Adaptation and learning
EE-566
Video Lecture Recordings from Spring 2021 for your Convenience
EE-566 Adaptation and Learning
13.2, EE-566: Lecture 13.2
31.05.2021, 15:12
Lecture 13: Neural networks, Part 2
13.1, EE-566: Lecture 13.1
31.05.2021, 13:48
Lecture 13: Neural networks, part 1
12.2, EE-566: Lecture 12.2
19.05.2021, 12:41
Lecture 12, Part 2: Generalization theory
12.1, EE-566: Lecture 12.1
19.05.2021, 12:40
Lecture 12, Part 1: Kernel methods
11.3, EE-566: Lecture 11.3
10.05.2021, 17:00
Lecture 11: SVM, Part 3
11.2, EE-566: Lecture 11.2
10.05.2021, 16:59
Lecture 11: Perceptron, Part 2
11.1, EE-566: Lecture 11.1
10.05.2021, 16:58
Lecture 11: Logistic Regression, Part 1
10.3, EE-566: Lecture 10.3
06.05.2021, 10:40
Lecture 10: PCA
10.2, EE-566: Lecture 10.2
06.05.2021, 10:38
Lecture 10: Linear discriminant analysis
10.1, EE-566: Lecture 10.1
06.05.2021, 10:33
Lecture 10: Naive Bayes classifier
9.2, EE-566: Lecture 9.2
26.04.2021, 18:50
Lecture 9: Nearest neighbor rules, Part 2
9.1, EE-566: Lecture 9.1
26.04.2021, 18:47
Lecture 9: L1 Regularization, Part 1
8.2, EE-566: Lecture 8.2
19.04.2021, 16:10
Lecture 8.2: Regularization
8.1, EE-566: Lecture 8.1
19.04.2021, 15:39
Lecture 8: Least Squares
7.2, EE-566: Lecture 7.2
12.04.2021, 19:14
Lecture 7: Maximum Likelihood
7.1, EE-566: Lecture 7.1
12.04.2021, 19:14
Lecture 7: Mean-square-error inference
6.2, EE-566: Lecture 6.2
29.03.2021, 17:25
Lecture 6: Bayesian Inference, Part 2
5.2, EE-566: Lecture 5.2
29.03.2021, 15:07
Lecture 5: Mean-square-error inference
6.1, EE-566: Lecture 6.1
29.03.2021, 14:42
Lecture 6: Bayesian inference
5.1, EE-566: Lecture 5.1
22.03.2021, 15:03
Lecture 5: Convergence analysis
4.2, EE-566: Lecture 4.2
15.03.2021, 15:57
Lecture 4: Adaptive gradient methods and gradient noise, Part 2.
4.1, EE-566: Lecture 4.1
15.03.2021, 15:09
Lecture 4: Adaptive gradient methods and gradient noise, Part 1.
3.2, EE-566: Lecture 3.2
08.03.2021, 17:18
Lecture 3: Stochastic optimization and adaptive gradient methods
3.1, EE-566: Lecture 3.1
08.03.2021, 14:46
Lecture 3: Stochastic optimization and adaptive gradient methods
2.2, EE-566: Lecture 2.2
01.03.2021, 16:13
Lecture 2: Proximal operator and gradient descent
2.1, EE-566: Lecture 2.1
01.03.2021, 14:45
Lecture 2: Proximal operator and gradient descent
1.1, EE-566: Lecture 1.1
26.02.2021, 18:33
Lecture 1: Vector differentiation and convex functions
1.2, EE-566: Lecture 1.2
26.02.2021, 18:32
Lecture 1: Vector differentiation and convex functions, Part 2.