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Abstract

This article provides an introduction to the mathematical foundations and algorithmic frameworks

used to align Large Language Models (LLMs) with human intentions, preferences, and values. We discuss

standard alignment techniques, such as fine-tuning (SFT), reinforcement learning with human feedback

(RLHF), and direct preference optimization (DPO). We also explore the theoretical underpinnings of

learning from human preferences, drawing connections to inverse reinforcement learning (IRL) and

discrete choice models. We present state-of-the-art algorithms in a tutorial style, discuss their advantages

and limitations, and offer insights into practical implementation. Our exposition is intended to serve as a

comprehensive resource for researchers and practitioners, providing both a foundational understanding of

alignment methodologies and a framework for developing more robust and scalable alignment techniques.

I. INTRODUCTION

Background. As large language models (LLMs) have taken the world by storm, it is clear that generative

AI systems will soon become ubiquitous in our lives. LLMs have been applied beyond chatbots and

personal assistants to tackle complex challenges, including video gaming [1] and autonomous control [2].

In this context, the concept of alignment plays an increasingly important role in the design and training

of AI systems. Loosely speaking, alignment refers to the performance guarantee that the AI system will

generate outcomes that are intended or preferred by the human user without undesirable side effects or

behaviors such as deception or manipulation.

More technically, the LLM alignment problem involves fine-tuning or adjusting a base model that was

originally trained on extensive, diverse datasets. While such a base model is trained to learn core behaviors

and general knowledge, it often falls short when applied to specific tasks or to meeting the nuanced

preferences of a human user. To better align the model, additional feedback is gathered from human experts
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who evaluate and/or rank the model’s performance within a specific task context. This feedback embodies

expert judgments regarding both the accuracy of the model’s responses and any particular preferences they

may have. The goal is to refine the model to better meet these specific requirements, ultimately enhancing

its task relevance and user satisfaction. Generally, it is observed that after the alignment process, LLMs

can follow human instructions well, and can avoid providing toxic and non-preferable responses. Refer to

Fig. 1 as an illustration of an overview of the alignment process.

Contributions of This Work. Despite extensive study of the alignment problem in recent literature,

this research area remains young, and it is still evolving rapidly with many unresolved theoretical

challenges. A primary contribution of this article is to introduce the signal processing community to the

fundamentals of alignment, highlight state-of-the-art algorithms and approaches, and clarify the intersection
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Fig. 1: An illustration of the alignment process.

between alignment methodologies and various techniques

relevant to signal processing (SP). We believe that our article

will foster interdisciplinary contributions and expand the

role of SP in LLM alignment research. By understanding

the alignment problem, SP researchers can leverage their

expertise in mathematical modeling, noise handling, inverse

problem-solving, and optimization to address a number of

key challenges. For instance, similar to reconstructing signals

from observed data in SP, many alignment approaches involve

solving inverse problems, such as learning the human preference models from the data. Therefore, we

expect that introducing the alignment to SP professionals can foster innovation in AI safety, inspire novel

techniques, and accelerate the development of robust, generalizable alignment frameworks that can be

applied across diverse applications.

Organization of this work. The article is organized as follows. In Sec. II, we provide the readers with

an overview of the LLM training process. In Sec. III, we discuss some classical notion and techniques

of learning from human preference, which serves as the foundation for many alignment approaches to

be discussed subsequently. In Sec. IV, we provide a detailed discussion of a number of state-of-the-art

algorithms for different stages of LLM alignment. In Sec. V, we provide readers with a framework that

unify a few alignment algorithms discussed in the previous section under a single formulation. In Sec. VI,

we provide some high-level discussion In Sec. VII, we conclude with final remarks and open questions.
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II. PRELIMINARIES

In this section, we provide a basic description of the LLM training process, while emphasizing the

basic concepts relevant for alignment problems that we describe in the sequel.

LLM Representation. Consider an LLM parameterized by parameters θ and denote the output probability

by π(y|x; θ) where x := [x1, . . . , xn] is the sequence of input prompts and y := [y1, . . . , ym] is the

sequence of output continuation, where n and m are their sequence length, correspondingly. In practice,

each one of yi and xj is a token, which is one element of a token vocabulary. A token is a discrete unit

that represents certain semantic information. For example, a word “learning” itself could be one token in

the vocabulary, however more commonly two elements “learn” and “-ing” are both tokens where “-ing”

represents the semantic information of tense. A tokenizer is commonly utilized to transform an input

natural language sentence into sequence of tokens x = [x1, . . . , xn].

Typical LLM is an auto-regressive model, meaning that it predicts the output probability of the yj given all

tokens in x and y<j := [y1, . . . , yj−1] (y<1 is null). More precisely, the

All transformer models are generative models <EOS>

All transformer models are generative models<BOS>

L layers

Fig. 2: An illustration of Auto-regressive LLMs. Here <BOS> and <EOS>
are two special tokens representing the begin and the end of the sentence,
respectively. The tokens at the bottom are the input token sequence, and

those at the top are the output tokens. In this example, the token sequence
“<BOS> All transformer models ” is given to the LLM and “are generative
models <EOS>” is the prediction. Each of the previous tokens will be used

to predict the next token, corresponding to (1).

probability of producing a sequence y

can be defined as:

π(y|x; θ) =
m∏
j=1

π(yj |x, y<j ; θ). (1)

The state-of-the-art LLMs are built upon

the attention mechanism [3] and θ repre-

sents all the trainable parameters, includ-

ing the attention matrices and weights

of the feed-forward layers.

Next, let us provide an introduction about different stages of LLM training.

The LLM pre-training. The first stage of the training is called pre-training, where an LLM model

is initialized randomly and trained over a vast corpus of documents, known as the pre-training dataset.

As an example, Llama 3 model is pre-trained on more than 15T token of documents collected from

all over the Internet, with the entire token vocabulary size (i.e., the total number of distinct tokens) of

128K [4]. The pre-training dataset is an unsupervised dataset, denoted as Dpre := {xi}Npre
i=1 , where each

data xi = [xi1, ..., x
i
mi

] is a collection of tokens with mi being its sequence length. D is a dataset without

labels usually collected from the internet, such as Wikipedia articles; the learning task at the pre-training

stage is typically formulated as the so-called next-token prediction task, which predicts the next token

given the current and all previous tokens shown to the LLM, and can be mathematically formulated as a
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negative log-likelihood minimization problem:

min
θ

− 1

Npre

Npre∑
i=1

log π(xi; θ) = − 1

Npre

Npre∑
i=1

mi∑
j=1

log π(xij |xi<j ; θ). (2)

This task is commonly understood as encouraging the LLM to memorize all the given texts and enabling

the LLM for more fine-grained tasks.

The LLM Alignment. Once the pre-training is done, the next step is called alignment or fine-tuning. The

fine-tuning process is a supervised process that aims at improving the instruction following capabilities

of LLMs to better align with human behaviors and values. It usually consists of two main steps: the

supervised fine-tuning (SFT) step and the reinforcement learning with human feedback (RLHF) step.

The SFT step utilizes a demonstration dataset Ddemo := {(xi, yi)}Ndemo
i=1 , where x is the input prompt

(such as, “Where is the capital of the US?”) and y is the expert response (such as, “Washington, DC”). We

assume that the demonstration continuations y are collected from an expert (typically a human expert, but

sometimes it can also be a very large and well-aligned model such as GPT4 which produces high quality

responses), thus we also denote (x, y) ∼ Ddemo as x ∼ ρ, y ∼ πE(·|x) as their population distributions,

>
Preference data

Demonstration data(1) SFT Model

(2) RM

(3) Policy

RL

SFT

Prompt data

RL

Fig. 3: An illustration of the
standard LLM Alignment process.

where ρ is the distribution of the input prompts when collecting the

data, and πE is the expert policy.

Meanwhile the RLHF step first utilizes a preference dataset to learn

from human preference about the quality of the answers to a particular

question x. This dataset is denoted as Dpref := {(x, yw ≻ yl)}, where

yw is preferred (i.e., ‘wins’) over yl (i.e., ‘loses’) by a human labeler,

and will be succinctly denoted as (yw ≻ yl) throughout the paper. We

use the notation x ∼ ρ, (yw ≻ yl) ∼ πP (·|x) to denote the population distribution of the preference dataset,

where πP is the preference distribution. The preference data is typically used to learn a parameterized

reward function r(x, y;ϕ), which provides a score for a given prompt-response pair (x, y). Once such

a reward function is learned, the RLHF step leverages this reward function, together with a prompt

dataset Dprompt := {x}, to evaluate and further improve the quality of the generated responses, through a

reinforcement learning (RL) process. The whole process of RLHF is summarized and illustrated in Fig. 3.

The following example illustrates the demonstration and the preference data.
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Example 1: LLM Alignment Data. Given a question prompt “How should I respond to an email from

my professor asking for a delayed assignment?” The demonstration data includes a preferred answer “You

can politely acknowledge the delay and provide a reasonable explanation. For example: ‘Dear Professor, I

apologize for the delay in submitting my assignment. I encountered unexpected challenges but will submit

it by [new deadline]. Thank you for your understanding.” Meanwhile, the preference dataset includes an

additional non-preferred answer, e.g., “Just say you were busy and didn’t have time. Professors have to

deal with it.” Clearly, the preferred response aligns with human values of politeness and professionalism.

We will provide a detailed account of popular methods to learn from these different kinds of datasets

in the subsequent sections. In a high level, the SFT step can be used to directly teach LLM to imitate

the expert behavior, while the RLHF step teaches LLM to distinguish the better behavior over the worse

ones, in order to achieve a better generalization.

Based on the above discussion, we can now define the LLM alignment problem as follows:

LLM alignment problem: Given a diverse dataset representing human demonstrations and preferences,

how can we effectively train an LLM to consistently generate outputs that align with human values,

ethical principles, and intended use cases?

The LLM Evaluation. Before closing this introductory section, let us briefly discuss how the LLMs

are evaluated after different stages of training. At the pre-training stage, the model learns to predict the

next token probabilistically. The model is thus evaluated on how well it predicts the next token, and the

common measure is the perplexity (PPL). Mathematically, perplexity is defined as the exponential of the

average log-likelihood of the predicted words in a sequence (i.e. the exponential of the loss (2)). Hence,

a lower perplexity indicates a clearer prediction and less uncertainty of the prediction of the next tokens.

In the fine-tuning stage, multiple metrics are typically used. After the SFT step, the metric is usually

determined by the nature of the task. For classification tasks such as sentiment analysis (i.e., given a

text of words, determine whether the sentiment of the text is positive or negative), traditional metrics,

such as accuracy, precision and recall are used; For translation tasks, BLEU (BiLingual Evaluation

Understudy) score is the most popular metric, which measures how similar a machine-translated text is

to a human-written reference translation. After the RLHF step, the aligned model could be evaluated

by win-rates from human raters or some judge models (typically takes the form of a specialized LLM),

which calculate the favorability of the model response over other models/ground truth response.

In the next section, we will begin our technical discussion by delving into classical techniques on

learning from human feedback data. This will serve as mathematical foundation for various alignment

techinques to be discuss subsequently.

April 28, 2025 DRAFT



6

III. THEORETICAL FOUNDATIONS OF LEARNING FROM HUMAN FEEDBACK.

Given the background above, it is clear that the alignment problem is closely related to the problem of

modeling human behaviors through the observed choices. Indeed, in the context of LLM, the response

y in the demonstration data as well as the labels that distinguish yw’s with yl’s can both be viewed as

human choices. It turns out that there is a vast literature about developing models for discrete choices,

and these models were first used to describe discrimination between perceptual stimuli [5] and choices

for urban transportation modes [6]. In this section, we will provide a brief overview of this literature.

A. Classical models of discrete choice

The choice models are used to describe observed choices (or actions) a ∈ A made by a decision maker

given a relevant state variable s ∈ S. A parallel to LLM alignment problem described in the previous

section can be made by having the state s correspond to the prompt x and the action a corresponds to

the possible responses y’s to the prompt.

As in the previous section, we use the notation (s, a) ≻ (s, a′) to indicate that in state s action a ∈ A

is preferred over a′ ∈ A. An assumed structure of preferences over action set A is a relation ≻, which is

• Complete: (s, a) ≻ (s, a′) or a′ ≻ a for all a, a′ ∈ A and s ∈ S.

• Transitive: (s, a) ≻ (s, a′) and (s, a′) ≻ (s, a′′) implies (s, a) ≻ (s, a′′), for all a, a′, a′′ ∈ A, s ∈ S.

A structure of preferences can be modeled by a reward (or utility) function r : S ×A 7→ R, such that

(s, a) ≻ (s, a′) if and only if r(s, a) > r(s, a′). This implies when in state s, the decision maker will

always prefer a to a′. However in practice, one may observe a decision maker engages in mixing, i.e.

implementing different actions when in the same state s ∈ S. In the context of LLM alignment, mixing

corresponds to observing different responses to the same prompt.

There are several ways of modeling mixing in the literature of discrete choice:

Random Utility: In this model, the decision maker perceives a random reward (or utility) r(s, a) + ϵ(a)

(where ϵ(a) is a random variable) given the pair (s, a). A pair (s, a) is preferred to (s, a′) if:

r(s, a) + ϵ(a) > r(s, a′) + ϵ(a′).

For a given state s ∈ S and a reward r(·), the probability of such preference can be modeled as follows:

Pr

(
(s, a) ≻ (s, a′)

)
:= Prob

(
r(s, a) + ϵ(a) > r(s, a′) + ϵ(a′)

)
= Prob

(
ϵ(a)− ϵ(a′) > r(s, a′)− r(s, a)

)
.
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When the random variables {ϵ(a) : a ∈ A} are assumed i.i.d and standard Gumbel we obtain the following

logit model [7], [8] (also known as the Bradley-Terry-Luce model (BTL)):

Pr

(
(s, a) ≻ (s, a′)

)
=

exp r(s, a)

exp r(s, a) + exp r(s, a′)
= σ

(
r(s, a)− r(s, a′)

)
, (3)

where σ(x) := 1
1+e−x . We will see later that the logit model expressed above has been heavily used in

the RLHF step to learn a reward function from preference data.

Perturbed Utility: Stochastic choice can also arise as the solution to expected reward maximization

subject to an additive perturbation [9] which may describe limited information processing capacity [10] or

aversion to ambiguity [11]. Assuming that the reward function r(·) is known, then the optimal stochastic

choice can be modeled as the following utility maximization problem

π∗
r (·|s) := arg max

π∈∆|A|
{Ea∼π[r(s, a)]− β × c(π)}, (4)

where ∆|A| ⊂ R|A| is the simplex; c : ∆|A| 7→ R is a convex function; β > 0 is a constant. For example,

when c is the (forward) Kullback-Leibler (KL) divergence with respect to a default policy π0 defined as

DKL(π∥π0) :=
∑
a∈A

π(a) log
π(a)

π0(a)
, (5)

then the optimal stochastic choice can be expressed as follows:

π∗
r (a|s) =

π0(a|s) exp(β−1r(s, a))∑
ã∈A π0(ã|s) exp(β−1r(s, ã))

. (6)

It should be noted that in order to precisely calculate the optimal policy, one has to assume that all

available actions in A are known. Nevertheless, the perturbed utility model described here is instrumental

for establishing a number of LLM alignment approaches, assuming that a reward model is available.

B. The reward learning problem

Based upon the observed preferences Dpref := {(s, a) ≻ (s, a′)} by an agent and the model (3), the

estimation problem consists of finding a reward function r(s, a) that rationalizes the data, so that observed

preferences are consistent with a reward model. Specifically, the likelihood of Dpref can be written as

ℓpref(r) = EDpref

[
logPr

(
(s, a) ≻ (s, a′)

)]
. (7)

In general, there is no unique reward function that maximizes likelihood ℓpref(r). However, assuming

the reward r(s, a0) for a reference action a0 ∈ A is known, it can be shown that there is unique reward

function that maximizes likelihood function ℓpref(r).
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Alternatively, based upon the observed choices Ddemo := {(s, a)} and assuming these choices are

consistent with the model (6). Then the estimation problem consists of finding a reward function r(s, a)

that maximizes the likelihood of Ddemo defined as:

ℓdemo(r) = EDdemo

[
log π∗

r (a|s)
]
. (8)

As pointed out before, a limitation of this model is the assumption of complete information on the

menu of available choices A. When the reward is linearly parametrized, i.e. r(s, a) = ϕ(s, a)⊤θ where

ϕ(s, a), θ ∈ Rp and ϕ(s, a) is a vector of features, problem (8) is the Lagrangian dual of the maximum

entropy estimation problem (see Theorem 2 in [12]):

max
π(·|s)∈∆|A|

Es∼Ddemo
[H(π(·|s))]

s.t. Es∼Ddemo,a∼π(·|s)[ϕ(s, a)] = E(s,a)∼Ddemo
[ϕ(s, a)]

IV. STATE-OF-THE-ART ALGORITHMS FOR LLM ALIGNMENT

In this section, we provide an overview of the mathematical formulation of the alignment problem, and

a number of state-of-the-art algorithms. To facilitate discussion, this section is organized according to the

structure of the available data.

A. Learning from demonstrations data

We begin with the discussion on how to model and learn from demonstration data Ddemo := {(x, y)}.

Given the prompt x, the response y is viewed as a golden answer. A natural approach to learning from

such a dataset is supervised learning, leading to the supervised fine-tuning (SFT) paradigm. To this end,

we formulate the following optimization problem over the LLM parameters class Θ:

min
θ∈Θ

ℓSFT(θ) := −Ex∼ρ,y∼πE(·|x) [log π (y|x; θ)] . (9)

It is easy to see that the above problem shares the same optimal solutions as

min
θ∈Θ

Ex∼ρ[DKL(π
E (·|x) ∥π (·|x; θ))], (10)

where DKL(·) is the (forward) KL-divergence defined in (5). The latter shows that SFT aims at imitating

the demonstration dataset via minimizing the KL divergence.

It is worth noting that the SFT stage described here is closely related to behavioral cloning [13], whose

goal is to mimic the policy of an expert, we describe the details in the next paragraph.
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Protocol 1 SFT (Supervised Fine Tuning) via Behavioral Cloning

1: The learner receives: (i) A dataset Ddemo = {(xi, yi)}Ndemo

i=1 , (ii) A policy function parameters class Θ.
2: The learner computes the loss: ℓ̂SFT(θ) :=

∑Ndemo

i=1

[
− log π

(
yi|xi; θ

)]
.

3: The learner outputs πθ⋆ with θ⋆ = argminθ∈Θ ℓ̂SFT(θ).

1) Behavioral cloning approaches: Behavioural cloning (see Protocol 1) it is an offline problem where

the learner cannot collect new data using the current policy, but should learn relying exclusively on

the expert dataset. This can be done via a reduction to supervised learning where the actions are the

labels to be predicted and the states are the features. Very recently, [14] show that exact minimization of

the loss ℓ̂SFT allows to output a policy which enjoys suboptimality guarantees compared to the expert.

Their experiments and theoretical analysis also show that the guarantees and practical performance of the

method do not deteriorate for long horizon problems. Unfortunately, exact minimization of the loss ℓ̂SFT

is not possible, and to our knowledge, there are currently no studies investigating how those optimization

errors affect performance. It is important to notice that in LLM the environment is simpler than what

generally assumed in analyzing and empirically testing BC. Indeed, in language tasks LLMs are tree

shaped and deterministic.

2) Self generation approaches: An alternative approach, dubbed SPIN (Self-Play fIne-tuNing), presented

in [15] casts the fine-tuning with demonstration problem as a two-player game. On the one hand, the

first player tries to generate answers as similar as possible as the observed ones in Ddemo. On the other

hand, the second player’s aims at distinguish artificially generated answers from the answers in the

demonstrations dataset Ddemo. The algorithm employs alternating updates between the first and second

player. In particular, at iteration t, the first player observes the second players parameters θt and updates

its weights via the following minimization over potentially time-varying parameters classes {Ft} as

ft+1 = argmin
f∈Ft

Ex,y∼Ddemo
Ey′∼π(·|x;θt)

[
ℓ(f(x, y)− f(x, y′))

]
, (11)

where ℓ(·) is a monotonically decreasing, non negative, smooth and convex function. A common choice in

practice satisfying the above properties is the logistic loss function ℓ(x) = log
(
1 + exp(−x)

)
. All these

properties are imposed to make the optimization problem easier to solve via first order methods. At this point,

the second player can update its weights exploiting knowledge of ft+1. This is done by solving the following

problem: θt+1 = argminθ∈Θ−Ex∼ρ,y∼π(·|x;θt) [ft+1(x, y) + βDKL(π(·|x; θ)||π(·|x; θt))] , which is an

application of Equation (4) for c(π) = −DKL(π(·|x)||π(·|x; θt)). The analytical solution of the above

problem is surprisingly easy to obtain (analogously to (6)): π(y|x; θt+1) ∝ π(y|x; θt) exp
(
ft+1(x,y)

β

)
, if

the class Θ is expressive enough compared to the class Ft+1. To ensure that this is the case, in [15] the
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Protocol 2 SFT (Supervised Fine Tuning) via SPIN (Self-Play fIne tuNing)

1: The learner receives: (i) A dataset Ddemo = {(xi, yi)}Ndemo

i=1 , (ii) A policy function parameters class Θ.
2: The learner samples y

′,i ∼ π(·|xi; θt) and computes the loss:

ℓ̂SPIN(θ) :=

Ndemo∑
i=1

[
ℓ

(
β log

(
π(yi|xi; θ)
π(yi|xi; θt)

)
− β log

(
π(y

′,i|xi; θ)
π(y′,i|xi; θt)

))]
.

3: The learner outputs πθ⋆ with θ⋆ = argminθ∈Θ ℓ̂SPIN(θ).

class Ft+1 is chosen to be coupled with Θ as follows, Ft+1 =
{
β log

(
π(y|x;θt+1)
π(y|x;θt)

)}
. Another benefit

of this choice is that the two updates can now be expressed as single update over the weight class Θ.

Indeed, (11) is at this point equivalent to

θt+1 = argmin
θ∈Θ

ℓSPIN(θ) = Ex,y∼Ddemo
Ey′∼π(·|x;θt)

[
ℓ

(
β log

(
π(y|x; θ)
π(y|x; θt)

)
− β log

(
π(y′|x; θ)
π(y′|x; θt)

))]
.

(12)

Fig. 4: True distribution in blue and estimated distribution in
green. When the estimated distribution has a smaller support

than the true one, as in the left plot, we say that it has a mode
seeking. Vice versa, the estimated distribution has a mode

covering behavior if its support is larger, as in the right plot.
Image from https://sander.ai/2020/03/24/audio-generation.html.

The practical algorithm can be obtained via a

stochastic estimator of this loss constructed with

the dataset Ddemo, as described in Protocol 2.

We note that SPIN shares similarity with Direct

Preference Optimization (DPO), to be described

in Section IV-C, however there are also important

differences that we will highlight in Section V.

3) Information theoretic approaches: Recent works [16], [17] considered matching general information

theoretic divergences between answers distribution.

As mentioned, minimizing the forward KL divergence between demonstrated and learner answer

distribution is equivalent to the SFT objective in (10). As commonly noticed, the forward KL minimization

outputs a mode covering distribution. That is, the learned distribution has support which contains the

support of the demonstrations distribution. However, a mode seeking behavior can be more desirable

if one wants to perfectly imitate some aspects of the demonstrations while discarding others. We refer

the reader to Figure 4 for a visual illustration. To this end, [16] suggested to minimize the reversed KL

divergence. This method however requires additional prompts and answers generated by the learner policy.

As a last example of divergence minimization, [18] considers χ2 divergence minimization.
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Protocol 3 RLHF (Reinforcement Learning from Human Feedback)

1: The learner receives: (i) A preference dataset Dpref = {(xi, yiw, yiℓ)}
Npre

i=1 , (ii) A prompt dataset
Dprompts = {xi}Nprompts

i=1 , (iii) A reward function parameters class Φ, (iv) A policy function parameter
class Θ.

2: The learner estimates the reward as r (·, ·;ϕ⋆) with

ϕ⋆ = argmin
ϕ∈Φ

ℓ̂RM(ϕ) := −
Npre∑
i=1

log
(
σ
(
r(xi, yiw;ϕ)− r(xi, yil ;ϕ)

))
.

3: The learner finds θ⋆ ≊ argminθ∈Θ ℓRL(θ), using PPO or REINFORCE.
4: The learner outputs πθ⋆ .

Protocol 4 PPO (Proximal Policy Optimization) [19]

1: Receive policy class parameters Θ, and reward model parameters ϕ⋆. Initialize θ1.
2: for t = 1, . . . , T do
3: Sample yi ∼ π(·|xi; θt) and xi ∈ Dprompts.
4: The learner computes the stochastic loss.

ℓ̂RLHF(θt) := − 1

|Dprompts|
∑

i∈[Nprompts]

[
r(xi, yi;ϕ⋆) + β log π(yi|xi; θt)− β log πref(y

i|xi)
]
,

5: The learner computes the policy ratio δ(θ; θt) =
1

|Dprompts|
∑

i∈[Nprompts]
π(yi|xi;θ)
π(yi|xi;θt)

.

6: The learner computes ℓPPO(θ) = −min
(
δ(θ; θt)ℓ̂RLHF(θt),Clip(δ(θ; θt), 1 + ϵ, 1− ϵ)ℓ̂RLHF(θt)

)
7: θt+1 ≊ argminθ∈Θ ℓPPO(θ) computed via SGD, Adam or other optimizers.
8: end for
9: The learner outputs πθ⋆ .

B. Learning from preferences and prompts

Learning from preferences and prompts is usually performed in two steps: (i) reward learning using the

preference dataset (ii) based on the reward model learned in the first step, further fine-tune the LLM by

conducting reinforcement learning using the prompt datasets. Note that these two steps are closely related

to the two types of stochastic choice models discussed in Sec. III-A.

a) Reward learning: To find an appropriate reward model, RLHF (see e.g., [21]) leverages a set of

preference dataset Dpref := {(x, yw, yl)}, where each data contains a pair of output yw, yl. The output

yw is preferred over yl by human labeler (denoted as yw ≻ yl). Leveraging the the Bradley-Terry model

(BT) discussed in (3) and the likelihood of the preference data (7), one could formulate the following

problem to find the reward model (parameterized by ϕ):

ϕ⋆ = argmin
ϕ∈Φ

ℓRM(ϕ) := −Ex∼ρ,(yw≻yl)∼πP (·|x)

[
log
(
σ
(
r(x, yw;ϕ)− r(x, yl;ϕ)

))]
. (13)
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Protocol 5 REINFORCE [20]
1: Receive policy class parameters Θ and reward model parameters ϕ⋆. Initialize θ1, step size η
2: for t = 1, . . . , T do
3: Sample yi ∼ π(·|xi; θt) and xi ∈ Dprompts.
4: The learner computes the stochastic loss.

ℓ̂RLHF(θt) := − 1

|Dprompts|
∑

i∈[Nprompts]

[
r(xi, yi;ϕ⋆) + β log π(yi|xi; θt)− β log πref(y

i|xi)
]
,

5: The learner performs the update θt+1 = ΠΘ

[
θt − ηℓ̂RLHF(θt)

∑
i∈[Nprompts]

∇ log π(yi|xi; θt)
]
.

6: end for
7: The learner outputs πθ⋆ .

Protocol 3 describes the procedure where r(·;ϕ) is learned via minimization of the empirical loss ℓ̂RM.

b) Policy Learning: Once a reward model r(x, y;ϕ⋆) is learned, the LLM can be fine tuned by

leveraging the perturbed utility model (4), which results in the following problem:

min
θ

ℓRL(θ) := −Ex∼ρ,y∼π(·|x;θ) [r(x, y;ϕ)] + βEx∼ρ[DKL(π (·|x; θ) ∥πref (·|x))], (14)

where πref is a fixed reference model such as the SFT-ed model, and β is the temperature coefficient of

the KL regularizer. Note that both the expected reward and the KL in (14) are not computable given the

large cardinality of X and Y , so (14) is usually solved approximately by minimizing an empirical loss,

using policy optimization techniques such as REINFORCE [20] or PPO [19]; see Protocol 3 .

Pros and Cons: PPO or REINFORCE? PPO was proposed as an improvement over the REINFORCE

algorithm in environment where the gradient estimates generated by REINFORCE suffer from high

variance. As a result, PPO enforces conservative policy updates to counterbalance the high variance

effect. However, as argued in [22], for the LLM fine-tuning task the gradient variance is not as high to

justify the PPO conservative mechanism. Since both options are used across the community, we report

both algorithms in Protocols 4 and 5 respectively. A disadvantage of PPO is that it requires a critic

network to estimate the advantage function when implemented in multi-stage problems, e.g., when the

reward is assigned at the token level rather than to the entire answer y. REINFORCE does not require

training a critic, therefore it is more memory and computationally efficient than PPO. Recently, a new

policy optimization method (GRPO) has been introduced and has been proven successful in reasoning

applications (see Section IV-E).

Pros and Cons: Learning from demonstrations vs learning from preferences. It is widely observed that

the models learned only using SFT stage do not perform as well as those that are trained via episodically

learning the policy (14) and learning the reward (13) on top of the SFT models [23]. This is because the
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reward model and the RL algorithms together guide the LLMs to explore high-quality responses that

can go beyond those defined by the SFT data, thus improving their generalization capabilities. Moreover,

obtaining the SFT dataset is typically known to be more expensive than obtaining preference data, therefore

standard alignment process leverages both the SFT and the preference data.

C. Learning from preferences without online generations: Direct Preference Optimization

0 10 20 30 40 50 60
Memory cost (GB)

SFT

DPO

RLHF

Weight
Activation
Optimization State
Weight Gradient
Others

Fig. 5: Estimated memory consumption of running the Pythia-1B
model on TL;DR dataset with batch-size 2 on a single device

Direct Preference Optimization (DPO) [24]

bypasses the need to perform the RL, by

noticing that minimizing ℓRL(·) admits an

analytical solution if we optimize over the

whole Marvov stationary policy space denoted

by Π. In fact, notice that from our discussion

on stochastic choice model (6), for a fixed

r(·, ·;ϕ), the solution to the policy optimization problem π⋆(·, x;ϕ) = argminπ∈Π−Ey∼π(·|x) [r(x, y;ϕ)]+

βDKL(π(·|x)||πref(·|x)) is given below

π⋆
ϕ(y|x) =

πref(y|x) exp(β−1r(x, y;ϕ))

Z(x, ϕ, β)
, (15)

where we defined Z(x, ϕ, β) :=
∑

y′ πref(y
′|x) exp(β−1r(x, y′;ϕ)). This implies that for all y, it holds

that log(π⋆
ϕ(y|x)) = log(πref(y|x))+β−1r(x, y;ϕ)− log(Z(x, ϕ, β)). Such a quantity cannot be computed

in closed form because computing Z(x, ϕ, β) is intractable. However, for two possible answers y, y′

to the same question x, it holds that log(π⋆
ϕ(y|x))− log(π⋆

ϕ(y
′|x)) = log(πref(y|x))− log(πref(y

′|x)) +

β−1r(x, y;ϕ)− β−1r(x, y′;ϕ). Therefore, the difference of reward functions for different answers y, y′

can be computed efficiently as the normalization constant Z(x, ϕ, β) does not appear, i.e.

r(x, y;ϕ)− r(x, y′;ϕ) = β log

(
π⋆
ϕ(y|x)

πref(y|x)

)
− β log

(
π⋆
ϕ(y

′|x)
πref(y′|x)

)
. (16)

It follows that we can plug in the above analytical solution into the loss ℓRM (13) to obtain the following

bi-level optimization problem that finds the optimal reward parameterization:

min
ϕ∈Φ

ℓ(ϕ) := −Ex∼ρ,(yl≺yw)∼πP (·|x)

[
log
(
σ
(
β log

(
π⋆
ϕ(yw|x)

πref(yw|x)

)
− β log

(
π⋆
ϕ(yl|x)

πref(yl|x)

)))]
(17a)

s.t. π⋆
ϕ := argmax

π∈Π
Ex∼ρ,y∼π(·|x) [r(x, y;ϕ)]− βEx∼ρ[DKL(π (·|x) ∥πref (·|x))], (17b)

where π⋆
ϕ is an optimal policy defined in (15) under a certain reward model parameterized by ϕ. If one

faithfully follows the above approach, then one would first compute the optimal reward r(·;ϕ∗), then
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Protocol 6 DPO (Direct Preference Optimization)
1: The learner receives as input:

• A preference dataset Dpref = {(xi, yiw, yiℓ)}Ni=1.
• A policy function parameters class Θ.

2: The learner computes the stochastic loss.

ℓ̂DPO(θ) := − 1

|Dpref |
∑

x,yw,yl∈Dpref

[
log

(
σ

(
β log

(
π(yw|x; θ)
πref(yw|x)

)
− β log

(
π⋆(yl|x; θ)
πref(yl|x)

)))]
3: The learner outputs πθ⋆ with θ⋆ = argminθ∈Θ ℓ̂DPO(θ).

use it to identify the optimal policy using (15). This is still too complicated, so [24] proposes to directly

parameterize the policy and find the parameters θ⋆ that solve the following problem:

argmin
θ∈Θ

ℓDPO(θ) := −Ex∼ρ,(yl≺yw)∼πP (·|x)

[
log

(
σ

(
β log

(
π(yw|x; θ)
πref(yw|x)

)
− β log

(
π(yl|x; θ)
πref(yl|x)

)))]
.

(18)

Notice that, as shown in Protocol 6, an empirical estimate of this loss can be computed without the need

of the dataset Dprompts and online generations. A first clear advantage of DPO over RLHF is that only the

policy variable is kept in memory. The reward network does not need to be stored, therefore, as shown

in the Fig. 5, DPO is more memory efficient than RLHF. Further, no self-generation such as line 3 of

Protocol 4 and 5 is needed, so DPO is much easier to implement as compared to RL based algorithms.

Action y1 y2 y3

πref 0.5 0.5 0

Dpref {(yw = y1, yl = y2)}

πDPO α 0.0 1− α

πRLHF 1 0 0

TABLE I: The policy πDPO minimizes
ℓDPO for any α ∈ [0, 1). Hence, for α > 0, it
produces a policy with support which is not a
subset of πref . The same can not happen for

πRLHF that minimizes ℓRLHF.

However, dropping the analytical form of π⋆
ϕ(y|x) in the last

step of the DPO derivation creates practical differences between

the performance of DPO and RLHF. Therefore, DPO and RLHF

are not equivalent, in particular, since we dropped a constraint, the

solution set for DPO is a superset of the solution set for RLHF.

Recent studies suggest that RL-based fine-tuning has greater

potential to enhance the performance of LLMs compared to the

DPO method [25]

From the formulation of DPO in Eq. (18), we see that DPO only fits the given preference data and does

not leverage online generations from its own model (see line 3 of Protocol 4 and 5). Due to the lack of the op-

timal policy constraint, the model trained by the DPO method can suffer from the limited generalization ca-

pability and can encounter the distribution shift issue when the coverage of the preference dataset is limited.
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PPO Win Tie DPO Win

PPO V.S. DPO 42 28 30

TABLE II: On HH-RLHF, GPT-4 is used to decide
the winner between PPO and DPO models’ output.

Taken from [25].

Furthermore, when there exists distribution shift between

the model outputs and the preference dataset, the perfor-

mance of DPO can be significantly affected. In contrast, in

the RLHF training pipeline, the policy model is trained by

RL and has leveraged online generations from the model

itself, which can alleviate the distribution shift issue between model outputs and the preference dataset

through leveraging the generalization power from the explicit estimated reward model. Similar empirical

observations for the potential drawbacks of DPO compared with RLHF / PPO has also been observed in

recent study [25]. Hence, to unlock the full potential of LLMs, it appears that RL is a necessary step in

the post-training pipeline.

The toy example in [25] that we report in Table I shows that the solution set of DPO is a strict superset

of the solution set of RLHF. In particular, there are minimizers of the DPO loss assign positive probability

to answers for which no information is available (y3 in this example ). This example shows that DPO

should not be applied when the preference dataset has poor coverage of the answers set Y . For more

practical problems, it is also observed that DPO can be less performant in terms of winrate against the

model fine tuned via RLHF; see Table II.

D. Learning from preference and prompts without the BT assumption.

Regardless of using RLHF and the DPO approach to perform alignment, one key step is to use the BT

model (13) to model human preference. The BT assumption implies transitivity. This is restrictive because

the preference dataset collected from different humans might not be transitive even if each human follows

a transitive model in generating the preference. As an example, let us consider 3 humans h1, h2, h3 and 3

possible answers y1, y2, y3. Let us denote Ph the preference model of human h. Then, we have that for

the humans h1, h2, h3 follows these preference models.

Ph1
(y1 ≻ y2) = 1 Ph1

(y2 ≻ y3) = 0 Ph1
(y3 ≻ y1) = 1

Ph2
(y1 ≻ y2) = 0 Ph2

(y2 ≻ y3) = 1 Ph2
(y3 ≻ y1) = 1

Ph3
(y1 ≻ y2) = 1 Ph3

(y2 ≻ y3) = 1 Ph3
(y3 ≻ y1) = 0.

Notice, that each of these models is transitive. However, the average model defined as P(y ≻ y′) =

1
3

∑
h∈{h1,h2,h3} Ph(y ≻ y′) satisfies P(y1 ≻ y2) = P(y2 ≻ y3) = P(y3 ≻ y1) = 2/3. That is, the average

model is non transitive and can not be modeled by the BT assumption. Therefore, the BT assumption is

data wasteful. In this example, one should consider preferences only from a single human in order to
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Protocol 7 NLHF (Nash Learning from Human Feedback)

1: The learner receives as input: (i) A preference dataset Dpref = {(xi, yiw, yiℓ)}Ni=1, (ii) a prompt dataset
Dprompts = {xi}Nprompts

i=1 , (iii) a preference model function parameters class Φ and (iv) a policy
function parameters class Θ.

2: The learner estimates the preference model as P (· ≻ ·|·;ϕ⋆) with

ϕ⋆ = argmin
ϕ∈Φ

ℓ̂PM(ϕ) := −
N∑
i=1

log
(
P(yiw ≻ yil |xi;ϕ)

)
.

3: Sample yi ∼ π(·|xi; θ) and y′,i ∼ π(·|xi; θ′) for all i ∈ [N ].
4: The learner computes the stochastic objective

ℓ̂NLHF(θ, θ
′) :=− 1

|Dprompts|

N∑
i=1

P(yi ≻ y′,i|xi;ϕ⋆)

+ βDKL(π
(
·|xi; θ

)
∥πref

(
·|xi
)
)− βDKL(π

(
·|xi; θ′

)
∥πref

(
·|xi
)
),

5: The learner outputs πθ⋆ with θ⋆ = argminθ∈Θmaxθ′∈Θ ℓ̂NLHF(θ, θ
′).

make the BT assumption valid. Not enforcing the BT assumption, allows to use more data, i.e. preferences

from all the three humans. Given this motivation, recent works [26] investigated learning from preferences

directly. The training happens in two stages as in RLHF: the first step uses maximum likelihood to learn

a preference model rather than a reward function, and a second step identifies a Nash equilibrium rather

than an optimal policy.

a) Preference learning: First, we learn via maximum likelihood, a preference model P : X×Y×Y →

[0, 1] such that P(y ≻ y′|x) is the probability that certain oracle that produced the preferences in the

dataset Dpref prefers answer y over y′ following the prompt x. Mirroring the procedure in RLHF, let us

consider a preference model class with parameters class Φ, i.e. {P(· ≻ ·|·;ϕ)}ϕ∈Φ, consider the following

minimization problem (where PM stands for preference modelling):

ϕ⋆ = argminϕ∈Φ ℓPM(ϕ) := −Ex∼ρ,(yl≺yw)∼πP (·|x)

[
log
(
P(yw ≻ yl|x;ϕ)

)]
. Protocol 7 shows how to

do this practically, minimizing an empirical unbiased estimate for ℓPM.

b) Nash equilibrium learning: After learning the preference model, [26] proposes to find the unique

Nash equilibrium of the objective ℓ̂NLHF in Protocol 7. Due to the min max structure of this problem,

the optimization side is more delicate and require careful conservative updates to ensure last iterate

convergence. However, this additional complexity on the optimization side comes at the benefit of dropping

the BT assumption and therefore accommodating a larger number of preference data.

Experiments in [26, Table 1] shows that the NLHF method dubbed MD1 achieves win rate of 0.598

against the same model aligned via RLHF on a text summarization task. The winner model is decided
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Protocol 8 GRPO (Group Relative Policy Optimization) [27]

1: Receive policy class parameters Θ, and reward model parameters ϕ⋆. Initialize θ1.
2: for t = 1, . . . , T do
3: Sample G outputs {yi,j}Gj=1 ∼ π(·|xi; θt) and xi ∈ Dprompts.
4: The learner computes rewards {rj}j=1,...,G for each output yi,j .
5: The learner computes the estimated advantage function Âj = (rj − mean({rj}))/std({rj})
6: The learner computes

ℓGRPO(θ) =
1

|Dprompts|
∑

i∈[Nprompts]

1

G

j∑
j=1

[
π(yi,j |xi; θ)
π(yi,j |xi; θt)

Âj − β
( π(yi,j |xi; θ)
π(yi,j |xi; θt)

− log
π(yi,j |xi; θ)
π(yi,j |xi; θt)

− 1
)]

7: θt+1 ≊ argminθ∈Θ ℓGRPO(θ) computed via SGD, Adam or other optimizers.
8: end for
9: The learner outputs πθ⋆ .

quering a large LLM. The drawback of this method is that it requires solving a minmax optimization

problem rather than the simpler minimization problem required in RLHF.

E. Learning from data verifiers via Rule-Based Reinforcement Learning

Before closing this section, we would like to mention a recently developed alignment strategy, which

is fundamental for training powerful reasoning models such as DeepSeek-R1 [28]. The general idea is

simple: To teach the model to solve many challenging math, STEM or coding related problems, a reward

model is no longer needed. Rather, one can simply use a solution verifier, which simply verifies whether

the solution is correct or not. In [28], the authors proposed to use LeetCode tests case as verifier for

programming questions, while creating a dataset of mathematical problems from OpenWebMath for math

verifiers. In particular, in the reproduction of the Deepseek R1, [29] adopted the rule-based reward system

that comprises two types of rewards: Format Reward and Answer Reward. Here, we show the detailed

reward designed in [29] as below:

rformat =

1, if format is correct

−1, if format is incorrect
, ranswer =


2, if the answer fully matches the ground truth

−1.5, if the answer partially mismatches the ground truth

−2, if the answer cannot be parsed or is missing

where rformat is the format reward and ranswer is the answer reward.

However in [28], it is noted that the model which optimizes purely the rule based reward, i.e. DeepSeek-

R1-Zero leads to poor language skills suffering for example from language mixing. To avoid this fact,

[28] uses multi-stage training with learning with verifiable rewards at the initial stage and SFT/preference

based learning used at the final stages to improve the language skills of the model. In the initial stage,

the rule based reward is optimized via GRPO in Algorithm 8.
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V. A UNIFIED PERSPECTIVE FOR LLM ALIGNMENT

So far we have discussed a number of state-of-the-art approaches for LLM alignment. Generally

speaking, they can be divided into two categories: alignment using the demonstration data, and alignment

using the preference data. One might wonder why algorithms belonging to these two categories are so

different (e.g., supervised learning vs. reward learning + RL). After all, both families of algorithms are

trying to learn from some forms of human preference. In this section, we provide a perspective derived

from the stochastic choice model discussed in Section III, which serves to unify different approaches of

alignment.

Recall that in Section III, we have introduced two estimation problems (7) and (8). Although they use

different data sets (i.e. the former uses the preference dataset Dpref , while the latter uses the demonstration

dataset Ddemo), they share a few common properties: (1) both learn reward functions, and (2) both

maximize some form of the likelihood function. These observations lead to the following questions:

• (Q1) In the alignment algorithms discussed in the previous section, why do we only learn reward

from the preference dataset, but not from the demonstration dataset?

• (Q2) Since both problems maximize the likelihood functions, why do we need to separate the

alignment process into different stages (i.e., SFT and RLHF)?

In the following, we will first address question (Q1) by formulating a new problem that learns both the

reward and the policy from Ddemon. We will show that this formulation is closely related to a class of RL

problem called inverse RL (IRL), and we will derive efficient solution methods from the IRL literature.

Somewhat unexpectedly, it turns out that a number of algorithms discussed in the previous section, such

as SFT and SPIN, can be viewed as special cases of the proposed approach.

Furthermore, leveraging the development in (Q1), we address (Q2) by introducing a framework that

unifies the two stages of alignment problem into a single stage. The new framework, named Alignment

with Integrated Human Feedback (AIHF), jointly learns a reward and a policy by maximizing the likelihood

of both Ddemon and Dpref . We will demonstrate the generality of AIHF by discussing its connection with

various alignment algorithms introduced in the previous section.

A. Jointly learning policy and reward from the demonstrations data

To jointly learn a reward and a policy from the demonstration dataset Ddemon, let us leverage the

estimation problem (8) derived from the stochastic choice theory. Given the demonstration (x, y) sampled
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from an expert policy πE, we can directly translate (8) with the optimal reward defined in (4), into the

LLM alignment setting and obtain the following problem [30]:

max
ϕ

ℓIRL(ϕ) := Ex∼ρ,y∼πE(·|x)

[
log π⋆

rϕ (y|x)
]

(19a)

π⋆
rϕ := argmax

π
Ex∼ρ,y∼π(·|x) [r(x, y;ϕ)]− βEx∼ρ[DKL(π (·|x) ∥πref (·|x))]. (19b)

Compared with the SFT formulation in (9), we see that (19) shares the same objective but has an additional

constraint which ensures that the policy has to be an optimal policy under a certain reward model.

Problem (19) falls under the class of inverse reinforcement learning (IRL) problems, where the objective

is to jointly learn an optimal policy and the underlying reward model, assuming access to expert policy

samples. Similarly, as noted in Sec. IV-A1, the conventional SFT formulation (9) is a form of behavioral

cloning that aims to replicate an expert’s policy. However, behavioral cloning generally exhibits poorer

generalization than IRL. Indeed, [31] shows that behavioral cloning is a suboptimal approach to learning

from demonstrations, leading to regret bounds that scale quadratically with the problem horizon. This

arises due to distribution shift – the learned policy may encounter states not covered in the demonstration

data, causing compounding errors that increasingly deviate from the expert trajectory over time.

In contrast, IRL mitigates distribution shift and achieves better generalization by explicitly modeling the

expert’s reward function, rather than simply mimicking actions. By recovering an estimate of the reward

structure that drives expert behavior, IRL enables the agent to make goal-directed decisions even in unseen

states. This contrasts with behavioral cloning, which lacks an underlying objective thus often struggles

in novel situations. Additionally, optimizing policies with a learned reward function allows for adaptive

behavior, where the agent can deviate from expert demonstrations in a way that still aligns with the

inferred intent. As a result, IRL-based policies are generally more robust in complex environments where

state distributions differ from training data [32]. Recognizing the limitations of standard SFT methods,

particularly regarding distribution shift, researchers have proposed a range of IRL-based techniques

[33]–[36] to more effectively leverage demonstration data.

Unfortunately, the IRL problem (19) appears to be much involved compared to the SFT problem (9),

as it involves two levels of optimization problem stacked in hierarchy. It turns out that there is a way to

simplify it. In [37], [38], the authors show that when a finite demonstration dataset Ddemo := {(x, y)} is

available, one can consider the following surrogate objective:

max
ϕ

min
θ

L̃(ϕ, θ;Ddemo) := E(x,y)∼D,y′∼π(·|x;θ)

[
r(x, y;ϕ)− r(x, y′;ϕ) + βDKL

(
π(·|x; θ)∥πref(·|x)

)]
.

(20)
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As a remark, one can plug the closed-form expression of the optimal policy π∗
rϕ into the maximum

likelihood objective (19a), then one can see that the surrogate objective (20) is a finite-sample version of

the IRL problem (19). Further, as the number of demonstration data becomes large, problem (20) becomes

asymptotically close to problem (19), in the sense that their optimal solutions become asymptotically

close to each other (with provable bounds) [37]. The surrogate objective in equation (20) offers an

alternative interpretation of the IRL problem formulated in (19) from the adversarial training perspective.

Specifically, the reward estimator is optimized to distinguish between expert demonstrations and self-

generated trajectories (the max problem), while the policy is optimized to generate trajectories which can

best mimic the expert demonstrations and the self-generated trajectories (the min problem). Therefore, it

is reasonable to develop practical algorithms based on (20), which is apparently much easier to optimize.

As suggested in [38], one can use the following alternating algorithm to optimize the reward and the

policy:

ϕt+1 := argmin
ϕ

−E(x,y)∼D,y′∼π(·|x;θt)

[
ℓ
(
r(x, y;ϕ)− r(x, y′;ϕ)

)]
. (21a)

θt+1 := argmax
θ

Ex∼ρ,y∼π(·|x;θ) [r(x, y;ϕt+1)]− βEx∼ρ[DKL(π (·|x; θ) ∥πref (·|x))]. (21b)

Note that if we directly apply the above gradient descent/ascent algorithm to (20), then ℓ(·) in (21a)

should be a linear function ℓ(x) = x. Considering that the use of a linear loss function results in an

unbounded objective value, one can typically choose some easy-to-optimize loss functions such as log

sigmoid function ℓ(z) := log σ(z). Next, let us make some remarks about the algorithm (21).

Connection to the RLHF. We observe that (21) is an iterative update scheme which integrates the reward

and policy updates. This closely resembles the RLHF pipeline, where both the reward and policy are

updated. There are two major differences. First, in RLHF the reward and the policy are updated in two

separate stages, while here they are updated iteratively. Second, since only demonstration data Ddemon are

available, when learning a reward model in (21a), the demonstration is always treated as the preferred data,

while the nonpreferred data are the model-generated responses. This is reasonable, under the assumption

that expert data are of high quality. In practice, RLHF-based and IRL-based methods are not competitive

but complementary. It’s common to leverage both demonstration and preference datasets jointly in the

training pipeline to achieve better performance [39], [40]. In [41], [42], the connections between IRL and

RLHF have been discussed. In general, it can be shown that RLHF could be a special form of IRL. In (15),

given the reward parameter ϕ, the optimal policy has the closed-form π⋆
rϕ(y|x) =

πref(y|x) exp(β−1r(x,y;ϕ))
Z(x,ϕ,β) .

With this result, we can now obtain a model for the likelihood that sequence yw is preferred over yl. By

the independence of irrelevant alternatives property [43] of the optimal choice µϕ, when the set of feasible

choices is reduced to just the the two-tuple {yl, yw}, the likelihood that sequence yw is preferred over
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yl is given by Pπ∗
rϕ
(yw ≻ yl|x) :=

π∗
rϕ

(yw|x)
π∗
rϕ

(yw|x)+π∗
rϕ

(yl|x) . This motivates the choice model as the following

likelihood function:

L(R(·;ϕ)) = E(yw≻yl)

[
log

π∗
rϕ
(yw|x)

π∗
rϕ
(yw|x) + π∗

rϕ
(yl|x)

]
= E(yw≻yl)

[
log

πref(yw|x) exp(β−1r(x, yw;ϕ))

πref(yw|x) exp(β−1r(x, yw;ϕ)) + πref(yl|x) exp(β−1r(x, yl;ϕ))

]
.

When πref equals to the uniform distribution, this model is equivalent to the BTL model in RLHF:

L(R(·;ϕ)) = ℓRM(ϕ) := −E(yw≻yl)

[
log
(
σ
(
r(x, yw;ϕ)− r(x, yl;ϕ)

))]
. (22)

Connection to SPIN. There is also an interesting connection between (20) and the SPIN introduced in

Sec. IV-A2. Note that in (16), we have shown that the reward difference can be expressed by using the

definition of the optimal policy. By plugging (16) into (21a), we obtain the following problem:

min
ϕ∈Φ

ℓ(ϕ) := −E(x,y)∼D,y′∼π(·|x;θt)

[
ℓ
(
β log

(
π⋆
rϕ(y|x)

πref(y|x)

)
− β log

(
π⋆
rϕ(y

′|x)
πref(y′|x)

))]
s.t. π⋆

rϕ := argmax
π

Ex∼ρ,y∼π(·|x) [r(x, y;ϕ)]− βEx∼ρ[DKL(π (·|x) ∥πref (·|x))].

Similarly, as discussed in the DPO approach, one can make two simplifications (1) remove the constraints

that the policy has to be optimal w.r.t. some reward; (2) directly parameterize the resulting policy using θ.

Then the above problem will be reduced precisely to the SPIN formulation (12).

To further compare the SPIN and IRL, note that at each iteration, once the synthetic preference dataset

has been constructed where the preferred data are the demonstration / SFT data and the nonpreferred data

are the model-generated data, SPIN directly leverages the synthetic preference dataset and runs DPO to

update the policy, while the IRL approach considers two separate steps to update both the reward model

and the policy model. Similarly to the comparison of DPO and RLHF, here we expect that IRL enjoys

better generalization and can alleviate the distribution shift issue through leveraging online generations in

the RL training step, but at the cost of a heavier memory burden and additional online generations.

In summary, the method discussed in this section addressed the question (Q1) we raised at the beginning

of this section – instead of directly performing SFT on the demonstration data Ddemon, it is also possible

to learn a reward function from such a dataset, and we expect that the resulting model will generalize

better. Later we will use numerical results to confirm such an advantage.

B. Jointly learning policy and reward from Integrated Human Feedback

Next, let us address question (Q2), by developing an approach that integrates different steps of the

alignment process. Toward this end, we observe that by leveraging the IRL-based formulation (19), learning
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from the demonstration data Ddemon becomes very similar to the standard RLHF approach discussed in

Section IV-B, which learns preference data Dpref – both maximize the likelihood of observing the data,

while explicitly learning a reward function. Therefore, using reward learning as a common component,

it is straightforward to integrate these problems together. In [41] the authors considered the following

problem, which extends the IRL problem (19) by adding the BT loss (13):

max
ϕ

ℓAIHF(ϕ) := γEx∼ρ,y∼πE(·|x)

[
log π⋆

rϕ (y|x)
]

+ αEx∼ρ,(yl≺yw)∼πP (·|x)

[
ℓ
(
r(x, yw;ϕ)− r(x, yl;ϕ)

)]
(23a)

π⋆
rϕ := argmax

π
Ex∼ρ,y∼π(·|x) [r(x, y;ϕ)]− βEx∼ρ[DKL(π (·|x) ∥πref (·|x))], (23b)

where γ ≥ 0 and α ≥ 0 are two tuneable parameters. The authors refer to this approach as AIHF

(Alignment with Integrated Human Feedback).

To design an algorithm to solve problem (23), one can combine the RLHF Protocol 3 and the IRL

algorithm in (21), to arrive at the following iterative algorithm (where t denotes the iteration number):

ϕt+1 := argmin
ϕ

−γE(x,y)∼Ddemo,y′∼π(·|x;θt)

[
ℓ
(
r(x, y;ϕ)− r(x, y′;ϕ)

)]
− αE(x,yw,yl)∼Dpref

[
ℓ
(
r(x, yw;ϕ)− r(x, yl;ϕ)

)]
, (24a)

θt+1 := argmax
θ

Ex∼ρ,y∼π(·|x;θ) [r(x, y;ϕt+1)]− βEx∼ρ[DKL(π (·|x; θ) ∥πref (·|x))]. (24b)

In fact, compared to the IRL algorithm (21), the only difference is that the reward is learned from both

preference dataset and the demonstration dataset. In [41], the authors observed that learning reward

function from a diverse set of data can be more robust to situations, e.g. when there is an imbalance

between the demonstration and preference data, resulting in a more robust policy model; see [41, Sec.3.4]

for detailed discussion and a few examples showcasing such an advantage.

Finally, we note that AIHF has several notable special cases. First, if one chooses γ = 0, then reward

learning and policy learning become completely decoupled, reducing to the orignal two-step RLHF

approach discussed in Section IV-B. Second, similarly to DPO, one can plug in the optimal solution of

the lower-level problem (as given in (16)) to the upper-level, remove the lower-level constraint (23b), and

directly parameterize the policy. The resulting problem becomes:

max
θ

Ex∼ρ,y∼πE(·|x;θ) [log π (y|x)]+αEx∼ρ,(yl≺yw)∼πP (·|x)

[
ℓ
(
β log

(
π(yw|x; θ)
πref(yw|x)

)
−β log

(
π(yl|x; θ)
πref(yl|x)

))]
.

This corresponds to the Regularized Preference Optimization (RPO) approach proposed in [44]. Moreover,
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if we drop (24b) and apply the DPO trick to (24) to optimize:

max
θ

E(x,y)∼Ddemo,y′∼π(·|x;θt)

[
ℓ
(
β log

(
π(y|x; θ)
πref(y|x)

)
− β log

(
π(y′|x; θ)
πref(y′|x)

))]
+ αE(x,yw,yl)∼Dpref

[
ℓ
(
β log

(
π(yw|x; θ)
πref(yw|x)

)
− β log

(
π(yl|x; θ)
πref(yl|x)

))]
.

Then it corresponds to the Self-Play with Adversarial Critic (SPAC) approach proposed in [45].

VI. DATASET, BENCHMARKS, AND EVALUATION

In this section, we will introduce a few datasets and benchmarks that are often used to evaluate

alignment algorithms. Further, we will present some evaluation results comparing a number of algorithms

we have discussed so far.

A. Dataset

Typically, datasets used in LLM alignment can be categorized into two types: (1) datasets containing

multiple responses for a given prompt, with human (or AI-generated) rankings indicating preference, and

(2) datasets containing a single response per prompt, which serve as demonstration datasets.

Preference Dataet. Some of the most well-known preference datasets include: (1) HH-RLHF 1(Anthropic’s

Helpful-Harmless RLHF), a dataset collected by Anthropic that includes human preference annotations over

pairs of responses, focusing on helpfulness (how well the response answers the query) and harmlessness

(avoiding toxic, biased, or dangerous content). (2) UltraFeedback 2, which consists of 64K prompts, each

accompanied by four model completions from a diverse set of open and proprietary models. Preference

labels are provided by GPT-4 based on criteria such as helpfulness and honesty. This dataset has been

used to train state-of-the-art chat models such as Zephyr-7B-β.

Demonstration Dataset. Some of the most well-known demonstration datasets include: (1) the TL;DR

dataset 3, a dataset collected from Reddit where users provide short summaries (TL;DRs) of their posts.

(2) UltraChat 4, an open-source, large-scale, multi-turn dialogue dataset generated using Turbo APIs. It

contains 774K training samples and is designed to enhance instruction-following capabilities.

Self-Generated Dataset Besides using public datasets, another line of research employs self-generated

datasets for policy or reward optimization. For example, given a prompt, [46] samples one or more

responses from a policy π, labels them as preferred or dispreferred, and then updates the policy using

1Available at https://huggingface.co/datasets/Anthropic/hh-rlhf.
2Available at https://huggingface.co/datasets/openbmb/UltraFeedback.
3Available at https://huggingface.co/datasets/CarperAI/openai_summarize_tldr.
4Available at https://huggingface.co/datasets/stingning/ultrachat.
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the EM algorithm based on these individual preferences. Similarly, [47] also utilizes self-generated

data to improve the policy model. This approach can provide more uniform coverage over the entire

prompt-response space.

B. Benchmark datasets and benchmark models

AlpacaEval. AlpacaEval [48] is an LLM-based automated evaluation metric – it operates on a fixed set

of 805 instructions chosen to be representative of user interactions on the Alpaca web demo. A GPT-4

turbo-based evaluator then compares the responses head-to-head and outputs the probability of preferring

the evaluated model. The win rate is then computed as the expected probability that the auto-evaluator

prefers the evaluated model’s output on the 805 instructions. This win rate serves as a performance

measure of the evaluated LM chatbot.

Open LLM Leaderboard. The HuggingFace Open LLM Leaderboard framework [49] is widely adopted

for evaluating LLMs. This comprehensive evaluation suite assesses LLM performance across six key tasks:

commonsense reasoning, including ARC, HellaSwag, and Winogrande; multi-task language understanding,

as measured by MMLU; truthfulness assessment, which evaluates a model’s tendency to mimic human

falsehoods using TruthfulQA; and mathematical problem-solving, assessed via GSM8K.

MT-Bench. MT-Bench [50] is a benchmark consisting of 80 high-quality multi-turn questions, specifically

designed to evaluate multi-turn conversation and instruction-following capabilities in LLMs. It focuses on

common real-world use cases while incorporating challenging questions to effectively differentiate model

performance. To ensure comprehensive coverage, the benchmark is structured around eight key categories

of user prompts: writing, roleplay, extraction, reasoning, mathematics, coding, knowledge I (STEM), and

knowledge II (humanities/social sciences).

HELM HELM [51] aims to provide a holistic evaluation of large language models (LLMs). It currently

implements a core set of 16 scenarios and 7 metrics. These scenarios—defined as triples of (task, domain,

language)—cover six user-facing tasks (e.g., question answering, information retrieval, summarization,

toxicity detection), span multiple domains (e.g., news, books), and are currently limited to English.

However, they do include a range of English varieties, such as African-American English and regional

dialects from different English-speaking countries.

Artificial Analysis5 Artificial Analysis is an independent AI benchmarking and analysis company. It

provides objective evaluations and insights to assist developers, researchers, businesses, and other AI

users in selecting the most suitable AI technologies for their specific use cases. The company compares

5Available at https://artificialanalysis.ai/leaderboards/models.

April 28, 2025 DRAFT

https://artificialanalysis.ai/leaderboards/models


25

and ranks the performance of over 30 large language models (LLMs) across key metrics, including output

quality, cost, performance, and speed (measured by tokens per second and time-to-first-token), as well as

context window size and other relevant factors.

Reasoning Benchmark. Several challenging benchmarks are also used to evaluate reasoning ability. For

example, mathematical benchmarks such as AIME (American Invitational Mathematics Examination),

AMC (American Mathematics Competitions), and OlympiadBench assess problem-solving skills in

competitive mathematics. Additionally, datasets like the Knights and Knaves (K&K) puzzles and LeetCode

are commonly used for evaluating logical reasoning and coding proficiency.

RewardBench. The RewardBench [52] offers a comprehensive set of evaluations for reward models,

encompassing key aspects such as chat, instruction-following, coding, safety, and other critical metrics for

fine-tuned language models. The RwardBench dataset includes a combination of pre-existing evaluation

prompt-completion pairs as well as newly curated examples specifically for this project.

C. Numerical Results

In this subsection, we will present some evaluations results of different alignment approaches. First, we

will compare IRL approach (21) with other learning-from-demonstration approaches like SFT (Protocol

1) and SPIN (Protocol 2) to illustrate their differences. Then we will compare a number of algorithms

that leverages preference data to further improve the LLM alignment.

1) Demonstration-only setting: We first present experiments on the UltraChat dataset [53]. We initialize

the policy model and reward model from the public checkpoint Mistral-7b-SFT-Beta 6, which is an SFT

model fine-tuned from the UltraChat dataset and the base model Mistral-7B-v0.1 7.

Since UltraChat is a dataset containing only demonstration data, we construct a synthetic preference

dataset to train the reward model for the IRL approachs. Specifically, in the reward learning step for

each IRL iteration, we treat the demonstration data from UltraChat as the preferred responses and the

outputs generated by the IRL policy model as the rejected responses. This approach allows us to create

preference pairs without requiring explicit human annotations.

We evaluate reward models obtained by different methods using the RewardBench, assessing performance

across various categories relevant to language understanding and generation. For SPIN, since there is no

explicit reward model, we evaluate their performance in RewardBench according to the implicit reward

expressed as r(s, a) = log π(a|s)
πref(a|s) where the expression is inspired by (16), and in our experiment πref is

6HuggingFaceH4/mistral-7b-sft-beta, https://huggingface.co/HuggingFaceH4/
mistral-7b-sft-beta

7mistralai/Mistral-7B-v0.1. https://huggingface.co/mistralai/Mistral-7B-v0.1
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Fig. 6: Evaluation of policy and reward models.

the SFT model. For SFT model, we evaluate its performance on the RewardBench by using the implicit

reward defined as r(s, a) = log πSFT(a|s). The results, illustrated in Figure 6(b), show that the reward

model trained via IRL achieves significant improvements compared to both the base model (initialized

from the SFT model) and the implicit reward model extracted from the policy model trained using

SPIN [15]. These findings indicate that high-quality demonstration datasets can effectively enhance reward

models through leveraging IRL method which can construct synthetic preference pairs through pairing

high-quality demonstrations and model generations.

We then evaluate different LLM policy models using the Open LLM Leaderboard [54] and

Tasks First turn Second turn Average

mistral-7b-sft-beta 5.66 5.09 5.37

SPIN-Iter1 6.75 5.56 6.16

SPIN-Iter2 3.18 3.41 3.29

IRL-Iter1-Policy 6.71 5.96 6.33

IRL-Iter2-Policy 7.01 6.19 6.60

TABLE III: Evaluation of Policy Models in MT-Bench.

MT-Bench [50]. As shown in Fig 6 and

Table III, the IRL-based method outperforms

both the mistral-7b-sft-beta checkpoint and

SPIN method (running either once or twice

of self-generation). These results highlight the

potential of leveraging high-quality demon-

strations and synthetic preferences to enhance

language model performance in dialogue generation tasks.
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Fig. 7: Evaluations of different alignment approaches across the six
benchmark datasets.

2) Aligning with Both Demonstra-

tions and Pairwise Comparisons: In

this section, we evaluate a number of

alignment algorithm: (1) DPO [55] and

IPO [56], (2) SPAC [45], (3) RPO [44],

(4) SPIN [15] and (5) AIHF. For this
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Reward Model Chat Chat Hard Safety Reasoning Average

DPO Reward Model 37.43% 55.92% 64.14% 47.33% 51.21%
BTL Reward Model 95.11% 56.58% 63.69% 69.22% 71.15%
AIHF Reward Model 94.41% 55.37% 63.98% 76.75% 72.63%

TABLE IV: Evaluation of Reward Models in Reward-Bench.

experiment, we use UltraFeedback as the

preference dataset and UltraChat200k8

as the demonstration dataset. The base model for our experiments is mistral-7b-sft-beta9 [57], which is

also used to initialize the reward model.

Fig. 7 evaluates the quality of the aligned models trained on different methods. Furthermore, in Table

IV, we also evaluate the reward models estimated using different methods (DPO, standard preference

learning and AIHF) over the popular benchmark RewardBench [52]. The BTL reward model is trained in

the RLHF pipeline using the loss function defined in (13). The DPO reward is obtained by training a

DPO loss on preference data (UltraFeedback) and use the following implicit reward r(s, a) = log π(a|s)
πref(a|s)

where πref is the SFT model. For AIHF, we use the demonstration data UltraChat and generate the

non-preferred sample using the base model (mistral-7b-stf-full), then train a reward with UltraFeedback

and UltraChat data combined. It can be seen that the reward model estimated by AIHF which incorporates

both demonstrations and preference achieves better performance, especially on the reasoning tasks.

VII. CONCLUDING REMARKS

In this work, we provided an in-depth discussion on aligning LLMs with human feedback, exploring

both mathematical foundations and state-of-the-art algorithmic approaches. Despite significant progress in

aligning LLMs with human values and preferences, several open challenges remain.

LLM alignment methods continue to face challenges related to scalability and effectiveness. Learning

robust and high-quality policies from reward models is challenging and requires extensive human annotation

and computation. Existing RL-based fine-tuning methods, such as PPO, demand careful hyperparameter

tuning and require a huge amount of compute resources. Moreover, reward hacking remains a significant

problem – where models find unintended shortcuts to maximize reward scores without genuinely improving

response alignment. Instead of producing responses that align with human intent, models can generate

outputs optimized purely for high reward function scores, potentially leading to unreliable behavior.

Addressing these concerns requires the development of more efficient RL algorithms, robust and diverse

8Available at https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k.
9Available at https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta.
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reward functions (e.g., a combination of trained reward functions and the verifiable ones mentioned in

Sec. IV-E), and hybrid approaches that integrate supervised learning with RL to improve scalability and

alignment fidelity.

Finally, we point out that the SP community has a wealth of expertise that can contribute significantly

to alignment research. Given the complexity of aligning LLMs with human preferences, SP methodologies

offer valuable tools and frameworks that can improve both the theoretical and practical aspects of alignment.

For example, many alignment techniques, including IRL and preference-based optimization discussed in

this article, require solving complex inverse problems. SP researchers’ expertise in developing effective

estimators for these problems, as well as finding effective and performance guaranteed algorithms can help

improve reward estimation and enhance alignment robustness. Another potential key contribution is in

noise reduction for human feedback data. Human-labeled preference datasets often contain inconsistencies

and biases, which can negatively impact alignment performance. Signal processing techniques, such

as denoising algorithms, robust statistical modeling, and anomaly detection, can be used to refine and

filter noisy preference data. These methods can help improve the quality of preference-based learning

by ensuring that reward models are trained on reliable and high-fidelity data. Furthermore, efficient

sampling and data compression techniques from SP can enhance the scalability of alignment methods.

Many alignment approaches require large-scale datasets and reinforcement learning processes, which

are computationally expensive. SP methods for efficient data representation, dimensionality reduction,

and signal compression can help reduce computational overhead and improve training efficiency, making

alignment methods more feasible at scale. Finally, multi-modal data processing is becoming increasingly

relevant as alignment research expands to include models that process text, images, speech, and video.

The SP community’s experience in multi-modal signal fusion, feature extraction, and cross-modal learning

can be instrumental to improve human feedback mechanisms across different modalities.
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