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EE566 ADAPTATION AND LEARNING Instructor: Ali H. Sayed
Homework Assignment #3 Due: April 28, 2025

1) (Chapter 28) Consider an unknown M−dimensional vector x ∼ fx(x) that we wish to infer from
a collection of N independent and identically distributed observations {yn, n = 1, 2 . . . , N}. The
conditional distribution of each observation yn given x is uniform across all observations and denoted
by yn|x ∼ fy|x(yn|x). Show that the MAP estimator for x given the N observations {y1, . . . ,yN}
can be found by solving

x̂MAP = argmin
x∈IRM

{
− 1

N

N∑
n=1

ln fy|x(yn|x)−
1

N
ln fx(x)

}
Solution: Using the iid assumption we have that

f{yn}Nn=1|x

(
{yn}Nn=1|x

)
=

N∏
n=1

fyn|x(yn|x) =
N∏

n=1

fy|x(yn|x)

Using Bayes’ rule we have

x̂MAP = argmax
x∈IRM

fx|{yn}Nn=1

(
x|{yn}Nn=1

)
= argmax

x∈IRM

{
f{yn}Nn=1|x

(
{yn}Nn=1|x

)
× fx(x)

f{yn}Nn=1

(
{yn}Nn=1

) }

= argmax
x∈IRM

{
f{yn}Nn=1|x

(
{yn}Nn=1|x

)
× fx(x)

}
= argmax

x∈IRM

{(
N∏

n=1

fy|x(yn|x)

)
× fx(x)

}
Since the logarithm function is monotonically increasing, we can also write

x̂MAP = argmax
x∈IRM

ln

[(
N∏

n=1

fy|x(yn|x)

)
× fx(x)

]

= argmax
x∈IRM

{
N∑

n=1

ln fy|x(yn|x) + ln fx(x)

}

= argmin
x∈IRM

{
−

N∑
n=1

ln fy|x(yn|x)− ln fx(x)

}
Normalizing by the sample size we conclude that

x̂MAP = argmin
x∈IRM

{
− 1

N

N∑
n=1

ln fy|x(yn|x)−
1

N
ln fx(x)

}

2) (Chapter 29) We examined the correlation coefficient ρxy between two scalar random variables
{x,y} in Prob. 3.13 in the text. The correlation between these random variables given a third scalar
variable z is defined as follows. Let x̃ = x− x̂ denote the residual that remains from estimating x
from z using a linear regression model, say, x̂ = αz+β. Likewise, let ỹ = y− ŷ denote the residual
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that remains from estimating y from z using a linear regression model as well, say, ŷ = az + b.
Then, the (conditional) correlation is defined by

ρxy|z
∆
= ρx̃,ỹ

That is, it is equal to the standard correlation between the residual variables after the effect of z has
been removed using linear regression. Show that if x and y are conditionally independent of each
other given z, then ρxy|z = 0. Is the converse true?

Solution: We know that

x̂− x̄ =
σxz

σ2
z

(z − z̄)

ŷ − ȳ =
σyz

σ2
z

(z − z̄)

so that the scalars (α, β) and (a, b) are given by

α =
σxz

σ2
z

, β = x̄− σxz

σ2
z

z̄

a =
σyz

σ2
z

, b = ȳ − σyz

σ2
z

z̄

Now given z, the regression error x̃ is solely dependent on x while ỹ is solely dependent on y
since

x̃ = x− αz − β

ỹ = y − az − b

It follows that x̃ and ỹ are also conditionally independent of each other given z, from which we
conclude that ρx̃,ỹ = 0 and, therefore, ρxy|z = 0.

The converse is not true. If ρxy|z = 0 then ρx̃,ỹ = 0. However, we know that this latter condition
does not imply that x̃ and ỹ are independent of each other. Now given by x and y can be expressed
in terms of these errors as

x = x̃+ αz + β

y = ỹ + az + b

we conclude that x and y are not necessarily independent of each other given z.

3) (Chapter 31) Consider N i.i.d. scalar random variables {yn} distributed according to y ∼ fy(y) =
1
2σ
e−|y|/σ. Show that the ML estimate for σ is given by

σ̂ =
1

N

N∑
n=1

|yn|

Verify that this estimator is unbiased and asymptotically efficient.
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Solution: The log-likelihood function is given by

ℓ({yn};σ) = ln

[
N∏

n=1

1

2σ
e−|yn|/σ

]

= ln

[(
1

2σ

)N

exp

{
−

N∑
n=1

|yn|
σ

}]

= −N ln(2σ)−
N∑

n=1

|yn|
σ

Differentiating relative to σ leads to

−N
1

σ̂
+

N∑
n=1

|yn|
σ̂2

= 0

leading to

σ̂ =
1

N

N∑
n=1

|yn|

Next note that

E |y| =

∫ ∞

−∞
|y|fy(y)dy

=
1

2σ

∫ ∞

−∞
|y|e−|y|/σdy

=
1

2σ

[∫ 0

−∞
−yey/σdy +

∫ ∞

0

ye−y/σdy

]
=

1

σ

∫ ∞

0

ye−y/σdy

=

∫ ∞

0

y

σ
e−y/σdy

= σ

∫ ∞

0

y′e−y′dy′, y′ = y/σ

= σ × Γ(2)

= σ

where we used the value of the gamma function at 2, which is equal to 1. It follows from the
observation that Γ(n+1) = n! for integer values of n. Therefore, the proposed estimator is unbiased
since

E σ̂ =
1

N

N∑
n=1

E |yn| = σ
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Similarly, note that

E |y|2 =

∫ ∞

−∞
|y|2fy(y)dy

=
1

2σ

∫ ∞

−∞
|y|2e−|y|/σdy

=
1

2σ

[∫ 0

−∞
y2ey/σdy +

∫ ∞

0

y2e−y/σdy

]
=

1

σ

∫ ∞

0

y2e−y/σdy

= σ

∫ ∞

0

y

σ2
e−y/σdy

= σ2

∫ ∞

0

z2e−zdz, z = y/σ

= σ2 × Γ(3)

= σ2 × 2!

= 2σ2

Consequently, the mean-square-error of σ̂ is given by

MSE(σ̂) = E (σ̂ − σ)2

= var(σ̂)

=
1

N2

n∑
n=1

var(|yn|)

=
1

N2

n∑
n=1

(
E |yn|2 − [E |yn|]2

)
=

1

N2

n∑
n=1

(
2σ2 − σ2

)
=

σ2

N
Observe that the variance tends to 0 as N → ∞ and, therefore, the ML estimator is asymptotically
efficient.

4) (Chapter 50) Consider two N ×M matrices D and H . Introduce the SVD representation

DTH = UΣV T

where U and V are M ×M orthogonal, and Σ is diagonal. Show that the M ×M orthogonal matrix
Θ⋆ that solves

Θ⋆ = argmin
ΘΘT=IM

∥D −HΘ∥F

is given by Θ⋆ = V UT.

Solution: Using
∥A∥2F = Tr(ATA)
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we write

∥D −HΘ∥2F = Tr
(
(D −HΘ)T(D −HΘ)

)
= Tr(DTD) + Tr(ΘTHTHΘ)− 2Tr(DTHΘ)

= Tr(DTD) + Tr(ΘΘTHTH)− 2Tr(DTHΘ)

= Tr(DTD) + Tr(HTH)− 2Tr(DTHΘ) (since Θ is orthogonal)
= ∥D∥2F + ∥H∥2F − 2Tr(DTHΘ)

where we used the fact that Tr(AB) = Tr(BA). Ignoring the terms that do not depend on Θ, the
optimization problem reduces to solving

Θ⋆ = argmax
ΘΘT=IM

Tr(DTHΘ)

The matrix DTH has dimensions M ×M . We introduce its SVD:

DTH = UΣV T

where U and V are M ×M orthogonal, and Σ is diagonal with entries σ1 ≥ σ2 ≥ . . . ≥ σM . Thus,

Tr(DTHΘ) = Tr(UΣV TΘ)

= Tr(ΣV TΘU)
∆
= Tr(ΣX)

=
M∑

m=1

σmXmm

where we introduced the matrix X = V TΘU and denoted its diagonal entries by {Xmm}. It is
obvious that X is an orthogonal matrix as well since

XXTV TΘUUTΘTV = IM

and, moreover, X and Θ define each other uniquely since

Θ = V XUT

Now recall from Prob. ?? that Xmm ≤ 1. Therefore, it holds that
M∑

m=1

σmXmm ≤
M∑

m=1

σm

Equality holds if, and only if, Xmm = 1 for all m. Since X is unitary and its rows have unit norm,
this is only possible when X is the identity matrix. Therefore, the optimal choices for X is X = IM
from which we conclude that

Θ⋆ = V UT

5) (Chapter 51) Consider a collection of scalar measurements {x(n)}N−1
n=0 sampled independently from

the Gaussian distribution N (θo, 1) with unknown mean θo. We wish to estimate θo by seeking the
solution to a regularized least-squares problem with a regularization term that penalizes proximity
to a prior estimate denoted by θ1, namely,

θ⋆
∆
= argmin

θ∈IR

{
1

N

N−1∑
n=0

(x(n)− θ)2 + ρ(θ − θ1)
2

}
, ρ > 0
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(a) Let θ̄ = 1
N

∑N−1
n=0 x(n). Verify that

θ⋆ =
1

1 + ρ
θ̄ +

ρ

1 + ρ
θ1

(b) Show that
E (θ⋆ − θo)2 =

( 1

1 + ρ

)2 1
N

+
( ρ

1 + ρ

)2
E (θ1 − θo)2

(c) Verify that the optimal choice for the regularization parameter is

ρ =
1/N

E (θ1 − θo)2

for which the mean-square error expression in part (b) simplifies to

E (θ⋆ − θo)2 ≈ min

{
1

N
, E (θ1 − θo)2

}
(d) Conclude that a large ρ is needed when the prior estimate has a small mean-square-error, while

a small ρ is needed otherwise. In other words, conclude that the size of the regularization
parameter depends on the quality of the initial estimate, θ1.

Solution:

(a) Differentiating relative to θ and setting the gradient vector to 0 gives

− 2

N
(x(n)− θ⋆) + 2ρ(θ⋆ − θ1) = 0

Solving for θ⋆ leads to the desired expression.
(b) The MSE is given by

E (θ⋆ − θo)2 =
( 1

1 + ρ

)2
E (θ⋆ − θo)2 +

( ρ

1 + ρ

)2
E (θ1 − θo)2

where

E (θ⋆ − θo)2 = E
∣∣∣ 1
N

N−1∑
n=0

x(n)− θo
∣∣∣2

=
1

N2
E
∣∣∣N−1∑
n=0

(x(n)− θo)
∣∣∣2

=
1

N2
×N

= 1/N

and the desired result follows.
(c) Differentiating the MSE expression over ρ gives

−2

(1 + ρ)3
1

N
+

2ρ(1 + ρ)− 2ρ2

(1 + ρ)3
E (θ1 − θo)2 = 0

from which the desired result follows:

ρ =
1/N

E (θ1 − θo)2
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Substituting into the MSE expression gives

E (θ⋆ − θo)2 =
1
N
× E (θ1 − θo)2

1
N
+ E (θ1 − θo)2

When 1/N is small we can approximate the above expression by

E (θ⋆ − θo)2 =
E (θ1 − θo)2

1 + E (θ1 − θo)2/(1/N)
≈ 1/N

On the other hand, when 1/N is large we can write

E (θ⋆ − θo)2 =
1/N

(1/N)/E (θ1 − θo)2 + 1
≈ E (θ1 − θo)2

In other words, we can approximate the MSE expression by

E (θ⋆ − θo)2 ≈ min

{
1

N
, E (θ1 − θo)2

}
(d) The value of the optimal ρ in part (c) has E (θ1−θo)2 in the denominator, and the result follows.

This means that the choice of the regularization parameter depends on the quality of the prior
estimate, θ1.

6) (Chapter 52) Consider feature vectors h ∈ IRM and a collection of K classifiers (or experts) denoted
by {E1(h), E2(h), . . . , EK(h)}. Each feature vector h ∈ IRM can belong to one of R classes denoted
by r = 1, 2, . . . , R. Introduce an R×K matrix E , which summarizes the opinion of the experts about
the class of h. Each row of index r corresponds to one of the labels, and each column of index c
corresponds to one of the classifiers or experts. The entry Erc indicates the level of confidence that
expert Ec has about feature h belonging to class r. For illustration purposes, we exhibit a matrix E
corresponding to R = 4 labels and K = 5 experts:

E =


labels E1 E2 E3 E4 E5

r = 1 E11 E12 E13 E14 E15
r = 2 E21 E22 E23 E24 E25
r = 3 E31 E32 E33 E34 E35
r = 4 E41 E42 E43 E44 E45


(a) Explain how the K−NN classifier with R labels is a special case of this construction. What

would the classifiers in this case be and how would the entries of E be chosen?
(b) Explain how the weighted K−NN classifier with R labels from Example 52.2 is a special case

of this construction. What would the classifiers in this case be and how would the entries of E
be chosen?

(c) Verify that in both cases the ultimate label for h is chosen in terms of the ∞−norm of matrix
E as follows:

r⋆ = argmax
1≤r≤R

∥E∥∞

Solution:

(a) For the K−NN classifier, each of the K neighbors defines one of the experts. Moreover, the
value of Erc will be 1 if the cth neighbor belongs to class r and 0 otherwise.

(b) For the weighted K−NN classifier with R labels, each of the K neighbors defines one of the
experts. Moreover, the value of Erc will be wc defined by (52.22c), while all other values on
the cth column of E will be 0.
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(c) For the K−NN classifier, if we add the entries on each row r we find the number of votes that
label r receives from the K neighbors. The row with the highest number of votes determines r⋆.
Likewise, for the weighted K−NN classifier, if we add the entries on each row r we find the
overall weight that label r receives from the K neighbors. The row with the highest aggregate
weight determines r⋆. Both scenarios amount to determining r⋆ by determining the row of E
with the highest sum of its entries. This corresponds to the ∞−norm of E .


