y)
defined on a support of finite or infinite size.
Variables x et y represent the spatial coordinates of a
given point in the image, the value of the function
(represented by a real number) defines the luminance
(gray-level) associated with point (x,y)

Y 4
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Canonical representation of a gray-level image

10

A digital image s(k,/) ofsize gx[
is defined by a matrix of the same size:

5(0,0) s(0,1) s(0,L-2) s(0,L-1)
5(1,0) s(1,1) s(1,L-2) s(1,L-1)
s(k,l)= : : : : :
s(K-2,00 s(K-21) -+ s(K-2,L-2) s(K-2,L-1)
s(K-1,00 s(K-1,0) --- s(K-1,L-2) s(K-1,L-1)

Every element of the matrix, also called a pixel, is
represented by a limited number of bits
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Image/video digitization

11

* Digitization is an essential step to go
from a continuous (analog) to a
discrete representation

* Two major components
— Sampling

— Quantization
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Comparison with 1-D case

1

2

* In principle, all theoretical developments seen in 1-D

case are also valid in M-D case by means of a
simple generalization

* |t is however often difficult, insufficient, and even
dangerous to limit such developments to simple
generalization of 1-D to M-D
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13
Sampling
Multimedia Signal Processing Grou
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13
Sampling 14
 Definition
* Hypotheses
* Theory
* Practice
* Characteristics of sampled M-D
signals
Multimedia Signal Pr: ing Grou
’mp'g Ecole Solstec?miaque(l):céedsésralge deoLeF:usanne E P F L
14



9/11/24

Sampling - Definition

15

* Periodic sampling of values of an analog signal
* Example for a 2-D signal

f(x,p)
S(k,l) = Se(X, y) x=kAx,y=IAy

=3 S S (x-kAx,y - IAy)

k=—oo l=—OO

Ax  Sampling step for dimension X

Ay Sampling step for dimension Y
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Sampling

16

* This relationship in the frequency domain becomes:

+00 +00 l

1 k
Se(u’v)=Ax—Ayz 2 F(u_Ax’v_Ay)

k=—00 l=—oo
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Sampling — Graphical representation 17

e Spatial domain * Frequency domain

, Y
S(x, )

h
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Sampling theorem 18

* An analog signal can be perfectly reconstructed
from its samples as long as the sampling frequency
is at least twice the amount of the maximum
frequency component present in the analog signal
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Reconstruction 19

* |In practice, reconstruction of an analog signal from
its samples is performed by making use of a low-

pass filter
Y
A
X
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Hypotheses 20

* The maximum frequency component of the analog signal

is known
 Signal is stationary

M M Multimedia Signal Processing Group
SPG Ecole Polytechnique Fédérale de Lausanne

=PrL

20

10



9/11/24

Practice 21

Sampling filter
Oversampling
Sampler low-pass filtering effect

5, (x0,0) =[]/ £ (e, B Ye(vo —ct, yo - B )dludf

S, (u,v)=F(u,v)E(u,v)

Optical filtering
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Sampling characteristics 29

* A sampling without proper precaution can lead to
spectral overlap

* Additional frequency components appear in the
reconstructed signal

* Moiré patterns
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Moiré patterns

23
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Quincunx sampling

* Spatial domain
Y

f

X
1 Y
S, (X, )
A
° ‘\. o’, oi VX
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Frequency domain

Diagonal freq. Less

important than
horizontals and

verticals
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Quantization
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Quantization

* Definitions

* Quantization noise

* Optimal quantization (Lloyd-Max)
* Uniform quantization

* Perceptual quantization

* Non-uniform quantization
 Compander

* Color quantization

* Vector quantization
— see compression
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Quantization - definition 27

* Projection of a signal with continuous
amplitude into a set of finite number of
discrete values

output 4

Recon.
level. | __

1d,

[ >

Decision level mnput
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Quantization - definition 28

e General formulation
s,=Q(s) suchthat d <s<d,,, =s, =1,

* The problem of quantization consists
in finding good values {d and {r} ,

as a function of the statistics of the
original signal such that one can
obtain the best approximation possible
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Quantization noise 29

* Quantization noise
e=s—s,=s-r,

* Mean Square Error

- Efe]- ffs-”

* |f the probability density function of the signal is
known:

€ =f(S—rl.)2pS(s)dS fps(s)ds =1
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Optimal quantization 30
* For a pre-defined number of quantization levels Nq:
Nq di+1
2
e =Y [(s=r) p,(s)ds
i=1 d,
* Optimal solution: .
i+
f s.p,(s)ds
v.+r = _di
d =-—+—-L i = ~aim
’ 2
p,(s)ds
J
Multimedia Signal Pr ing Grou
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Optimal quantization 31

* With a large number of dense quantization levels :

z;+d,
D [ [p,()]"ds
d. = d1 +dl

i+l dygn

[ [P ds

dl

D = qu+1 _dl

z,=(k/N,).D

3

d
1 Ng+1 A
€ = d
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Uniform quantization 32
* Hypothesis : probability density function is uniform
* Q(s) is completely defined by a single and constant
quantization step size
Ao =d g GA r=d +A)2
Nq
* Quantization error:
AZ
€ =—
12
Multimedia Signal Pr ing Grou
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Weber law

33

* Human eye is more sensitive to dark gray than light

gray
* Weber-Fechner experiment

* \Weber constant
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Weber experiment (1)

34
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Weber law

* \Weber constant
& A
L

35

AL
Cw= 7 Cv=0.01...0.02
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Weber constant

* Depends on many parameters:
— Observer
— Ambient lighting
— Background luminance
— Type of display
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LO

L L+AL

38
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Weber experiment (2)

39

LO
L L+AL
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39
Weber law 40

AL
L

* \Weber constant
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Choice of quantization step size 41

* Objective metrics to predict
quantization distortions

- MSE
— PSNR
* Visual distortions due to over-
quantization
— false contours

* Pre- and post-processing methods to
reduce false contours

— image rendering
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41

False contours 42

8
quantization levels

256
quantization levels
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choice.

Output

Quantization index

Non-uniform quantization

43

* When the probability density function of a signal is not uniform, non-uniform quantization becomes a better

* Non-uniform quantization takes better into account the non-linear properties of the human visual system

I

i
.

5

Input

5

Black
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Compander

transforms

S

w=f(s) 4

>

L-
| unjrr

44

* A compander is a uniform quantizer
preceded and followed by non-linear

Wy Sq
—
( \

Sq=9 Wq) 4

S

n
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* When

m m Multimedia Signal Processing Group

J (%) =2a-

Compander

WE[— a,a]

[Tp, () ds

qu+1

[Tp, (0" ds

gx)=f7(x)

‘PG Ecole Polytechnique Fédérale de Lausanne
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r

X

0

[p,()1"ds

Compander

e When p,(s)=p,(-s)

f(x)=al

M M Multimedia Signal Processing Group

qu+1

[ Ip. (o)1 ds

0

[ if x=0

f(x)=—];(—x) if x<0 ‘
g(x)=1"(x)
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Quantization of color images

Tables (LUT)

m m Multimedia Signal Processing Group
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* Each color component is quantized separately

e Some color components can be quantized (and
even sampled) with different step sizes

» Alternative: Color quantization based on Look Up

EPF

L

47
Look Up Table (LUT) 48
R
SIEERRSS e
T | 1 10 20 30
B L1 1 1 1 11 __:: 2 30 100 20
True colors Look Up Tables
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False colors

* Special LUTs

Color ¢

49
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False colors

* Example

Original
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False colors
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Correlation
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2D correlation

2D (inter)-correlation function

Qo(k,l) = x(k', 1) y(k'+k,1'+1)
g kZoo ]Zoo
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Correlation

53

* The (inter-) correlation function helps to measure the
similarities between two signals

* Application example : Identify if a pattern is present in an
image

*

x(k', 1)

y(k',1") Qo(k,l)
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Convolution
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2D convolution

55

e 2D convolution

+00 +00

x(k, ) **g(k,l) = E Ex(k',l')g(k—k‘,l ~1"

k'=—00 ['=—0

* Typical representation
— Signal x is filtered by filter g

x(k,]) ———]g(k,l) — . x(k,[)**g(k,])
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2D convolution : properties 56
e Commutativity
x(k,D)**g(k,l) = x(k',[Ng(k-k',[-1")
kZoo 1200
= > > e I =k, 1=1') = g(k,1)**x(k. 1)
k'=—00 ['=—
',",,% Ecole Polytochmidue Féderale de Lausanne =PrL
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2D convolution : properties

57

* Associativity

[x(k, ) **g(k,D1**h(k, 1) = x(k,[) **[g (k, ) **h(k,])]

* Distributivity

x(k,D)**[g(k,])+ h(k,])] = x(k,])**g(k,l)+ x(k,l)**h(k,[)

m m Multimedia Signal Processing Group
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Relationship between correlation and convolution 58
* Correlation can be expressed as a convolution
(ny(kal) = X(—k,—l) **y(kal)
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Practical issues on convolution 59

* In practice, when calculating a convolution product, one has
to:
— Determine the most efficient formula

— Determine the limits of sums

— Resolve the border problem

ultimedia Signal Processing Grou
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59
Determine the most efficient formula 60
* When the size of the image x(k,l) is much more
important than the size of the filter g(k,l), the
following formula is more appropriate:
x(k,D)**g(k,l)= gk x(k-k',1-1")
kZoo 1200
Multimedia Signal Pr ing Grou
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Determine the limits of sums 61

* Limits of sums are directly determined from the size
of the filter g(k,!) :

Mg—l Ng—l

x(k, D) **g(k,l) = ; 2 g(k',Nx(k-k',1-1"

m m Multimedia Signal Processing Group —
‘PG Ecole Polytechnique Fédérale de Lausanne E P l- L

61

Resolve the border problem 62

* Values of pixels outside of image x(k,l) must be
determined when the filter g(k,I) only partially covers
the image.

» Several approaches are possible:

— Zero padding
— Periodic extension
— Mirror extension

M M Multimedia Signal Processing Group E P [ L
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Zero padding 63

e Simple
* Produces strong border artifacts

Multimedia Signal Processing Grou
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Periodic extension 64
e Simple algorithm
* Coherent with Fourier Transform approach
 Better results when compared to zero padding, if the
opposite borders of the image are similar
Multimedia Signal Pr: ing Grou
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Periodic extension 65

m m Multimedia Signal Processing Group
‘PG Ecole Polytechnique Fédérale de Lausanne E P F L

65

Mirror extension 66

* More complex

* Produces the least artifacts
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Mirror extension 67

@

\
~
v

7

mm
SPG
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68

Z-transform
Fourier Transform
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2D Z-transform (2DZT)

69

« 2DZT of a 2D discrete signal x(k,1)
X(z,2)= Y ¥ x(k,D)z "z,
k=—00 [=—00

* |nverse transform

1

k1) =
D=y

g} g} X(z,,2,)z,"z, " dz,dz,
Cl CZ

m m Multimedia Signal Processing Group
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2DZT: properties 70
* Linearity
y(k,D) = ay.x, (k, 1) + ay.x, (kD)
=
Y(z1,z2) = a, X,(21,22) + a, X, (21, 22)
e Separability
x(k, 1) = x,(k).x,(])
(=4
X(z1,z2) = X,(21).X,(22)
Multimedia Signal Pr ing Grou
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2DZT: properties

* Translation
(k) =x(k—ky,l-1,))
(=4
Y(z1,22) = z17° 227" X (21, 22)

e Convolution

y(k, 1) = x(k,[)**g (k, )
=4

Y(z1,22) = X(z21,22).G(z1, 22)
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2DZT: properties 72
e Conjugate symmetry
y(k, 1) =x"(k,1)
=
Y(z,2z,)=X"(z".2,)
e Symmetry in spatial domain
y(k,l) = X(—k, _l)
=
Y(z,2,) = X(z",2")
Multimedia Signal Pr ing Grou
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2D Continuous Fourier Transform (2DFT)

73

« 2DFT of a discrete signal x(k,1)
X(f.0)= 3 Sth.erer

* |nverse transform

/72 1/2

x(k,l) = f fX(f,g)e”"’ke’Z“g’dfdg

-1/2 -1/2

m m Multimedia Signal Processing Group
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2DFT: properties

74

* Periodicity

X(f+19g+l)=X(f9g)

* Relationship to 2DZT

X(f,g)=X(z,z,)

M M Multimedia Signal Processing Group
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2DFT: properties 75

* Symmetrical for all x(k,]) real
X(f.8)=X"(-1.-8)
Re[X(f,2)], | X(f,2)| Even functions

Im[X(f,g)], arg[X(f,2)] Odd functions

x(k,l) : real and even < X(f,g) : real and even

x(k,l) : real and odd < X(f,g) : purely imaginary and odd

Multimedia Signal Processing Grou
’mp% Ecotle Polytec?mique Fédéral?a de Lgusanne E P F L
75
Some definitions related to 2DFT 76
* Transfer Function X(f.g)
X(f.8) =|X(f,g)|e/ =
* Amplitude spectrum X(f,g)
* Phase spectrum arg[ X (1, 2)]
* Energy (power) spectrum 1 X(f,2)
Multimedia Signal Pr ing Grou
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2DFT: phase et magnitude

77

* The phase of 2DFT contains information
about edges and contours of an image
= Image structure is very much visible in the

phase of its 2DFT

* Theoretically, an image can be
reconstructed from its phase or its
magnitude only
— But for magnitude, it's more « difficult »

m m Multimedia Signal Processing Group
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2DFT: importance of magnitude information

78

xX'(k,0) = F'[| Flx(k,D]|]

(logarithm of the intensity)

M M Multimedia Signal Processing Group
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2DFT: importance of phase information

79

x'(k,l)=Re [ F! [ejargF[x<k,1)] ”

e

G Ecole Polytechnique Fédérale de Lausanne

Multimedia Signal Processing Group
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2DFT: fusion of magnitude and phase 80
magnitude
phase
m m Multimedia Signal Processing Group
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Discrete 2D Fourier Transform: D2DFT 81

* D2DFT is obtained by sampling in the frequency
domain, the 2DFT of a discrete signal, with the
following conditions:

S =mAf 1 1
avec ANf =— et Ao =—
/ K & L
g =nAg
Multimedia Signal Processing Grou
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81
D2DFT: Formula 82
* Forward transform
K-1 L-1
X = 3 3 stk Despl-2jn(+ 1)
= £ K L
* Inverse transform
1 5 & mk nl
x(k,l)=— X(m,n)exp[2jn(—+—
(k,1) KL;)EO (m,n) p[J(K L)]
Multimedia Signal Pr ing Grou
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D2DFT: properties

83

e All properties of 2DFT remain valid for D2DFT

* The sum of the coefficients of a digital filter provides

its frequency response at the origin:

X000 =3 S xe))

=0 1=

—

m m Multimedia Signal Processing Group
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D2DFT: multiplication and circular convolution

84

* Multiplication of D2DFTs produces a circular
convolution !

x(k,D)# # y(k,l)<— X (m,n)Y (m,n)

x(k,D)# # y(k,l) = iix(m,n)y((k—m)modK,(l—n)modL)

M M Multimedia Signal Processing Group
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D2DFT: fast transform and filtering

85

* A fast implementation of D2DFT is
possible if the dimensions of the signal
are in powers of 2

e Complexity:
O(N?*)= O(Nlog N)

= This represents an interest in frequency
domain filtering

m m Multimedia Signal Processing Group
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2D digital filtering

87

* In practice three approaches can be used to perform
filtering operations
— Filtering by convolution (direct method)

— Filtering in the transform domain (Fourier)

— Filtering by differential equations

m m Multimedia Signal Processing Group
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Linear filters, transfer functions, frequency responses

88

* A linear and delay invariant filter can be completely
characterized by its impulse response h(k,l)
v(k,l) = h(k,l)**x(k,l)
* The transfer function H(z,,z,) is given by the Z-
transform of h(k,l)
Y(z,,2z,)=H(z,,2,)X(z2,,2,)
* The frequency response is given by:

H(z, =&’ ,z, =e’®)
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Stability issues in digital 2D filters

89

* A filter is stable if for any finite
amplitude input signal, the output is
also of finite amplitude

» Stable filter & Stable impulse response

400 400

IALGUIRE:

k=—00 [=—

» Stable filter & the unit hyper-sphere
(|z1/=1,|z,|=1) is contained in RoC of

H(z,,25)
O e olisamiais Féatran oo ussars =PFL
89
FIR filters 90
* h(k,]) is a Finite Impulse Response (FIR) filter if it
has a finite number of non-zero samples
— Always stable
* Easy to conceive and to implement
* Very much used in practice
* Typically with odd samples in each dimension and of
limited size
—-3X%3,9X%9,...,max. 19x19 or 21 X 21
LG oce otoomiaue Fsatran oo usanre =Pr-L
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FIR filters of zero phase 91

* In image processing phase information is very
important. It should not be modified by filtering =

hk,)=h(=k,-l) & H(f,g)=H (f.2)

* The frequency response:

H(f,g)="h(0,0)+ ;ﬁ 2h(k,l)cos(2r fk + 2m gl)
(k,)ER!
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91

FIR filters of zero phase 92

low-pass filter
with zero phase

low pass filter
with non-zero phase
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Filtering by convolution 93

e Easy to implement on DSPs

 Particularly suitable for FIR filters with
relatively small dimensions

Multimedia Signal Processing Grou
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93
Frequency domain filtering (Fourier) 94
e Could be used for both Finite Impulse Response
(FIR) and Infinite Impulse Response (lIR)filters
* Advantageous when the size of the image is large
and the filter is non-trivial
— Extension to dimensions in powers of 2
Multimedia Signal Pr: ing Grou
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Frequency domain filtering (Fourier)

Image Filter
x(k,l) * * g(k,0)

®
DZDFTﬂ* D2DFT ﬂ*

X (m,n) ‘; G(m,n)
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95
Filtered image
= Y(m,n)
DzDF'Tﬂ*
y(k,1)
cPrL

95

Frequency domain filtering (Fourier)

96

* The difference in size between the
image and the filter is not a problem
— the filter is extended to the same size by

zero padding

Image Filtre

M M Multimedia Signal Processing Group
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Filtering with 2D differential equations 97

» 2D differential equations are the only way to realize

lIR filters
3> a(m,n)y(k—m,l—n)= 3> b(m,n)x(k—m,l-n)
(m,n)ER, (m,n)ER,

R, and R, are supports of a(k,l) and b(k,l)

* Additional boundary conditions are necessary to
obtain a unique solution (i.e. a well-defined system)

* Not all boundary conditions result in a linear system

Multimedia Signal Processing Group |
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97
Stability issues in IR filters 98
* Transfert function
-k _-1
SbDz'z' B(z,z,)
. H(z,z,)= B
Y atk,Dz'z" Az, 2,)
— RoC should contain (|z;|=1,|z,]=1)
Multimedia Signal Processing Group
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FIR versus IIR filters 99

FIR filters are always stable

FIR filters are easier to conceive

Zero phase FIR filters are more trivial

lIR filters often require less mathematical
operations for a similar frequency
response

— But an implementation in the Fourier domain
is often equivalent in terms of complexity

* In practice IIR filters are not often used

Multimedia Signal Processing Group |
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Example of filtering - A 100
0 1/6 O
gk,D=1/6 1/3 1/6
0 1/6 0
Multimedia Signal Processing Group
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Example of filtering - A

101

* Frequency response : G(f.8)

1 1

G(f,g) =/<E g(k,l)e e/
=1 =1

=l+l —j2af +le—j2ng +le+j2nf +le+j2ng
3 6 6 6 6
I 1
=3 gcos(2nf )+— cos(27cg)

G(0,0) =1

m m Multimedia Signal Processing Group
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Example of filtering - A

102

G(f,8)|

1
[
g‘ 05

0

1

05 gt
0 05
2l o5 ©
2X Frequency A 2X Frequency

M M Multimedia Signal Processing Group
‘PG Ecole Polytechnique Fédérale de Lausanne

=PrL

102

51



9/11/24

Example of filtering - A 103

Implementation by 2-D convolution

Yk, 1) =1/ 6[x(k, 1 +1) + x(k —1,1)
+ 2x(k, 1) + x(k +1,1) + x(k, 1 = 1)]

Extension of the samples in the image beyond its
support domain
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Example of filtering - B 104
1 -3 1
gk,)=|-3 9 -3
1 -3 1
M M Multimedia Signal Processing Group
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Example of filtering - B

105

e Observation

1 -3 1 -1
gle)={-3 9 -3|=13|[-1 3 -1]-gh).g0
1 -3 1 -1

g=[-1 3 -1]
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Example of filtering - B

106

* Frequency response

G(f,8)=Gi(/)G(g)

G (f)= /2 g, (k)e*™"
=—e"* +3-e* =3 -2cos(2f)
G(f,g)=[3-2cos(2nf)].[3-2cos(2rng)]

G(0,0) =1

M M Multimedia Signal Processing Group
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Example of filtering - B

107

l %
o M \
AN

W
o.o..‘::‘.:“\
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Example of filtering - B

108

Implementation by 1-D convolution

(k) = =x'(k = 1) +3x" (k) = x' (k +1)

—> —>

1l

Extension of the samples in the image beyond its
support domain
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Example of filtering - C 109
I 1 I 1 Il
1 . 1
gk,D)=|: : 15
1 R
11 11 |
< s >
Multimedia Signal Processing Grou
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109
Example of filtering - C 110
e Observation
I 1 1 1 1
1 - 1 1
gk, D)= H=ih 1o 1 1]=g,(k).g,(D)
1 | 1
I 1 1 1 1
g=[1 1 - 1 1]
Multimedia Signal Pr: ing Grou
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Example of filtering - C 111

* Frequency response

G(f,2)=G, (/)G (g2

G (f)= ; g (k)e ™
=1+ 2i cos(2mnf’)

n=1

G(f,g) =[1+2i cos(znnf)].[nzi cos(2mmg)]

G(0,0) = 225
m m Multimedia Signal Processing Group
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Example of filtering - C 112
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Example of filtering - C

Implementation by 1-D convolution

Y =x' (k=T 4+ +x (k) +-+x (k+7)

113

yvvy

) )

YYVVYVYY

Extension of the samples in the image beyond its
support domain
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Example of filtering - C

Implementation by 1-D differential equations

Vk+)=y'"(k)+x'"(k+8)-x"(k-T)

M M Multimedia Signal Processing Group
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Digital filtering - original 115

m m Multimedia Signal Processing Group |
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Digital filtering - filter A 116
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Digital filtering - filter B 117
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Digital filtering - filter C 118
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pass filter

spectrum of the input

m m Multimedia Signal Processing Group

Up-sampling

‘PG Ecole Polytechnique Fédérale de Lausanne

— The ideal low-pass filter isolates the main spectrum

119

* Up-sampling of a discrete signal is performed by interleaving a
number of zeros between its samples, followed by an ideal low-

— Insertion of zero samples produces a compaction and repetition of the

=P

-

L

119

zero interleaving

M M Multimedia Signal Processing Group

Zero order up-sampling

1
1
3
3

"’G Ecole Polytechnique Fédérale de Lausanne

1
1
3
3

EENE NS TR S

4

* Replacing zeros interleaving by sample repetition

EEN ST )

4

120

 Similar to use of an “averaging” low-pass filter after
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Zero order up-sampling 121

m m Multimedia Signal Processing Group
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121
‘averaging’ low pass filter 122
I 111
I 1
2x2 4x4 1 111
I 1
I 111
=> introduction of high frequencies! 1111
Multimedia Signal Processing Group
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Polynomial filters of higher orders 123

* Up-sampling can be improved by use of higher order
polynomial interpolation functions

* This is equivalent to application of an “averaging”
low-pass filter in a recursive way

* Terminology
— linear = ‘averaging averaging’
— quadratic = linear ** ‘averaging’
— cubic = quadradic ** ‘averaging’

7 %k &
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Polynomial filters driven from a 2x2 ‘averaging’ 124

cubic
linear N i\ quadradic
1 2 1 A
1
—12 4 2
4
1 1 1
m m Multimedia Signal Processing Group
‘PG Ecole Polytechnique Fédérale de Lausanne E P F L

124

62



9/11/24

Polynomial filters driven from a 4x4 ‘averaging’

125

iy

Magniude
e & &
Mage

cubic

linear 3 i quadradic
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Gaussian filter

126

* When the order of a polynomial filter increases, it
tends to a Gaussian filter

K2+

- 2
620

Go (k’l) = 20_231:

* Gaussian filter is a separable filter

G, (k) =G,(G,() G, (k)= ——e
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Gaussian filter 127

* In the continuous domain, the Fourier transform of a
Gaussian signal is another Gaussian with an
inversed standard deviation
— Infinite support in both space and frequency domains

* In the discrete domain, the Fourier transform of a
Gaussian signal is a Gaussian with spectral
overlapping
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Gaussian filter of size 7x7 128

0=0.5
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Gaussian filter: rational approximation 129

» Coefficients of a Gaussian filter are irrational
numbers
- problem of implementation in integer arithmetics
* A rational approximation is therefore desired

— This can be achieved by making use of a binomial
distribution based on central limit theorem
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Gaussian filter: rational approximation 130
* 1-D case A
b(s)=————, s5=0,1..,n
sl(n-s)!2
n normalzation coefficients
1 2 11
2 4 121
3 8 1331
4 16 14641
5 32 15101051
6 64 1615201561
7 128 172135352171
— 2-D case is obtained by separable extension
M M Multimedia Signal Processing Group
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Laplacian: approximation 131

» Laplacian is defined as: o
V(e =2 L IL

0x ay
* Using a decomposition in Taylor series:

S+ = f)+ () +5/(x)
one obtains 7'(x) = f(x)- f(x=1)

J')=2f(x+D)-4f(x)+2f(x-1)
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Laplacian: approximation 132
* The following filter is a possible approximation of
Laplacian
0O 1 O
I -4 1
0 1 O
e Other approximations
1 1 1 -1 2 -1 A ¢ Lo o
1 -8 1 2 -4 2 Lo -] La
a+l
I 1 1 -1 2 -1 g L= o
Multimedia Signal Pr: ing Grou
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01 0
4 1
01 0
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Laplacian

133

133

1 0
1 -4 1 <: s
1 0

0

0

M M Multimedia Signal Processing Group
"’G Ecole Polytechnique Fédérale de Lausanne

Laplacian
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« Sharpening »

135

e Edges in an image can be enhanced by subtracting
from an original signal the result of its Laplacian
filtering

0 -1 0 0 00 [0 1 O
-1 5§ -1|=[0 1 O|-|1 -4 1
0 -1 0 0 0 Of [0 1 O

* This would however also enhance noise
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« sharpening » 136
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Laplacian of a Gaussian 137

* To avoid problems with noise, Gaussian filtering can
be applied before Laplacian

K2+l
K+ =20 5
_ ¢ o

6
O

AG, (k,1) =

* The basic principle of “sharpening” remains valid

e

Multimedia Signal Processing Group
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Sharpening with Laplacian of a Gaussian 138
m Multimedia Signal Processing Group
‘PG Ecole Polytechnique Fédérale de Lausanne E P F L
138

69



