EE566 ADAPTATION AND LEARNING Instructor: Ali H. Sayed
Homework Assignment #3 Due: April 28, 2025

1) (Chapter 28) Consider an unknown M —dimensional vector & ~ f(x) that we wish to infer from
a collection of N independent and identically distributed observations {y,,, n = 1,2..., N}. The
conditional distribution of each observation y,, given x is uniform across all observations and denoted
by y,|x ~ fyz(yn|x). Show that the MAP estimator for « given the IV observations {y,,...,yy}
can be found by solving

N
1 1
Tmap = argmin {_N n§1 In fy\m(yn|37) N In fw(x)}

TERM

Solution: Using the iid assumption we have that

N N
n=1 n=1

Using Bayes’ rule we have

Tvap = argmilIX fz|{yn}£;’:1 (I’{yn}fz\;l)
{f{yn}m ({piale)  ful@) }
= argmax
P ()21)
= argmax {fiy e (0101) 20}
N
= argmax {(nym(yn|x)) X fm('r)}
zeRM n=1

Since the logarithm function is monotonically increasing, we can also write

Tmap = argmax In [(nym(%@)) e fm(x)]

rzeRM

N
= argmax { Z In fyiz(ynlz) + In fw(x)}

M
r€R n=1

N
= argmin { - Zln fy\w(yn|$) —In fa:(x)}
r€RM n—1

Normalizing by the sample size we conclude that

rERM

N
~ ) 1 1
IMApP = argmin { N ;m fy\w(yn|$> - Nln fm@)}

O

2) (Chapter 29) We examined the correlation coefficient p,, between two scalar random variables
{x,y} in Prob. 3.13 in the text. The correlation between these random variables given a third scalar
variable z is defined as follows. Let £ = & — T denote the residual that remains from estimating x
from z using a linear regression model, say, T = az+ (3. Likewise, let y = y — ¥y denote the residual



that remains from estimating y from z using a linear regression model as well, say, y = az + b.
Then, the (conditional) correlation is defined by
A
Paylz = Pig

That is, it is equal to the standard correlation between the residual variables after the effect of z has
been removed using linear regression. Show that if = and y are conditionally independent of each
other given z, then p,,, = 0. Is the converse true?

Solution: We know that

E — 0_$Z —
xT—I = (z—2)
o?
~ - Oyz _
y-y = (-2
a?
so that the scalars («, 5) and (a,b) are given by
O-IEZ — O-CEZ —
a = —, [=I-— z
oz &
o _ Oyz _
o = =%, b=j—- %%

Now given z, the regression error x is solely dependent on x while y is solely dependent on y
since

T = x—az—[

Yy = y—az—>

It follows that @ and y are also conditionally independent of each other given z, from which we
conclude that p; ;j = 0 and, therefore, p,,. = 0.

The converse is not true. If p,,. = 0 then pz; = 0. However, we know that this latter condition
does not imply that x and y are independent of each other. Now given by @ and y can be expressed
in terms of these errors as
xr = xt+az+p
y = ytaz+b
we conclude that & and y are not necessarily independent of each other given z.
[

(Chapter 31) Consider N i.i.d. scalar random variables {y,, } distributed according to y ~ f,(y) =
%e"yV ?. Show that the ML estimate for ¢ is given by

1 N
o= N Z |Yn]
n=1

Verify that this estimator is unbiased and asymptotically efficient.



Solution: The log-likelihood function is given by

Differentiating relative to o leads to

leading to

Next note that
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where we used the value of the gamma function at 2, which is equal to 1. It follows from the
observation that I'(n+ 1) = n! for integer values of n. Therefore, the proposed estimator is unbiased

since

1 N
Bo =Y Ely,| =7



Similarly, note that

E |y =/ | fy (y)dy

Lo
_ %/ y[2e~ o dy
1 0

= 2—[/ yzey/"dy+/ yze_y/"dy]
o —00 0

o? x 2|
20
Consequently, the mean-square-error of & is given by
MSE() = E(o —o0)?
= var(o)

1 n
= > var(ly,)
n=1

- (- Ew?)

n

1
= (2 )

n=1

0_2

N

Observe that the variance tends to 0 as N — oo and, therefore, the ML estimator is asymptotically
efficient.
]

4) (Chapter 50) Consider two N x M matrices D and H. Introduce the SVD representation
D'H =UxVT

where U and V' are M x M orthogonal, and X is diagonal. Show that the M x M orthogonal matrix
O™ that solves
©* = argmin |D — HO||g
@@TZI]\/I

is given by ©* = VUT.

Solution: USil’lg
|A[|% = Tr(ATA)



we write
1D — HO|2 = Tr((D HO)T H@))
= Tr(D'D) + Tr(@THTH@) 2Tr(DTHO)
= Tr(D'D)+Tr(©@O"H'H) — 2Tr(D"HO)
= Tr(D'D)+Tr(H"H) — 2Tr(D"HO) (since O is orthogonal)
IDIE + 1 H|& —2Tr(DTHO)

where we used the fact that Tr(AB) = Tr(BA). Ignoring the terms that do not depend on ©, the
optimization problem reduces to solving

©* = argmax Tr(D"HO)

0OT=I,
The matrix D' H has dimensions M x M. We introduce its SVD:
D'H=UxVT
where U and V' are M x M orthogonal, and ¥ is diagonal with entries o1 > 09 > ... > o). Thus,
T(DTHO) = Tr(UXV'TO)
= Tr(XV'eU)
2 Tr(EX)
M
== Z Umem
m=1

where we introduced the matrix X = VTOU and denoted its diagonal entries by {X,,,}. It is
obvious that X is an orthogonal matrix as well since

XXTVTeuu'e'Vv = Iy
and, moreover, X and O define each other uniquely since
O=VXUT
Now recall from Prob. ?? that X,,,, < 1. Therefore, it holds that

M M
E OmXmm < E Om
m=1 m=1

Equality holds if, and only if, X,,,, = 1 for all m. Since X is unitary and its rows have unit norm,
this is only possible when X is the identity matrix. Therefore, the optimal choices for X is X = I,
from which we conclude that

e*=VvU"

5) (Chapter 51) Consider a collection of scalar measurements {x(n)}" ;' sampled independently from
the Gaussian distribution A/(6°, 1) with unknown mean 6°. We wish to estimate 6° by seeking the
solution to a regularized least-squares problem with a regularization term that penalizes proximity
to a prior estimate denoted by 6¢;, namely,

N-1
*x A : 1 2 2
0* = argmm{ﬁ g (x(n) —0)” + p(6 — 61) }, p>0

0ER
n=0



(a) Let 0 = + SNV 2(n). Verify that

n=0
1 -
0 =——0 +
1+p I+p

(b) Show that

s = () (2 et -

(c) Verify that the optimal choice for the regularization parameter is
1/N

E (6, — 6°)2

for which the mean-square error expression in part (b) simplifies to

p:

)1 0
E (0" — 6°) ~ mm{ﬁ, E(6, -0 )2}

(d) Conclude that a large p is needed when the prior estimate has a small mean-square-error, while
a small p is needed otherwise. In other words, conclude that the size of the regularization
parameter depends on the quality of the initial estimate, 6;.

Solution:

(a) Differentiating relative to ¢ and setting the gradient vector to 0 gives

2
—N(a:(n) —0*)+2p(0* —6,) =0
Solving for 6* leads to the desired expression.

(b) The MSE is given by

* _ poN2 1 2 * _ no\2 P 2 _ o2
E(6° —¢°)? = (—1+p>E( )2 4 <—1+p> E(6, — ¢°)
where
1N—l 9
E(9" —¢°)? = E’NZw(n)—Ho
N-1
1 2
= B> (@) - )
n=0
= %XN
= 1/N

and the desired result follows.
(c) Differentiating the MSE expression over p gives

—2 1 2(l+p) -2

QPN (1+pp
from which the desired result follows:

(0, —0°)*=0

_ N
P~ E(0, — ¢)2



Substituting into the MSE expression gives
~ X E (6, —6°)?
% +E (8, — 6°)?
When 1/N is small we can approximate the above expression by
E (6, — 6°)*
1+E(6;, —6°)?2/(1/N)
On the other hand, when 1/N is large we can write
1/N

(1/N)/E(6; —6°)2 +1

In other words, we can approximate the MSE expression by

E (0* _ 90)2

E(6* — 6°)° ~1/N

E(9* —°)? = ~E(8, — 0°)?

1
E(6* — 6°)* ~ min {N’ E(6, — 00)2}

(d) The value of the optimal p in part (c) has E (6, — 00)2 in the denominator, and the result follows.
This means that the choice of the regularization parameter depends on the quality of the prior
estimate, 6.

O

6) (Chapter 52) Consider feature vectors h € IRM and a collection of K classifiers (or experts) denoted
by {E\(h), Ex(h), ..., Ex(h)}. Each feature vector h € IRM can belong to one of R classes denoted
by r=1,2,..., R. Introduce an R x K matrix £, which summarizes the opinion of the experts about
the class of h. Each row of index r corresponds to one of the labels, and each column of index ¢
corresponds to one of the classifiers or experts. The entry &,. indicates the level of confidence that
expert F, has about feature i belonging to class r. For illustration purposes, we exhibit a matrix £
corresponding to R = 4 labels and K = 5 experts:

labels ‘ El EQ E3 E4 E5
r=1 En &2 &3 Eu Eis
E=|r=2 | &1 &n &E3 Eu &Ex
r=23 Ea1 Esp E33 Esu E3s
r=4 | E&n Ep &3 Eu Eus

(a) Explain how the K —NN classifier with R labels is a special case of this construction. What
would the classifiers in this case be and how would the entries of £ be chosen?

(b) Explain how the weighted K —NN classifier with R labels from Example 52.2 is a special case
of this construction. What would the classifiers in this case be and how would the entries of £
be chosen?

(c) Verify that in both cases the ultimate label for h is chosen in terms of the co—norm of matrix
& as follows:

r* = argmax |||
1<r<R

Solution:

(a) For the K —NN classifier, each of the K neighbors defines one of the experts. Moreover, the
value of &, will be 1 if the cth neighbor belongs to class r and O otherwise.

(b) For the weighted K —NN classifier with R labels, each of the K neighbors defines one of the
experts. Moreover, the value of &,.. will be w. defined by (52.22c), while all other values on
the cth column of £ will be 0.



(¢) For the K —NN classifier, if we add the entries on each row r we find the number of votes that
label r receives from the K neighbors. The row with the highest number of votes determines 7*.
Likewise, for the weighted K'—NN classifier, if we add the entries on each row r we find the
overall weight that label r receives from the K neighbors. The row with the highest aggregate
weight determines 7*. Both scenarios amount to determining r* by determining the row of £
with the highest sum of its entries. This corresponds to the co—norm of £.

]



