EE566 ADAPTATION AND LEARNING Instructor: Ali H. Sayed
Homework Assignment #4 Due: May 26, 2025

1) (Chapter 55) Consider M —dimensional feature vectors with independent Boolean entries, h €
{0,1}M. Each feature vector belongs to one of two classes, denoted by v € {£1} with P(y =
+1) = 7 > 0. Assume the individual entries of h are distributed according to the probabilities:

P(h(m) =1y =+1) =04, >0, P(h(m)=1y=-1)=6_,>0

Under the independence assumption, the Bayes classifier reduces to the naive Bayes construction.
We wish to relate the latter in this problem to the logistic regression form. Thus, given an arbitrary
feature vector h, the Bayes classifier determines its class by seeking the label that solves:

v*(h) = argmax {7r7 P(h = hly = 7)}
ye{+1}

where 7,1 = 7 and m_; = 1 — 7. Show that, in this case, the posterior probability of the label given
the feature vector takes the following form in terms of the logistic function:

P(v=+1lh=h) = o(h"w —0)
where o(z) = 1/(1 4+ e *) and
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Solution: Using Bayes rule we have that
P(v = +1)P(h = hly = +1)

P(y=+1llh=h) =

P(h = h)
P(y=-1lh=h) = L= ﬂé}(?’éh:h;zw — 1
where
Py=+1) = 7
Py=-1) = 1—nx
P(h =hly=+1) = ﬁ 0" (1 — f,,,) RO

M
P(h=hly=-1) = [[6"51—06_,) "™

Using the fact that
P(y=+1lh=h)+P(y=—1lh=h) =1

we can solve for P(h = h) and find that

M
P(h=h)=m H O (1= 04) 0+ (1 —7) TT 5 ) 1)
m=1



It follows that
P(y = +1|h = h)
T HM 0 m)( 9+m)1—h(m)
A1, 0 (10— 0,,)hm) + (1 — o) [T, 0" (1 — 6_,,)1-hom)

trexp (log (i, (52) (Ee2) )

= o (17 TT () () )
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2) (Chapter 57) Consider the rank-1 approximation problem

1
2° = argmin —||H —zz' |}
zeRNV 1 4

where H is N x N symmetric and positive definite. If )\, is the largest eigenvalue of H with unit-norm
eigenvector uy, i.e., Hu; = A\juy, then we know by inspection that one solution is z° = Vus. In
this problem we wish to examine a gradient-descent recursion for learning a solution. Let \; denote
the second largest eigenvalue of H and assume \; > \o.

(a) Is the cost function convex over x? Describe all stationary points of the optimization problem.
(b) Show that the gradient-descent recursion takes the form
T
Tp = Tp-1 — Mn(mn—lxn_l - H>$n—1

(c) Select pi,, = pu/(1 + pl|zn_1]|*) where p > 0. Show that the recursion of part (b) reduces to

(I + pH)xn—y

Ty =—""""—"——
1+ pllap-|?

(d) Argue that after /V iterations, the direction of z, converges to
ey (In+pH)N
lenll My + pH )N+ ||

Conclude that z converges toward the direction of u; and argue that the algorithm essentially




reduces to

1 A
T, = +—N12 Tp_1, large n
L+ pl|zn|

Solution:

(a) Let P(x) = ;||H — zz ||} denote the cost function. This is not convex. Note in particular that
vV Auy and —v/A\juy are 2 different global minimizers.

We introduce the eigendecomposition of H:

N

-

H = E AnUnly,
n=1

where the {u,,} are orthonormal. The gradient vector and the Hessian matrix of the cost function
are given by

1
V. P(x) = V,r {Z<||:v||4 — 22" Hx + ||H||%)} = a2’z — Hx

ViP(z) = |z|*Iy + 222" — H

Therefore, all stationary points should satisfy Hxz° = ||z°||?z°. These include z° = 0 as well
as r° = ++/A\,u,, where the (\,, u,) denote eigenvalue-eigenvector pairs for H. We know that
the global minima are given by ++/\ju;. For the remaining stationary points z° ¢ {£v/\ju1},
the Hessian matrix satisfies
ul V2P(z%)u; = u <(x°)T1’°]N + 22°(2°) T — H) Uy
=y (2°) 2% — uj Huy, since u]2° =0
lual[? < fl2®[1* = ug Hua
< Xy —Aq, since ||ug]]? =1 and ||2°|* < Ao

< 0

This means that the Hessian matrix has a negative curvature along the u; direction. Thus, the

other stationary points are saddle points.
(b) The gradient vector relative to x is given by

VaP(x) = za'z— Hx
and, hence,
-
Tp = Tp-1 — Mn(xn—ll‘n_l - H)xn—l
(c) Using the selection for pu,, we get
1

]
Ty, = Tpog— ————=(Tp_12, | — H)Tp_
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(d)

Iterating we get
N

oy = (I +pH)¥ e H

n=0

1
L+ pulln o2
and, hence,
IN (IN -+ ,uH)N“x,l
lenll Ly + pH )Ny ||
The numerator has a form similar to the power iteration: Running r,, = Ar,,_;, which leads to
r, = A""lr_,, converges towards an eigenvector for A corresponding to its largest eigenvalue.

Thus, zy converges towards the direction of the eigenvector of I + puH corresponding to the
largest eigenvalue at 1 + p\q; this eigenvector is parallel to ;. In this case,

(I + [LH)an_l — (1 + ,U/\l)xn—l

and the recursion reduces to

— 3 . . o%n-1
1+ pl|zn-1|?

n

]

3) (Chapter 59) Consider feature vectors h € IR* and a collection of K classifiers (or experts) denoted
by {E\(h), E5(h), ..., Ex(h)}. Each feature vector h € IRM can belong to one of R classes denoted
by r=1,2,..., R. Introduce an R x K matrix £, which summarizes the opinion of the experts about
the class of h. Each row of index r corresponds to one of the labels, and each column of index c
corresponds to one of the classifiers or experts. The entry &,. indicates the level of confidence that
expert E. has about feature h belonging to class r. For illustration purposes, we exhibit a matrix &
corresponding to [ = 4 labels and K = 5 experts:

labels ‘ E1 E2 E3 E4 E5
r=1 En & &3 Eu Eis
£ = r=2 En Ean 3 Eon Eos
r=3 | &1 & &3 Eu Ess
r=4 En a2 &z Eun Eus

There are many ways by which the information in £ can be fused together to arrive at a recommen-
dation for the label r* for h.

(a)

(b)

(c)

The majority of votes approach operates as follows. Each classifier makes its own decision, and
subsequently the label r* that receives the most votes is selected. Argue that this construction
amounts to carrying out the following calculations. The matrix £ is transformed into a new Rx K
matrix D. Each column of D is a basis vector with a unit entry at the location corresponding to
the largest confidence level for that classifier, and O elsewhere. If more that one label corresponds
to the highest confidence level, we select at random one of the entries. Subsequently, we set
r* = argmax ||D||
1<r<R
A second approach is to combine the confidence levels of all classifiers for each label and then
select r* as the label corresponding to the highest aggregate score. Argue that this amounts to
computing
r* = argmax |||«
1<r<R
Sometimes, a normalization step is included in order to ensure that the confidence levels across
all experts are comparable to each other. In this case, each entry &,. is replaced by the softmax



value

egrc

Zf:l e

Explain that the choice of »* now results from

&l —

c
r* =argmax || &L
lgg'rSR :cl;[

(d) A third approach corresponds to using £ to perform a feature transformation. Specifically, each
feature h is replaced by a new feature vector i’ = col{E} by stacking the columns of £ on top
of each other and using the features {/'} to train a new classifier. What is the dimension of the
transformed feature space?

Solution: The reader may refer to Bicego and Loog (2016).

(a) Each classifier ¢ places a 1 at the location corresponding to the largest confidence level in its
column and O’s elsewhere. The row of the largest confidence level for classifier ¢ is found
through the calculation:

r’ = argmax &,
1<r<R
Then the matrix D would look like the following example, with the 1’s placed at the locations
(r', ¢) for each expert:

labels ‘ E1 E2 E3 E4 E5
r=1 11 0 1 0
D=|r=2 0 0 1 0 O
r=3 0O 0 0 0 1
r=4 0 0 0 0 1

In this example, the label that receives the most votes is r = 1.

(b) By adding the confidence scores across each row, we determine an aggregate value for the
confidence levels of all experts in that particular label. By selecting the row with the largest
aggregate sum, we are in effect determining the row that corresponds to the co—norm of £ so
that

r* = argmax |||
1<r<R



(c) Note that

c c
argmax H £, = argmax In { H 8;0}
1

1<r<R - 1<r<R i

c
= argmax E Ing&.
c=1

1<r<R

c
eg’l‘c
= argmax g In ——
I<r<kR 4 ZT‘:]_ gr‘c

c
= argmax Z&C

1<r<R o—1

= argmax |||«
1<r<R

= /]"*

(d) The size of A’ is RK while the dimension of the original feature space is M.

4) (Chapter 60) Consider a linearly separable dataset {v(n), h,} of size N where the labels v(n) €
{—1, +1} and the feature vectors h,, are M —dimensional. Linear separability guarantees the existence
of a separation hyperplane {w*,6*} such that y(n)(hJw* — 6*) > 0 for n = 0,1,..., N — 1. For
convenience, we extend the feature vectors and the weight vector using construction (60.20) so that
the separability condition ensures v(n)hlw* > 0. Without loss of generality, we normalize w* to
|lw*|] = 1 and rescale the feature vectors to satisfy ||h,| < 1. In other words, the w* lies on the
unit sphere and the h, lies within the sphere. We apply the perceptron algorithm with step size
parameter 1 = 1 to determine a separating hyperplane, starting from the zero iterate. Let w denote
the current iterate value and assume the feature vector h is misclassified. The iterate w is then
updated to w, < w + ~vh. Verify that

(a) The margin value is given by m(w*) = ming<,<n_1 |h]w*|.

(b) The inner product of the iterate with w* satisfies w,} w* > wTw* + m(w*).

(c) The squared Euclidean norm of the iterate satisfies |Jw,||* < ||w|* + 1.

(d) Conclude that perceptron encounters at most 1/m?(w*) misclassification errors.

Solution:

(a) Using expression (60.30) and the fact that ||w*|| = 1, it is clear that m(w*) = ming<,<n_1 |h} w*|.
(b) Note that
wiw* = (w+yh)Twww* +yhTw*
Using the definition of the margin we have, for any (h,~) pair:
VB w* = [RTw?| > m(w*)
It follows that

wiw* > w'w* + m(w)



(c) When a misclassification occurs we have YhTw < 0. It follows that
lwal* = [lw+~h|
[w]l* +~2|Al* +2vhTw
< Jwl® + 22142
< Jwl® +1

(d) Using the results of parts (b) and (c), and after K updates we have
wiw* > Km(w*) and ||lw,|? < K
and, hence,

Km(w")

il

VAN VANRVANRVAN

from which we conclude that K < 1/m?(w*).
]

5) (Chapter 61) Consider a collection of N = M + 1 feature vectors {h,} in RM*! with individual
entries {h,,} defined by

RM N
M1 o enme=n
hn,m:
R
' wh
MM 1) Vhenm#n

for some R > 0. For instance, the coordinates of the 3 feature vectors in IR? for R =1 and M = 2

are

B = col \ﬁ S

3 6 6

1 1

hy = colk ——, /=, ——=
2 { VeV ﬁ}

1 2

3

hs = col{ — —, ———=,
I

(a) Verify that the feature vectors are centered, i.e.,
1 N
h=—S"h,
P

(b) Verify that ||h,||> = R? and h]h, = —R/M (M + 1) for any n # k.

(c) Verify that the given feature vectors lie on the hyperplane that passes through the origin and
whose normal direction is the vector 1,,,;. In other words, the feature vectors lie on a sphere
in IRM, which in turn lies on a hyperplane in the higher-dimensional space R,

(d) A random selection of labels y(n) € {1} is associated with the feature vectors. Refer to the
solution of the hard-margin SVM by duality arguments in Section 61.2 in the text. Since the
feature vectors are centered, the Lagrangian function (61.34) becomes (by ignoring the offset

0



parameter 6):

£l Am) = Sl — 3 Awy(m)hT

in which case formulation (61.42a)-(61.42b) is replaced by

1
A* = argmin {—)\TA)\ — ]lT)\}, subject to A = 0

AERN

Show that the matrix A can be written in the following form as a rank-one modification of the
identity matrix

R
A = m{CﬂMﬂ—’YN’YIf}

where we introduced the scalar « = M (M + 1) + 1 and yx = col{7y(n)}.
(e) Ignore for now the constraint A >~ 0 and show that the \* that solves A\ = 1,,,, is given by

L, a-—1
= 7 {1M+1—57N}

B = W(ZVW))

n=1

where we introduced

Verify that all entries of \* are strictly positive.

Solution: This example appears in section 3.3 in the work by Burges, C. (1998), “A tutorial on
support vector machines for pattern recognition,” Data Mining and Knowledge Discovery, vol. 2, no.
2, pp. 121-167. However, the calculations may not be consistent. We adjust the presentation here
for notation and context and provide a different solution method.

(a) Using N = M + 1, we have
| M

ho= M1 ;h”

Now, consider an arbitrary mth entry in h. Then,

B 1 M+1
RM
_ VoY
M+1 M(M +1)

= 0

so that 4 = 0 and the feature vectors are centered.



(b) Note that for each vector h,, we have

(©)

(d)

RM R
2 _
nll” = M+1+MM(M+1)
RM R

M1 M1

Likewise,

R RM R
M(M+1) VM+1\ MM +1)
(M —1)R R

M(M+1) M+1

hihy = (M —1)x

n

R MR

= (M- 1)M(M+1) T M(M +1)
R

T T M(M+1)

For any feature vector h,, we have

17h, =
V M +1 M+1
B \/ +1 o+ M+

Therefore, the entries of the given feature vectors satisfy

M+1

> B =0
m=1

so that they lie on a hyperplane whose orthogonal direction is 1,1 and passes through the
origin.
The entries of the (M + 1) x (M + 1) matrix A are given by

R, when n =m
[Alpm = _%, otherwise

That is, the diagonal entries are R while the off-diagonal entries are given by the expression
above. We can rewrite A in an alternative form. Introduce the label vector

v = col{(1),7(2),...,7(N) }

Then,



so that

R
A = <R+ )'YN'Y]-I\—[

L)] B
M(M+1))" M MM +1

— L T — T
= M(M—|—1) Olp+1 — YNIN

where we introduced the scalar
a=MM+1)+1

We thus note that A has the form of a rank-one modification of the identity matrix. Applying
the matrix inversion lemma (29.89) gives

_ MM+1) |1 1 1 -1 -1
A= -—iﬁr—l{—JMﬂ-——VN(1+-w7NW) WE—}
(6] « (0] «

(e) Next we use A = A™'1 ;. to find (using ||yn]|> = N = M + 1):

) o1 . M+1
o= SR e e (2 00) <

n=1

= aa—Rl {]1M+1 - m< Z 7(”)) X ’VN}

n=1
a—1
= R {]lMH — 5’VN}

where we introduced the scalar

1 M+1
p= m( ; ’Y("))
Note that M
gleTaithml _ Me1 1

= <
1+ M+1)2 1+ (M+1)2 T M+1
It follows that each entry of the vector A is strictly positive and therefore the constraint A > 0
is satisfied. On the other hand, we have

a—1

NN = 7 {7E1M+1—5H7N||2}
a—1 M+1
= R {Z’Y(n)—ﬁ(MJrl)}
M+1

a—1 [T M+ 1
= M%{ vw—@;ﬁv;ﬁibmw}

n=1

O]

6) (Chapter 63) The (;—regularized logistic regression problem involves minimizing the following
empirical risk over the training dataset {v(n), h,}:

N-1
i d Pl + L )
w%é%r{QHwH + anzoln(lee



where 7 = hTw. In the above formulation we are assuming, for simplicity, that the feature data has
been centered so that the offset parameter 6 can be set to 0 and it is sufficient to seek a weight vector
w to separate the classes v € {£1}. In this problem we wish to examine a kernal-based formulation
of logistic regression. Introduce a kernel function K (h,, h;) and the corresponding N x N Gramian
matrix

Apy = K(hm, Bl), mym' =0,1,...,N -1

(a) Argue that a kernelized version of logistic regression requires solving

N-1
: A )P T 1 (n)[Aa]n>
ofgﬁzl}vp(a) = {2 Aa + Zln<1+e v

where the notation [x],, extracts the nth entry of vector z.
(b) Let 0(z) = In(1 + e *). Verify that the gradient vector of P(«) relative to « is given by

1
Vo Pla) = pAa + NAD(@)'YVQC

where Yyee = col{7(0),...,7(N —1)} and D(«a) = diag{a’ <’y(n)[Aoz]n
(c) Write down a stochastic gradient recursion for determining the minimizer o* to the problem in
part (a).

Solution:

(a) We let H denote the reproducing kernel Hilbert space (RKHS) associated with the kernel
function K (h,h’). This is a space of functions of the feature variable, h. For example, the
prediction 7(h), which is a function of h, lives in this space. In a manner similar to (63.80) in
the body of the chapter, we then consider the problem

2*(h) A argmin {gH’Y ||7-[ Zln<1+e v(n)F(h ))}

where p > 0 is the regularization parameter. We know from the Representer theorem that the
optimal solution ) has the form

= i a*(m)K (h, hy,)

for some real coefficients {a*(m)}. This motivates us to proceed as follows. Let a € RY*!
denote a column vector of size N. For any feature vector h, we introduce the following column
vector involving kernel evaluations of h with the training data:

up 2 col{K(h, ho), K(h,hy), ..., K(h, hN_l)} e RVX1
We also introduce the N x N Gramian matrix
(Al 2 K (R, h), mym' =0,1,... N —1
and the matrix of transformed feature vectors
® 2 [nd n .. on%_ ] e RMN

so that A = ®T®. The nth column of A corresponds to the kernel evaluations of h, with all



other training vectors. We denote this column by u,, so that

up 2 up, = nth column of A
K (hn, ho) (h)Th,
_ | ECwh) DR e
K(hTw hN71> (h%il)—rhz

The Representer theorem shows that we can parameterize the sought-after function 7(%) in the
following linear form in the expanded domain:
3(h) = wya = (h*) o = [Aa],

for some vector o € IR™. Likewise, we can replace the regularization factor ||5(h)||2,) by the
quadratic form
A3, = a’Aa = aT®Tda =a' Aa

Substituting these definitions into the kernelized empirical risk we get
N A Jp 1«
* : T - Aa
EN A )P TA Ll W (1 ()l a]n>
a aifelg}vn P(a) {2a a + N mzz:o n(l+e
(b) Let 0(z) = In(1+ e ?). Then, o'(z) = —1/(1 + €*). Computing the derivative of P(«) relative
to the /th entry of o gives

OP(a) 1

=

ymmﬁxa@mwmg

I
o

Grouping terms we obtain
1
V., Pla) = pAa + NAD(O[)%QC
(a) It follows that we can use the update

Oy = Q1 — Vo7 P(Qn—1)

7) (Chapter 64) Let C denote the set of all possible affine classifiers (w € RM 9 R) that can be
generated by the perceptron algorithm when applied to a linearly separable training dataset. Let M
denote the maximum number of misclassifications that the algorithm can encounter. Show that the
VC dimension of the set C satisfies

VC(C) < min{M, M+ 1}

Solution: The VC dimension of affine classifiers is M +1. Since C is a subset of the collection of affine
classifiers, then we have that VC(C) < M +1. Let {hy, ha, ..., hpr11} denote a set of feature vectors
that can be shattered by C. This means that for any randomly selected labels {v(1),v(2),...,v(M +
1)}, there will exist a classifier w* € C such that

y(n)hfw* >0, n=1,2,...,M+1

Here we are assuming the weight vector and the feature vectors are extended according to (60.20) for
convenience. We apply the perceptron algorithm to determine a separating hyperplane from within
the set C for this collection. We can construct a situation where the algorithm can make M + 1



mistakes during this run so that
# of mistakes > VC(C)

Indeed, at any iteration 1 < n < M + 1, the perceptron algorithm generates a predicted label 7(n).
This label may agree with v(n) or it may be wrong. If it agrees with v(n), then we could select
a different model from within C that generates instead —v(n) as the label for h,,. This is possible
since the {hy, ha, ..., hary1} are shattered by C. In this way, we end up having M + 1 mistakes. We
know that the number of mistakes can never exceed M. Then, we get VC(C) < M and the result

follows.
O

8) (Chapter 65) Consider the 3-node neural network shown in Fig. 1. The output node is simply an
adder providing
7 = w3y1 + Wy

where {y1, 1>} are the outputs of the internal nodes with ReLu activation functions, i.e.,

y1 = max{0, hw; — 61}, vy = max{0, hwy — 05}

}

y2 = max{0, hwy — 62}

- /

Fig. 1. A neural network with three nodes and ReLu activation functions in the first two nodes. The output node is an adder.

The input is a scalar feature, h € IR, and the output is another scalar ¥ € IR. Therefore, the
network implements an input—output mapping from A to 7, denoted by 7 = N (h; P). The mapping
is characterized by 6 scalar parameters collected into P:

A
P - {w17w27w37w4761762}

(a) Verify that the following 2 choices of parameters lead to the same output value, i.e., N'(h; W) =
N (h; Ws), where

W, = {1,1,1,-1,—1,0}
W, = {1,1,-1,1,0,—1}

(b) Consider the following convex combination of the above 2 sets of parameters,
1 1
W3 = §W1 + §W2 ={1,1,0,0,—-1/2,-1/2}

Verify that now N (h; W3) = 0 independent of the value of h.
(c) Consider the least-squares empirical risk



Consider N = 2 with data (h(0),7(0)) = (—1,1) and (h(1),7(1)) = (1,—1). Evaluate the
empirical risk for the choices Wy, W5, and W5. Does the empirical risk depend on the parameters
W in a convex manner?

Solution:

(a) For the first set of parameters we get
Y = wayr + ways
= UY1— Y
= max{0,h + 1} — max{0, h}
For the second set of parameters we get
7 = w3y + ways

Y1+ Y2
= —max{0,h} +max{0,h+ 1}

so that N (h; Wy) = N (h; Ws).
(b) We now have

¥ = w3y +wiys = 0
(c) For W, we have v(0) =1 and h(0) = —1:
~7(0) = max{0,h(0)+ 1} — max{0,h(0)}
= max{0,0} — max{0, —1}
= 0
and for (1) = —1 and h(0) = 1 we have
7(1) = max{0,h(1) + 1} — max{0,h(1)}
= max{0,2} — max{0, 1}
= 1
It follows that 1
Remnp(W1) = 5(12 + 22) —5/2
For W, the input-output map is the same and therefore we also get
Remp(Wa) =5/2
On the other hand, for W5 we have 7 = h independent of A and, therefore,

Renny (W) = %(22) -

It is clear that 1 1
Remp (W3) 3& §Remp (Wl) + ERemp (WQ)

which illustrates that the empirical risk does not depend on the parameters in a convex manner.
O]



