

1

Fundamental notions

Prof. Touradj Ebrahimi

Touradj.Ebrahimi@epfl.ch

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

1

Image and video coding

2

- Examples of applications
 - Digital photography
 - Digital TV / HDTV / 3DTV
 - DVD / Blu-ray
 - VCR, PTR, PVR
 - Video surveillance
 - Medical imaging
 - Video conferencing
 - Video streaming
 - Multimedia enabled mobile phones
 - Portable video recorders/players
 - Multimedia PCs
 - Computer / Robot vision
 - Social media
 - VR, AR, MR
 - ...

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

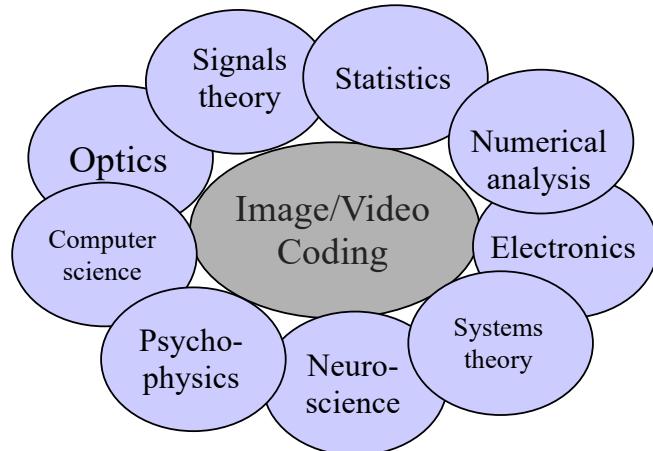
2

1

Image and video coding

3

- Relationship between image/video coding and other disciplines



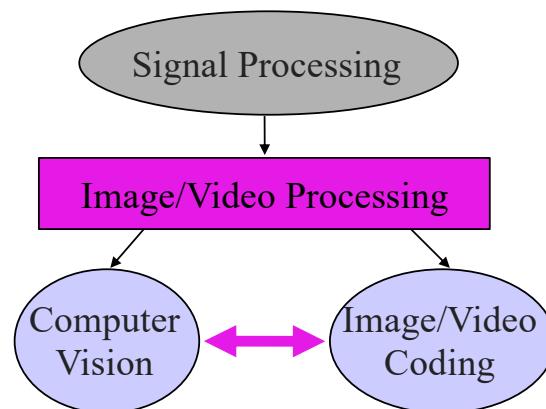
Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

3

Image and video coding

4

- Relationship between Signal Processing, Image/Video Processing, Image/Video Coding and Computer Vision



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

4

2

Systemics I/III

5

- Conventional chain of image/video coding

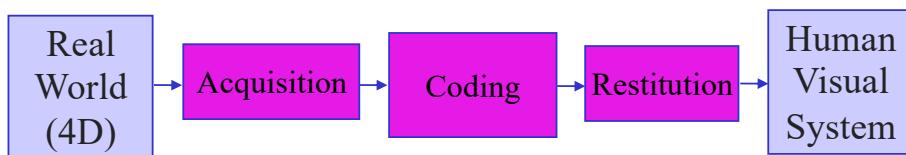
Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

5

Systemics II/III

6

- Complete chain of image/video coding



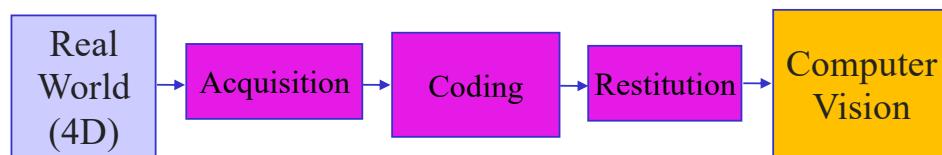
Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

6

Systemics III/III

7

- Complete chain of image/video coding

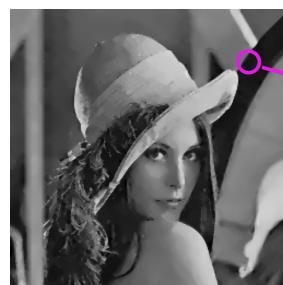


Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

7

Digital images

8



134 135 132 12 15...
133 134 133 133 11...
130 133 132 16 12...
137 135 13 14 13...
140 135 134 14 12...

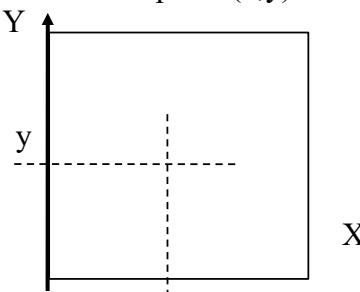
Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

8

Canonical representation of a gray-level image

9

- An image is represented as a function $f(x, y)$ defined on a support of finite or infinite size. Variables x et y represent the spatial coordinates of a given point in the image, the value of the function (represented by a real number) defines the luminance (gray-level) associated with point (x, y)



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

9

Canonical representation of a gray-level image

10

A digital image $s(k, l)$ of size $K \times L$ is defined by a matrix of the same size:

$$s(k, l) = \begin{bmatrix} s(0,0) & s(0,1) & \cdots & s(0, L-2) & s(0, L-1) \\ s(1,0) & s(1,1) & \cdots & s(1, L-2) & s(1, L-1) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ s(K-2,0) & s(K-2,1) & \cdots & s(K-2, L-2) & s(K-2, L-1) \\ s(K-1,0) & s(K-1,1) & \cdots & s(K-1, L-2) & s(K-1, L-1) \end{bmatrix}$$

Every element of the matrix, also called a pixel, is represented by a limited number of bits

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

10

Image/video digitization

11

- Digitization is an essential step to go from a continuous (analog) to a discrete representation
- Two major components
 - Sampling
 - Quantization

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

11

Comparison with 1-D case

12

- In principle, all theoretical developments seen in 1-D case are also valid in M-D case by means of a simple generalization
- It is however often difficult, insufficient, and even dangerous to limit such developments to simple generalization of 1-D to M-D

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

12

13

Sampling

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

13

Sampling

14

- Definition
- Hypotheses
- Theory
- Practice
- Characteristics of sampled M-D signals

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

14

Sampling - Definition

15

- Periodic sampling of values of an analog signal
- Example for a 2-D signal

$$f(x, y)$$

$$s(k, l) \equiv s_e(x, y) \Big|_{x=k\Delta x, y=l\Delta y}$$

$$s_e(x, y) = \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} f(x, y) \delta(x - k\Delta x, y - l\Delta y)$$

Δx Sampling step for dimension X

Δy Sampling step for dimension Y

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

15

Sampling

16

- This relationship in the frequency domain becomes:

$$S_e(u, v) = \frac{1}{\Delta x \Delta y} \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} F(u - \frac{k}{\Delta x}, v - \frac{l}{\Delta y})$$

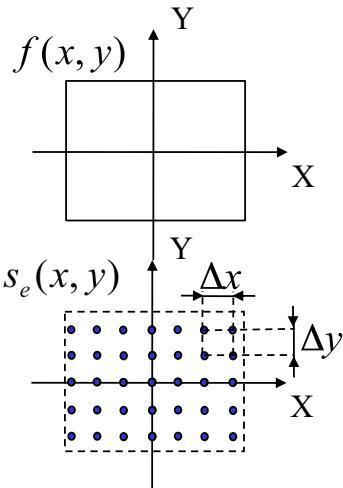
Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

16

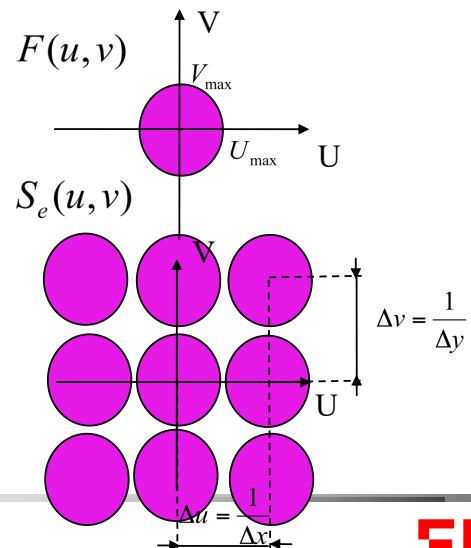
Sampling – Graphical representation

17

• Spatial domain



• Frequency domain



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

17

Sampling theorem

18

- An analog signal can be perfectly reconstructed from its samples as long as the sampling frequency is at least twice the amount of the maximum frequency component present in the analog signal

$$\frac{1}{\Delta x} \geq 2U_{\max}$$

$$\frac{1}{\Delta y} \geq 2V_{\max}$$

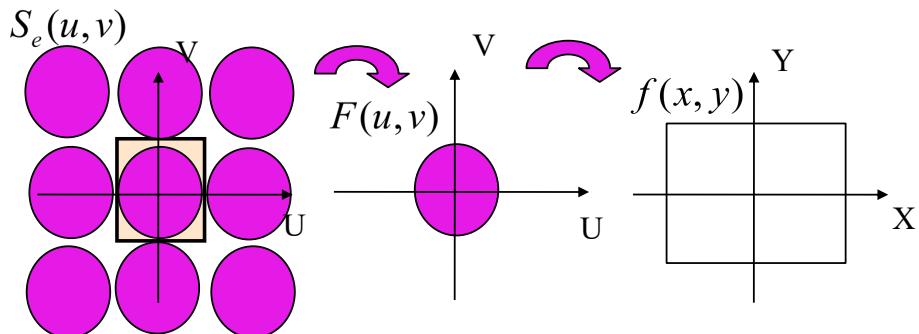
Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

18

Reconstruction

19

- In practice, reconstruction of an analog signal from its samples is performed by making use of a low-pass filter



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

19

Hypotheses

20

- The maximum frequency component of the analog signal is known
- Signal is stationary

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

20

10

Practice

21

- Sampling filter
- Oversampling
- Sampler low-pass filtering effect

$$s_e(x_0, y_0) = \iint f(\alpha, \beta) e(x_0 - \alpha, y_0 - \beta) d\alpha d\beta$$

$$S_e(u, v) = F(u, v)E(u, v)$$

- Optical filtering

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

21

Sampling characteristics

22

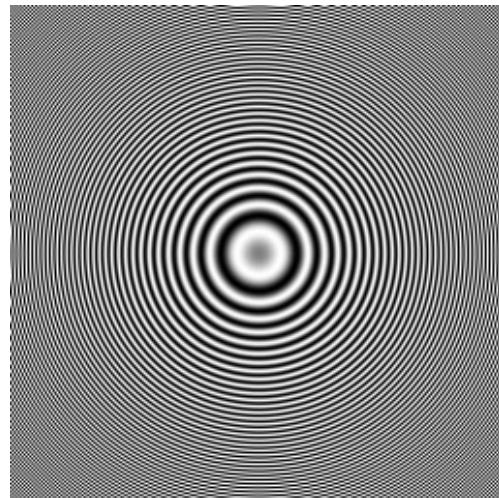
- A sampling without proper precaution can lead to spectral overlap
- Additional frequency components appear in the reconstructed signal
- Moiré patterns

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

22

Moiré patterns

23

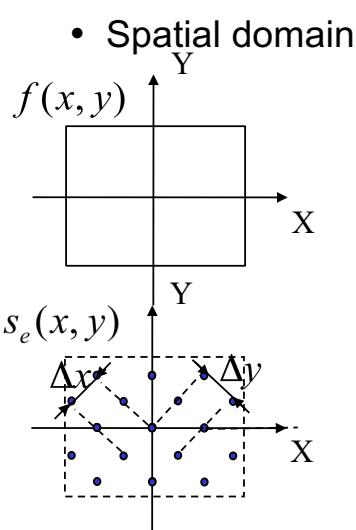
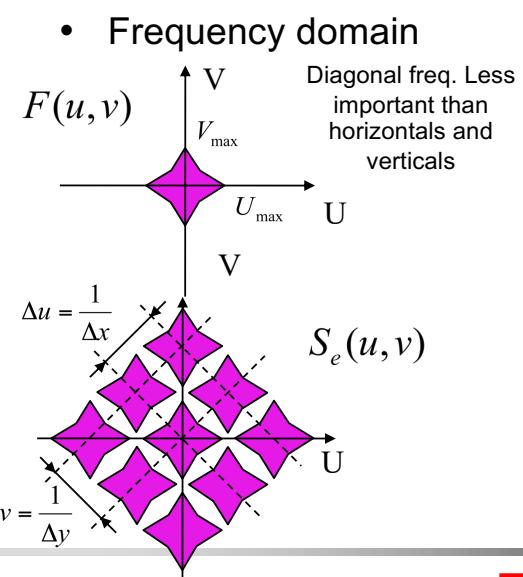


Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

23

Quincunx sampling

24



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

24

25

Quantization

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

25

Quantization

26

- Definitions
- Quantization noise
- Optimal quantization (Lloyd-Max)
- Uniform quantization
- Perceptual quantization
- Non-uniform quantization
- Compander
- Color quantization
- Vector quantization
 - see compression

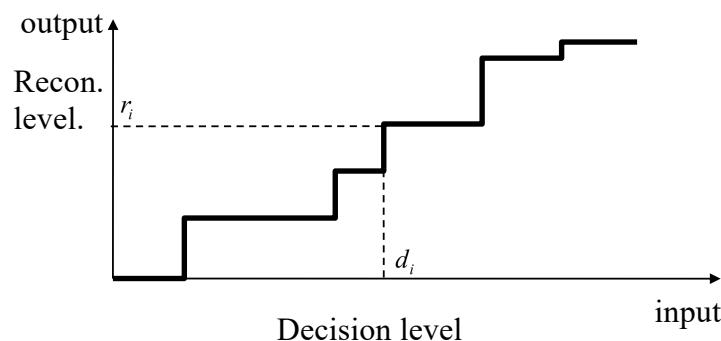
Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

26

Quantization - definition

27

- Projection of a signal with continuous amplitude into a set of finite number of discrete values



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

27

Quantization - definition

28

- General formulation

$$s_q = Q(s) \text{ such that } d_i \leq s < d_{i+1} \Rightarrow s_q = r_i$$

- The problem of quantization consists in finding good values $\{d_i\}_i$ and $\{r_i\}_i$, as a function of the statistics of the original signal such that one can obtain the best approximation possible

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

28

Quantization noise

29

- Quantization noise

$$e = s - s_q = s - r_i$$

- Mean Square Error

$$\varepsilon = E[e^2] = E[(s - r_i)^2]$$

- If the probability density function of the signal is known:

$$\varepsilon = \int_D (s - r_i)^2 p_s(s) ds \quad \int_D p_s(s) ds = 1$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

29

Optimal quantization

30

- For a pre-defined number of quantization levels Nq :

$$\varepsilon = \sum_{i=1}^{Nq} \int_{d_i}^{d_{i+1}} (s - r_i)^2 p_s(s) ds$$

- Optimal solution:

$$d_i = \frac{r_i + r_{i-1}}{2} \quad r_i = \frac{\int_{d_i}^{d_{i+1}} s \cdot p_s(s) ds}{\int_{d_i}^{d_{i+1}} p_s(s) ds}$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

30

Optimal quantization

31

- With a large number of dense quantization levels :

$$d_{i+1} \cong \frac{D \int_{d_1}^{z_i+d_1} [p_s(s)]^{-1/3} ds}{\int_{d_1}^{d_{Nq+1}} [p_s(s)]^{-1/3} ds} + d_1 \quad D = d_{Nq+1} - d_1$$

$$\varepsilon \cong \frac{1}{12N_q^2} \left\{ \int_{d_1}^{d_{Nq+1}} [p_s(s)]^{1/3} ds \right\}^3 \quad z_k = (k / N_q).D$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

31

Uniform quantization

32

- Hypothesis : probability density function is uniform
- $Q(s)$ is completely defined by a single and constant quantization step size

$$\Delta = \frac{d_{Nq+1} - d_1}{N_q} \quad d_i = d_{i-1} + \Delta \quad r_i = d_i + \Delta / 2$$

- Quantization error:

$$\varepsilon = \frac{\Delta^2}{12}$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

32

Weber law

33

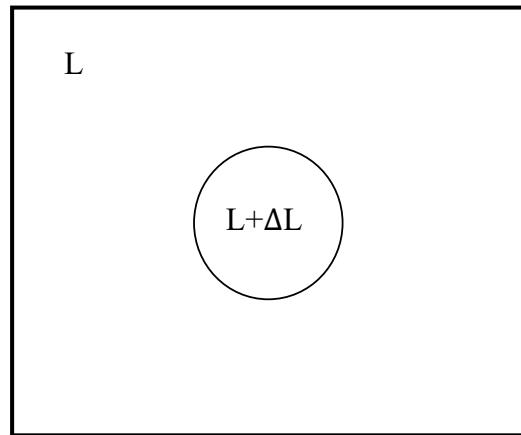
- Human eye is more sensitive to dark gray than light gray
- Weber-Fechner experiment
- Weber constant

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

33

Weber experiment (1)

34



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

34

Weber law

35

- Weber constant

$$C_w = \frac{\Delta L}{L} \quad C_w = 0.01 \dots 0.02$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

35

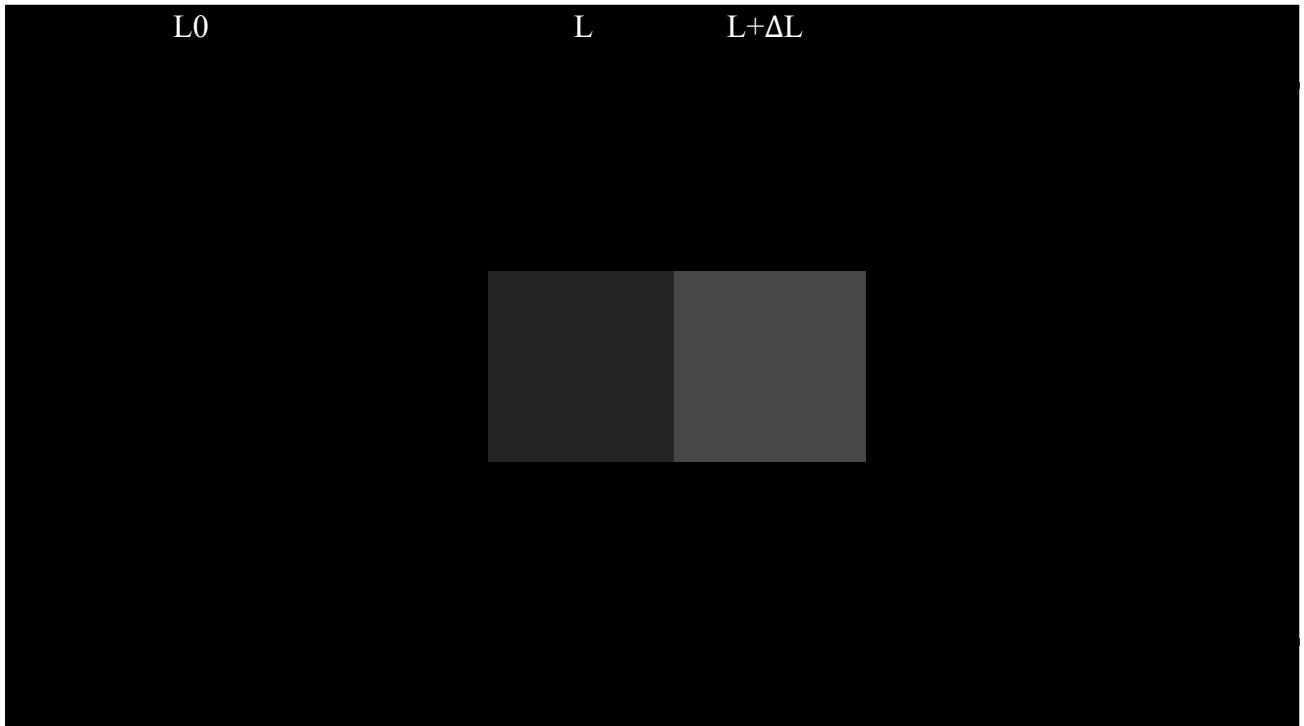
Weber constant

36

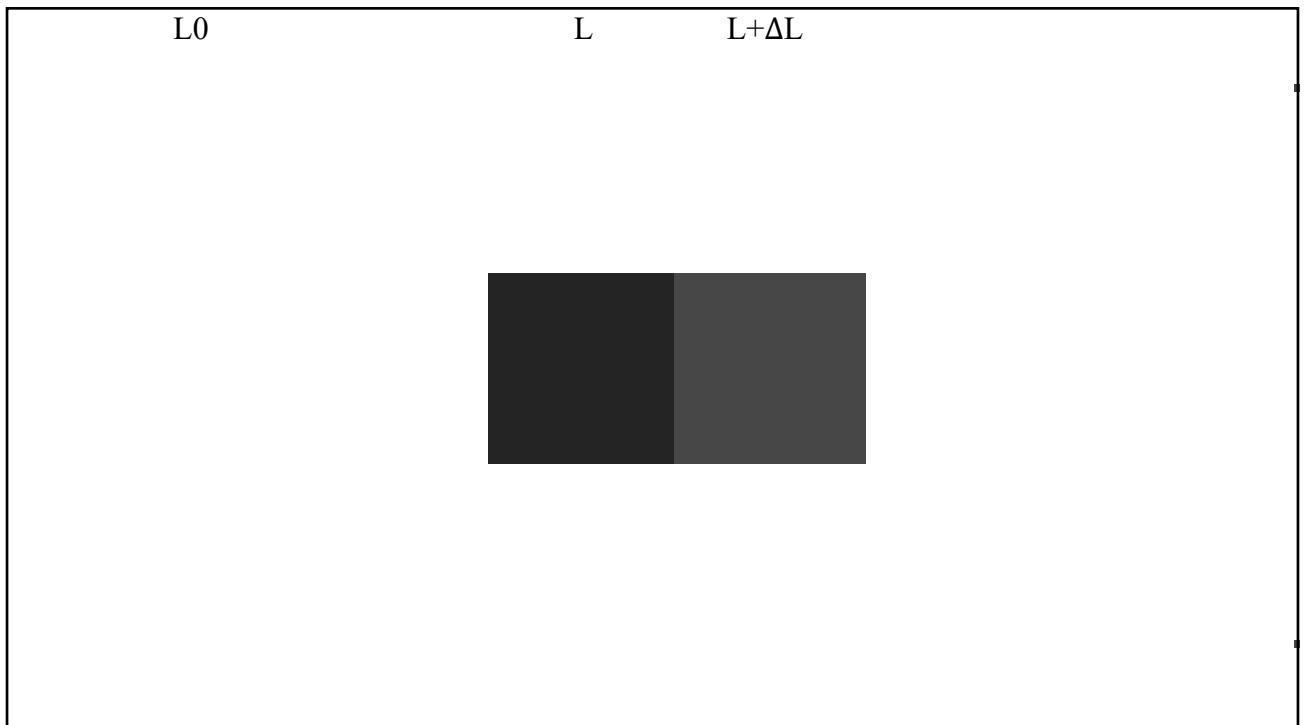
- Depends on many parameters:
 - Observer
 - Ambient lighting
 - Background luminance
 - Type of display
 - ...

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

36



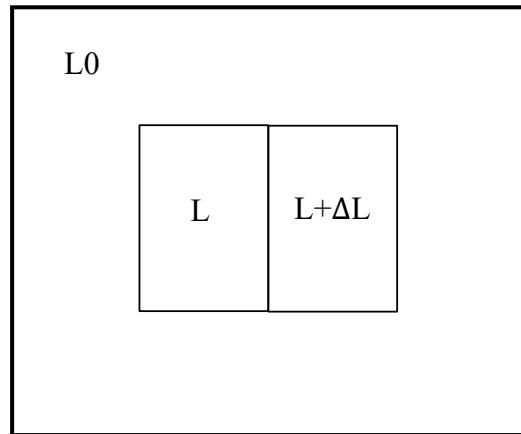
37



38

Weber experiment (2)

39



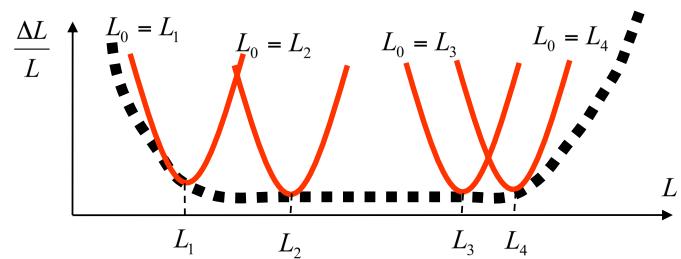
Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

39

Weber law

40

- Weber constant



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

40

Choice of quantization step size

41

- Objective metrics to predict quantization distortions
 - MSE
 - PSNR
- Visual distortions due to over-quantization
 - false contours
- Pre- and post-processing methods to reduce false contours
 - image rendering

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

41

False contours

42

256
quantization levels

8
quantization levels

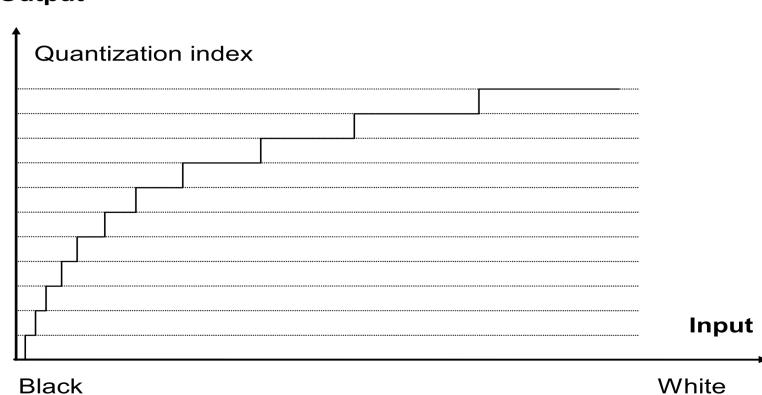
Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

42

Non-uniform quantization

43

- When the probability density function of a signal is not uniform, non-uniform quantization becomes a better choice.
- Non-uniform quantization takes better into account the non-linear properties of the human visual system



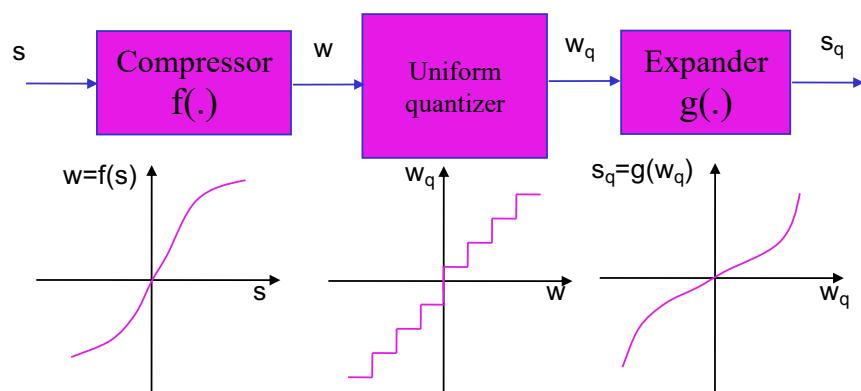
Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

43

Compander

44

- A compander is a uniform quantizer preceded and followed by non-linear transforms



MSPG Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

44

Comander

45

- When $w \in [-a, a]$

$$f(x) = 2a \begin{cases} \frac{\int_{d_1}^x [p_s(s)]^{1/3} ds}{\int_{d_{Nq+1}}^{d_1} [p_s(s)]^{1/3} ds} - a & \text{if } x \geq 0 \\ \frac{\int_{d_1}^0 [p_s(s)]^{1/3} ds}{\int_{d_{Nq+1}}^{d_1} [p_s(s)]^{1/3} ds} - a & \text{if } x < 0 \end{cases}$$

$$g(x) = f^{-1}(x)$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

45

Comander

46

- When $p_s(s) = p_s(-s)$

$$f(x) = a \begin{cases} \frac{\int_0^x [p_s(s)]^{1/3} ds}{\int_{d_{Nq+1}}^0 [p_s(s)]^{1/3} ds} & \text{if } x \geq 0 \\ \frac{\int_0^x [p_s(s)]^{1/3} ds}{\int_0^{d_{Nq+1}} [p_s(s)]^{1/3} ds} & \text{if } x < 0 \end{cases}$$

$$f(x) = -f(-x) \text{ if } x < 0$$

$$g(x) = f^{-1}(x)$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

46

Quantization of color images

47

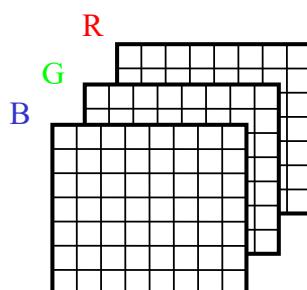
- Each color component is quantized separately
- Some color components can be quantized (and even sampled) with different step sizes
- Alternative: Color quantization based on Look Up Tables (LUT)

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

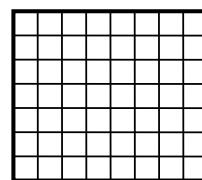
47

Look Up Table (LUT)

48



True colors



Look Up Tables

Valeur	R	G	B
0	10	10	10
1	10	20	30
2	30	100	20
...

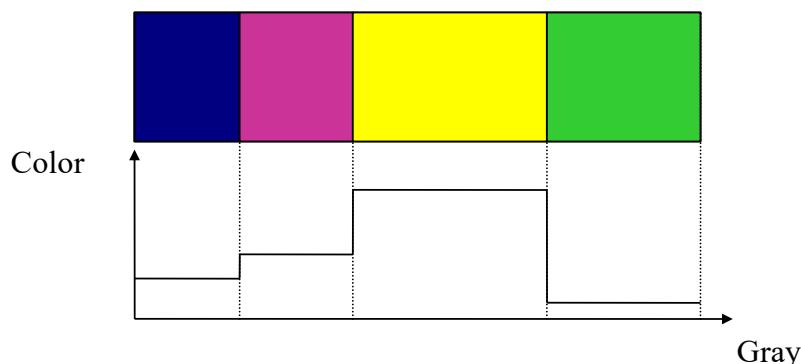
Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

48

False colors

49

- Special LUTs



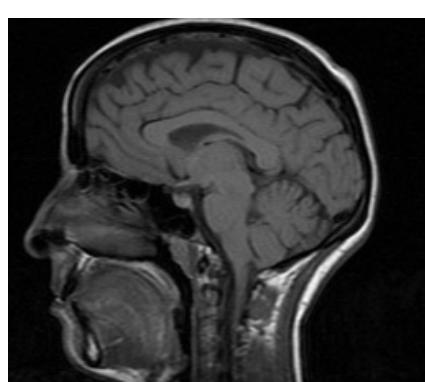
Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

49

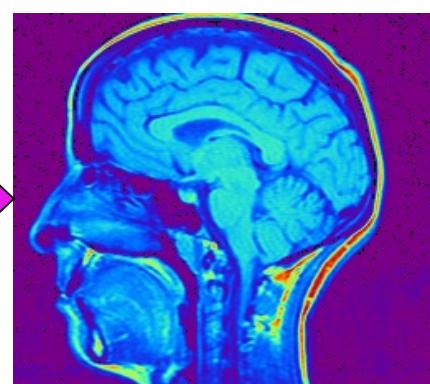
False colors

50

- Example



Original



False colors

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

50

51

Correlation

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

51

2D correlation

52

- 2D (inter)-correlation function

$$\varphi_{xy}(k, l) = \sum_{k'=-\infty}^{+\infty} \sum_{l'=-\infty}^{+\infty} x(k', l') y(k'+k, l'+l)$$

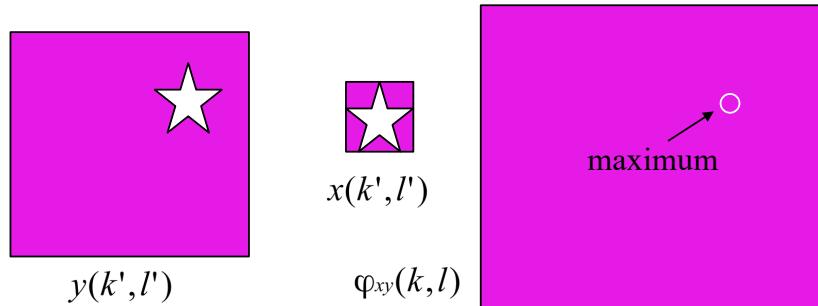
Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

52

Correlation

53

- The (inter-) correlation function helps to measure the similarities between two signals
- Application example : Identify if a pattern is present in an image



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

53

54

Convolution

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

54

27

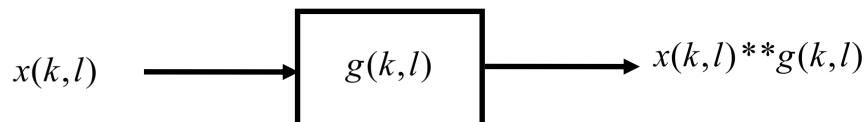
2D convolution

55

- 2D convolution

$$x(k, l) \ast\ast g(k, l) = \sum_{k'=-\infty}^{+\infty} \sum_{l'=-\infty}^{+\infty} x(k', l') g(k - k', l - l')$$

- Typical representation
 - Signal x is filtered by filter g



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

55

2D convolution : properties

56

- Commutativity

$$\begin{aligned}
 x(k, l) \ast\ast g(k, l) &= \sum_{k'=-\infty}^{+\infty} \sum_{l'=-\infty}^{+\infty} x(k', l') g(k - k', l - l') \\
 &= \sum_{k'=-\infty}^{+\infty} \sum_{l'=-\infty}^{+\infty} g(k', l') x(k - k', l - l') = g(k, l) \ast\ast x(k, l)
 \end{aligned}$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

56

2D convolution : properties

57

- **Associativity**

$$[x(k, l) \ast\ast g(k, l)] \ast\ast h(k, l) = x(k, l) \ast\ast [g(k, l) \ast\ast h(k, l)]$$

- **Distributivity**

$$x(k, l) \ast\ast [g(k, l) + h(k, l)] = x(k, l) \ast\ast g(k, l) + x(k, l) \ast\ast h(k, l)$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

57

Relationship between correlation and convolution

58

- Correlation can be expressed as a convolution

$$\varphi_{xy}(k, l) = x(-k, -l) \ast\ast y(k, l)$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

58

29

Practical issues on convolution

59

- In practice, when calculating a convolution product, one has to:
 - Determine the most efficient formula
 - Determine the limits of sums
 - Resolve the border problem

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

59

Determine the most efficient formula

60

- When the size of the image $x(k,l)$ is much more important than the size of the filter $g(k,l)$, the following formula is more appropriate:

$$x(k,l) \ast g(k,l) = \sum_{k'=-\infty}^{+\infty} \sum_{l'=-\infty}^{+\infty} g(k',l') x(k-k',l-l')$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

60

Determine the limits of sums

61

- Limits of sums are directly determined from the size of the filter $g(k,l)$:

$$x(k,l) * g(k,l) = \sum_{k'=0}^{M_g-1} \sum_{l'=0}^{N_g-1} g(k',l') x(k-k',l-l')$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

61

Resolve the border problem

62

- Values of pixels outside of image $x(k,l)$ must be determined when the filter $g(k,l)$ only partially covers the image.
- Several approaches are possible:
 - Zero padding
 - Periodic extension
 - Mirror extension

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

62

Zero padding

63

- Simple
- Produces strong border artifacts

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

63

Periodic extension

64

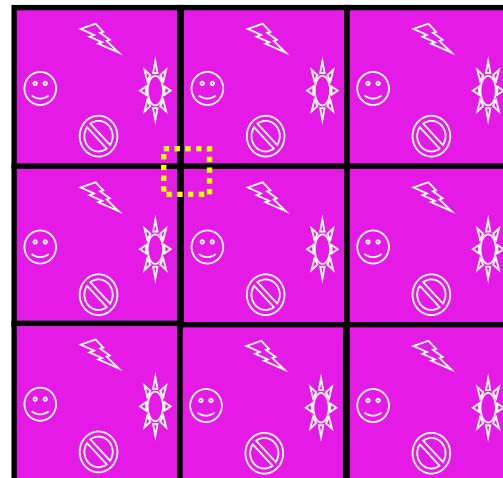
- Simple algorithm
- Coherent with Fourier Transform approach
- Better results when compared to zero padding, if the opposite borders of the image are similar

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

64

Periodic extension

65



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

65

Mirror extension

66

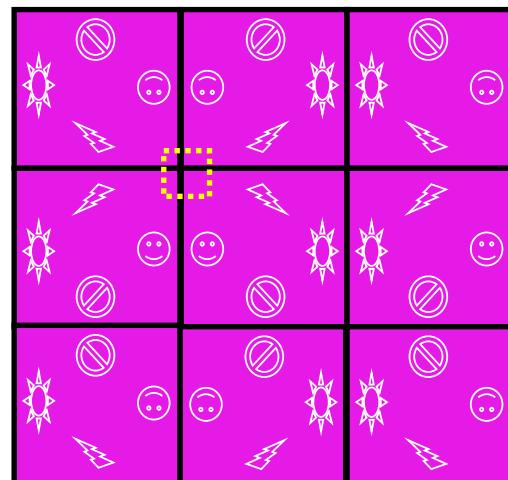
- More complex
- Produces the least artifacts

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

66

Mirror extension

67



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

67

68

Z-transform

Fourier Transform

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

68

2D Z-transform (2DZT)

69

- 2DZT of a 2D discrete signal $x(k, l)$

$$X(z_1, z_2) = \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} x(k, l) z_1^{-k} z_2^{-l}$$

- Inverse transform

$$x(k, l) = \frac{1}{(2\pi j)^2} \oint_{C_1} \oint_{C_2} X(z_1, z_2) z_1^{k-1} z_2^{l-1} dz_1 dz_2$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

69

2DZT: properties

70

- Linearity

$$y(k, l) = a_1 x_1(k, l) + a_2 x_2(k, l)$$

$$\Leftrightarrow$$

$$Y(z_1, z_2) = a_1 X_1(z_1, z_2) + a_2 X_2(z_1, z_2)$$

- Separability

$$x(k, l) = x_1(k) \cdot x_2(l)$$

$$\Leftrightarrow$$

$$X(z_1, z_2) = X_1(z_1) \cdot X_2(z_2)$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

70

2DZT: properties

71

• Translation

$$y(k, l) = x(k - k_0, l - l_0)$$

$$\Leftrightarrow$$

$$Y(z_1, z_2) = z_1^{-k_0} z_2^{-l_0} X(z_1, z_2)$$

• Convolution

$$y(k, l) = x(k, l) * g(k, l)$$

$$\Leftrightarrow$$

$$Y(z_1, z_2) = X(z_1, z_2) \cdot G(z_1, z_2)$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

71

2DZT: properties

72

• Conjugate symmetry

$$y(k, l) = x^*(k, l)$$

$$\Leftrightarrow$$

$$Y(z_1, z_2) = X^*(z_1^*, z_2^*)$$

• Symmetry in spatial domain

$$y(k, l) = x(-k, -l)$$

$$\Leftrightarrow$$

$$Y(z_1, z_2) = X(z_1^{-1}, z_2^{-1})$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

72

2D Continuous Fourier Transform (2DFT)

73

- 2DFT of a discrete signal $x(k, l)$

$$X(f, g) = \sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} x(k, l) e^{-j2\pi fk} e^{-j2\pi gl}$$

- Inverse transform

$$x(k, l) = \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} X(f, g) e^{j2\pi fk} e^{j2\pi gl} df dg$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

73

2DFT: properties

74

- Periodicity

$$X(f + 1, g + 1) = X(f, g)$$

- Relationship to 2DZT

$$X(f, g) = X(z_1, z_2) \Big|_{z_1 = \exp(j2\pi f), z_2 = \exp(j2\pi g)}$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

74

2DFT: properties

75

- Symmetrical for all $x(k,l)$ real

$$X(f,g) = X^*(-f,-g)$$

$$\text{Re}[X(f,g)], |X(f,g)| \quad \text{Even functions}$$

$$\text{Im}[X(f,g)], \arg[X(f,g)] \quad \text{Odd functions}$$

$x(k,l)$: real and even $\Leftrightarrow X(f,g)$: real and even

$x(k,l)$: real and odd $\Leftrightarrow X(f,g)$: purely imaginary and odd

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

75

Some definitions related to 2DFT

76

- Transfer Function $X(f,g)$

$$X(f,g) = |X(f,g)| e^{j\arg[X(f,g)]}$$

- Amplitude spectrum $|X(f,g)|$

- Phase spectrum $\arg[X(f,g)]$

- Energy (power) spectrum $|X(f,g)|^2$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

76

2DFT: phase et magnitude

77

- The phase of 2DFT contains information about edges and contours of an image
⇒ Image structure is very much visible in the phase of its 2DFT
- Theoretically, an image can be reconstructed from its phase or its magnitude only
 - But for magnitude, it's more « difficult »

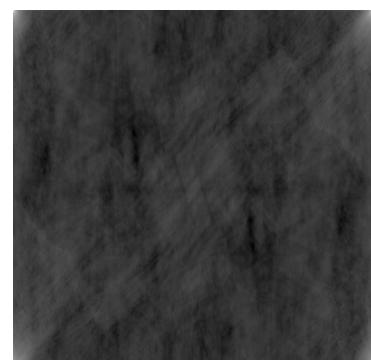
Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

77

2DFT: importance of magnitude information

78

$$x'(k, l) = F^{-1} [|F[x(k, l)]|]$$



(logarithm of the intensity)

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

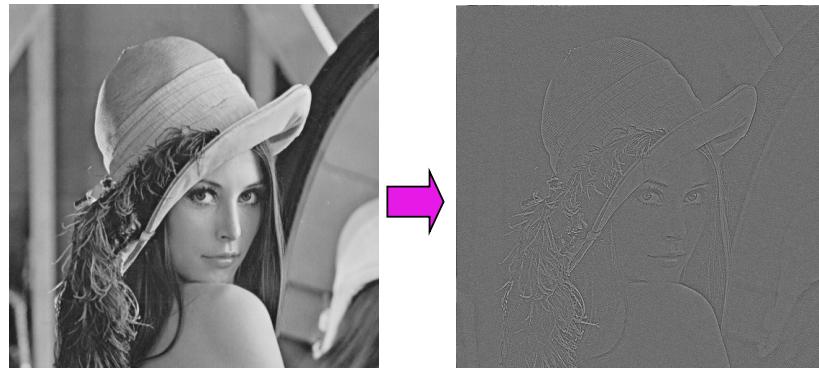
78

39

2DFT: importance of phase information

79

$$x'(k, l) = \operatorname{Re} \left[F^{-1} \left[e^{j \arg F[x(k, l)]} \right] \right]$$

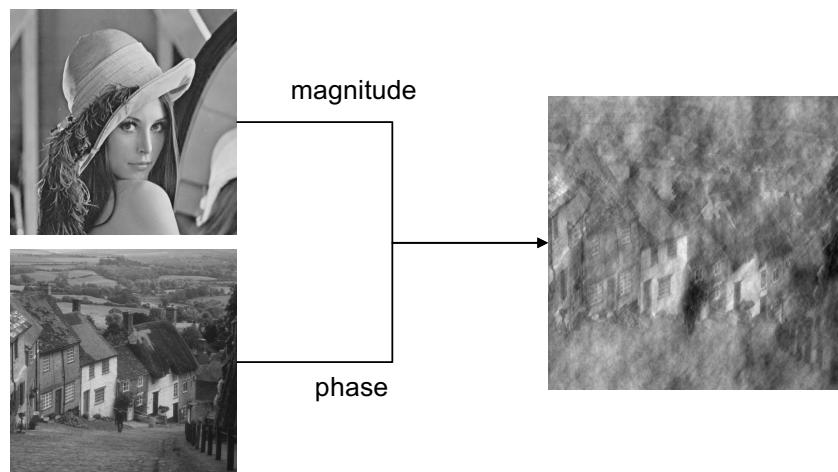


Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

79

2DFT: fusion of magnitude and phase

80



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

80

Discrete 2D Fourier Transform: D2DFT

81

- D2DFT is obtained by sampling in the frequency domain, the 2DFT of a discrete signal, with the following conditions:

$$f = m\Delta f \quad \text{avec} \quad \Delta f = \frac{1}{K} \quad \text{et} \quad \Delta g = \frac{1}{L}$$

$$g = n\Delta g$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

81

D2DFT: Formula

82

- Forward transform

$$X(m, n) = \sum_{k=0}^{K-1} \sum_{l=0}^{L-1} x(k, l) \exp[-2j\pi(\frac{mk}{K} + \frac{nl}{L})]$$

- Inverse transform

$$x(k, l) = \frac{1}{KL} \sum_{m=0}^{K-1} \sum_{n=0}^{L-1} X(m, n) \exp[2j\pi(\frac{mk}{K} + \frac{nl}{L})]$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

82

D2DFT: properties

83

- All properties of 2DFT remain valid for D2DFT
- The sum of the coefficients of a digital filter provides its frequency response at the origin:

$$X(0,0) = \sum_{k=0}^{K-1} \sum_{l=0}^{L-1} x(k,l)$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

83

D2DFT: multiplication and circular convolution

84

- Multiplication of D2DFTs produces a circular convolution !!!

$$x(k,l) \# \# y(k,l) \xleftrightarrow{TF} X(m,n)Y(m,n)$$

$$x(k,l) \# \# y(k,l) = \sum_{m=0}^K \sum_{n=0}^L x(m,n)y((k-m) \bmod K, (l-n) \bmod L)$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

84

D2DFT: fast transform and filtering

85

- A fast implementation of D2DFT is possible if the dimensions of the signal are in powers of 2
- Complexity:

$$O(N^2) \Rightarrow O(N \log N)$$

⇒ This represents an interest in frequency domain filtering

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

85

86

2D digital filtering

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

86

- In practice three approaches can be used to perform filtering operations
 - Filtering by convolution (direct method)
 - Filtering in the transform domain (Fourier)
 - Filtering by differential equations

- A linear and delay invariant filter can be completely characterized by its impulse response $h(k,l)$

$$y(k,l) = h(k,l) * * x(k,l)$$
- The transfer function $H(z_1, z_2)$ is given by the Z-transform of $h(k,l)$

$$Y(z_1, z_2) = H(z_1, z_2)X(z_1, z_2)$$
- The frequency response is given by:

$$H(z_1 = e^{j2\pi f}, z_2 = e^{j2\pi g})$$

Stability issues in digital 2D filters

89

- A filter is stable if for any finite amplitude input signal, the output is also of finite amplitude
- Stable filter \Leftrightarrow Stable impulse response
$$\sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} |h(k,l)| < \infty$$
- Stable filter \Leftrightarrow the unit hyper-sphere ($|z_1|=1, |z_2|=1$) is contained in RoC of $H(z_1, z_2)$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

89

FIR filters

90

- $h(k,l)$ is a Finite Impulse Response (FIR) filter if it has a finite number of non-zero samples
 - Always stable
- Easy to conceive and to implement
- Very much used in practice
- Typically with odd samples in each dimension and of limited size
 - $3 \times 3, 9 \times 9, \dots, \text{max. } 19 \times 19 \text{ or } 21 \times 21$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

90

FIR filters of zero phase

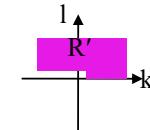
91

- In image processing phase information is very important. It should not be modified by filtering \Rightarrow

$$h(k, l) = h(-k, -l) \Leftrightarrow H(f, g) = H^*(f, g)$$

- The frequency response:

$$H(f, g) = h(0, 0) + \sum_{(k, l) \in R'} 2h(k, l) \cos(2\pi fk + 2\pi gl)$$



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

EPFL

91

FIR filters of zero phase

92

low-pass filter
with zero phase

low pass filter
with non-zero phase

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

EPFL

92

Filtering by convolution

93

- Easy to implement on DSPs
- Particularly suitable for FIR filters with relatively small dimensions

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

93

Frequency domain filtering (Fourier)

94

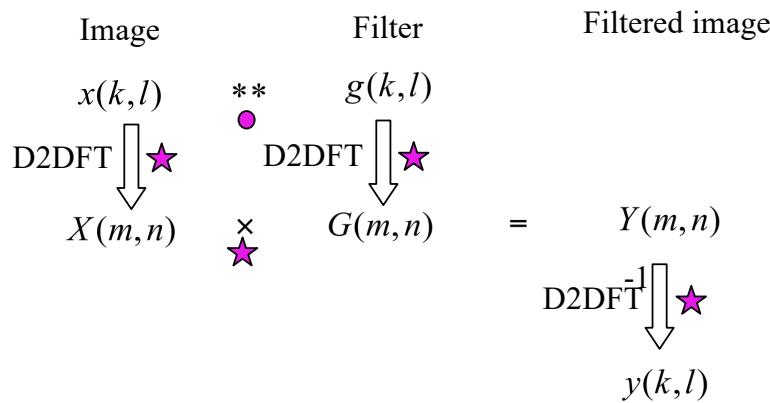
- Could be used for both Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters
- Advantageous when the size of the image is large and the filter is non-trivial
 - Extension to dimensions in powers of 2

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

94

Frequency domain filtering (Fourier)

95



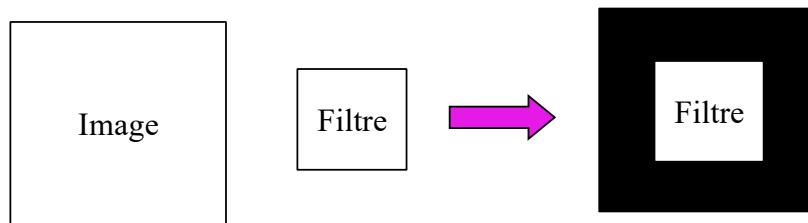
Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

95

Frequency domain filtering (Fourier)

96

- The difference in size between the image and the filter is not a problem
 - the filter is extended to the same size by zero padding



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

96

Filtering with 2D differential equations

97

- 2D differential equations are the only way to realize IIR filters

$$\sum_{(m,n) \in R_a} a(m,n) y(k-m, l-n) = \sum_{(m,n) \in R_b} b(m,n) x(k-m, l-n)$$

R_a and R_b are supports of $a(k,l)$ and $b(k,l)$

- Additional boundary conditions are necessary to obtain a unique solution (i.e. a well-defined system)
- Not all boundary conditions result in a linear system

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

97

Stability issues in IIR filters

98

- Transfert function

- $$H(z_1, z_2) = \frac{\sum b(k, l) z_1^{-k} z_2^{-l}}{\sum a(k, l) z_1^{-k} z_2^{-l}} = \frac{B(z_1, z_2)}{A(z_1, z_2)}$$

– RoC should contain ($|z_1|=1, |z_2|=1$)

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

98

FIR versus IIR filters

99

- FIR filters are always stable
- FIR filters are easier to conceive
- Zero phase FIR filters are more trivial
- IIR filters often require less mathematical operations for a similar frequency response
 - But an implementation in the Fourier domain is often equivalent in terms of complexity
- In practice IIR filters are not often used

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

99

Example of filtering - A

100

$$g(k,l) = \begin{bmatrix} 0 & 1/6 & 0 \\ 1/6 & 1/3 & 1/6 \\ 0 & 1/6 & 0 \end{bmatrix}$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

100

Example of filtering - A

101

- Frequency response : $G(f, g)$

$$\begin{aligned}
 G(f, g) &= \sum_{k=-1}^1 \sum_{l=-1}^1 g(k, l) e^{-j2\pi fk} e^{-j2\pi gl} \\
 &= \frac{1}{3} + \frac{1}{6} e^{-j2\pi f} + \frac{1}{6} e^{-j2\pi g} + \frac{1}{6} e^{+j2\pi f} + \frac{1}{6} e^{+j2\pi g} \\
 &= \frac{1}{3} + \frac{1}{3} \cos(2\pi f) + \frac{1}{3} \cos(2\pi g)
 \end{aligned}$$

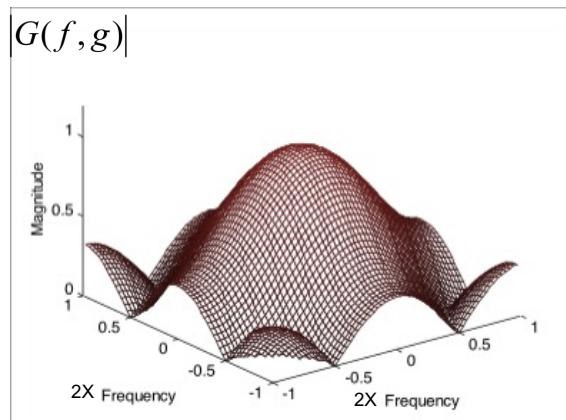
$$G(0,0) = 1$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

101

Example of filtering - A

102



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

102

Example of filtering - A

103

Implementation by 2-D convolution

$$y(k, l) = 1/6[x(k, l+1) + x(k-1, l) + 2x(k, l) + x(k+1, l) + x(k, l-1)]$$

Extension of the samples in the image beyond its support domain

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

103

Example of filtering - B

104

$$g(k, l) = \begin{bmatrix} 1 & -3 & 1 \\ -3 & 9 & -3 \\ 1 & -3 & 1 \end{bmatrix}$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

104

Example of filtering - B

105

- Observation

$$g(k, l) = \begin{bmatrix} 1 & -3 & 1 \\ -3 & 9 & -3 \\ 1 & -3 & 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ -1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -1 \end{bmatrix} = g_1(k) \cdot g_1(l)$$

$$g_1(k) = \begin{bmatrix} -1 & 3 & -1 \end{bmatrix}$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

105

Example of filtering - B

106

- Frequency response

$$G(f, g) = G_1(f) \cdot G_1(g)$$

$$\begin{aligned} G_1(f) &= \sum_{k=-1}^1 g_1(k) e^{-j2\pi fk} \\ &= -e^{+j2\pi f} + 3 - e^{-j2\pi f} = 3 - 2\cos(2\pi f) \end{aligned}$$

$$G(f, g) = [3 - 2\cos(2\pi f)] \cdot [3 - 2\cos(2\pi g)]$$

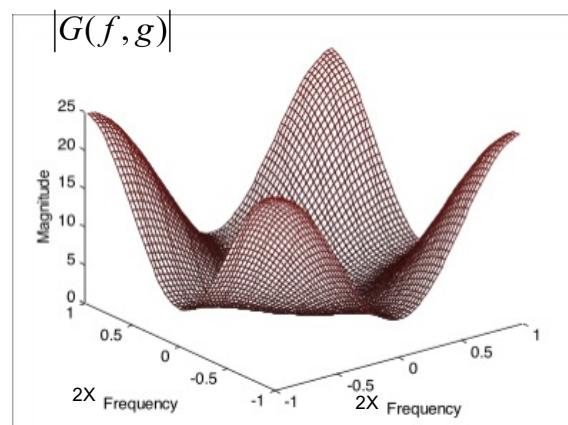
$$G(0, 0) = 1$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

106

Example of filtering - B

107



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

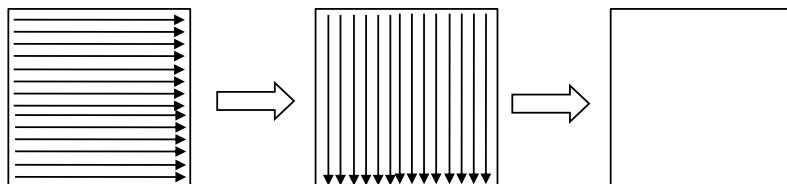
107

Example of filtering - B

108

Implementation by 1-D convolution

$$y'(k) = -x'(k-1) + 3x'(k) - x'(k+1)$$



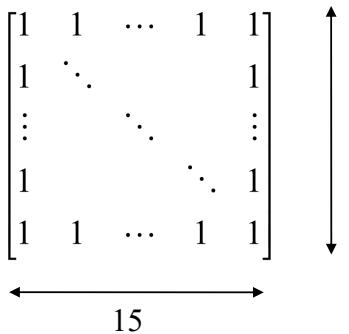
Extension of the samples in the image beyond its support domain

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

108

Example of filtering - C

109

$$g(k, l) = \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & \ddots & & & 1 \\ \vdots & & \ddots & & \vdots \\ 1 & & & \ddots & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$


Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

109

Example of filtering - C

110

- Observation

$$g(k, l) = \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & \ddots & & & 1 \\ \vdots & & \ddots & & \vdots \\ 1 & & & \ddots & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \end{bmatrix} = g_1(k) \cdot g_1(l)$$

$$g_1(k) = [1 \ 1 \ \cdots \ 1 \ 1]$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

110

Example of filtering - C

111

- Frequency response

$$G(f, g) = G_1(f) \cdot G_1(g)$$

$$\begin{aligned} G_1(f) &= \sum_{k=-7}^7 g_1(k) e^{-j2\pi fk} \\ &= 1 + 2 \sum_{n=1}^7 \cos(2\pi nf) \\ G(f, g) &= [1 + 2 \sum_{n=1}^7 \cos(2\pi nf)]. [1 + 2 \sum_{m=1}^7 \cos(2\pi mg)] \end{aligned}$$

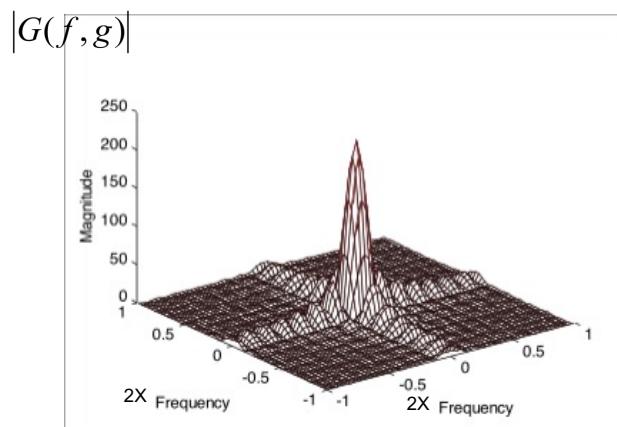
$$G(0,0) = 225$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

111

Example of filtering - C

112



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

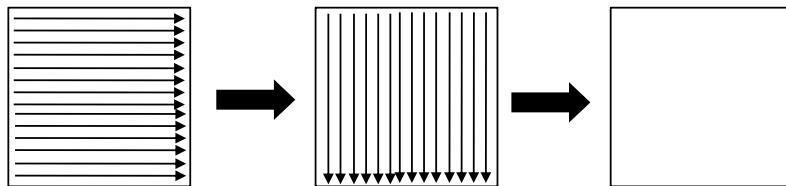
112

Example of filtering - C

113

Implementation by 1-D convolution

$$y'(k) = x'(k-7) + \dots + x'(k) + \dots + x'(k+7)$$



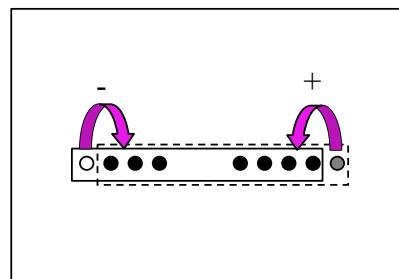
Extension of the samples in the image beyond its support domain

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

113

Example of filtering - C

114



Implementation by 1-D differential equations

$$y'(k+1) = y'(k) + x'(k+8) - x'(k-7)$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

114

Digital filtering - original

115

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

115

Digital filtering - filter A

116

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

116

Digital filtering - filter B

117

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

117

Digital filtering - filter C

118



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

118

Up-sampling

119

- Up-sampling of a discrete signal is performed by interleaving a number of zeros between its samples, followed by an ideal low-pass filter
 - Insertion of zero samples produces a compaction and repetition of the spectrum of the input
 - The ideal low-pass filter isolates the main spectrum

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

119

Zero order up-sampling

120

- Replacing zeros interleaving by sample repetition

$$\begin{array}{ccc}
 & \begin{array}{cccc} 1 & 1 & 2 & 2 \end{array} \\
 \begin{array}{cc} 1 & 2 \end{array} & \Rightarrow & \begin{array}{cccc} 1 & 1 & 2 & 2 \\ 3 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 \end{array}
 \end{array}$$

- Similar to use of an “averaging” low-pass filter after zero interleaving

$$\begin{array}{cc}
 1 & 1 \\
 1 & 1
 \end{array}$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

120

Zero order up-sampling

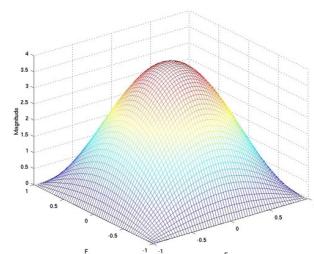
121

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

121

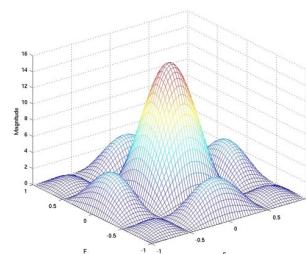
'averaging' low pass filter

122



2x2

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$



4x4

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

→ introduction of high frequencies!

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

122

Polynomial filters of higher orders

123

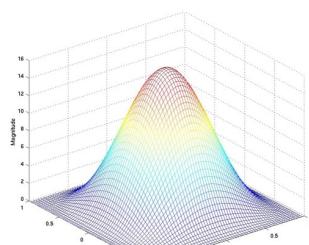
- Up-sampling can be improved by use of higher order polynomial interpolation functions
- This is equivalent to application of an “averaging” low-pass filter in a recursive way
- Terminology
 - linear = ‘averaging’ ** ‘averaging’
 - quadratic = linear ** ‘averaging’
 - cubic = quadratic ** ‘averaging’

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

123

Polynomial filters driven from a 2x2 ‘averaging’

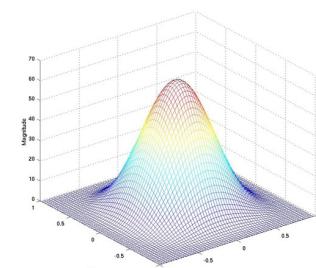
124



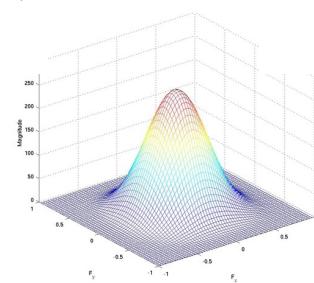
linear

$$\frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$

cubic



quadratic

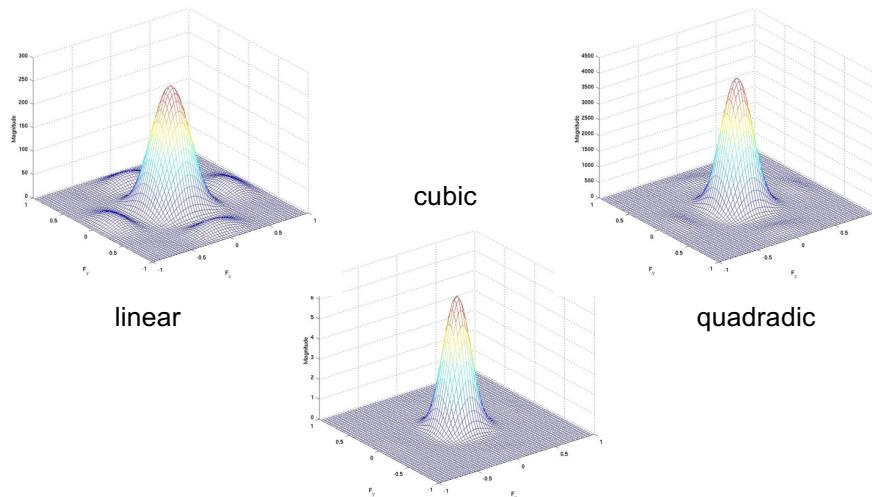


Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

124

Polynomial filters driven from a 4x4 'averaging'

125



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

125

Gaussian filter

126

- When the order of a polynomial filter increases, it tends to a Gaussian filter

$$G_\sigma(k, l) = \frac{1}{2\sigma^2\pi} e^{-\frac{k^2+l^2}{2\sigma^2}}$$

- Gaussian filter is a separable filter

$$G_\sigma(k, l) = G_\sigma(k)G_\sigma(l) \quad G_\sigma(k) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{k^2}{2\sigma^2}}$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

126

Gaussian filter

127

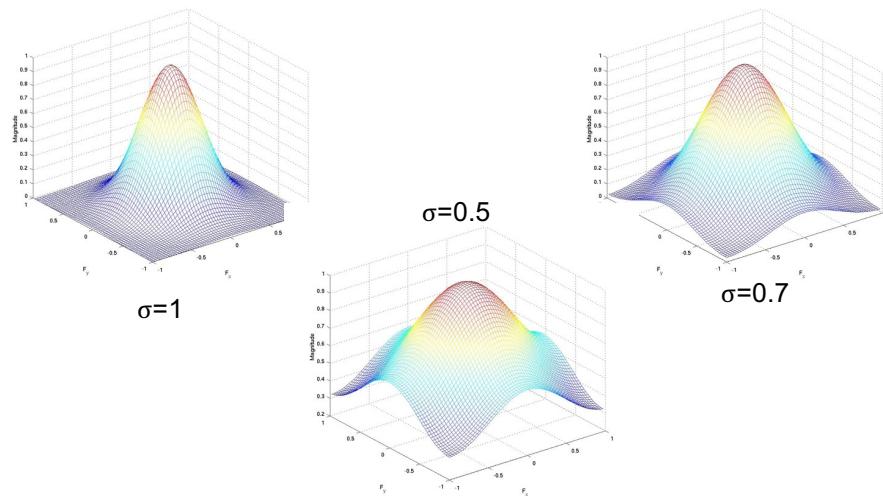
- In the continuous domain, the Fourier transform of a Gaussian signal is another Gaussian with an inverse standard deviation
 - Infinite support in both space and frequency domains
- In the discrete domain, the Fourier transform of a Gaussian signal is a Gaussian with spectral overlapping

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

127

Gaussian filter of size 7x7

128



Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

128

Gaussian filter: rational approximation

129

- Coefficients of a Gaussian filter are irrational numbers
→ problem of implementation in integer arithmetics
- A rational approximation is therefore desired
 - This can be achieved by making use of a binomial distribution based on central limit theorem

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

129

Gaussian filter: rational approximation

130

- 1-D case

$$b(s) = \frac{n!}{s!(n-s)!} \frac{1}{2^n}, \quad s = 0, 1, \dots, n$$

n	normalization factor	coefficients
1	2	1 1
2	4	1 2 1
3	8	1 3 3 1
4	16	1 4 6 4 1
5	32	1 5 10 10 5 1
6	64	1 6 15 20 15 6 1
7	128	1 7 21 35 35 21 7 1

- 2-D case is obtained by separable extension

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

130

Laplacian: approximation

131

- Laplacian is defined as:

$$\nabla f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- Using a decomposition in Taylor series:

$$f(x+1) \approx f(x) + f'(x) + \frac{1}{2} f''(x)$$

one obtains $f'(x) \approx f(x) - f(x-1)$

$$f''(x) \approx 2f(x+1) - 4f(x) + 2f(x-1)$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

131

Laplacian: approximation

132

- The following filter is a possible approximation of Laplacian

$$\begin{matrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{matrix}$$

- Other approximations

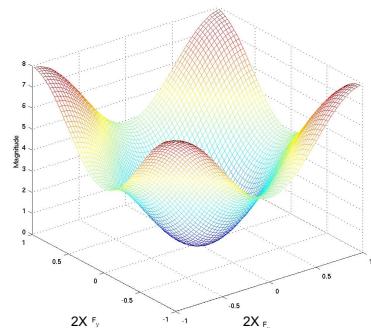
$$\begin{matrix} 1 & 1 & 1 & -1 & 2 & -1 \\ 1 & -8 & 1 & 2 & -4 & 2 \\ 1 & 1 & 1 & -1 & 2 & -1 \end{matrix} \quad \frac{4}{\alpha+1} \begin{bmatrix} \frac{\alpha}{4} & \frac{1-\alpha}{4} & \frac{\alpha}{4} \\ \frac{1-\alpha}{4} & -1 & \frac{1-\alpha}{4} \\ \frac{\alpha}{4} & \frac{1-\alpha}{4} & \frac{\alpha}{4} \end{bmatrix}$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

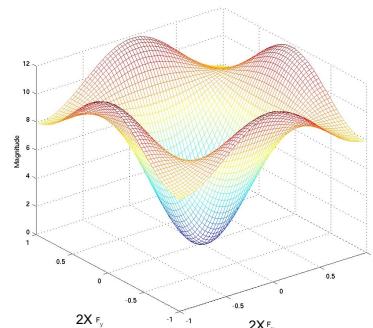
132

Laplacian

133



$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$



$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

133

Laplacian

134

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

134

« Sharpening »

135

- Edges in an image can be enhanced by subtracting from an original signal the result of its Laplacian filtering

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

- This would however also enhance noise

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

135

« sharpening »

136

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

136

Laplacian of a Gaussian

137

- To avoid problems with noise, Gaussian filtering can be applied before Laplacian

$$\Delta G_{\sigma}(k, l) = \frac{k^2 + l^2 - 2\sigma^2}{2\pi\sigma^6} e^{-\frac{k^2 + l^2}{2\sigma^2}}$$

- The basic principle of “sharpening” remains valid

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

137

Sharpening with Laplacian of a Gaussian

138

Multimedia Signal Processing Group
Ecole Polytechnique Fédérale de Lausanne

138