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2Image and video coding

• Examples of applications
– Digital photography
– Digital TV / HDTV / 3DTV
– DVD / Blu-ray
– VCR, PTR, PVR
– Video surveillance
– Medical imaging
– Video conferencing 
– Video streaming
– Multimedia enabled mobile phones
– Portable video recorders/players
– Multimedia PCs
– Computer / Robot vision
– Social media
– VR, AR, MR
– …
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3Image and video coding

• Relationship between image/video coding and other disciplines

Image/Video
Coding Electronics

Optics

Signals
theory Statistics

Numerical
analysis

Neuro-
science

Computer
science

Psycho-
physics

Systems
theory
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4Image and video coding

• Relationship between Signal Processing, Image/Video Processing, 
Image/Video Coding and Computer Vision

Signal Processing

Image/Video Processing

Computer
Vision

Image/Video
Coding

4



9/11/24

3

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

5Systemics I/III

• Conventional chain of image/video coding

Acquisition RestitutionCoding

5
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6Systemics II/III

• Complete chain of image/video coding

Real
World
(4D)

Human
Visual
System

Acquisition RestitutionCoding
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7Systemics III/III

• Complete chain of image/video coding

Real
World
(4D)

Computer
Vision

Acquisition RestitutionCoding
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8Digital images

134  135  132  12   15...
133  134  133  133  11...
130  133  132  16    12...
137  135  13    14    13...
140  135  134  14    12...
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9Canonical representation of a gray-level image

•  An image is represented as a function                                 
defined on a support of finite or infinite size.
Variables x et y represent the spatial coordinates of a 
given point in the image, the value of the function 
(represented by a real number) defines the luminance 
(gray-level) associated with point (x,y) 

Y

X

y
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10Canonical representation of a gray-level image

A digital image                 of size 
is defined by a matrix of the same size:

Every element of the matrix, also called a pixel, is 
represented by a limited number of bits

10
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11Image/video digitization

• Digitization is an essential step to go 
from a continuous (analog) to a 
discrete representation 
• Two major components

– Sampling
– Quantization

11
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12Comparison with 1-D case

• In principle, all theoretical developments seen in 1-D 
case are also valid in M-D case by means of a 
simple generalization

• It is however often difficult, insufficient, and even 
dangerous to limit such developments to simple 
generalization of 1-D to M-D

12
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13

Sampling

13
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14Sampling

• Definition
• Hypotheses
• Theory
• Practice
• Characteristics of sampled M-D 

signals

14
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15Sampling - Definition

• Periodic sampling of values of an analog signal
• Example for a 2-D signal 

Sampling step for dimension X

Sampling step for dimension Y

15
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16Sampling

• This relationship in the frequency domain becomes:

16
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17Sampling – Graphical representation

• Spatial domain • Frequency domain

X

Y

X

Y

U

V

U

V
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18Sampling theorem

• An analog signal can be perfectly reconstructed 
from its samples as long as the sampling frequency 
is at least twice the amount of the maximum 
frequency component present in the analog signal

18
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19Reconstruction

• In practice, reconstruction of an analog signal from 
its samples is performed by making use of a low-
pass filter

X

YV

U

V

U
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20Hypotheses

• The maximum frequency component of the analog signal 
is known
• Signal is stationary

20
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21Practice

• Sampling filter
• Oversampling
• Sampler low-pass filtering effect

• Optical filtering

21
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22Sampling characteristics

• A sampling without proper precaution can lead to 
spectral overlap

• Additional frequency components appear in the 
reconstructed signal

• Moiré patterns

22
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23Moiré patterns

23
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24

Diagonal freq. Less 
important than 
horizontals and 

verticals

Quincunx sampling

• Spatial domain • Frequency domain

X

Y

X

Y

U

V

U

V
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25

Quantization

25
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26Quantization

• Definitions
• Quantization noise
• Optimal quantization (Lloyd-Max)
• Uniform quantization 
• Perceptual quantization
• Non-uniform quantization
• Compander
• Color quantization
• Vector quantization 

– see compression

26
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27Quantization - definition

• Projection of a signal with continuous 
amplitude into a set of finite number of 
discrete values

input

output

Decision level

Recon.
level.
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28Quantization - definition

• General formulation

                      such that

• The problem of quantization consists 
in finding good values        and        , 

   as a function of the statistics of the 
original signal such that one can 
obtain the best approximation possible

28
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29Quantization noise

• Quantization noise

• Mean Square Error

• If the probability density function of the signal is 
known: 

29
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30Optimal quantization

• For a pre-defined number of quantization levels Nq:

• Optimal solution:

30
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31Optimal quantization

• With a large number of dense quantization levels :

31
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32Uniform quantization

• Hypothesis : probability density function is uniform
• Q(s) is completely defined by a single and constant 

quantization step size

• Quantization error:

32
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33Weber law

• Human eye is more sensitive to dark gray than light 
gray

• Weber-Fechner experiment

• Weber constant

33
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34Weber experiment (1)

L

L+ΔL

34
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35Weber law

• Weber constant

35
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36Weber constant

• Depends on many parameters:
– Observer
– Ambient lighting
– Background luminance
– Type of display
– …

36
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37
L0 L+ΔLL

37
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38
L0 L+ΔLL

38
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39Weber experiment (2)

L0

L+ΔLL

39
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40Weber law

• Weber constant

40
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41Choice of quantization step size

• Objective metrics to predict 
quantization distortions
– MSE
– PSNR

• Visual distortions due to over-
quantization
– false contours

• Pre- and post-processing methods to 
reduce false contours
– image rendering

41
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42False contours

256
quantization levels

8 
quantization levels

42
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43Non-uniform quantization

• When the probability density function of a signal is not uniform, non-uniform quantization becomes a better 
choice.

• Non-uniform quantization takes better into account the non-linear properties of the human visual system

43
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44Compander

Compressor
f(.)

Expander
g(.)

Uniform
quantizer

s w sqwq

• A compander is a uniform quantizer 
preceded and followed by non-linear 
transforms

s

w=f(s) sq=g(wq)

w

wq

wq

44
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45Compander

• When 

45
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46Compander

• When   

46
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47Quantization of color images

• Each color component is quantized separately

• Some color components can be quantized (and 
even sampled) with different step sizes

• Alternative: Color quantization based on Look Up 
Tables (LUT)

47
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48Look Up Table (LUT)

B
G

R

True colors Look Up Tables

48
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49False colors

• Special LUTs

Gray

Color

49
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50False colors

• Example

Original False colors

50
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51

Correlation

51
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522D correlation

• 2D (inter)-correlation function

52
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53Correlation

• The (inter-) correlation function helps to measure the 
similarities between two signals

• Application example : Identify if a pattern is present in an 
image

maximum

53
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54

Convolution
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552D convolution

• 2D convolution

• Typical representation
– Signal x is filtered by filter g

55
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562D convolution : properties

• Commutativity

56
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572D convolution : properties

• Associativity

• Distributivity

57
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58Relationship between correlation and convolution

• Correlation can be expressed as a convolution

58
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59Practical issues on convolution

• In practice, when calculating a convolution product, one has 
to:
– Determine the most efficient formula

– Determine the limits of sums 

– Resolve the border problem

59
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60Determine the most efficient formula

• When the size of the image x(k,l) is much more 
important than the size of the filter g(k,l), the 
following formula is more appropriate:

60
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61Determine the limits of sums 

• Limits of sums are directly determined from the size 
of the filter g(k,l) :

61
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62Resolve the border problem

• Values of pixels outside of image x(k,l) must be 
determined when the filter g(k,l) only partially covers 
the image.
•  Several approaches are possible:

– Zero padding
– Periodic extension
– Mirror extension

62
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63Zero padding

• Simple
• Produces strong border artifacts

63
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64Periodic extension

• Simple algorithm

• Coherent with Fourier Transform approach

• Better results when compared to zero padding, if the 
opposite borders of the image are similar

64
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65Periodic extension

65
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66Mirror extension

• More complex

• Produces the least artifacts

66
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67Mirror extension

67
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68

Z-transform
Fourier Transform

68
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692D Z-transform (2DZT) 

• 2DZT of a 2D discrete signal

• Inverse transform

69
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702DZT: properties

• Linearity

• Separability

⇔

⇔

70
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712DZT: properties

• Translation

• Convolution

⇔

⇔

71

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

722DZT: properties

• Conjugate symmetry

• Symmetry in spatial domain

⇔

⇔

72
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732D Continuous Fourier Transform (2DFT)

• 2DFT of a discrete signal

• Inverse transform

73
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742DFT: properties

• Periodicity

• Relationship to 2DZT

74
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752DFT: properties

• Symmetrical for all x(k,l) real

Even functions

Odd functions

75
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76Some definitions related to 2DFT

• Transfer Function

• Amplitude spectrum

• Phase spectrum

• Energy (power) spectrum

76
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772DFT: phase et magnitude

• The phase of 2DFT contains information 
about edges and contours of an image
⇒ Image structure is very much visible in the 

phase of its 2DFT
• Theoretically, an image can be 

reconstructed from its phase or its 
magnitude only 
– But for magnitude, itʼs more « difficult »

77
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782DFT: importance of magnitude information

(logarithm of the intensity)

78
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792DFT: importance of phase information

79
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802DFT: fusion of magnitude and phase

magnitude

phase

80
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81Discrete 2D Fourier Transform: D2DFT 

• D2DFT is obtained by sampling in the frequency 
domain, the 2DFT of a discrete signal, with the 
following conditions:

avec et

81
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82

• Forward transform

• Inverse transform

D2DFT: Formula

82
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83

• All properties of 2DFT remain valid for D2DFT
• The sum of the coefficients of a digital filter provides 

its frequency response at the origin:

D2DFT: properties

83
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84D2DFT: multiplication and circular convolution

• Multiplication of D2DFTs produces a circular 
convolution !!!

84
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85

• A fast implementation of D2DFT is 
possible if the dimensions of the signal 
are in powers of 2
• Complexity:

⇒ This represents an interest in frequency 
domain filtering

D2DFT: fast transform and filtering

85
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86

2D digital filtering

86
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872D digital filtering

• In practice three approaches can be used to perform 
filtering operations
– Filtering by convolution (direct method)

– Filtering in the transform domain (Fourier)

– Filtering by differential equations

87
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88Linear filters, transfer functions, frequency responses

• A linear and delay invariant filter can be completely 
characterized by its impulse response h(k,l)

• The transfer function H(z1,z2) is given by the Z-
transform of h(k,l)

• The frequency response is given by: 

88
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89Stability issues in digital 2D filters

• A filter is stable if for any finite 
amplitude input signal, the output is 
also of finite amplitude
• Stable filter ⇔ Stable impulse response

• Stable filter ⇔ the unit hyper-sphere 
(|z1|=1,|z2|=1) is contained in RoC of 
H(z1,z2)

89
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90FIR filters

• h(k,l) is a Finite Impulse Response (FIR) filter if it 
has a finite number of non-zero samples
– Always stable

• Easy to conceive and to implement
• Very much used in practice
• Typically with odd samples in each dimension and of 

limited size
– 3×3, 9×9, …, max. 19×19 or 21×21

90
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91FIR filters of zero phase

• In image processing phase information is very 
important. It should not be modified by filtering ⇒

        ⇔

• The frequency response:

R′
k

l

91
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92FIR filters of zero phase

low-pass filter
with zero phase

low pass filter
with non-zero phase

92
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93Filtering by convolution

• Easy to implement on DSPs

• Particularly suitable for FIR filters with 
relatively small dimensions

93
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94Frequency domain filtering (Fourier)

• Could be used for both Finite Impulse Response 
(FIR) and Infinite Impulse Response (IIR)filters
• Advantageous when the size of the image is large 

and the filter is non-trivial
– Extension to dimensions in powers of 2

94
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95Frequency domain filtering (Fourier)

FilterImage Filtered image

D2DFT D2DFT

D2DFT-1

95
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96Frequency domain filtering (Fourier)

• The difference in size between the 
image and the filter is not a problem
– the filter is extended to the same size by 

zero padding

Image FiltreFiltre

96
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97Filtering with 2D differential equations

• 2D differential equations are the only way to realize 
IIR filters

 
Ra and Rb are supports of a(k,l) and b(k,l)

• Additional boundary conditions are necessary to 
obtain a unique solution (i.e. a well-defined system)
• Not all boundary conditions result in a linear system

97
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98Stability issues in IIR filters

• Transfert function

•

– RoC should contain (|z1|=1,|z2|=1)

98



9/11/24

50

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

99FIR versus IIR filters

• FIR filters are always stable
• FIR filters are easier to conceive
• Zero phase FIR filters are more trivial
• IIR filters often require less mathematical 

operations for a similar frequency 
response
– But an implementation in the Fourier domain 

is often equivalent in terms of complexity 
• In practice IIR filters are not often used

99
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100Example of filtering - A

100



9/11/24

51

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

101Example of filtering - A

• Frequency response :

101
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102Example of filtering - A

2X2X

102
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103Example of filtering - A

Implementation by 2-D convolution

Extension of the samples in the image beyond its 
support domain

103
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104Example of filtering - B

104
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105Example of filtering - B

• Observation

105
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106Example of filtering - B

• Frequency response

106
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107Example of filtering - B

2X2X

107
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108Example of filtering - B

Implementation by 1-D convolution

Extension of the samples in the image beyond its 
support domain

108
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109Example of filtering - C

15

15

109
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110Example of filtering - C

• Observation

110
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111Example of filtering - C

• Frequency response

111
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112Example of filtering - C

2X2X

112
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113Example of filtering - C

Implementation by 1-D convolution

Extension of the samples in the image beyond its 
support domain

113
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114Example of filtering - C

+-

Implementation by 1-D differential equations

114
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115Digital filtering - original

115
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116Digital filtering - filter A

116
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117Digital filtering - filter B

117
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118Digital filtering - filter C

118
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119Up-sampling

• Up-sampling of a discrete signal is performed by interleaving a 
number of zeros between its samples, followed by an ideal low-
pass filter
– Insertion of zero samples produces a compaction and repetition of the 

spectrum of the input
– The ideal low-pass filter isolates the main spectrum

119
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120Zero order up-sampling

• Replacing zeros interleaving by sample repetition

• Similar to use of an “averaging” low-pass filter after 
zero interleaving

⇒ 

120
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121Zero order up-sampling

4x

121
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122‘averaging’ low pass filter

2x2 4x4

è introduction of high frequencies!

122
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123Polynomial filters of higher orders

• Up-sampling can be improved by use of higher order 
polynomial interpolation functions 
• This is equivalent to application of an “averaging” 

low-pass filter in a recursive way
• Terminology

– linear = ʻaveragingʼ ** ʻaveragingʼ
– quadratic = linear ** ʻaveragingʼ
– cubic = quadradic ** ʻaveragingʼ

123
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124Polynomial filters driven from a 2x2 ‘averaging’

linear quadradic

cubic

124
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125Polynomial filters driven from a 4x4 ‘averaging’

linear quadradic

cubic

125
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126Gaussian filter

• When the order of a polynomial filter increases, it 
tends to a Gaussian filter

• Gaussian filter is a separable filter
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127Gaussian filter

• In the continuous domain, the Fourier transform of a 
Gaussian signal is another Gaussian with an 
inversed  standard deviation
– Infinite support in both space and frequency domains

• In the discrete domain, the Fourier transform of a 
Gaussian signal is a Gaussian with spectral 
overlapping
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128Gaussian filter of size 7x7

σ=1

σ=0.5

σ=0.7
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129Gaussian filter: rational approximation

• Coefficients of a Gaussian filter are irrational 
numbers
à problem of implementation in integer arithmetics

• A rational approximation is therefore desired
– This can be achieved by making use of a binomial 

distribution based on central limit theorem

129

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

130Gaussian filter: rational approximation

• 1-D case

– 2-D case is obtained by separable extension

n normalization
factor coefficients

1 2 1 1

2 4 1 2 1

3 8 1 3 3 1

4 16 1 4 6 4 1

5 32 1 5 10 10 5 1

6 64 1 6 15 20 15 6 1

7 128 1 7 21 35 35 21 7 1
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131Laplacian: approximation

• Laplacian is defined as:

• Using a decomposition in Taylor series:

one obtains
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132Laplacian: approximation

• The following filter is a possible approximation of 
Laplacian

• Other approximations
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133Laplacian

2X2X 2X 2X
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134Laplacian
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135« Sharpening »

• Edges in an image can be enhanced by subtracting 
from an original signal the result of its Laplacian 
filtering

• This would however also enhance noise
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136« sharpening »
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137Laplacian of a Gaussian

• To avoid problems with noise, Gaussian filtering can 
be applied before Laplacian

• The basic principle of “sharpening” remains valid
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138Sharpening with Laplacian of a Gaussian
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