Aligning Large Language Models with Human
Feedback: Mathematical Foundations and

Algorithm Design

Chenliang Li*, Jiaxiang Li*, Luca Viano*, Siliang Zeng*,

Volkan Cevher, Markus Wulfmeier, Stefano Ermon, Alfredo Garcia, Mingyi Hong

Abstract

This article provides an introduction to the mathematical foundations and algorithmic frameworks
used to align Large Language Models (LLMs) with human intentions, preferences, and values. We discuss
standard alignment techniques, such as fine-tuning (SFT), reinforcement learning with human feedback
(RLHF), and direct preference optimization (DPO). We also explore the theoretical underpinnings of
learning from human preferences, drawing connections to inverse reinforcement learning (IRL) and
discrete choice models. We present state-of-the-art algorithms in a tutorial style, discuss their advantages
and limitations, and offer insights into practical implementation. Our exposition is intended to serve as a
comprehensive resource for researchers and practitioners, providing both a foundational understanding of

alignment methodologies and a framework for developing more robust and scalable alignment techniques.

I. INTRODUCTION

Background. As large language models (LLMs) have taken the world by storm, it is clear that generative
Al systems will soon become ubiquitous in our lives. LLMs have been applied beyond chatbots and
personal assistants to tackle complex challenges, including video gaming [1] and autonomous control [2].
In this context, the concept of alignment plays an increasingly important role in the design and training
of Al systems. Loosely speaking, alignment refers to the performance guarantee that the Al system will
generate outcomes that are intended or preferred by the human user without undesirable side effects or
behaviors such as deception or manipulation.

More technically, the LLM alignment problem involves fine-tuning or adjusting a base model that was
originally trained on extensive, diverse datasets. While such a base model is trained to learn core behaviors
and general knowledge, it often falls short when applied to specific tasks or to meeting the nuanced

preferences of a human user. To better align the model, additional feedback is gathered from human experts

*: equal contribution, ordered alphabetically.

April 28, 2025 DRAFT

who evaluate and/or rank the model’s performance within a specific task context. This feedback embodies
expert judgments regarding both the accuracy of the model’s responses and any particular preferences they
may have. The goal is to refine the model to better meet these specific requirements, ultimately enhancing
its task relevance and user satisfaction. Generally, it is observed that after the alignment process, LLMs
can follow human instructions well, and can avoid providing toxic and non-preferable responses. Refer to
Fig. [T] as an illustration of an overview of the alignment process.

Contributions of This Work. Despite extensive study of the alignment problem in recent literature,
this research area remains young, and it is still evolving rapidly with many unresolved theoretical
challenges. A primary contribution of this article is to introduce the signal processing community to the

fundamentals of alignment, highlight state-of-the-art algorithms and approaches, and clarify the intersection

between alignment methodologies and various techniques . C :
. . . . o @ C:] *
relevant to signal processing (SP). We believe that our article %
Data generated =
. by human « L9 @
will foster interdisciplinary contributions and expand the GPT, Claude, X
Llama, DeepSeek ‘/\
role of SP in LLM alignment research. By understanding Human)
the alignment problem, SP researchers can leverage their TN o~ X
. : Seeking
expertise in mathematical modeling, noise handling, inverse | integrate Data feedback (e pemonstration
: gu“fﬁngA'IWOd_g'] ® Preference Annotation
. . . . esign jorithm .o
problem-solving, and optimization to address a number of on
. Learning an Provide a diverse
key challenges. For instance, similar to reconstructing signals aligned model set of data

from observed data in SP, many alignment approaches involve Fjg. 1: An illustration of the alignment process.
solving inverse problems, such as learning the human preference models from the data. Therefore, we
expect that introducing the alignment to SP professionals can foster innovation in Al safety, inspire novel
techniques, and accelerate the development of robust, generalizable alignment frameworks that can be
applied across diverse applications.

Organization of this work. The article is organized as follows. In Sec. [II, we provide the readers with
an overview of the LLM training process. In Sec. [[ll, we discuss some classical notion and techniques
of learning from human preference, which serves as the foundation for many alignment approaches to
be discussed subsequently. In Sec. we provide a detailed discussion of a number of state-of-the-art
algorithms for different stages of LLM alignment. In Sec. [V| we provide readers with a framework that
unify a few alignment algorithms discussed in the previous section under a single formulation. In Sec. [V,

we provide some high-level discussion In Sec. we conclude with final remarks and open questions.

April 28, 2025 DRAFT

II. PRELIMINARIES

In this section, we provide a basic description of the LLM training process, while emphasizing the
basic concepts relevant for alignment problems that we describe in the sequel.
LLM Representation. Consider an LLM parameterized by parameters ¢ and denote the output probability
by 7(y|x;0) where = := [x1,...,x,] is the sequence of input prompts and y := [y1,...,yn] is the
sequence of output continuation, where n and m are their sequence length, correspondingly. In practice,
each one of y; and x; is a token, which is one element of a token vocabulary. A token is a discrete unit
that represents certain semantic information. For example, a word “learning” itself could be one token in
the vocabulary, however more commonly two elements “learn” and “-ing” are both tokens where “-ing”
represents the semantic information of tense. A tokenizer is commonly utilized to transform an input
natural language sentence into sequence of tokens z = [z1,...,Zy].

Typical LLM is an auto-regressive model, meaning that it predicts the output probability of the y; given all

tokens in 2z and Yy = [Y1,...,yj—1] (y<1 is null). More precisely, the

prObability Of prOduCIng a Sequence y All transformer models are generative models <EOS>

can be defined as: h
myles0) = [[niley<ii0) O e e w e e

J=1

The state-of-the-art LLMs are built upon Fig. 2: An illustration of Auto-regressive LLMs. Here <BOS> and <EOS>
are two special tokens representing the begin and the end of the sentence,

the attention mechanism [J3|] and 6 repre- respectively. The tokens at the bottom are the input token sequence, and
those at the top are the output tokens. In this example, the token sequence

sents all the trainable parameters, includ- «“<BOS> All transformer models * is given to the LLM and “are generative

. . . . models <EOS>” is the prediction. Each of the previous tokens will be used
ing the attention matrices and weights to predict the next token, corresponding to (T).

of the feed-forward layers.

Next, let us provide an introduction about different stages of LLM training.
The LLM pre-training. The first stage of the training is called pre-training, where an LLM model
is initialized randomly and trained over a vast corpus of documents, known as the pre-training dataset.
As an example, Llama 3 model is pre-trained on more than 15T token of documents collected from

all over the Internet, with the entire token vocabulary size (i.e., the total number of distinct tokens) of

N, pre

128K [4]. The pre-training dataset is an unsupervised dataset, denoted as Dy := {xi}izl, where each

)
m;

data 2 = [z1, ..., 2%,] is a collection of tokens with m; being its sequence length. D is a dataset without
labels usually collected from the internet, such as Wikipedia articles; the learning task at the pre-training
stage is typically formulated as the so-called next-foken prediction task, which predicts the next token

given the current and all previous tokens shown to the LLM, and can be mathematically formulated as a

April 28, 2025 DRAFT

negative log-likelihood minimization problem:

pre pre m;

Zlogﬂx 0) N ZZlogﬁ Z|ac<J, 0). (2)

Pre i—1 j=1

This task is commonly understood as encouraging the LLM to memorize all the given texts and enabling
the LLM for more fine-grained tasks.
The LLM Alignment. Once the pre-training is done, the next step is called alignment or fine-tuning. The
fine-tuning process is a supervised process that aims at improving the instruction following capabilities
of LLMs to better align with human behaviors and values. It usually consists of two main steps: the
supervised fine-tuning (SFT) step and the reinforcement learning with human feedback (RLHF) step.
The SFT step utilizes a demonstration dataset Dgemo = { (24, yz)}Ndem“ where z is the input prompt
(such as, “Where is the capital of the US?”) and y is the expert response (such as, “Washington, DC”). We
assume that the demonstration continuations y are collected from an expert (typically a human expert, but
sometimes it can also be a very large and well-aligned model such as GPT4 which produces high quality
responses), thus we also denote (x,%) ~ Dgemo as ~ p,y ~ 7 (-|x) as their population distributions,
where p is the distribution of the input prompts when collecting the I % S IZ% o ru
data, and 7 is the expert policy. Preference data

Meanwhile the RLHF step first utilizes a preference dataset to learn I %%3 %ﬁ

Demonstration data(]) SFT Model (3) Policy

from human preference about the quality of the answers to a particular

question z. This dataset is denoted as Dy := {(x, Y > Y1)}, where I.

Prompt data

Y 18 preferred (i.e., ‘wins’) over y; (i.e., ‘loses’) by a human labeler, Fig. 3: An illustration of the

and will be succinctly denoted as (y,, > ¥;) throughout the paper. We Standard LLM Alignment process.

use the notation = ~ p, (4, = 4;) ~ 71 (-|x) to denote the population distribution of the preference dataset,
where 77 is the preference distribution. The preference data is typically used to learn a parameterized
reward function r(x,y; ¢), which provides a score for a given prompt-response pair (x,y). Once such
a reward function is learned, the RLHF step leverages this reward function, together with a prompt
dataset Dprompt := {2}, to evaluate and further improve the quality of the generated responses, through a
reinforcement learning (RL) process. The whole process of RLHF is summarized and illustrated in Fig. [3|

The following example illustrates the demonstration and the preference data.

April 28, 2025 DRAFT

Example 1: LLM Alignment Data. Given a question prompt “How should I respond to an email from
my professor asking for a delayed assignment?” The demonstration data includes a preferred answer “You
can politely acknowledge the delay and provide a reasonable explanation. For example: ‘Dear Professor, I
apologize for the delay in submitting my assignment. I encountered unexpected challenges but will submit
it by [new deadline]. Thank you for your understanding.” Meanwhile, the preference dataset includes an
additional non-preferred answer, e.g., “Just say you were busy and didn’t have time. Professors have to

deal with it.” Clearly, the preferred response aligns with human values of politeness and professionalism.

We will provide a detailed account of popular methods to learn from these different kinds of datasets
in the subsequent sections. In a high level, the SFT step can be used to directly teach LLM to imitate
the expert behavior, while the RLHF step teaches LLM to distinguish the better behavior over the worse
ones, in order to achieve a better generalization.

Based on the above discussion, we can now define the LLLM alignment problem as follows:

LLM alignment problem: Given a diverse dataset representing human demonstrations and preferences,
how can we effectively train an LLM to consistently generate outputs that align with human values,

ethical principles, and intended use cases?

The LLM Evaluation. Before closing this introductory section, let us briefly discuss how the LLMs
are evaluated after different stages of training. At the pre-training stage, the model learns to predict the
next token probabilistically. The model is thus evaluated on how well it predicts the next token, and the
common measure is the perplexity (PPL). Mathematically, perplexity is defined as the exponential of the
average log-likelihood of the predicted words in a sequence (i.e. the exponential of the loss (2)). Hence,
a lower perplexity indicates a clearer prediction and less uncertainty of the prediction of the next tokens.

In the fine-tuning stage, multiple metrics are typically used. After the SFT step, the metric is usually
determined by the nature of the task. For classification tasks such as sentiment analysis (i.e., given a
text of words, determine whether the sentiment of the text is positive or negative), traditional metrics,
such as accuracy, precision and recall are used; For translation tasks, BLEU (BiLingual Evaluation
Understudy) score is the most popular metric, which measures how similar a machine-translated text is
to a human-written reference translation. After the RLHF step, the aligned model could be evaluated
by win-rates from human raters or some judge models (typically takes the form of a specialized LLM),
which calculate the favorability of the model response over other models/ground truth response.

In the next section, we will begin our technical discussion by delving into classical techniques on
learning from human feedback data. This will serve as mathematical foundation for various alignment

techinques to be discuss subsequently.

April 28, 2025 DRAFT

III. THEORETICAL FOUNDATIONS OF LEARNING FROM HUMAN FEEDBACK.

Given the background above, it is clear that the alignment problem is closely related to the problem of
modeling human behaviors through the observed choices. Indeed, in the context of LLM, the response
y in the demonstration data as well as the labels that distinguish %,,’s with %;’s can both be viewed as
human choices. It turns out that there is a vast literature about developing models for discrete choices,
and these models were first used to describe discrimination between perceptual stimuli [S] and choices

for urban transportation modes [[6]]. In this section, we will provide a brief overview of this literature.

A. Classical models of discrete choice

The choice models are used to describe observed choices (or actions) a € A made by a decision maker
given a relevant state variable s € S. A parallel to LLM alignment problem described in the previous
section can be made by having the state s correspond to the prompt = and the action a corresponds to
the possible responses y’s to the prompt.

As in the previous section, we use the notation (s,a) > (s,a’) to indicate that in state s action a € A
is preferred over a’ € A. An assumed structure of preferences over action set A is a relation >, which is
e Complete: (s,a) = (s,a’) or a’ > a for all a,a’ € A and s € S.

e Transitive: (s,a) > (s,a’) and (s,a’) = (s,a”) implies (s,a) > (s,a”), for all a,a’,a” € A, s € S.

A structure of preferences can be modeled by a reward (or utility) function r : S x A — R, such that
(s,a) = (s,d’) if and only if r(s,a) > r(s,a’). This implies when in state s, the decision maker will
always prefer a to a’. However in practice, one may observe a decision maker engages in mixing, i.e.
implementing different actions when in the same state s € S. In the context of LLM alignment, mixing
corresponds to observing different responses to the same prompt.

There are several ways of modeling mixing in the literature of discrete choice:

Random Utility: In this model, the decision maker perceives a random reward (or utility) 7 (s, a) + €(a)

(where €(a) is a random variable) given the pair (s,a). A pair (s,a) is preferred to (s,a’) if:
r(s,a) + e(a) > r(s,a’) + e(d’).
For a given state s € S and a reward r(-), the probability of such preference can be modeled as follows:

Pr((s,a) = (s, a')) = Prob(r(s, a) +e(a) > r(s,d’) + e(a')) = Prob (6((1) —e(a') > r(s,a’) —r(s, a)).

April 28, 2025 DRAFT

When the random variables {e(a) : a € A} are assumed i.i.d and standard Gumbel we obtain the following

logit model [[7]], [8]] (also known as the Bradley-Terry-Luce model (BTL)):

expr(s,a)

PT((S, a) > (s,a = a(r(s, a) — r(s,d)), 3)

/)> - expr(s,a) +expr(s,a’)

where o(z) := . We will see later that the logit model expressed above has been heavily used in

1
Ite==
the RLHF step to learn a reward function from preference data.

Perturbed Utility: Stochastic choice can also arise as the solution to expected reward maximization
subject to an additive perturbation [9] which may describe limited information processing capacity [[10] or
aversion to ambiguity [[11]]. Assuming that the reward function 7(-) is known, then the optimal stochastic
choice can be modeled as the following utility maximization problem

7 (+|s) := arg max {E,r[r(s,a)] — 5 x ¢(m)}, 4)
ANE

where Al4l ¢ RI4l is the simplex; ¢ : Al4l — R is a convex function; 5 > 0 is a constant. For example,

when c is the (forward) Kullback-Leibler (KL) divergence with respect to a default policy 7¥ defined as

Dy, (n||7%) == Z 7(a)log ;((aa))’ (5)

acA

then the optimal stochastic choice can be expressed as follows:

" (als) exp(8~'r(s, a))
>acam(als) exp(B~1r(s,a))

It should be noted that in order to precisely calculate the optimal policy, one has to assume that all

(6)

7 (als) =

available actions in A are known. Nevertheless, the perturbed utility model described here is instrumental

for establishing a number of LLM alignment approaches, assuming that a reward model is available.

B. The reward learning problem

Based upon the observed preferences Dyt := {(s,a) > (s,a’)} by an agent and the model (3), the
estimation problem consists of finding a reward function (s, a) that rationalizes the data, so that observed

preferences are consistent with a reward model. Specifically, the likelihood of D,,..f can be written as

Coret (1) = Ep, ., {log P, ((s, a) > (s, a'))} . 7

In general, there is no unique reward function that maximizes likelihood /(7). However, assuming
the reward r(s, ag) for a reference action ag € A is known, it can be shown that there is unique reward

function that maximizes likelihood function £pe¢ (7).

April 28, 2025 DRAFT

Alternatively, based upon the observed choices Dyemo := {(s,a)} and assuming these choices are
consistent with the model (6)). Then the estimation problem consists of finding a reward function r (s, a)

that maximizes the likelihood of Dgyen, defined as:
aemo(r) = En,,,, | log 7 (als)|. @®)

As pointed out before, a limitation of this model is the assumption of complete information on the
menu of available choices A. When the reward is linearly parametrized, i.e. r(s,a) = ¢(s,a) "0 where
¢(s,a),0 € RP and ¢(s,a) is a vector of features, problem is the Lagrangian dual of the maximum

entropy estimation problem (see Theorem 2 in [[12]):

w(.lrggiw EonDaono [H(7(:[5))]

s.t. Estdemmaww(~|s) [qb(sa CL)] = E(s,a)waemo [¢(5a a)}

IV. STATE-OF-THE-ART ALGORITHMS FOR LLM ALIGNMENT

In this section, we provide an overview of the mathematical formulation of the alignment problem, and
a number of state-of-the-art algorithms. To facilitate discussion, this section is organized according to the

structure of the available data.

A. Learning from demonstrations data

We begin with the discussion on how to model and learn from demonstration data Dgemo := {(x,y)}.
Given the prompt x, the response y is viewed as a golden answer. A natural approach to learning from
such a dataset is supervised learning, leading to the supervised fine-tuning (SFT) paradigm. To this end,
we formulate the following optimization problem over the LLM parameters class ©:

2%%“ lsrr(0) == —Eppyorm(|z) log T (y|z; 0)] - 9)

It is easy to see that the above problem shares the same optimal solutions as

géiél Eunp[Din (7" (+|x) |7 (-] 6))], (10)

where Dy (-) is the (forward) KL-divergence defined in . The latter shows that SFT aims at imitating
the demonstration dataset via minimizing the KL divergence.
It is worth noting that the SFT stage described here is closely related to behavioral cloning [13]], whose

goal is to mimic the policy of an expert, we describe the details in the next paragraph.

April 28, 2025 DRAFT

Protocol 1 SFT (Supervised Fine Tuning) via Behavioral Cloning

1: The learner receives: (i) A dataset Dgemo = { (77, yi)}fvz‘*fm", (ii) A policy function parameters class ©.
2: The learner computes the loss: {gpr(0) := vaz“l" [—log7 (y'[z%)] .
3: The learner outputs my. with §* = argmingcg ¢spr(6).

1) Behavioral cloning approaches: Behavioural cloning (see Protocol [I) it is an offline problem where
the learner cannot collect new data using the current policy, but should learn relying exclusively on
the expert dataset. This can be done via a reduction to supervised learning where the actions are the
labels to be predicted and the states are the features. Very recently, [[14] show that exact minimization of
the loss ZSFT allows to output a policy which enjoys suboptimality guarantees compared to the expert.
Their experiments and theoretical analysis also show that the guarantees and practical performance of the
method do not deteriorate for long horizon problems. Unfortunately, exact minimization of the loss ZSFT
is not possible, and to our knowledge, there are currently no studies investigating how those optimization
errors affect performance. It is important to notice that in LLM the environment is simpler than what
generally assumed in analyzing and empirically testing BC. Indeed, in language tasks LLMs are tree
shaped and deterministic.

2) Self generation approaches: An alternative approach, dubbed SPIN (Self-Play fIne-tuNing), presented
in [15] casts the fine-tuning with demonstration problem as a two-player game. On the one hand, the
first player tries to generate answers as similar as possible as the observed ones in Dgemo. On the other
hand, the second player’s aims at distinguish artificially generated answers from the answers in the
demonstrations dataset Dgemo. The algorithm employs alternating updates between the first and second
player. In particular, at iteration ¢, the first player observes the second players parameters #; and updates
its weights via the following minimization over potentially time-varying parameters classes {F;} as

Jirt = arg 0in Ba Dy By g [£(f (2, 9) = (=, 9))], (1n
where /(-) is a monotonically decreasing, non negative, smooth and convex function. A common choice in
practice satisfying the above properties is the logistic loss function ¢(z) = log (1 + exp(—z)). All these
properties are imposed to make the optimization problem easier to solve via first order methods. At this point,
the second player can update its weights exploiting knowledge of f;1. This is done by solving the following
problem: 0;11 = argmingeg —Epwpymn(fa:,) [ft+1(2,y) + BDL(7(:|z; 0)||7(-|2;0;))] , which is an
application of Equation () for ¢(7) = —Dxy,(w(+|z)||7(-|x; 6:)). The analytical solution of the above
problem is surprisingly easy to obtain (analogously to (@)): m(y|z; Op1) o< w(y|z; 0) exp (%W) , if

the class © is expressive enough compared to the class F;y1. To ensure that this is the case, in [[15] the

April 28, 2025 DRAFT

Protocol 2 SFT (Supervised Fine Tuning) via SPIN (Self-Play flne tuNing)

1: The learner receives: (i) A dataset Dgemo = { (7%, yi)}fvz‘*fm", (ii) A policy function parameters class ©.
2: The learner samples ' ~ 7(-|z%; §;) and computes the loss:

R Niemo W(yi‘.’lfi; 0) W(y’,i|xi; 0)
@)= 3 [e (e (T)~ (T)

3: The learner outputs mp. with 6* = argming.g ZSPIN(Q).

class F;41 is chosen to be coupled with © as follows, F;y1 = {ﬂlog (%) } Another benefit

of this choice is that the two updates can now be expressed as single update over the weight class ©.

Indeed, is at this point equivalent to

. m(y|x;0) m(y'|z; 0)
— argm = Eu ooyl log [=2) — Blog [212))|
Oet1 ar(%e@mﬁspm(ﬁ) #~Daeme 2y ~om(-faife) [6 (6 o8 <7T(y‘l’;9t) Flog m(y'|; 0)

(12)

The practical algorithm can be obtained via a

stochastic estimator of this loss constructed with

the dataset Dyemo, as described in Protocol @ mode-seeking mode-covering

We note that SPIN shares similarity with Direct Fig. 4: True distribution in blue and estimated distribution in
green. When the estimated distribution has a smaller support
than the true one, as in the left plot, we say that it has a mode

seeking. Vice versa, the estimated distribution has a mode
covering behavior if its support is larger, as in the right plot.

differences that we will highlight in Section M Image from https://sander.ai/2020/03/24/audio- generation.html.

Preference Optimization (DPO), to be described
in Section however there are also important

3) Information theoretic approaches: Recent works [[16]], [[17] considered matching general information
theoretic divergences between answers distribution.

As mentioned, minimizing the forward KL divergence between demonstrated and learner answer
distribution is equivalent to the SFT objective in (I0). As commonly noticed, the forward KL minimization
outputs a mode covering distribution. That is, the learned distribution has support which contains the
support of the demonstrations distribution. However, a mode seeking behavior can be more desirable
if one wants to perfectly imitate some aspects of the demonstrations while discarding others. We refer
the reader to Figure {4| for a visual illustration. To this end, [16] suggested to minimize the reversed KL
divergence. This method however requires additional prompts and answers generated by the learner policy.

As a last example of divergence minimization, [18]] considers x? divergence minimization.

April 28, 2025 DRAFT

https://sander.ai/2020/03/24/audio-generation.html

Protocol 3 RLHF (Reinforcement Learning from Human Feedback)

1: The learner receives: (i) A preference dataset Dpyef = {(:cl,yiu,y@}fv:‘l (ii) A prompt dataset
Dyrompts = {mi}f\i’f’mp“, (iii) A reward function parameters class ®, (iv) A policy function parameter

class ©.
2: The learner estimates the reward as r (-, -; ¢*) with

Npre
QF = ar(%ergin lrm(0) == — ; log (U(T(xlvy;ﬁ o) —r(@',y; ¢>))

3: The learner finds 0* = arg minycg ¢r1.(¢), using PPO or REINFORCE.
4: The learner outputs my-«.

Protocol 4 PPO (Proximal Policy Optimization) [[19]

1: Receive policy class parameters ©, and reward model parameters ¢*. Initialize 6;.
2. fort=1,...,7T do

3; Sample y* ~ 7(-|2%; 0;) and 2 € Dprompts-
4: The learner computes the stochastic loss.
~ 1 o o o
lrimp(0y) = ———— > [r(2’,y%¢") + Blog m(y'[x’; ;) — Blog mes (y'|2")] ,
|Dpr0mpts‘ .
le[Nprompts}
5: The learner computes the policy ratio 6(6;6;) :Am D i€ [Nyrompee] % R
6: The learner computes ppo(6) = — min (5(0; 0:)lrrur(0:), Clip(6(6;0;),1 +¢€,1 — e)ERLHF(Ht))
7: 0i+1 = arg mingcg fppo(f) computed via SGD, Adam or other optimizers.
8: end for

9: The learner outputs mg-«.

B. Learning from preferences and prompts

Learning from preferences and prompts is usually performed in two steps: (i) reward learning using the
preference dataset (ii) based on the reward model learned in the first step, further fine-tune the LLM by
conducting reinforcement learning using the prompt datasets. Note that these two steps are closely related
to the two types of stochastic choice models discussed in Sec. [[II-A

a) Reward learning: To find an appropriate reward model, RLHF (see e.g., [21]) leverages a set of
preference dataset Dyrer = {(Z, Yw, Y1)}, Where each data contains a pair of output ¥,,,y;. The output
Y 18 preferred over y; by human labeler (denoted as y,, > ;). Leveraging the the Bradley-Terry model
(BT) discussed in and the likelihood of the preference data (7)), one could formulate the following
problem to find the reward model (parameterized by ¢):

¢* = arg min lrm(9) = _Exwp,(yw>-yz)~7rp(-|x) [log (a(r(x, Yuwi) — (@, yi; ¢))):| . (13)
ped

April 28, 2025 DRAFT

Protocol 5 REINFORCE [20]

1: Receive policy class parameters © and reward model parameters ¢*. Initialize 6, step size n
2. fort=1,...,7T do

3: Sample y* ~ 7(-|2%;6;) and 2 € Dprompts-

4: The learner computes the stochastic loss.
N 0,) :(— — 1 i, 0. gk] 140, — 81 i
RLHF (0¢) = > [r@ s 0%) + Blogm(y'|at; 6:) — Blog mer(y']a)]

|Dpr0mpts‘ 1€[Nprompts]

5. The learner performs the update 6, ; = Ilg [Gt — plrLur (6;) D ieNpmne) V log (Y2 Qt)} .
6: end for

7: The learner outputs mg-«.

Protocol [3| describes the procedure where 7(-; ¢) is learned via minimization of the empirical loss ZRM.
b) Policy Learning: Once a reward model r(z,y; ¢*) is learned, the LLM can be fine tuned by

leveraging the perturbed utility model (@), which results in the following problem:
mgin ERL(G) = _]Exrvp,yrwrﬂx;ﬁ) [’I"(ZL‘, Y; QZ))] + BEsz[DKL(TF (|$7 9) ||7Tref (|ZL‘))], (14)

where 7. is a fixed reference model such as the SFT-ed model, and 3 is the temperature coefficient of
the KL regularizer. Note that both the expected reward and the KL in (14)) are not computable given the
large cardinality of X and), so (I4) is usually solved approximately by minimizing an empirical loss,
using policy optimization techniques such as REINFORCE [20] or PPO [19]; see Protocol [3] .

Pros and Cons: PPO or REINFORCE? PPO was proposed as an improvement over the REINFORCE
algorithm in environment where the gradient estimates generated by REINFORCE suffer from high
variance. As a result, PPO enforces conservative policy updates to counterbalance the high variance
effect. However, as argued in [22], for the LLM fine-tuning task the gradient variance is not as high to
justify the PPO conservative mechanism. Since both options are used across the community, we report
both algorithms in Protocols [and [5] respectively. A disadvantage of PPO is that it requires a critic
network to estimate the advantage function when implemented in multi-stage problems, e.g., when the
reward is assigned at the token level rather than to the entire answer y. REINFORCE does not require
training a critic, therefore it is more memory and computationally efficient than PPO. Recently, a new
policy optimization method (GRPO) has been introduced and has been proven successful in reasoning
applications (see Section [[V-E).

Pros and Cons: Learning from demonstrations vs learning from preferences. It is widely observed that
the models learned only using SFT stage do not perform as well as those that are trained via episodically

learning the policy (T4) and learning the reward (I3]) on top of the SFT models [23]]. This is because the

April 28, 2025 DRAFT

reward model and the RL algorithms together guide the LLMs to explore high-quality responses that
can go beyond those defined by the SFT data, thus improving their generalization capabilities. Moreover,
obtaining the SFT dataset is typically known to be more expensive than obtaining preference data, therefore

standard alignment process leverages both the SFT and the preference data.

C. Learning from preferences without online generations: Direct Preference Optimization

Direct Preference Optimization (DPO) [24] RLHF
bypasses the need to perform the RL, by

noticing that minimizing ¢gry,(-) admits an opo
analytical solution if we optimize over the - vieight
Emm Activation
. . mmm Optimization State

whole Marvov stationary policy space denoted SFT w‘éhigm,adiem

Others
by II. In fact, notice that from our discussion ° 10 2 vemory cost(cm) % *

)) Fig. 5: Estimated memory consumption of running the Pythia-1B

on stochastic choice model (€)), for a fixed model on TL; DR dataset with batch-size 2 on a single device

7(+,; ¢), the solution to the policy optimization problem 7* (-, z;) = arg min, cyy —Eyr(.j2) [r(, y; ¢)]+

BDkL(7(+|z)||met (-]2)) is given below

Trer (y|@) exp(B1r(z, y; ¢))
Z(x,¢,0) ’

where we defined Z(z,,8) =3, mret(y'|7) exp(B~1r(z,y'; #)). This implies that for all y, it holds

T (ylz) = (15)

that log(7 (y|2)) = log(mrer (y[2)) + B~ (2, y; ¢) —log(Z(x, ¢, B)). Such a quantity cannot be computed
in closed form because computing Z(x, ¢, 3) is intractable. However, for two possible answers y, 3/’
to the same question z, it holds that log(7(y|z)) — log(m7(y'[x)) = log(mret(y|z)) — log(met (y'|2)) +
B~ Yr(z,y; ¢) — B r(x,y;). Therefore, the difference of reward functions for different answers y, 3’
can be computed efficiently as the normalization constant Z(z, ¢, 5) does not appear, i.e.

r(z,y;6) — (@, ¢) = Blog (W) ~ Blog (W) . (16)

Tref (Y| Tref (V'] 2)

It follows that we can plug in the above analytical solution into the loss ¢rar (I3) to obtain the following
bi-level optimization problem that finds the optimal reward parameterization:
o, (Yuwlz) o (yilx)
min £(6) == —Epo (11 <y [10 (a Blo <¢> — Blo <¢>)] (17a)
min £(¢) ep vt) | o8 (@ (Blog | e s | = Blog { 205))

st my = argglqax Egrpyer(lz) [7(2 Y5 0)] — BEznpDxL((-|27) [|Tret (+|2))], (17b)

where 772 is an optimal policy defined in under a certain reward model parameterized by ¢. If one

faithfully follows the above approach, then one would first compute the optimal reward r(-; ¢*), then

April 28, 2025 DRAFT

Protocol 6 DPO (Direct Preference Optimization)

1: The learner receives as input:

o A preference dataset Dyyer = {(2%, vl yi) 1Y .
e A policy function parameters class ©.

2: The learner computes the stochastic loss.

TyYw, YL EDpref

3: The learner outputs mg. with 0* = argminggq ZDPO(H).

use it to identify the optimal policy using (I5). This is still too complicated, so [24] proposes to directly
parameterize the policy and find the parameters 6* that solve the following problem:

argmin {ppo(f) := —Eop (g <) ~r () [log <U (5 log <W> ~ Plog <7r(yl|x’9)>)>] .

0cO Tret (Y |T) Tref (1])
(18)

Notice that, as shown in Protocol [6] an empirical estimate of this loss can be computed without the need
of the dataset Dprompts and online generations. A first clear advantage of DPO over RLHF is that only the
policy variable is kept in memory. The reward network does not need to be stored, therefore, as shown
in the Fig. [5| DPO is more memory efficient than RLHF. Further, no self-generation such as line 3 of

Protocol [] and [5] is needed, so DPO is much easier to implement as compared to RL based algorithms.

Action ‘ o e ys However, dropping the analytical form of 7} (y|x) in the last
e | 05 05 0 step of the DPO derivation creates practical differences between
Doret | {(yw =y1, 91 = y2)} the performance of DPO and RLHF. Therefore, DPO and RLHF
TDPO ‘ a 00 1l-« are not equivalent, in particular, since we dropped a constraint, the

TRLHF ‘ 1 0 0 solution set for DPO is a superset of the solution set for RLHF.

TABLE I: The policy mnpo minimizes Recent studies suggest that RL-based fine-tuning has greater

{ppo for any a € [0,1). Hence, for o> 0, it potential to enhance the performance of LLMs compared to the
produces a policy with support which is not a

subset of 7rer. The same can not happen for DPQO method [23]]
mrLuF that minimizes {rruF.
From the formulation of DPO in Eq. (18], we see that DPO only fits the given preference data and does
not leverage online generations from its own model (see line 3 of Protocol [and [3)). Due to the lack of the op-
timal policy constraint, the model trained by the DPO method can suffer from the limited generalization ca-

pability and can encounter the distribution shift issue when the coverage of the preference dataset is limited.

April 28, 2025 DRAFT

Furthermore, when there exists distribution shift between
‘ PPO Win Tie DPO Win

the model outputs and the preference dataset, the perfor-
PPOVS.DPO | 42 28 30

mance of DPO can be significantly affected. In contrast, in

TABLE II: On HH-RLHF, GPT-4 is used to decide
the winner between PPO and DPO models’ output.

RL and has leveraged online generations from the model Taken from [25].

the RLHF training pipeline, the policy model is trained by

itself, which can alleviate the distribution shift issue between model outputs and the preference dataset
through leveraging the generalization power from the explicit estimated reward model. Similar empirical
observations for the potential drawbacks of DPO compared with RLHF / PPO has also been observed in
recent study [25]. Hence, to unlock the full potential of LLMs, it appears that RL is a necessary step in
the post-training pipeline.

The toy example in [25]] that we report in Table [I| shows that the solution set of DPO is a strict superset
of the solution set of RLHF. In particular, there are minimizers of the DPO loss assign positive probability
to answers for which no information is available (ys3 in this example). This example shows that DPO
should not be applied when the preference dataset has poor coverage of the answers set). For more
practical problems, it is also observed that DPO can be less performant in terms of winrate against the

model fine tuned via RLHF; see Table

D. Learning from preference and prompts without the BT assumption.

Regardless of using RLHF and the DPO approach to perform alignment, one key step is to use the BT
model (T3) to model human preference. The BT assumption implies transitivity. This is restrictive because
the preference dataset collected from different humans might not be transitive even if each human follows
a transitive model in generating the preference. As an example, let us consider 3 humans Ay, ha, hs and 3
possible answers y1, y2, y3. Let us denote P, the preference model of human h. Then, we have that for

the humans A1, ho, hs follows these preference models.

Pri(y1 = y2) =1 Pri(y2 = y3) =0 Pry(ys = y1) =1

Pry(y1 = 4y2) =0 Pu,(y2 = y3) =1 Prny(ys = y1) =1

Pry(y1 = y2) =1 Pp,(y2 =y3) =1 Pp,(ys = y1) =0.
Notice, that each of these models is transitive. However, the average model defined as P(y = v') =
%Zhe{hl,lm,h;;} Pr(y =) satisfies P(y1 = y2) = P(y2 > y3) = P(y3 > y1) = 2/3. That is, the average

model is non transitive and can not be modeled by the BT assumption. Therefore, the BT assumption is

data wasteful. In this example, one should consider preferences only from a single human in order to

April 28, 2025 DRAFT

Protocol 7 NLHF (Nash Learning from Human Feedback)

1: The learner receives as input: (i) A preference dataset Dpper = {(2%, ¢, y})}fil, (ii) a prompt dataset
Dprompts = {xi}fv:"f’“‘p“, (iii) a preference model function parameters class ® and (iv) a policy
function parameters class ©.

2: The learner estimates the preference model as P (- > -|-; ¢*) with

N

¢* = argmin lpy(¢) = — Y log (P(yi}, - yilo; d>))~
Ped =1

3. Sample y* ~ 7(-|2% 6) and y'* ~ 7(-|2%; ¢’) for all i € [N].

4: The learner computes the stochastic objective

N

P y’L . y/;i .fL'Z,QS*
‘Dprompts| ; (‘)

+ BDku(m (-2 0) || et (12%)) = BDxw(([2%;0) [et (7)),

5: The learner outputs mp. with 6* = arg ming.g maxy co ZNLHF(H, 0.

~ 1
Inpur(0,0) == —

make the BT assumption valid. Not enforcing the BT assumption, allows to use more data, i.e. preferences
from all the three humans. Given this motivation, recent works [26] investigated learning from preferences
directly. The training happens in two stages as in RLHF: the first step uses maximum likelihood to learn
a preference model rather than a reward function, and a second step identifies a Nash equilibrium rather
than an optimal policy.

a) Preference learning: First, we learn via maximum likelihood, a preference model P : X x Y x Y —
[0, 1] such that P(y > |z) is the probability that certain oracle that produced the preferences in the
dataset Dp,er prefers answer y over y' following the prompt . Mirroring the procedure in RLHF, let us
consider a preference model class with parameters class @, i.e. {P(- > -|; ¢)}¢€¢, consider the following
minimization problem (where PM stands for preference modelling):
¢* = argmingeq Lpm(P) := —Eprp (g, <yu)orP (|2) {log (P(yw = yi|z; ¢)>] Protocol [7| shows how to
do this practically, minimizing an empirical unbiased estimate for {py;.

b) Nash equilibrium learning: After learning the preference model, [26] proposes to find the unique
Nash equilibrium of the objective ZNLHF in Protocol [7, Due to the min max structure of this problem,
the optimization side is more delicate and require careful conservative updates to ensure last iterate
convergence. However, this additional complexity on the optimization side comes at the benefit of dropping
the BT assumption and therefore accommodating a larger number of preference data.

Experiments in Table 1] shows that the NLHF method dubbed MD1 achieves win rate of 0.598

against the same model aligned via RLHF on a text summarization task. The winner model is decided

April 28, 2025 DRAFT

Protocol 8 GRPO (Group Relative Policy Optimization) [27]

1: Receive policy class parameters ©, and reward model parameters ¢*. Initialize 6;.
2.2 fort=1,...,7 do
3: Sample G outputs {y"’ }JC-’;l ~ m(-|z';6;) and 2" € Dprompts-

4: The learner computes rewards {r;};—1, ¢ for each output y*/.
5: The learner computes the estimated advantage function A; = (r; — mean({r;}))/std({r;})
6: The learner computes
1 1< m(y|xt; 0) . 7(y™|xt; 0) m(yI |zt 0)
farpo(l) = ———— — [...714-— —Z T _log >t —1
v Ppromps| iG[NZ = Jz:; m(y'I|ats) B(W(y” W 0) O w(y|at))
7: 0141 = arg mingcg {grpo(#) computed via SGD, Adam or other optimizers.
8: end for

9: The learner outputs mg-«.

quering a large LLM. The drawback of this method is that it requires solving a minmax optimization

problem rather than the simpler minimization problem required in RLHFE.

E. Learning from data verifiers via Rule-Based Reinforcement Learning

Before closing this section, we would like to mention a recently developed alignment strategy, which
is fundamental for training powerful reasoning models such as DeepSeek-R1 [28]]. The general idea is
simple: To teach the model to solve many challenging math, STEM or coding related problems, a reward
model is no longer needed. Rather, one can simply use a solution verifier, which simply verifies whether
the solution is correct or not. In [28], the authors proposed to use LeetCode tests case as verifier for
programming questions, while creating a dataset of mathematical problems from OpenWebMath for math
verifiers. In particular, in the reproduction of the Deepseek R1, [29] adopted the rule-based reward system
that comprises two types of rewards: Format Reward and Answer Reward. Here, we show the detailed

reward designed in [29] as below:

2, if the answer fully matches the ground truth
1, if format is correct
Tformat = » Tanswer = § —1.5, if the answer partially mismatches the ground truth
—1, if format is incorrect
-2, if the answer cannot be parsed or is missing

where 7¢ormat 1S the format reward and r,,5wer 1S the answer reward.

However in [28]], it is noted that the model which optimizes purely the rule based reward, i.e. DeepSeek-
R1-Zero leads to poor language skills suffering for example from language mixing. To avoid this fact,
[28] uses multi-stage training with learning with verifiable rewards at the initial stage and SFT/preference
based learning used at the final stages to improve the language skills of the model. In the initial stage,

the rule based reward is optimized via GRPO in Algorithm [§]

April 28, 2025 DRAFT

V. A UNIFIED PERSPECTIVE FOR LLM ALIGNMENT

So far we have discussed a number of state-of-the-art approaches for LLM alignment. Generally
speaking, they can be divided into two categories: alignment using the demonstration data, and alignment
using the preference data. One might wonder why algorithms belonging to these two categories are so
different (e.g., supervised learning vs. reward learning + RL). After all, both families of algorithms are
trying to learn from some forms of human preference. In this section, we provide a perspective derived
from the stochastic choice model discussed in Section which serves to unify different approaches of
alignment.

Recall that in Section we have introduced two estimation problems and (8). Although they use
different data sets (i.e. the former uses the preference dataset Dp,o¢, while the latter uses the demonstration
dataset Dgyemo), they share a few common properties: (1) both learn reward functions, and (2) both

maximize some form of the likelihood function. These observations lead to the following questions:

e (Q1) In the alignment algorithms discussed in the previous section, why do we only learn reward
from the preference dataset, but not from the demonstration dataset?
¢ (Q2) Since both problems maximize the likelihood functions, why do we need to separate the

alignment process into different stages (i.e., SFT and RLHF)?

In the following, we will first address question (Q1) by formulating a new problem that learns both the
reward and the policy from Dgemon. We will show that this formulation is closely related to a class of RL
problem called inverse RL (IRL), and we will derive efficient solution methods from the IRL literature.
Somewhat unexpectedly, it turns out that a number of algorithms discussed in the previous section, such
as SFT and SPIN, can be viewed as special cases of the proposed approach.

Furthermore, leveraging the development in (Q1), we address (Q2) by introducing a framework that
unifies the two stages of alignment problem into a single stage. The new framework, named Alignment
with Integrated Human Feedback (AIHF), jointly learns a reward and a policy by maximizing the likelihood
of both Dgemon and Dprer. We will demonstrate the generality of AIHF by discussing its connection with

various alignment algorithms introduced in the previous section.

A. Jointly learning policy and reward from the demonstrations data

To jointly learn a reward and a policy from the demonstration dataset Dyemon, let us leverage the

estimation problem derived from the stochastic choice theory. Given the demonstration (x,y) sampled

April 28, 2025 DRAFT

from an expert policy 7%, we can directly translate with the optimal reward defined in , into the

LLM alignment setting and obtain the following problem [30]:

ch;iX EIRL(Qb) = EmeyNWE(,‘x) [log 7[':4) (y|x)] (19&)

W:¢ ‘= argmax Exwp,yww(-|z) [T(l‘, Y; ¢)] - /B]ECCNP[DKL(W (’.T) ||7Tref (|l‘))] (19b)

™

Compared with the SFT formulation in (9)), we see that (I9) shares the same objective but has an additional
constraint which ensures that the policy has to be an optimal policy under a certain reward model.

Problem falls under the class of inverse reinforcement learning (IRL) problems, where the objective
is to jointly learn an optimal policy and the underlying reward model, assuming access to expert policy
samples. Similarly, as noted in Sec. the conventional SFT formulation (9) is a form of behavioral
cloning that aims to replicate an expert’s policy. However, behavioral cloning generally exhibits poorer
generalization than IRL. Indeed, [31]] shows that behavioral cloning is a suboptimal approach to learning
from demonstrations, leading to regret bounds that scale quadratically with the problem horizon. This
arises due to distribution shift — the learned policy may encounter states not covered in the demonstration
data, causing compounding errors that increasingly deviate from the expert trajectory over time.

In contrast, IRL mitigates distribution shift and achieves better generalization by explicitly modeling the
expert’s reward function, rather than simply mimicking actions. By recovering an estimate of the reward
structure that drives expert behavior, IRL enables the agent to make goal-directed decisions even in unseen
states. This contrasts with behavioral cloning, which lacks an underlying objective thus often struggles
in novel situations. Additionally, optimizing policies with a learned reward function allows for adaptive
behavior, where the agent can deviate from expert demonstrations in a way that still aligns with the
inferred intent. As a result, IRL-based policies are generally more robust in complex environments where
state distributions differ from training data [32]]. Recognizing the limitations of standard SFT methods,
particularly regarding distribution shift, researchers have proposed a range of IRL-based techniques
[33]-[36]] to more effectively leverage demonstration data.

Unfortunately, the IRL problem (19) appears to be much involved compared to the SFT problem (9),
as it involves two levels of optimization problem stacked in hierarchy. It turns out that there is a way to
simplify it. In [37]], [38]], the authors show that when a finite demonstration dataset Dgemo := {(z,y)} is

available, one can consider the following surrogate objective:

Hl(;lx mein z(¢7 0; Ddemo) = E(x,y)N’D,y’~7r(-\x;9) T(‘Tv Y; ¢) - T($7 y/; ¢) + BDKL (7’[’("3?; 9)||7Tref('|x)>] :

(20)

April 28, 2025 DRAFT

20

As a remark, one can plug the closed-form expression of the optimal policy 7, into the maximum
likelihood objective (I9a), then one can see that the surrogate objective (20) is a finite-sample version of
the IRL problem (T9). Further, as the number of demonstration data becomes large, problem (20) becomes
asymptotically close to problem (I9), in the sense that their optimal solutions become asymptotically
close to each other (with provable bounds) [37]]. The surrogate objective in equation (20) offers an
alternative interpretation of the IRL problem formulated in (I9) from the adversarial training perspective.
Specifically, the reward estimator is optimized to distinguish between expert demonstrations and self-
generated trajectories (the max problem), while the policy is optimized to generate trajectories which can
best mimic the expert demonstrations and the self-generated trajectories (the min problem). Therefore, it
is reasonable to develop practical algorithms based on (20), which is apparently much easier to optimize.
As suggested in [38]], one can use the following alternating algorithm to optimize the reward and the

policy:
btt1 1= arg;nin _E(x,y)wD,y’Nw(~|x;9t) [ﬁ (T($, Y; ¢) - T(JE, y/; (Z)))} : (21a)
9t+1 = argénax Erwp,y~7r(~|z;9) [T(xv Y; ¢t+1)] - BExwp[DKL(W (|1:a ‘9) ||7Tref (|$))] (21b)

Note that if we directly apply the above gradient descent/ascent algorithm to , then £(-) in (21al)
should be a linear function ¢(x) = z. Considering that the use of a linear loss function results in an
unbounded objective value, one can typically choose some easy-to-optimize loss functions such as log

sigmoid function £(z) := logo(z). Next, let us make some remarks about the algorithm (21).
Connection to the RLHF. We observe that (1)) is an iterative update scheme which integrates the reward
and policy updates. This closely resembles the RLHF pipeline, where both the reward and policy are
updated. There are two major differences. First, in RLHF the reward and the policy are updated in two
separate stages, while here they are updated iteratively. Second, since only demonstration data Dyepmon are
available, when learning a reward model in (2Ta)), the demonstration is always treated as the preferred data,
while the nonpreferred data are the model-generated responses. This is reasonable, under the assumption
that expert data are of high quality. In practice, RLHF-based and IRL-based methods are not competitive
but complementary. It’s common to leverage both demonstration and preference datasets jointly in the
training pipeline to achieve better performance [39], [40]. In [41], [42]], the connections between IRL and

RLHF have been discussed. In general, it can be shown that RLHF could be a special form of IRL. In (T3),
Tret (y]2) exp(B7(2,y9))

Z(z,0,8)

given the reward parameter ¢, the optimal policy has the closed-form 7r7f¢(y\:c) =

With this result, we can now obtain a model for the likelihood that sequence v, is preferred over y;. By
the independence of irrelevant alternatives property [43] of the optimal choice 14, when the set of feasible

choices is reduced to just the the two-tuple {y;, y, }, the likelihood that sequence v, is preferred over

April 28, 2025 DRAFT

21

w2 (o)

7, Wolz)+mr, (yilz)”

y; is given by PT% (yw = yilx) = This motivates the choice model as the following

likelihood function:
L(R(56)) = E(y,y) | log T, (Vole)]
’ 5, (wlz) + 77, (yi])
_ E |:10g Tref (yw |73) exp(ﬁilr('xa Yws (b)) :|)
(e=un) |28 o (oo) exp (B~ (2, Yurs) + Tret (i) exp(B~1r (2, yi; 6))

When 7. equals to the uniform distribution, this model is equivalent to the BTL model in RLHF:

L(R(56)) = fru(6) = ~E(y,ry) | 108 (0/(r(@, i 0) = r(@,ui 0)))| (22)

Connection to SPIN. There is also an interesting connection between and the SPIN introduced in
Sec. Note that in (I6)), we have shown that the reward difference can be expressed by using the
definition of the optimal policy. By plugging (16) into (2Ia)), we obtain the following problem:

7, (ylz) 7, ()
min 60) = ~E(ay)pamrina [£(F1o8 (22005) = plox (T 200)
(¢) (z,y)~Dyy ~m (-] w;6:) g oot (y2) g oot (' |2)

st m = argmax Bopyon(le) [M(@, 55 0)] — BEenp[Dxp(m (1) [[rer ()]

™

Similarly, as discussed in the DPO approach, one can make two simplifications (1) remove the constraints
that the policy has to be optimal w.r.t. some reward; (2) directly parameterize the resulting policy using 6.
Then the above problem will be reduced precisely to the SPIN formulation (12).

To further compare the SPIN and IRL, note that at each iteration, once the synthetic preference dataset
has been constructed where the preferred data are the demonstration / SFT data and the nonpreferred data
are the model-generated data, SPIN directly leverages the synthetic preference dataset and runs DPO to
update the policy, while the IRL approach considers two separate steps to update both the reward model
and the policy model. Similarly to the comparison of DPO and RLHEF, here we expect that IRL enjoys
better generalization and can alleviate the distribution shift issue through leveraging online generations in
the RL training step, but at the cost of a heavier memory burden and additional online generations.

In summary, the method discussed in this section addressed the question (Q1) we raised at the beginning
of this section — instead of directly performing SFT on the demonstration data Dgepon, it is also possible
to learn a reward function from such a dataset, and we expect that the resulting model will generalize

better. Later we will use numerical results to confirm such an advantage.

B. Jointly learning policy and reward from Integrated Human Feedback

Next, let us address question (Q2), by developing an approach that integrates different steps of the

alignment process. Toward this end, we observe that by leveraging the IRL-based formulation (I9), learning

April 28, 2025 DRAFT

22

from the demonstration data Dgey,on becomes very similar to the standard RLHF approach discussed in
Section which learns preference data Dyt — both maximize the likelihood of observing the data,
while explicitly learning a reward function. Therefore, using reward learning as a common component,
it is straightforward to integrate these problems together. In [41]] the authors considered the following

problem, which extends the IRL problem (I9) by adding the BT loss (I3)):

ch;iX EAIHF(Qb) = 'YEpr,yNWE(-M) |:10g 7'[':4) (y|x)i|

+ B (g <y)~rP () V (7“(337 Yw; @) — (@, yi; ¢)>} (23a)

ﬂ-:¢ ‘= argimax Ex~p,y~7‘r(-|x) [7’($, Y; ¢)] - BE$NP[DKL(7T (’x) ||7Tref (|JI))], (23b)

™

where v > 0 and o > 0 are two tuneable parameters. The authors refer to this approach as AIHF
(Alignment with Integrated Human Feedback).
To design an algorithm to solve problem (23), one can combine the RLHF Protocol [3| and the IRL

algorithm in (2I), to arrive at the following iterative algorithm (where ¢ denotes the iteration number):
Pry1 = arg;nin “VE(2,4)~Datomo g’ ~r(-|:6:) [g (T(x’ y;9) = (. gb))}

= OBy)~ Dprer [ﬁ (r(@, yus @) = r(z, yi5 qﬁ))} , (24a)

Ht-i-l = arg;nax E:c~p,y~7r(-|:c;9) [r(x, Y; ¢t+1)] - BEINP[DKL(W (’xv 0) H"Tref ("T))] (24b)

In fact, compared to the IRL algorithm (2], the only difference is that the reward is learned from both
preference dataset and the demonstration dataset. In [41]], the authors observed that learning reward
function from a diverse set of data can be more robust to situations, e.g. when there is an imbalance
between the demonstration and preference data, resulting in a more robust policy model; see [41, Sec.3.4]
for detailed discussion and a few examples showcasing such an advantage.

Finally, we note that AIHF has several notable special cases. First, if one chooses v = 0, then reward
learning and policy learning become completely decoupled, reducing to the orignal two-step RLHF
approach discussed in Section Second, similarly to DPO, one can plug in the optimal solution of
the lower-level problem (as given in (I6)) to the upper-level, remove the lower-level constraint (23b)), and
directly parameterize the policy. The resulting problem becomes:
max By s (fo:0) 108 T (y]2)]+0Bg vy, (g <y)r? (Jo) [ﬁ@ log (W) —flog (W))}

This corresponds to the Regularized Preference Optimization (RPO) approach proposed in [44]]. Moreover,

April 28, 2025 DRAFT

23

if we drop and apply the DPO trick to to optimize:

m(y|z; 0 7y |z; 0
g S scon) 018 (5)~ (5.)

Wref(y’x) Tref (y,’.%')
7 (Yuwl; 0) 7 (yu|z; 0)
+ aE(ﬂf,yw’yl)NDprcf |:€ (5].Og (Wref(yw‘ﬂf)> - /8].Og <7Tref(yl|$)>):| .

Then it corresponds to the Self-Play with Adversarial Critic (SPAC) approach proposed in [43].

VI. DATASET, BENCHMARKS, AND EVALUATION

In this section, we will introduce a few datasets and benchmarks that are often used to evaluate
alignment algorithms. Further, we will present some evaluation results comparing a number of algorithms

we have discussed so far.
A. Dataset

Typically, datasets used in LLM alignment can be categorized into two types: (1) datasets containing
multiple responses for a given prompt, with human (or Al-generated) rankings indicating preference, and
(2) datasets containing a single response per prompt, which serve as demonstration datasets.
Preference Dataet. Some of the most well-known preference datasets include: (1) HH-RLHF EkAnthropic’s
Helpful-Harmless RLHF), a dataset collected by Anthropic that includes human preference annotations over
pairs of responses, focusing on helpfulness (how well the response answers the query) and harmlessness
(avoiding toxic, biased, or dangerous content). (2) UltraFeedback E], which consists of 64K prompts, each
accompanied by four model completions from a diverse set of open and proprietary models. Preference
labels are provided by GPT-4 based on criteria such as helpfulness and honesty. This dataset has been
used to train state-of-the-art chat models such as Zephyr-7B-2.

Demonstration Dataset. Some of the most well-known demonstration datasets include: (1) the TL;DR
dataset EL a dataset collected from Reddit where users provide short summaries (TL;DRs) of their posts.
(2) UltraChat El, an open-source, large-scale, multi-turn dialogue dataset generated using Turbo APIs. It
contains 774K training samples and is designed to enhance instruction-following capabilities.

Self-Generated Dataset Besides using public datasets, another line of research employs self-generated
datasets for policy or reward optimization. For example, given a prompt, [46|] samples one or more

responses from a policy 7, labels them as preferred or dispreferred, and then updates the policy using

! Available at https://huggingface.co/datasets/Anthropic/hh-rlhf,
%Available at https://huggingface.co/datasets/openbmb/UltraFeedback.
3 Available at https://huggingface.co/datasets/CarperAl/openai_summarize_tldr,

*Available at https://huggingface.co/datasets/stingning/ultrachat,

April 28, 2025 DRAFT

https://huggingface.co/datasets/Anthropic/hh-rlhf
https://huggingface.co/datasets/openbmb/UltraFeedback
https://huggingface.co/datasets/CarperAI/openai_summarize_tldr
https://huggingface.co/datasets/stingning/ultrachat

24

the EM algorithm based on these individual preferences. Similarly, [[47] also utilizes self-generated
data to improve the policy model. This approach can provide more uniform coverage over the entire

prompt-response space.

B. Benchmark datasets and benchmark models

AlpacaEval. AlpacaEval [48] is an LLM-based automated evaluation metric — it operates on a fixed set
of 805 instructions chosen to be representative of user interactions on the Alpaca web demo. A GPT-4
turbo-based evaluator then compares the responses head-to-head and outputs the probability of preferring
the evaluated model. The win rate is then computed as the expected probability that the auto-evaluator
prefers the evaluated model’s output on the 805 instructions. This win rate serves as a performance
measure of the evaluated LM chatbot.

Open LLM Leaderboard. The HuggingFace Open LLM Leaderboard framework [49] is widely adopted
for evaluating LLMs. This comprehensive evaluation suite assesses LLM performance across six key tasks:
commonsense reasoning, including ARC, HellaSwag, and Winogrande; multi-task language understanding,
as measured by MMLU; truthfulness assessment, which evaluates a model’s tendency to mimic human
falsehoods using TruthfulQA; and mathematical problem-solving, assessed via GSM8K.

MT-Bench. MT-Bench [50] is a benchmark consisting of 80 high-quality multi-turn questions, specifically
designed to evaluate multi-turn conversation and instruction-following capabilities in LLMs. It focuses on
common real-world use cases while incorporating challenging questions to effectively differentiate model
performance. To ensure comprehensive coverage, the benchmark is structured around eight key categories
of user prompts: writing, roleplay, extraction, reasoning, mathematics, coding, knowledge I (STEM), and
knowledge II (humanities/social sciences).

HELM HELM [51]] aims to provide a holistic evaluation of large language models (LLMs). It currently
implements a core set of 16 scenarios and 7 metrics. These scenarios—defined as triples of (task, domain,
language)—cover six user-facing tasks (e.g., question answering, information retrieval, summarization,
toxicity detection), span multiple domains (e.g., news, books), and are currently limited to English.
However, they do include a range of English varieties, such as African-American English and regional
dialects from different English-speaking countries.

Artificial Analysiﬂ Artificial Analysis is an independent Al benchmarking and analysis company. It
provides objective evaluations and insights to assist developers, researchers, businesses, and other Al

users in selecting the most suitable Al technologies for their specific use cases. The company compares

3Available at https://artificialanalysis.ai/leaderboards/models.

April 28, 2025 DRAFT

https://artificialanalysis.ai/leaderboards/models

25

and ranks the performance of over 30 large language models (LLMs) across key metrics, including output
quality, cost, performance, and speed (measured by tokens per second and time-to-first-token), as well as
context window size and other relevant factors.

Reasoning Benchmark. Several challenging benchmarks are also used to evaluate reasoning ability. For
example, mathematical benchmarks such as AIME (American Invitational Mathematics Examination),
AMC (American Mathematics Competitions), and OlympiadBench assess problem-solving skills in
competitive mathematics. Additionally, datasets like the Knights and Knaves (K&K) puzzles and LeetCode
are commonly used for evaluating logical reasoning and coding proficiency.

RewardBench. The RewardBench [52] offers a comprehensive set of evaluations for reward models,
encompassing key aspects such as chat, instruction-following, coding, safety, and other critical metrics for
fine-tuned language models. The RwardBench dataset includes a combination of pre-existing evaluation

prompt-completion pairs as well as newly curated examples specifically for this project.

C. Numerical Results

In this subsection, we will present some evaluations results of different alignment approaches. First, we
will compare IRL approach (21)) with other learning-from-demonstration approaches like SFT (Protocol
and SPIN (Protocol [2)) to illustrate their differences. Then we will compare a number of algorithms
that leverages preference data to further improve the LLM alignment.

1) Demonstration-only setting: We first present experiments on the UltraChat dataset [53]]. We initialize
the policy model and reward model from the public checkpoint Mistral-7b-SFT-Beta F_’l which is an SFT
model fine-tuned from the UltraChat dataset and the base model Mistral-7B-v0.1 [

Since UltraChat is a dataset containing only demonstration data, we construct a synthetic preference
dataset to train the reward model for the IRL approachs. Specifically, in the reward learning step for
each IRL iteration, we treat the demonstration data from UltraChat as the preferred responses and the
outputs generated by the IRL policy model as the rejected responses. This approach allows us to create
preference pairs without requiring explicit human annotations.

We evaluate reward models obtained by different methods using the RewardBench, assessing performance
across various categories relevant to language understanding and generation. For SPIN, since there is no
explicit reward model, we evaluate their performance in RewardBench according to the implicit reward

expressed as r(s,a) = log

@ls) \where the expression is inspired by lb and in our experiment 7rf iS

T
Tret(al]S)

6HuggianaceH4/mj_stJ:alf7}ofsftfbeta, https://huggingface.co/HuggingFaceH4/
mistral-7b-sft-beta

"mistralai/Mistral-7B-v0.1l. lhttps://huggingface.co/mistralai/Mistral-7B-v0.1

April 28, 2025 DRAFT

https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta
https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta
https://huggingface.co/mistralai/Mistral-7B-v0.1

Policy Model Performance Across Different Tasks

@
S

~
=

Mistral-7B-SFT-Beta
SPIN-Iterl
SPIN-Iter2
mmm |RL-Iter1-Policy
Emm |RL-Iter2-Policy

Scores (%)
3

v
=

Reward Model Performance Across Different Tasks

100

3
S

o
S

»
S

40

30

Arc TruthfulQAWinogrande GSM8k HellaSwag MMLU Average
Tasks

(a) Policy Evaluations on Open LLM Leaderboard

Reward Accuracy (%)

N
o

Mistral-7B-SFT-Beta
SPIN-Iterl
SPIN-Iter2
mmm |RL-lterl-Reward
B |RL-Iter2-Reward

Chat Chat Hard Safety Reasoning
Tasks

o

(b) Reward Evaluations on Reward Bench

Fig. 6: Evaluation of policy and reward models.

26

the SFT model. For SFT model, we evaluate its performance on the RewardBench by using the implicit

reward defined as r(s,a) = log mspr(als). The results, illustrated in Figure |6(b), show that the reward

model trained via IRL achieves significant improvements compared to both the base model (initialized

from the SFT model) and the implicit reward model extracted from the policy model trained using

SPIN [15]. These findings indicate that high-quality demonstration datasets can effectively enhance reward

models through leveraging IRL method which can construct synthetic preference pairs through pairing

high-quality demonstrations and model generations.

We then evaluate different LLM policy models using the Open LLM Leaderboard [54] and

MT-Bench [50]. As shown in Fig [and
Table [T} the IRL-based method outperforms
both the mistral-7b-sft-beta checkpoint and
SPIN method (running either once or twice
of self-generation). These results highlight the

potential of leveraging high-quality demon-

Tasks ‘ First turn ~ Second turn Average

mistral-7b-sft-beta ‘ 5.09 5.37
SPIN-Iterl 6.75 5.56 6.16
SPIN-Iter?2 3.18 3.41 3.29

IRL-Iterl-Policy 6.71 5.96 6.33
IRL-Iter2-Policy 7.01 6.19 6.60

strations and synthetic preferences to enhance

TABLE III: Evaluation of Policy Models in MT-Bench.

language model performance in dialogue generation tasks.

2) Aligning with Both Demonstra-
tions and Pairwise Comparisons: In
this section, we evaluate a number of
alignment algorithm: (1) DPO [55] and
IPO [56]l, (2) SPAC [45]], (3) RPO [44],
(4) SPIN and (5) AIHF. For this

April 28, 2025

Mistral-78-SFT-Beta SPIN mmm |IPO mEm SPAC
Zephyr-7B-Beta DPO W RPO EEE AIHF

0l i i i i i i i
Arc Challenge TruthfulQA Winogrande GSM8k HellaSwag MMLU Average
Tasks

Fig. 7: Evaluations of different alignment approaches across the six
benchmark datasets.

DRAFT

27

Reward Model \ Chat Chat Hard Safety Reasoning Average

DPO Reward Model | 37.43% 55.92% 64.14% 47.33% 51.21%
BTL Reward Model | 95.11% 56.58 % 63.69% 69.22% 71.15%
AIHF Reward Model | 94.41% 55.37% 63.98 % 76.75% 72.63%

TABLE IV: Evaluation of Reward Models in Reward-Bench.
experiment, we use UltraFeedback as the
preference dataset and UltraChatZOOkﬁ
as the demonstration dataset. The base model for our experiments is mistral-7b-sft—beteﬂ [157], which is
also used to initialize the reward model.

Fig. [/| evaluates the quality of the aligned models trained on different methods. Furthermore, in Table
we also evaluate the reward models estimated using different methods (DPO, standard preference
learning and AIHF) over the popular benchmark RewardBench [52]. The BTL reward model is trained in
the RLHF pipeline using the loss function defined in (I3)). The DPO reward is obtained by training a

m(als)
Tret (a]S)

DPO loss on preference data (UltraFeedback) and use the following implicit reward 7 (s, a) = log
where e 1s the SFT model. For AIHF, we use the demonstration data UltraChat and generate the
non-preferred sample using the base model (mistral-7b-stf-full), then train a reward with UltraFeedback
and UltraChat data combined. It can be seen that the reward model estimated by AIHF which incorporates

both demonstrations and preference achieves better performance, especially on the reasoning tasks.

VII. CONCLUDING REMARKS

In this work, we provided an in-depth discussion on aligning LLMs with human feedback, exploring
both mathematical foundations and state-of-the-art algorithmic approaches. Despite significant progress in
aligning LLMs with human values and preferences, several open challenges remain.

LLM alignment methods continue to face challenges related to scalability and effectiveness. Learning
robust and high-quality policies from reward models is challenging and requires extensive human annotation
and computation. Existing RL-based fine-tuning methods, such as PPO, demand careful hyperparameter
tuning and require a huge amount of compute resources. Moreover, reward hacking remains a significant
problem — where models find unintended shortcuts to maximize reward scores without genuinely improving
response alignment. Instead of producing responses that align with human intent, models can generate
outputs optimized purely for high reward function scores, potentially leading to unreliable behavior.

Addressing these concerns requires the development of more efficient RL algorithms, robust and diverse

8 Available at https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k.
®Available at https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta,

April 28, 2025 DRAFT

https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k
https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta

28

reward functions (e.g., a combination of trained reward functions and the verifiable ones mentioned in
Sec. [IV-E), and hybrid approaches that integrate supervised learning with RL to improve scalability and
alignment fidelity.

Finally, we point out that the SP community has a wealth of expertise that can contribute significantly
to alignment research. Given the complexity of aligning LLMs with human preferences, SP methodologies
offer valuable tools and frameworks that can improve both the theoretical and practical aspects of alignment.
For example, many alignment techniques, including IRL and preference-based optimization discussed in
this article, require solving complex inverse problems. SP researchers’ expertise in developing effective
estimators for these problems, as well as finding effective and performance guaranteed algorithms can help
improve reward estimation and enhance alignment robustness. Another potential key contribution is in
noise reduction for human feedback data. Human-labeled preference datasets often contain inconsistencies
and biases, which can negatively impact alignment performance. Signal processing techniques, such
as denoising algorithms, robust statistical modeling, and anomaly detection, can be used to refine and
filter noisy preference data. These methods can help improve the quality of preference-based learning
by ensuring that reward models are trained on reliable and high-fidelity data. Furthermore, efficient
sampling and data compression techniques from SP can enhance the scalability of alignment methods.
Many alignment approaches require large-scale datasets and reinforcement learning processes, which
are computationally expensive. SP methods for efficient data representation, dimensionality reduction,
and signal compression can help reduce computational overhead and improve training efficiency, making
alignment methods more feasible at scale. Finally, multi-modal data processing is becoming increasingly
relevant as alignment research expands to include models that process text, images, speech, and video.
The SP community’s experience in multi-modal signal fusion, feature extraction, and cross-modal learning

can be instrumental to improve human feedback mechanisms across different modalities.

REFERENCES

[1] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Debiak, Christy Dennison, David Farhi,
Quirin Fischer, Shariq Hashme, Chris Hesse, et al., “Dota 2 with large scale deep reinforcement learning,” arXiv preprint
arXiv:1912.06680, 2019.

[2] Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C Machado, Subhodeep Moitra, Sameera S
Ponda, and Ziyu Wang, “Autonomous navigation of stratospheric balloons using reinforcement learning,” Nature, vol. 588,
no. 7836, pp. 77-82, 2020.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, fukasz Kaiser, and Illia
Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.

[4] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur,
Alan Schelten, Amy Yang, Angela Fan, et al., “The llama 3 herd of models,” arXiv preprint arXiv:2407.21783, 2024.

April 28, 2025 DRAFT

(3]
(6]

(7]
(8]

(9]

(10]

(11]

[12]

[13]

(14]

(15]

[16]

[17]

(18]

(19]

(20]

[21]

[22]

(23]

[24]

29

Louis L. Thurstone, “A law of comparative judgment,” Psychological Review, vol. 34, no. 4, pp. 273-286, 1927.

Daniel McFadden, “The measurement of urban travel demand,” Journal of Public Economics, vol. 3, no. 4, pp. 303-328,
1974.

R. Duncan Luce, Individual Choice Behavior: A Theoretical analysis, Wiley, New York, NY, USA, 1959.

Ralph Allan Bradley and Milton E Terry, “Rank analysis of incomplete block designs: I. the method of paired comparisons,”
Biometrika, vol. 39, no. 3/4, pp. 324-345, 1952.

Mark J. Machina, “Stochastic choice functions generated from deterministic preferences over lotteries,” The Economic
Journal, vol. 95, no. 379, pp. 575-594, 1985.

Naftali Tishby and Daniel Polani, “Information theory of decisions and actions,” in Perception-Action Cycle: Models,
Architectures, and Hardware, Vassilis Cutsuridis, Amir Hussain, and John G. Taylor, Eds., pp. 601-636. Springer New
York, New York, NY, 2011.

Fabio Maccheroni, Massimo Marinacci, and Aldo Rustichini, “Ambiguity aversion, robustness, and the variational
representation of preferences,” Econometrica, vol. 74, no. 6, pp. 1447-1498, 2006.

Siliang Zeng, Mingyi Hong, and Alfredo Garcia, “Structural estimation of markov decision processes in high-dimensional
state space with finite-time guarantees,” arXiv preprint arXiv:2210.01282, 2022.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al., “An algorithmic
perspective on imitation learning,” Foundations and Trends® in Robotics, vol. 7, no. 1-2, pp. 1-179, 2018.

Dylan J Foster, Adam Block, and Dipendra Misra, “Is behavior cloning all you need? understanding horizon in imitation
learning,” arXiv preprint arXiv:2407.15007, 2024.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu, “Self-play fine-tuning converts weak language
models to strong language models,” arXiv preprint arXiv:2401.01335, 2024.

Hao Sun and Mihaela van der Schaar, “Inverse-rlignment: Inverse reinforcement learning from demonstrations for llm
alignment,” arXiv preprint arXiv:2405.15624, 2024.

Chris Cundy and Stefano Ermon, ‘“Sequencematch: Imitation learning for autoregressive sequence modelling with
backtracking,” arXiv preprint arXiv:2306.05426, 2023.

Markus Wulfmeier, Peter Ondruska, and Ingmar Posner, “Maximum entropy deep inverse reinforcement learning,” arXiv
preprint arXiv:1507.04888, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

Ronald J Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning,” Machine
learning, vol. 8, pp. 229-256, 1992.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei, “Deep reinforcement learning
from human preferences,” Advances in neural information processing systems, vol. 30, 2017.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Ahmet Ustiin, and Sara Hooker, “Back to
basics: Revisiting reinforce style optimization for learning from human feedback in llms,” arXiv preprint arXiv:2402.14740,
2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal,
Katarina Slama, Alex Ray, et al., “Training language models to follow instructions with human feedback,” Advances in
neural information processing systems, vol. 35, pp. 27730-27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn, “Direct preference

April 28, 2025 DRAFT

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

(34]

[35]

(36]

(37]

(38]

[39]

[40]

30

optimization: Your language model is secretly a reward model,” Advances in Neural Information Processing Systems, vol.
36, 2024.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu, and Yi Wu, “Is dpo
superior to ppo for 1lm alignment? a comprehensive study,” arXiv preprint arXiv:2404.10719, 2024.

Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland, Zhaohan Daniel Guo,
Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al., “Nash learning from human feedback,” arXiv
preprint arXiv:2312.00886, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li,
Y Wu, et al.,, “Deepseckmath: Pushing the limits of mathematical reasoning in open language models,” arXiv preprint
arXiv:2402.03300, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang,
Xiao Bi, et al., “Deepseek-rl: Incentivizing reasoning capability in 1lms via reinforcement learning,” arXiv preprint
arXiv:2501.12948, 2025.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yugian Hong, Bryan Dai, Joey Zhou, Kai Qiu, Zhirong Wu, and Chong
Luo, “Logic-rl: Unleashing llm reasoning with rule-based reinforcement learning,” arXiv preprint arXiv:2502.14768, 2025.
Siliang Zeng, Chenliang Li, Alfredo Garcia, and Mingyi Hong, “Maximum-likelihood inverse reinforcement learning with
finite-time guarantees,” Advances in Neural Information Processing Systems, vol. 35, pp. 10122-10135, 2022.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell, “A reduction of imitation learning and structured prediction to
no-regret online learning,” in Proceedings of the fourteenth international conference on artificial intelligence and statistics.
JMLR Workshop and Conference Proceedings, 2011, pp. 627-635.

Luca Viano, Yu-Ting Huang, Parameswaran Kamalaruban, Adrian Weller, and Volkan Cevher, “Robust inverse reinforcement
learning under transition dynamics mismatch,” Advances in Neural Information Processing Systems, vol. 34, pp. 25917-25931,
2021.

Qingyang Wu, Lei Li, and Zhou Yu, “Textgail: Generative adversarial imitation learning for text generation,” in Proceedings
of the AAAI Conference on Artificial Intelligence, 2021, vol. 35, pp. 14067-14075.

Jiaxiang Li, Siliang Zeng, Hoi-To Wai, Chenliang Li, Alfredo Garcia, and Mingyi Hong, “Getting more juice out of the
sft data: Reward learning from human demonstration improves sft for 1lm alignment,” Advances in Neural Information
Processing Systems, 2024.

Markus Wulfmeier, Michael Bloesch, Nino Vieillard, Arun Ahuja, Jorg Bornschein, Sandy Huang, Artem Sokolov, Matt
Barnes, Guillaume Desjardins, Alex Bewley, et al., “Imitating language via scalable inverse reinforcement learning,”
Advances in Neural Information Processing Systems, vol. 37, pp. 90714-90735, 2024.

Siliang Zeng, Yao Liu, Huzefa Rangwala, George Karypis, Mingyi Hong, and Rasool Fakoor, “From demonstrations to
rewards: Alignment without explicit human preferences,” arXiv preprint arXiv:2503.13538, 2025.

Siliang Zeng, Mingyi Hong, and Alfredo Garcia, “Structural estimation of markov decision processes in high-dimensional
state space with finite-time guarantees,” Operations Research, 2024.

Siliang Zeng, Yao Liu, Huzefa Rangwala, George Karypis, Mingyi Hong, and Rasool Fakoor, “From demonstrations to
rewards: Alignment without explicit human preferences,” 2025.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei, “Reward learning from human
preferences and demonstrations in atari,” Advances in neural information processing systems, vol. 31, 2018.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada, Shengyi Huang,

Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al., “Zephyr: Direct distillation of Im alignment,” arXiv preprint

April 28, 2025 DRAFT

(41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

31

arXiv:2310.16944, 2023.

Chenliang Li, Siliang Zeng, Zeyi Liao, Jiaxiang Li, Dongyeop Kang, Alfredo Garcia, and Mingyi Hong, “Joint demonstration
and preference learning improves policy alignment with human feedback,” arXiv preprint arXiv:2406.06874, 2024.

Teng Xiao, Yige Yuan, Mingxiao Li, Zhengyu Chen, and Vasant G Honavar, “On a connection between imitation learning
and rlhf,” arXiv preprint arXiv:2503.05079, 2025.

Drew Fudenberg, Ryota lijima, and Tomasz Strzalecki, “Stochastic choice and revealed perturbed utility,” Econometrica,
vol. 83, no. 6, pp. 2371-2409, 2015.

Zhihan Liu, Miao Lu, Shenao Zhang, Boyi Liu, Hongyi Guo, Yingxiang Yang, Jose Blanchet, and Zhaoran Wang, “Provably
mitigating overoptimization in RLHF: Your SFT loss is implicitly an adversarial regularizer,” in The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Xiang Ji, Sanjeev Kulkarni, Mengdi Wang, and Tengyang Xie, “Self-play with adversarial critic: Provable and scalable
offline alignment for language models,” arXiv preprint arXiv:2406.04274, 2024.

Abbas Abdolmaleki, Bilal Piot, Bobak Shahriari, Jost Tobias Springenberg, Tim Hertweck, Rishabh Joshi, Junhyuk Oh,
Michael Bloesch, Thomas Lampe, Nicolas Heess, et al., “Preference optimization as probabilistic inference,” arXiv preprint
arXiv:2410.04166, 2024.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang, “Iterative preference
learning from human feedback: Bridging theory and practice for rlhf under kl-constraint,” arXiv preprint arXiv:2312.11456,
2023.

Yann Dubois, Baldzs Galambosi, Percy Liang, and Tatsunori B Hashimoto, “Length-controlled alpacaeval: A simple way to
debias automatic evaluators,” arXiv preprint arXiv:2404.04475, 2024.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar Sanseviero, Lewis
Tunstall, and Thomas Wolf, “Open 1lm leaderboard,” https://huggingtace.co/spaces/HuggingFaceH4/open_llm_leaderboard,
2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li,
Dacheng Li, Eric Xing, et al., “Judging llm-as-a-judge with mt-bench and chatbot arena,” Advances in Neural Information
Processing Systems, vol. 36, pp. 4659546623, 2023.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak
Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Alexander
Cosgrove, Christopher D Manning, Christopher Re, Diana Acosta-Navas, Drew Arad Hudson, Eric Zelikman, Esin Durmus,
Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue WANG, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert
Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar Khattab, Peter Henderson, Qian Huang,
Ryan Andrew Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi
Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda, “Holistic evaluation
of language models,” Transactions on Machine Learning Research, 2023, Featured Certification, Expert Certification.
Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu, Nouha Dziri, Sachin
Kumar, Tom Zick, Yejin Choi, et al., “Rewardbench: Evaluating reward models for language modeling,” arXiv preprint
arXiv:2403.13787, 2024.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun, and Bowen Zhou,
“Enhancing chat language models by scaling high-quality instructional conversations,” arXiv preprint arXiv:2305.14233,
2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding,

April 28, 2025 DRAFT

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

32

Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds,
Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou, “A
framework for few-shot language model evaluation,” 12 2023.

[55] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea Finn, “Direct preference
optimization: Your language model is secretly a reward model,” arXiv preprint arXiv:2305.18290, 2023.

[56] Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal Valko, and Daniele
Calandriello, “A general theoretical paradigm to understand learning from human preferences,” in International Conference
on Artificial Intelligence and Statistics. PMLR, 2024, pp. 4447-4455.

[57] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas,
Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al., “Mistral 7b,” arXiv preprint arXiv:2310.06825,
2023.

April 28, 2025 DRAFT

	Introduction
	Preliminaries
	Theoretical Foundations of Learning from Human Feedback.
	Classical models of discrete choice
	The reward learning problem

	State-of-the-art Algorithms for LLM Alignment
	Learning from demonstrations data
	Behavioral cloning approaches
	Self generation approaches
	 Information theoretic approaches

	Learning from preferences and prompts
	Learning from preferences without online generations: Direct Preference Optimization
	Learning from preference and prompts without the BT assumption.
	Learning from data verifiers via Rule-Based Reinforcement Learning

	A Unified Perspective for LLM Alignment
	Jointly learning policy and reward from the demonstrations data
	Jointly learning policy and reward from Integrated Human Feedback

	Dataset, Benchmarks, and Evaluation
	Dataset
	Benchmark datasets and benchmark models
	Numerical Results
	Demonstration-only setting
	Aligning with Both Demonstrations and Pairwise Comparisons

	Concluding Remarks
	References

