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EE566 ADAPTATION AND LEARNING Instructor: Ali H. Sayed
Homework Solutions #2 Due: March 24, 2025

1) (Chapter 15) Consider a first-order differentiable convex risk function P (w) with bounded gradients,
and introduce the convex optimization problem

w⋆ = argmin
w∈IRM

P (w) subject to w ∈ C

where C is a convex set. The bounded gradient assumption amounts to

∥∇wP (w)∥2 ≤ B, ∀w ∈ C

for some constant B ≥ 0. Introduce the projection gradient algorithm

zn = wn−1 − µ∇wTP (wn−1)

wn = PC [zn]

where PC refers to the projection operator onto C.

(a) Establish that

1

N + 1

(
N∑

m=0

(
P (wm−1)− P (w⋆)

))
≤ ∥w̃−1∥2 + µ2B2(N + 1)

2(N + 1)µ

(b) Assume we run the algorithm up to iteration N and return

wbest
N = argmin

0≤n≤N

P (wn−1)

That is, we return the vector with the smallest risk value. Show that if N = O(1/ϵ2) then

P (wbest
N ) ≤ P (w⋆) + ϵ

(c) Assume we return instead the average weight

wav
N =

1

N + 1

N∑
n=0

wn−1

Show again that if N = O(1/ϵ2) and µ = O(1/
√
N) then

P (wav
N ) ≤ P (w⋆) + ϵ

Solution:

(a) Note that

wn = Pc

[
wn−1 − µ∇wTP (wn−1)

]
w⋆ = PC [w

⋆]

Using the nonexpansive property (9.70) we get

∥w⋆ − wn∥2 ≤
∥∥∥PC [w

⋆]− Pc

[
wn−1 − µ∇wTP (wn−1)

]∥∥∥2
≤ ∥w⋆ − wn−1 + µ∇wTP (wn−1)∥2
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so that

∥w̃n∥2 ≤ ∥w̃n−1 + µ∇wTP (wn−1)∥2

≤ ∥w̃n−1∥2 + µ2∥∇wTP (wn−1)∥2 + 2µ∇wP (wn−1)w̃n−1

≤ ∥w̃n−1∥2 + µ2B2 + 2µ∇wP (wn−1)w̃n−1

Next, from convexity we have

P (w⋆) ≥ P (wn−1) +∇wP (wn−1)(w
⋆ − wn−1)

That is,
∇wP (wn−1)(w

⋆ − wn−1) ≤ P (w⋆)− P (wn−1)

It follows that

∥w̃n∥2 ≤ ∥w̃n−1∥2 + µ2B2 − 2µ
(
P (wn−1)− P (w⋆)

)
Iterating gives

0 ≤ ∥w̃N∥2 ≤ ∥w̃−1∥2 + µ2B2(N + 1) − 2µ
N∑

m=0

(P (wm−1)− P (w⋆))

which implies that

1

N + 1

(
N∑

m=0

(
P (wm−1)− P (w⋆)

))
≤ ∥w̃−1∥2 + µ2B2(N + 1)

2(N + 1)µ

(b) For
wbest

N = argmin
0≤n≤N

P (wn−1)

we have

P (wbest
N )− P (w⋆) ≤ 1

N + 1

(
N∑

m=0

(
P (wm−1)− P (w⋆)

))
and, hence,

P (wbest
N )− P (w⋆) ≤ ∥w̃−1∥2

2(N + 1)

1

µ
+

µB2

2

Differentiating the upper bound relative to µ gives µ = O(1/
√
N) from which

P (wbest
N )− P (w⋆) ≤ O

( 1√
N

)
For the upper bound to be O(ϵ) we need N = O(1/ϵ2).

(c) By convexity we have

P (wav
N ) = P

( 1

N + 1

N∑
n=0

wn−1

)
≤ 1

N + 1

N∑
n=0

P (wn−1)

so that
P (wav

N )− P (w⋆) ≤ ∥w̃−1∥2 + µ2B2(N + 1)

2(N + 1)µ
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That is,

P (wav
N )− P (w⋆) ≤ ∥w̃−1∥2

2(N + 1)

1

µ
+

µB2

2

Differentiating the upper bound relative to µ gives µ = O(1/
√
N) from which

P (wav
N )− P (w⋆) ≤ O

( 1√
N

)
For the upper bound to be O(ϵ) we need N = O(1/ϵ2).

2) (Chapter 17) Consider the following variation of Polyak’s momentum acceleration method described
originally by (17.65), where the second step involves now a combination of b̄n−1 and bn using a
smoothing factor β:

bn = ∇wT Q(wn−1;γ(n),hn)

b̄n = βb̄n−1 + (1− β)bn

wn = wn−1 − µb̄n

(a) Assume bn and b̄n−1 are unbiased estimators for the true gradient vectors at wn−1 and wn−2,
respectively, i.e., Ebn = E∇wTP (wn−1) and E b̄n−1 = E∇wT P (wn−2). Is the updated vector
b̄n an unbiased estimator for ∇wT P (wn−1)?

(b) Assume we modify the second step as follows:

b̄n = β
[
b̄n−1 − E∇wTP (wn−2) + E∇wTP (wn−1)

]
+ (1− β)bn

Will b̄n be now an unbiased estimator for ∇wTP (wn)?
(c) Use a Taylor series expansion to explain that the correction in part (b) can be approximated by

the following in terms of the Hessian matrix of the empirical risk evaluated at wn−1:

b̄n = β
[
b̄n−1 + E∇2

wP (wn−1)(wn−1 −wn−2)
]
+ (1− β)bn

(d) What would be a stochastic approximation for the construction in part (c)?

Solution: For more details, the reader may refer to the works by Cutkosky, H. and F. Orabona (2019),
“Momentum-based variance reduction in nonconvex SGD,” Proc. Advances Neural Information
Processing Systems, pp. 1–10, and Tran, H. and A. Cutkosky (2022), “Better SGD using second-order
momentum” Proc. Advances Neural Information Processing Systems, pp. 3530–3541.
(a) Note that

E b̄n = βE b̄n−1 + (1− β)Ebn

= βE∇wT P (wn−2) + (1− β)E∇wT P (wn−1)

̸= E∇wT P (wn−1)

It follows that the variable b̄n is not an unbiased estimator for ∇wTP (wn−1).
(b) In this case we have

E b̄n

= β
[
E b̄n−1 − E∇wTP (wn−2) + E∇wTP (wn−1)

]
+ (1− β)Ebn

= β
[
E∇wTP (wn−2)− E∇wTP (wn−2) + E∇wTP (wn−1)

]
+ (1− β)E∇wTP (wn−1)

= E∇wT P (wn−1)

It follows that b̄n is now an unbiased estimator for ∇wTP (wn−1)?
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(c) Using the Taylor series expansion we have

∇wTP (wn−2) = ∇wTP (wn−1) +∇2
wP (wn−1)(wn−2 − wn−1) +O(∥wn−2 − wn−1∥2)

Ignoring the higher order term and substituting into part (b) gives

b̄n = β
[
b̄n−1 + E∇2

wP (wn−1)(wn−1 −wn−2)]
]
+ (1− β)bn

(d) A stochastic approximation replaces the Hessian matrix of P (w) by the Hessian matrix of the
loss function to get

b̄n = β
[
b̄n−1 +∇2

wQ(wn−1;γ(n),hn)(wn−1 −wn−2)]
]
+ (1− β)bn

3) (Chapter 18) Consider a collection S = {x1,x2, . . . ,xN} of N independent random vectors, each
with mean Exn = xn and variance σ2

n = E∥xn − Exn∥2. Introduce the sample mean

x ≜
1

N

N∑
n=1

xn

We wish to estimate x by considering two constructions based on a mini-batch of size B. The first
construction selects B at random without replacement from S, while the second construction selects
B samples with replacement. We do not assume uniform sampling. Instead, we let pn denote the
normalized inclusion probability of xn in the mini-batch B. We denote the samples selected with
replacement by {xr

b} and the samples selected without replacement by {xwr
b }. We construct the

estimators as follows:

x̂r ≜
1

B

B∑
b=1

1

Npb
xr
b (with replacement)

x̂wr ≜
1

B

B∑
b=1

1

Npb
xwr
b (without replacement)

Show that both estimators are unbiased with variances

E∥x̂r − x∥2 = 1

B

N∑
n=1

pn

(
1

N2p2n
σ2
n +

∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
)

E∥x̂wr − x∥2 ≤ 1

B

N∑
n=1

pn

(
1

N2p2n
σ2
n +

∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
)

Solution: The argument appears in the work by Rizk, E., S. Vlaski, and A. H. Sayed (2022), “Federated
learning under importance sampling,” IEEE Trans. Signal Process., vol. 70, pp. 5381–5396. The
derivation extends a result from Brewer, K. R. W. and M. Hanif (1983), Sampling with Unequal
Probabilities, Springer-Verlag, NY. The presentation is adjusted for the current notation and context.

We begin with the with-replacement setting. The randomness of the samples introduces some intri-
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cacies that need to be accounted for in the notation. For the mean, we have:

Ex̂r =
1

B

B∑
b=1

E
(

1

Npb
xr
b

)

=
1

B

B∑
b=1

E
{
E
{

1

Npb
xr
b

∣∣∣∣S}}

=
1

B

B∑
b=1

E

{
N∑

n=1

pn
1

Npn
xn

}
=

1

B

B∑
b=1

x

= x.

For the variance we find:

E∥x̂r − x∥2

= E

∥∥∥∥∥ 1B
B∑
b=1

1

Npb
xr
b − x

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1B
B∑
b=1

(
1

Npb
xr
b − x

)∥∥∥∥∥
2

,

=
1

B2

B∑
b=1

E
∥∥∥∥ 1

Npb
xr
b − x

∥∥∥∥2
+

1

B2

∑
b1 ̸=b2

E
{(

1

Npb1
xb1 − x

)(
1

Npb2
xb2 − x

)}
(a)
=

1

B2

B∑
b=1

E
∥∥∥∥ 1

Npb
xr
b − x

∥∥∥∥2
+

1

B2

∑
b1 ̸=b2

E
{

1

Npb1
xb1 − x

}
E
{

1

Npb2
xb2 − x

}
,

(b)
=

1

B2

B∑
b=1

E
∥∥∥∥ 1

Npb
xr
b − x

∥∥∥∥2
where (a) is a result of the fact that the elements of S are independent and xr

b is sampled from S
independently, and hence xb1 and xb2 are independent. Step (b) follows from:

E
(

1

Npb
xb

)
= E

(
1

N

N∑
n=1

xn

)
= x.
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Then,

E∥x̂r − x∥2

=
1

B2

B∑
b=1

E
∥∥∥∥ 1

Npb
xr
b − x

∥∥∥∥2
=

1

B2

B∑
b=1

E

{
E
∥∥∥∥ 1

Npb
xr
b − x

∥∥∥∥2∣∣∣∣S
}

=
1

B2

B∑
b=1

E

{
N∑

n=1

pn

∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
}
,

=
1

B2

B∑
b=1

N∑
n=1

pnE
∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
=

1

B

N∑
n=1

pnE
∥∥∥∥ 1

Npn
xn −

1

Npn
xn +

1

Npn
xn − x

∥∥∥∥2
=

1

B

N∑
n=1

pn

(
E
∥∥∥∥ 1

Npn
xn −

1

Npn
xn

∥∥∥∥2 + ∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
)

=
1

B

N∑
n=1

pn

(
1

N2p2n
σ2
n +

∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
)
.

We now proceed to study the without replacement setting. The fact that the xb are sampled from S
without replacement causes pairs xb1 ,xb2 to no longer be independent. We denote the set of points
sampled from S without replacement by Bwr and introduce the activation function by:

In ≜

{
1, if xn ∈ Bwr

0, if xn /∈ Bwr

Then, the estimator x̂wr can be written equivalently as:

x̂wr =
1

B

N∑
n=1

In
1

Npn
xn

For the mean, we have:

Ex̂wr =
1

B

N∑
n=1

E
{
In

1

Npn
xn

}
=

1

B

N∑
n=1

EIn × E
1

Npn
xn

=
1

B

N∑
n=1

Bpn ×
1

Npn
xn =

1

N

N∑
n=1

xn = x



7

For the variance, we have:

E ∥x̂wr − x∥2 = E

∥∥∥∥∥ 1B
N∑

n=1

In
(

1

Npn
xn − x

)∥∥∥∥∥
2

=
1

B2

N∑
n=1

E
∥∥∥∥In( 1

Npn
xn − x

)∥∥∥∥2
+

1

B2

∑
n1 ̸=n2

E

{
In1

(
1

Npn1

xn1 − x

)
In2

×
(

1

Npn2

xn2 − x

)}
We begin with:

E
∥∥∥∥In( 1

Npn
xn − x

)∥∥∥∥2
= E

{∥∥∥∥In( 1

Npn
xn − x

)∥∥∥∥2 ∣∣∣∣In = 1

}
× P (In = 1)

+ E

{∥∥∥∥In( 1

Npn
xn − x

)∥∥∥∥2 ∣∣∣∣In = 0

}
× P (In = 0)

=Bpn

(
E
∥∥∥∥ 1

Npn
xn −

1

Npn
xn +

1

Npn
xn − x

∥∥∥∥2
)

=Bpn

(
1

N2p2n
E∥xn − xn∥2 +

∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
)

=Bpn

(
1

N2p2n
σ2
n +

∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
)

For the cross-term we have:

E
{
In1

(
1

Npn1

xn1 − x

)
In2

(
1

Npn2

xn2 − x

)}
= E

{(
1

Npn1

xn1 − x

)(
1

Npn2

xn2 − x

) ∣∣∣∣In1 = 1, In2 = 1

}
× P (In1 = 1, In2 = 1)

= P (In2 = 1, In1 = 1)

(
1

Npn1

Exn1 − x

)(
1

Npn2

Exn2 − x

)
= P (In2 = 1, In1 = 1)

(
1

Npn1

xn1 − x

)(
1

Npn2

xn2 − x

)
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We then get the desired result:

E ∥x̂wr − x∥2

=
1

B

N∑
n=1

pn

(
1

N2p2n
σ2
n +

∥∥∥∥ 1

Npn
xn − x

∥∥∥∥2
)

+
1

B2

∑
n1 ̸=n2

P {In2 = 1, In1 = 1}
(

1

Npn1

xn1 − x

)
×
(

1

Npn2

xn2 − x

)
.

4) (Chapter 19) Consider an empirical risk minimization problem of the following form where P (w)
is ν−strongly convex and has δ−Lipschitz gradients:

w⋆ ∆
= argmin

w∈IRM

{
P (w)

∆
=

1

N

N−1∑
m=0

Q(w; γ(m), hm)

}
Consider the average regret from the body of the chapter defined as

ER(N)
∆
=

1

N

N−1∑
n=0

(
EP (wn−1)− P (w⋆)

)
The empirical risk is minimized by using the classical stochastic gradient algorithm with step-size
µ and where the gradient noise satisfies conditions (19.13a)–(19.13b).

(a) Show that an approximate upper bound for ER(N) is given by

ER(N) ≤ δ

4Nµν
E∥w̃−1∥2 +

µσ2
gδ

4ν

(b) Minimize the upper bound with respect to µ and conclude that ER(N) ≤ O(1/
√
N).

Solution:

(a) We know that

0 ≤ EP (wn−1)− P (w⋆) ≤ δ

2
∥w̃n−1∥2

∥Ew̃n−1∥2 ≤ λn∥w̃−1∥2 +
µ2σ2

g

1− λ
≈ λn∥w̃−1∥2 +

µσ2
g

2ν

where we approximated 1− λ ≈ 2µν. It follows that

EP (wn−1)− P (w⋆) ≤ δ

2
λn∥w̃−1∥2 +

µσ2
gδ

4ν
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and, hence,

ER(N) ≤ 1

N

N−1∑
n=0

(δ
2
λnE∥w̃−1∥2 +

µσ2
gδ

4ν

)
≤ δ

2N

1

1− λ
E∥w̃−1∥2 +

µσ2
gδ

4ν

≈ δ

2N

1

2µν
E∥w̃−1∥2 +

µσ2
gδ

4ν

=
δ

4Nµν
E∥w̃−1∥2 +

µσ2
gδ

4ν

(b) Differentiating the upper bound relative to µ and setting the derivative to 0 gives:

− δ

4Nν

1

µ2
E∥w̃−1∥2 +

σ2
gδ

4ν
= 0

for which

µo =

(
E∥w̃−1∥2

)1/2
σg

√
N

Substituting into the upper bound for ER(N) gives

ER(N) ≤
δσg

(
E∥w̃−1∥2

)1/2
2ν

× 1√
N

= O(1/
√
N)

5) (Chapter 27) Consider the noisy observation y = x + v where all variables are M−dimensional
and v is Gaussian noise with zero mean and covariance matrix Rv, i.e., v ∼ N (0, Rv). The noise
and x are independent of each other and Rv is positive definite.

(a) Let fx(x) denote the pdf of x. Argue that the pdf of y is given by

fy(y)
∆
=

∫
x∈X

1√
(2π)M

1√
detRv

exp
{
−1

2
(y − x)TR−1

v (y − x)
}
fx(x)dx

Argue further that the conditional pdf of x given y is

fx|y(x|y) =
fx(x)

fy(y)
× 1√

(2π)M
1√

detRv

exp
{
− 1

2
(y − x)TR−1

v (y − x)
}

(b) Verify that the gradient of fy(y) relative to y satisfies
1

fy(y)
∇yTfy(y) = −R−1

v (y − x̂)

where x̂ = E (x|y = y).
(c) Conclude that the least mean-squares estimator satisfies the following relation in terms of the

pdf of the observation:
E (x|y) = y +Rv∇yT ln fy(y)

Solution:

(a) From Bayes rule
fx,y(x, y) = fx(x)fy|x(y|x) = fy(y)fx|y(x|y)
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Moreover, we have that

fy|x(y|x) = fv(y − x) =
1√

(2π)M
1√

detRv

exp
{
− 1

2
(y − x)TR−1

v (y − x)
}

Therefore,

fx,y(x, y) = fx(x)fy|x(y|x)

= fx(x)×
1√

(2π)M
1√

detRv

exp
{
− 1

2
(y − x)TR−1

v (y − x)
}

from which we conclude by marginalizing over x that

fy(y) =

∫
x∈X

1√
(2π)M

1√
detRv

exp
{
− 1

2
(y − x)TR−1

v (y − x)
}
fx(x)dx

Likewise, from Bayes rule again

fx|y(x|y) =
fx(x)fy|x(y|x)

fy(y)

=
fx(x)

fy(y)
× 1√

(2π)M
1√

detRv

exp
{
− 1

2
(y − x)TR−1

v (y − x)
}

(b) Differentiating fy(y) relative to y and switching differentiation with integration gives

∇yTfy(y)

= ∇yT

{∫
x∈X

1√
(2π)M

1√
detRv

exp
{
−1

2
(y − x)TR−1

v (y − x)
}
fx(x)dx

}

=

∫
x∈X

1√
(2π)M

1√
detRv

∇yT

{
exp
{
−1

2
(y − x)TR−1

v (y − x)
}}

fx(x)dx

= − 1√
(2π)M

1√
detRv

∫
x∈X

R−1
v (y − x)exp

{
−1

2
(y − x)TR−1

v (y − x)
}
fx(x)dx

= −R−1
v × 1√

(2π)M
1√

detRv

∫
x∈X

y × exp
{
−1

2
(y − x)TR−1

v (y − x)
}
fx(x)dx+

R−1
v × 1√

(2π)M
1√

detRv

∫
x∈X

x× exp
{
−1

2
(y − x)TR−1

v (y − x)
}
fx(x)dx

= −R−1
v ×

∫
x∈X

y × fy|x(y|x)fx(x)dx+R−1
v × fy(y)

∫
x∈X

x× fx|y(x|y)dx

= −R−1
v ×

∫
x∈X

y × fx,y(x, y)dx+R−1
v × fy(y)× E (x|y = y)

= −R−1
v × fy(y)×

∫
x∈X

y × fx|y(x|y)dx+R−1
v × fy(y)E (x|y = y)

= −R−1
v × fy(y)× y ×

∫
x∈X

fx|y(x|y)dx︸ ︷︷ ︸
=1

+R−1
v × fy(y)E (x|y = y)

= R−1
v × fy(y)×

(
E (x|y = y)− y

)
Therefore,

1

fy(y)
∇yTfy(y) = R−1

v × fy(y)×
(
E (x|y = y)− y

)
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where x̂ = E (x|y = y).
(c) Rearranging terms and noting that

∇yT ln fy(y) =
1

fy(y)
∇yTfy(y)

we conclude that
E (x|y) = y +Rv∇yT ln fy(y)


