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EE566 ADAPTATION AND LEARNING Instructor: Ali H. Sayed
Homework Assignment #4 Due: May 26, 2025

1) (Chapter 55) Consider M−dimensional feature vectors with independent Boolean entries, h ∈
{0, 1}M . Each feature vector belongs to one of two classes, denoted by γ ∈ {±1} with P(γ =
+1) = π > 0. Assume the individual entries of h are distributed according to the probabilities:

P(h(m) = 1|γ = +1) = θ+m > 0, P(h(m) = 1|γ = −1) = θ−m > 0

Under the independence assumption, the Bayes classifier reduces to the naı̈ve Bayes construction.
We wish to relate the latter in this problem to the logistic regression form. Thus, given an arbitrary
feature vector h, the Bayes classifier determines its class by seeking the label that solves:

γ•(h) = argmax
γ∈{±1}

{
πγ P(h = h|γ = γ)

}
where π+1 = π and π−1 = 1−π. Show that, in this case, the posterior probability of the label given
the feature vector takes the following form in terms of the logistic function:

P(γ = +1|h = h) = σ(hTw − θ)

where σ(z) = 1/(1 + e−z) and

−θ ∆
= ln

( π

1− π

)
+

M∑
m=1

ln
(1− θ+m

1− θ−m

)
wm

∆
= ln

(θ+m(1− θ−m)

θ−m(1− θ+m)

)
, m = 1, 2, . . . ,M

Solution: Using Bayes rule we have that

P(γ = +1|h = h) =
P(γ = +1)P(h = h|γ = +1)

P(h = h)

P(γ = −1|h = h) =
P(γ = −1)P(h = h|γ = −1)

P(h = h)

where

P(γ = +1) = π

P(γ = −1) = 1− π

P(h = h|γ = +1) =
M∏

m=1

θ
h(m)
+m (1− θ+m)

1−h(m)

P(h = h|γ = −1) =
M∏

m=1

θ
h(m)
−m (1− θ−m)

1−h(m)

Using the fact that
P(γ = +1|h = h) + P(γ = −1|h = h) = 1

we can solve for P(h = h) and find that

P(h = h) = π
M∏

m=1

θ
h(m)
+m (1− θ+m)

1−h(m) + (1− π)
M∏

m=1

θ
h(m)
−m (1− θ−m)

1−h(m)
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It follows that

P(γ = +1|h = h)

=
π
∏M

m=1 θ
h(m)
+m (1− θ+m)

1−h(m)

π
∏M

m=1 θ
h(m)
+m (1− θ+m)1−h(m) + (1− π)

∏M
m=1 θ

h(m)
−m (1− θ−m)1−h(m)

=
1

1 + exp
(
log
(

π
1−π

ΠM
m=1

(
θ−m

θ+m

)h(m)(
1−θ−m

1−θ+m

)1−h(m)))
Let

z = − log
( π

1− π

M∏
m=1

(θ−m

θ+m

)h(m)(1− θ−m

1− θ+m

)1−h(m))
= log

( π

1− π

)
+

M∑
m=1

log

((θ+m

θ−m

)h(m)(1− θ+m

1− θ−m

)1−h(m)
)

= log
( π

1− π

)
+

M∑
m=1

log
1− θ+m

1− θ−m

+
M∑

m=1

h(m) log
θ+m(1− θ−m)

θ−m(1− θ+m)

Thus, we take

−θ ∆
= ln

( π

1− π

)
+

M∑
m=1

ln
(1− θ+m

1− θ−m

)
wm

∆
= ln

(θ+m(1− θ−m)

θ−m(1− θ+m)

)
, m = 1, 2, . . . ,M

2) (Chapter 57) Consider the rank-1 approximation problem

xo = argmin
x∈IRN×1

1

4
∥H − xxT∥2F

where H is N×N symmetric and positive definite. If λ1 is the largest eigenvalue of H with unit-norm
eigenvector u1, i.e., Hu1 = λ1u1, then we know by inspection that one solution is xo =

√
λ1u1. In

this problem we wish to examine a gradient-descent recursion for learning a solution. Let λ2 denote
the second largest eigenvalue of H and assume λ1 > λ2.

(a) Is the cost function convex over x? Describe all stationary points of the optimization problem.
(b) Show that the gradient-descent recursion takes the form

xn = xn−1 − µn(xn−1x
T
n−1 −H)xn−1

(c) Select µn = µ/(1 + µ∥xn−1∥2) where µ > 0. Show that the recursion of part (b) reduces to

xn =
1

1 + µ∥xn−1∥2
(I + µH)xn−1

(d) Argue that after N iterations, the direction of xN converges to

xN

∥xN∥
=

(IN + µH)N+1x−1

∥IN + µH)N+1x−1∥
Conclude that xN converges toward the direction of u1 and argue that the algorithm essentially
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reduces to

xn =

(
1 + µλ1

1 + µ∥xn−1∥2

)
xn−1, large n

Solution:

(a) Let P (x) = 1
4
∥H − xxT∥2F denote the cost function. This is not convex. Note in particular that√

λ1u1 and −
√
λ1u1 are 2 different global minimizers.

We introduce the eigendecomposition of H:

H =
N∑

n=1

λnunu
T
n

where the {un} are orthonormal. The gradient vector and the Hessian matrix of the cost function
are given by

∇xTP (x) = ∇xT

{
1

4

(
∥x∥4 − 2xTHx+ ∥H∥2F

)}
= xxTx−Hx

∇2
xP (x) = ∥x∥2IN + 2xxT −H

Therefore, all stationary points should satisfy Hxo = ∥xo∥2xo. These include xo = 0 as well
as xo = ±

√
λnun, where the (λn, un) denote eigenvalue-eigenvector pairs for H . We know that

the global minima are given by ±
√
λ1u1. For the remaining stationary points xo /∈ {±

√
λ1u1},

the Hessian matrix satisfies

uT
1∇2

xP (xo)u1 = uT
1

(
(xo)TxoIN + 2xo(xo)T −H

)
u1

= uT
1 (x

o)Txou1 − uT
1Hu1, since uT

1 x
o = 0

= ∥u1∥2 × ∥xo∥2 − uT
1Hu1

≤ λ2 − λ1, since ∥u1∥2 = 1 and ∥xo∥2 ≤ λ2

< 0

This means that the Hessian matrix has a negative curvature along the u1 direction. Thus, the
other stationary points are saddle points.

(b) The gradient vector relative to x is given by

∇xTP (x) = xxTx−Hx

and, hence,
xn = xn−1 − µn(xn−1x

T
n−1 −H)xn−1

(c) Using the selection for µn we get

xn = xn−1 −
µ

1 + µ∥xn−1∥2
(xn−1x

T
n−1 −H)xn−1

=
(
1− µ

1 + µ∥xn−1∥2
∥xn−1∥2

)
xn−1 +

µ

1 + µ∥xn−1∥2
Hxn−1

=
1

1 + µ∥xn−1∥2
(
xn−1 + µHxn−1

)
=

1

1 + µ∥xn−1∥2
(
IN + µH

)
xn−1
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(d) Iterating we get

xN = (I + µH)N+1x−1

N∏
n=0

1

1 + µ∥xn−1∥2

and, hence,
xN

∥xN∥
=

(IN + µH)N+1x−1

∥IN + µH)N+1x−1∥
The numerator has a form similar to the power iteration: Running rn = Arn−1, which leads to
rn = An+1r−1, converges towards an eigenvector for A corresponding to its largest eigenvalue.
Thus, xN converges towards the direction of the eigenvector of IN + µH corresponding to the
largest eigenvalue at 1 + µλ1; this eigenvector is parallel to u1. In this case,

(I + µH)xn−1 → (1 + µλ1)xn−1

and the recursion reduces to
xn =

(1 + µλ1)

1 + µ∥xn−1∥2
xn−1

3) (Chapter 59) Consider feature vectors h ∈ IRM and a collection of K classifiers (or experts) denoted
by {E1(h), E2(h), . . . , EK(h)}. Each feature vector h ∈ IRM can belong to one of R classes denoted
by r = 1, 2, . . . , R. Introduce an R×K matrix E , which summarizes the opinion of the experts about
the class of h. Each row of index r corresponds to one of the labels, and each column of index c
corresponds to one of the classifiers or experts. The entry Erc indicates the level of confidence that
expert Ec has about feature h belonging to class r. For illustration purposes, we exhibit a matrix E
corresponding to R = 4 labels and K = 5 experts:

E =


labels E1 E2 E3 E4 E5

r = 1 E11 E12 E13 E14 E15
r = 2 E21 E22 E23 E24 E25
r = 3 E31 E32 E33 E34 E35
r = 4 E41 E42 E43 E44 E45


There are many ways by which the information in E can be fused together to arrive at a recommen-
dation for the label r⋆ for h.

(a) The majority of votes approach operates as follows. Each classifier makes its own decision, and
subsequently the label r⋆ that receives the most votes is selected. Argue that this construction
amounts to carrying out the following calculations. The matrix E is transformed into a new R×K
matrix D. Each column of D is a basis vector with a unit entry at the location corresponding to
the largest confidence level for that classifier, and 0 elsewhere. If more that one label corresponds
to the highest confidence level, we select at random one of the entries. Subsequently, we set

r⋆ = argmax
1≤r≤R

∥D∥∞

(b) A second approach is to combine the confidence levels of all classifiers for each label and then
select r⋆ as the label corresponding to the highest aggregate score. Argue that this amounts to
computing

r⋆ = argmax
1≤r≤R

∥E∥∞

(c) Sometimes, a normalization step is included in order to ensure that the confidence levels across
all experts are comparable to each other. In this case, each entry Erc is replaced by the softmax
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value

E ′rc ←
eErc∑R
r=1 e

Er′c

Explain that the choice of r⋆ now results from

r⋆ = argmax
1≤r≤R

C∏
c=1

E ′rc

(d) A third approach corresponds to using E to perform a feature transformation. Specifically, each
feature h is replaced by a new feature vector h′ = col{E} by stacking the columns of E on top
of each other and using the features {h′} to train a new classifier. What is the dimension of the
transformed feature space?

Solution: The reader may refer to Bicego and Loog (2016).

(a) Each classifier c places a 1 at the location corresponding to the largest confidence level in its
column and 0’s elsewhere. The row of the largest confidence level for classifier c is found
through the calculation:

r′ = argmax
1≤r≤R

Erc

Then the matrix D would look like the following example, with the 1’s placed at the locations
(r′, c) for each expert:

D =


labels E1 E2 E3 E4 E5

r = 1 1 1 0 1 0
r = 2 0 0 1 0 0
r = 3 0 0 0 0 1
r = 4 0 0 0 0 1


In this example, the label that receives the most votes is r = 1.

(b) By adding the confidence scores across each row, we determine an aggregate value for the
confidence levels of all experts in that particular label. By selecting the row with the largest
aggregate sum, we are in effect determining the row that corresponds to the ∞−norm of E so
that

r⋆ = argmax
1≤r≤R

∥E∥∞
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(c) Note that

argmax
1≤r≤R

C∏
c=1

E ′rc = argmax
1≤r≤R

ln

{
C∏
c=1

E ′rc

}

= argmax
1≤r≤R

C∑
c=1

ln E ′rc

= argmax
1≤r≤R

C∑
c=1

ln
eErc∑R
r=1 Erc

= argmax
1≤r≤R

C∑
c=1

Erc

= argmax
1≤r≤R

∥E∥∞

= r⋆

(d) The size of h′ is RK while the dimension of the original feature space is M .

4) (Chapter 60) Consider a linearly separable dataset {γ(n), hn} of size N where the labels γ(n) ∈
{−1,+1} and the feature vectors hn are M−dimensional. Linear separability guarantees the existence
of a separation hyperplane {w⋆, θ⋆} such that γ(n)(hT

nw
⋆ − θ⋆) > 0 for n = 0, 1, . . . , N − 1. For

convenience, we extend the feature vectors and the weight vector using construction (60.20) so that
the separability condition ensures γ(n)hT

nw
⋆ > 0. Without loss of generality, we normalize w⋆ to

∥w⋆∥ = 1 and rescale the feature vectors to satisfy ∥hn∥ ≤ 1. In other words, the w⋆ lies on the
unit sphere and the hn lies within the sphere. We apply the perceptron algorithm with step size
parameter µ = 1 to determine a separating hyperplane, starting from the zero iterate. Let w denote
the current iterate value and assume the feature vector h is misclassified. The iterate w is then
updated to wu ← w + γh. Verify that

(a) The margin value is given by m(w⋆) = min0≤n≤N−1 |hT
nw

⋆|.
(b) The inner product of the iterate with w⋆ satisfies wT

uw
⋆ ≥ wTw⋆ +m(w⋆).

(c) The squared Euclidean norm of the iterate satisfies ∥wu∥2 ≤ ∥w∥2 + 1.
(d) Conclude that perceptron encounters at most 1/m2(w⋆) misclassification errors.

Solution:

(a) Using expression (60.30) and the fact that ∥w⋆∥ = 1, it is clear that m(w⋆) = min0≤n≤N−1 |hT
nw

⋆|.
(b) Note that

wT
uw

⋆ = (w + γh)Tw⋆wTw⋆ + γhTw⋆

Using the definition of the margin we have, for any (h, γ) pair:

γhTw⋆ = |hTw⋆| ≥ m(w⋆)

It follows that

wT
uw

⋆ ≥ wTw⋆ +m(w⋆)



7

(c) When a misclassification occurs we have γhTw ≤ 0. It follows that

∥wu∥2 = ∥w + γh∥2

= ∥w∥2 + γ2∥h∥2 + 2γhTw

≤ ∥w∥2 + γ2∥h∥2

≤ ∥w∥2 + 1

(d) Using the results of parts (b) and (c), and after K updates we have

wT
uw

⋆ ≥ Km(w⋆) and ∥wu∥2 ≤ K

and, hence,

Km(w⋆) ≤ wT
uw

⋆

≤ ∥wu∥ ∥w⋆∥
≤ ∥wu∥
≤
√
K

from which we conclude that K ≤ 1/m2(w⋆).

5) (Chapter 61) Consider a collection of N = M + 1 feature vectors {hn} in IRM+1 with individual
entries {hn,m} defined by

hn,m =



√
RM

M + 1
, when m = n

−
√

R

M(M + 1)
, when m ̸= n

for some R > 0. For instance, the coordinates of the 3 feature vectors in IR3 for R = 1 and M = 2
are

h1 = col

{√
2

3
, − 1√

6
, − 1√

6

}

h2 = col

{
− 1√

6
,

√
2

3
, − 1√

6

}

h3 = col

{
− 1√

6
, − 1√

6
,

√
2

3

}
(a) Verify that the feature vectors are centered, i.e.,

h̄ =
1

N

N∑
n=1

hn = 0

(b) Verify that ∥hn∥2 = R2 and hT
nhk = −R/M(M + 1) for any n ̸= k.

(c) Verify that the given feature vectors lie on the hyperplane that passes through the origin and
whose normal direction is the vector 1M+1. In other words, the feature vectors lie on a sphere
in IRM , which in turn lies on a hyperplane in the higher-dimensional space IRM+1.

(d) A random selection of labels γ(n) ∈ {±1} is associated with the feature vectors. Refer to the
solution of the hard-margin SVM by duality arguments in Section 61.2 in the text. Since the
feature vectors are centered, the Lagrangian function (61.34) becomes (by ignoring the offset
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parameter θ):

L(w, λ(n)) = 1

2
∥w∥2 −

N−1∑
n=0

λ(n)γ(n)hT
nw

in which case formulation (61.42a)–(61.42b) is replaced by

λ⋆ = argmin
λ∈IRN

{
1

2
λTAλ − 1Tλ

}
, subject to λ ⪰ 0

Show that the matrix A can be written in the following form as a rank-one modification of the
identity matrix

A =
R

M(M + 1)

{
αIM+1 − γNγ

T
N

}
where we introduced the scalar α = M(M + 1) + 1 and γN = col{γ(n)}.

(e) Ignore for now the constraint λ ⪰ 0 and show that the λ⋆ that solves Aλ = 1M+1 is given by

λ⋆ =
α− 1

αR

{
1M+1 − βγN

}
where we introduced

β =
1

(M + 1)2 + 1

(M+1∑
n=1

γ(n)
)

Verify that all entries of λ⋆ are strictly positive.

Solution: This example appears in section 3.3 in the work by Burges, C. (1998), “A tutorial on
support vector machines for pattern recognition,” Data Mining and Knowledge Discovery, vol. 2, no.
2, pp. 121–167. However, the calculations may not be consistent. We adjust the presentation here
for notation and context and provide a different solution method.

(a) Using N = M + 1, we have

h̄ =
1

M + 1

M+1∑
n=1

hn

Now, consider an arbitrary mth entry in h̄. Then,

h̄m =
1

M + 1

M+1∑
n=1

hn,m

=

√
RM

M + 1
−M

√
R

M(M + 1)

= 0

so that h̄ = 0 and the feature vectors are centered.
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(b) Note that for each vector hn we have

∥hn∥2 =
RM

M + 1
+M

R

M(M + 1)

=
RM

M + 1
+

R

M + 1
= R

Likewise,

hT
nhk = (M − 1)× R

M(M + 1)
−
√

RM

M + 1

√
R

M(M + 1)

=
(M − 1)R

M(M + 1)
− R

M + 1

= (M − 1)
R

M(M + 1)
− MR

M(M + 1)

= − R

M(M + 1)

(c) For any feature vector hn we have

1Thn =

√
RM

M + 1
−M

√
R

M(M + 1)

=

√
RM

M + 1
−

√
MR

(M + 1)

= 0

Therefore, the entries of the given feature vectors satisfy
M+1∑
m=1

hn,m = 0

so that they lie on a hyperplane whose orthogonal direction is 1M+1 and passes through the
origin.

(d) The entries of the (M + 1)× (M + 1) matrix A are given by

[A]n,m =

 R, when n = m

−γ(n)γ(m)R

M(M + 1)
, otherwise

That is, the diagonal entries are R while the off-diagonal entries are given by the expression
above. We can rewrite A in an alternative form. Introduce the label vector

γN = col
{
γ(1), γ(2), . . . , γ(N)

}
Then,

γNγ
T
N =


1 γ(1)γ(2) . . . γ(1)γ(N)

γ(2)γ(1) 1 . . . γ(2)γ(N)
... · 1

...
γ(N)γ(1) γ(N)γ(2) . . . 1


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so that

A =
(
R +

R

M(M + 1)

)
IM+1 −

R

M(M + 1)
γNγ

T
N

=
R

M(M + 1)

{
αIM+1 − γNγ

T
N

}
where we introduced the scalar

α = M(M + 1) + 1

We thus note that A has the form of a rank-one modification of the identity matrix. Applying
the matrix inversion lemma (29.89) gives

A−1 =
M(M + 1)

R

{
1

α
IM+1 −

1

α
γN

(
1 +

1

α
∥γN∥2

)−1

γT
N

1

α

}
(e) Next we use λ = A−11M+1 to find (using ∥γN∥2 = N = M + 1):

λ⋆ =
α− 1

αR

{
1M+1 −

1

α +M + 1

(M+1∑
n=1

γ(n)
)
× γN

}

=
α− 1

αR

{
1M+1 −

1

(M + 1)2 + 1

(M+1∑
n=1

γ(n)
)
× γN

}

=
α− 1

αR

{
1M+1 − βγN

}
where we introduced the scalar

β =
1

(M + 1)2 + 1

(M+1∑
n=1

γ(n)
)

Note that

|β| ≤
∑M+1

n=1 |γ(n)|
1 + (M + 1)2

=
M + 1

1 + (M + 1)2
≤ 1

M + 1
< 1

It follows that each entry of the vector λ is strictly positive and therefore the constraint λ ⪰ 0
is satisfied. On the other hand, we have

γT
Nλ =

α− 1

αR

{
γT
N1M+1 − β∥γN∥2

}

=
α− 1

αR

{
M+1∑
n=1

γ(n)− β(M + 1)

}

=
α− 1

αR

{
M+1∑
n=1

γ(n)− M + 1

(M + 1)2 + 1

(M+1∑
n=1

γ(n)
)}

6) (Chapter 63) The ℓ2−regularized logistic regression problem involves minimizing the following
empirical risk over the training dataset {γ(n), hn}:

min
w∈IRM

{
ρ

2
∥w∥2 +

1

N

N−1∑
n=0

ln
(
1 + e−γ(n)γ̂(n)

)}
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where γ̂ = hTw. In the above formulation we are assuming, for simplicity, that the feature data has
been centered so that the offset parameter θ can be set to 0 and it is sufficient to seek a weight vector
w to separate the classes γ ∈ {±1}. In this problem we wish to examine a kernal-based formulation
of logistic regression. Introduce a kernel function K(ha, hb) and the corresponding N ×N Gramian
matrix

Am,m′ = K(hm, h
′
m), m,m′ = 0, 1, . . . , N − 1

(a) Argue that a kernelized version of logistic regression requires solving

min
α∈IRN

P(α) ∆
=

{
ρ

2
αTAα +

1

N

N−1∑
n=0

ln
(
1 + e−γ(n)[Aα]n

)}
where the notation [x]n extracts the nth entry of vector x.

(b) Let σ(z) = ln(1 + e−z). Verify that the gradient vector of P(α) relative to α is given by

∇αT P(α) = ρAα +
1

N
AD(α)γvec

where γvec = col{γ(0), . . . , γ(N − 1)} and D(α) = diag
{
σ′
(
γ(n)[Aα]n

)}
.

(c) Write down a stochastic gradient recursion for determining the minimizer α⋆ to the problem in
part (a).

Solution:

(a) We let H denote the reproducing kernel Hilbert space (RKHS) associated with the kernel
function K(h, h′). This is a space of functions of the feature variable, h. For example, the
prediction γ̂(h), which is a function of h, lives in this space. In a manner similar to (63.80) in
the body of the chapter, we then consider the problem

γ̂⋆(h)
∆
= argmin

γ̂(h)∈H

{
ρ

2
∥γ̂(h)∥2H +

1

N

N−1∑
m=0

ln
(
1 + e−γ(n)γ̂(hn)

)}
where ρ > 0 is the regularization parameter. We know from the Representer theorem that the
optimal solution ) has the form

γ̂⋆(h) =
N−1∑
m=0

α⋆(m)K(h, hm)

for some real coefficients {α⋆(m)}. This motivates us to proceed as follows. Let α ∈ IRN×1

denote a column vector of size N . For any feature vector h, we introduce the following column
vector involving kernel evaluations of h with the training data:

uh
∆
= col

{
K(h, h0), K(h, h1), . . . , K(h, hN−1)

}
∈ IRN×1

We also introduce the N ×N Gramian matrix

[A]m,m′
∆
= K(hm, hm′), m,m′ = 0, 1, . . . , N − 1

and the matrix of transformed feature vectors

Φ
∆
=
[
hϕ
0 hϕ

1 . . . hϕ
N−1

]
∈ IRMϕ×N

so that A = ΦTΦ. The nth column of A corresponds to the kernel evaluations of hn with all
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other training vectors. We denote this column by un so that

un
∆
= uhn = nth column of A

=


K(hn, h0)
K(hn, h1)

...
K(hn, hN−1)

 =


(hϕ

0)
Thϕ

n

(hϕ
1)

Thϕ
n

...
(hϕ

N−1)
Thϕ

n

 = ΦThϕ
n

The Representer theorem shows that we can parameterize the sought-after function γ̂(h) in the
following linear form in the expanded domain:

γ̂(h) = uT
hα = (hϕ)TΦα = [Aα]n

for some vector α ∈ IRN . Likewise, we can replace the regularization factor ∥γ̂(h)∥2H) by the
quadratic form

∥γ̂(h)∥2H = αTAα = αTΦTΦα = αTAα

Substituting these definitions into the kernelized empirical risk we get

α⋆ ∆
= argmin

α∈IRN

P(α) ∆
=

{
ρ

2
αTAα +

1

N

N−1∑
m=0

ln
(
1 + e−γ(n)[Aα]n

)}
(b) Let σ(z) = ln(1 + e−z). Then, σ′(z) = −1/(1 + ez). Computing the derivative of P(α) relative

to the ℓth entry of α gives

∂P(α)
∂αℓ

= ρ[Aα]ℓ +
1

N

N−1∑
n=0

γ(n)Anℓ × σ′
(
γ(n)[Aα]n

)
Grouping terms we obtain

∇αT P(α) = ρAα +
1

N
AD(α)γvec

(a) It follows that we can use the update

αm = αm−1 − µ∇αT P(αm−1)

7) (Chapter 64) Let C denote the set of all possible affine classifiers (w ∈ IRM , θ ∈ IR) that can be
generated by the perceptron algorithm when applied to a linearly separable training dataset. Let M
denote the maximum number of misclassifications that the algorithm can encounter. Show that the
VC dimension of the set C satisfies

VC(C) ≤ min
{
M,M + 1

}
Solution: The VC dimension of affine classifiers is M+1. Since C is a subset of the collection of affine
classifiers, then we have that VC(C) ≤M+1. Let {h1, h2, . . . , hM+1} denote a set of feature vectors
that can be shattered by C. This means that for any randomly selected labels {γ(1), γ(2), . . . , γ(M+
1)}, there will exist a classifier w⋆ ∈ C such that

γ(n)hT
nw

⋆ > 0, n = 1, 2, . . . ,M + 1

Here we are assuming the weight vector and the feature vectors are extended according to (60.20) for
convenience. We apply the perceptron algorithm to determine a separating hyperplane from within
the set C for this collection. We can construct a situation where the algorithm can make M + 1
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mistakes during this run so that
# of mistakes ≥ VC(C)

Indeed, at any iteration 1 ≤ n ≤M + 1, the perceptron algorithm generates a predicted label γ̂(n).
This label may agree with γ(n) or it may be wrong. If it agrees with γ(n), then we could select
a different model from within C that generates instead −γ(n) as the label for hn. This is possible
since the {h1, h2, . . . , hM+1} are shattered by C. In this way, we end up having M +1 mistakes. We
know that the number of mistakes can never exceed M. Then, we get VC(C) ≤ M and the result
follows.

8) (Chapter 65) Consider the 3-node neural network shown in Fig. 1. The output node is simply an
adder providing

γ̂ = w3y1 + w4y2

where {y1, y2} are the outputs of the internal nodes with ReLu activation functions, i.e.,

y1 = max{0, hw1 − θ1}, y1 = max{0, hw2 − θ2}

Fig. 1. A neural network with three nodes and ReLu activation functions in the first two nodes. The output node is an adder.

The input is a scalar feature, h ∈ IR, and the output is another scalar γ̂ ∈ IR. Therefore, the
network implements an input–output mapping from h to γ̂, denoted by γ̂ = N (h;P ). The mapping
is characterized by 6 scalar parameters collected into P :

P
∆
= {w1, w2, w3, w4, θ1, θ2}

(a) Verify that the following 2 choices of parameters lead to the same output value, i.e., N (h;W1) =
N (h;W2), where

W1 = {1, 1, 1,−1,−1, 0}
W2 = {1, 1,−1, 1, 0,−1}

(b) Consider the following convex combination of the above 2 sets of parameters,

W3 =
1

2
W1 +

1

2
W2 = {1, 1, 0, 0,−1/2,−1/2}

Verify that now N (h;W3) = 0 independent of the value of h.
(c) Consider the least-squares empirical risk

Remp(W ) =
1

N

N−1∑
n=0

(γ(n)− γ̂(n))2
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Consider N = 2 with data (h(0), γ(0)) = (−1, 1) and (h(1), γ(1)) = (1,−1). Evaluate the
empirical risk for the choices W1,W2, and W3. Does the empirical risk depend on the parameters
W in a convex manner?

Solution:

(a) For the first set of parameters we get

γ̂ = w3y1 + w4y2

= y1 − y2

= max{0, h+ 1} −max{0, h}

For the second set of parameters we get

γ̂ = w3y1 + w4y2

= −y1 + y2

= −max{0, h}+max{0, h+ 1}

so that N (h;W1) = N (h;W2).
(b) We now have

γ̂ = w3y1 + w4y2 = 0

(c) For W1 we have γ(0) = 1 and h(0) = −1:

γ̂(0) = max{0, h(0) + 1} −max{0, h(0)}
= max{0, 0} −max{0,−1}
= 0

and for γ(1) = −1 and h(0) = 1 we have

γ̂(1) = max{0, h(1) + 1} −max{0, h(1)}
= max{0, 2} −max{0, 1}
= 1

It follows that
Remp(W1) =

1

2

(
12 + 22

)
= 5/2

For W2, the input-output map is the same and therefore we also get

Remp(W2) = 5/2

On the other hand, for W3 we have γ̂ = h independent of h and, therefore,

Remp(W3) =
1

2

(
22
)
= 2

It is clear that
Remp(W3) ̸=

1

2
Remp(W1) +

1

2
Remp(W2)

which illustrates that the empirical risk does not depend on the parameters in a convex manner.


