EE566 ADAPTATION AND LEARNING Instructor: Ali H. Sayed
Homework Solutions #2 Due: March 24, 2025

1) (Chapter 15) Consider a first-order differentiable convex risk function P(w) with bounded gradients,
and introduce the convex optimization problem

w* = argmin P(w) subject to w € C
weRM

where C is a convex set. The bounded gradient assumption amounts to
VWP < B, Vwec
for some constant B > 0. Introduce the projection gradient algorithm

Zn = Wp1— pVrP(w,_1)
Wy = PC[Zn]

where P¢ refers to the projection operator onto C.

(a) Establish that

1 (v . @4 ]|? + 2 B3 (N +1)
N+1 <§:0 (P(wm‘l) — Plw )>> = 2(N +1)p

m=
(b) Assume we run the algorithm up to iteration N and return

wh* = argmin P(w,_1)

0<n<N
That is, we return the vector with the smallest risk value. Show that if N = O(1/€?) then
P(wy™) < P(w") + e

(c) Assume we return instead the average weight

1 N
Wy = N—H;wnl

Show again that if N = O(1/¢?) and p = O(1/+/N) then
P(wy) < P(w*) + €
Solution:
(a) Note that
w, = P. [wn,l — MVWTP(U)”,1>:|
w* = PC [UJ*]
Using the nonexpansive property (9.70) we get
2
Jw* = wall? < |[Pelw] = Pefwas = uFur Plwn)] |
< " = waer + pV o Plwa-a) |



so that

(i [ @1 + Vo P(wn )]
[@n—1[1* + 1|Vt P(wn1) || + 20V P(wy—1) W

||{En—l||2 + MQB2 + 2/'LVwP(wn—1)'{Dn—1
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Next, from convexity we have
P(w*) > P(wy—1) + Vo P(w,—1)(w* — w,_1)

That is,
VP (w,—1)(w* —w,—1) < P(w*) — P(w,_1)

It follows that
|@all? < Nl + 1282 = 21 Plwa ) = P(w"))

Iterating gives
N
0< fanl® < loal? + @#BAN +1) = 2u)  (Plwp-1) = P(w"))
m=0

which implies that

1 (< X [wsl* + p* BN + 1)
T < 3 (P(wmfl) — P(w ))) = 2(N + 1)

m=0
(b) For
wh®® = argmin P(w,_1)
0<n<N
we have
1 N
best * *
P(wf™) = Pw) < 5 (;0 (P(wnr) = Pl )))

and, hence,

"“_ 2 1 MB2
)z best — Plw*) < ||U) 1|| -
(Wy™) =P s s v T 2

Differentiating the upper bound relative to y gives u = O(1/+/N) from which

Pute) — P(w') < o(\/iﬁ)

For the upper bound to be O(¢) we need N = O(1/¢?).
(c) By convexity we have

N N
av 1 1
p<wN):P<N—+1 E wn71>§N+1 E P(wn-1)
n=0 n=0

so that

|w-a|® + p*B*(N + 1)
avy _ Plw*) <



That is,

J@a)? 1 pB?
P avy P * < -

Differentiating the upper bound relative to y gives = O(1/+/N) from which
1
Pwy) — Plw*) < O(—)
For the upper bound to be O(e) we need N = O(1/¢€?).
[

2) (Chapter 17) Consider the following variation of Polyak’s momentum acceleration method described
originally by (17.65), where the second step involves now a combination of b,,_; and b, using a
smoothing factor :

n = v_wT Q(wn—l;'Y(n)vh’n)

w, = wnfl_ﬂbn

S o

(a) Assume b, and b,_; are unbiased estimators for the true gradient vectors at w,,_; and w,,_o,
respectively, i.e., Eb, = EV,7P(w,_;) and Eb,_; = EV,r P(w,_»). Is the updated vector
b, an unbiased estimator for Vv P(w,_;)?

(b) Assume we modify the second step as follows:

b, — 5[5n_1 BV, P(wn_s) + vaTP(wn_l)} + (1 B)b,

Will b,, be now an unbiased estimator for Vv P(w,,)?
(c) Use a Taylor series expansion to explain that the correction in part (b) can be approximated by
the following in terms of the Hessian matrix of the empirical risk evaluated at w,,_1:

by = B[bu1 + BV P(w, 1) (w1 —w,2)] + (1= A)b,

(d) What would be a stochastic approximation for the construction in part (c)?

Solution: For more details, the reader may refer to the works by Cutkosky, H. and F. Orabona (2019),
“Momentum-based variance reduction in nonconvex SGD,” Proc. Advances Neural Information
Processing Systems, pp. 1-10, and Tran, H. and A. Cutkosky (2022), “Better SGD using second-order
momentum” Proc. Advances Neural Information Processing Systems, pp. 3530-3541.

(a) Note that

Eb, = pBEb,_+ (1 - B)Eb,
= BvaT P(wn,2> + (1 — 5)EVWT P(wn,l)
4+ EV,r P(w,_1)

It follows that the variable b,, is not an unbiased estimator for Vv P(w,_1).
(b) In this case we have

Eb,

- []Eanl —EV, 1 P(w,_s) + vaTP(wn,l)] +(1-p)Eb,

- [vaTP(wn_z) CEV,rP(w,_s) + vaTP(wn_l)] 4 (1— AEVyrP(w,_)
—EV,r P(w,_,)

It follows that b,, is now an unbiased estimator for Vv P(w,_;)?



(c) Using the Taylor series expansion we have
VwTP(wn_Q) = VwTP<wn_1) + ViP(wn_l)(wn_Q - 'll)n_l) + O(Hwn_g - wn_le)
Ignoring the higher order term and substituting into part (b) gives

b, = {Bn_l FEV2P(w) (w1 — wn_g)ﬂ + (1 B)b,

(d) A stochastic approximation replaces the Hessian matrix of P(w) by the Hessian matrix of the
loss function to get

b = B[baot + V2Q(wa-137(), B (womy = w,)] + (1= B)b,

3) (Chapter 18) Consider a collection S = {x, xs,...,xy} of N independent random vectors, each
with mean Ex,, = T, and variance 02 = E||z,, — Ex,||*. Introduce the sample mean

| N
N2

n=1
We wish to estimate T by considering two constructions based on a mini-batch of size B. The first
construction selects B at random without replacement from S, while the second construction selects
B samples with replacement. We do not assume uniform sampling. Instead, we let p,, denote the
normalized inclusion probability of x,, in the mini-batch 5. We denote the samples selected with

replacement by {x}} and the samples selected without replacement by {x;""}. We construct the
estimators as follows:

(1>

T

1 1
~1r A .
N —— th repl t
xr 2 N bCL‘b (Wl replacemen )
1 1
~Wr A W .
= —= —ax" thout 1 t
2 N biL'b (Wl out 1ep acemen)

Show that both estimators are unbiased with variances

1 Y 1 1

~T —n2 — —

Elz" -zl =5 > <N2pzai+HNp T, — T
n=1 n n

2)
N 2

P | 1 1 _

Ellz™ —z|" < 5 ;pn sz%an + anxn -7
Solution: The argument appears in the work by Rizk, E., S. Vlaski, and A. H. Sayed (2022), “Federated
learning under importance sampling,” IEEE Trans. Signal Process., vol. 70, pp. 5381-5396. The

derivation extends a result from Brewer, K. R. W. and M. Hanif (1983), Sampling with Unequal
Probabilities, Springer-Verlag, NY. The presentation is adjusted for the current notation and context.

We begin with the with-replacement setting. The randomness of the samples introduces some intri-



cacies that need to be accounted for in the notation. For the mean, we have:

Ex' = —

For the variance we find:

1
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o3| —
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N
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8

|
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where (a) is a result of the fact that the elements of S are independent and «} is sampled from S
independently, and hence x;, and x,, are independent. Step (b) follows from:
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() -2y o) ==



Then,
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We now proceed to study the without replacement setting. The fact that the x; are sampled from S
without replacement causes pairs &y, , €p, to no longer be independent. We denote the set of points
sampled from S without replacement by B*" and introduce the activation function by:

[ A 1, if , € B
"0, if x, ¢ B

Then, the estimator Z"" can be written equivalently as:

For the mean, we have:




For the variance, we have:

E|lg" - 7|° =E

1 1 _
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We begin with:

+E{ I, (Nipnxn—x) 2 I, = } x P (I, = 0)
— Bp, (E HNZﬁ" Nlpnfn + N;nf" _z 2)
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o (s )

For the cross-term we have:

1 1
E ]In NI - ]In A 4n -
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We then get the desired result:
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4) (Chapter 19) Consider an empirical risk minimization problem of the following form where P(w)

is v—strongly convex and has d—Lipschitz gradients:

* 2 argmin {P(w) 2 %Z_Q(wﬂ(m)ahm>}

w
weRM

Consider the average regret from the body of the chapter defined as
—1

LN
& S (BEP@. )~ P"))
n=0
The empirical risk is minimized by using the classical stochastic gradient algorithm with step-size

1 and where the gradient noise satisfies conditions (19.13a)—(19.13b)

(a) Show that an approximate upper bound for ER(N) is given by
,uagé

)
ER(N) < Ellw_,||> +
R(N) < g Elld-® + =

(b) Minimize the upper bound with respect to x and conclude that ER(N) < O(1/v/N)

Solution:

(a) We know that
N 0, -
0 < EP(w, 1) = P(w) < 5| |
2 2 2
~ ~ weo N Ho
F e 2<)\n B 2 g ~ \" B 2 ~g
B w1 < A" Jw-i[|” + 17— 1w+ =

where we approximated 1 — A ~ 2uv. It follows that
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and, hence,
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(b) Differentiating the upper bound relative to ;2 and setting the derivative to 0 gives:

o 1 o)
— “Ellw 4P+ 2= =0
ANV p? o[+ 4v

o\ 12
(Ell@-)?)
p =
o /N
Substituting into the upper bound for ER (V) gives
o\ 2
b0, (E @)

1
< =
ER(N) < . X i

for which

O(1/V'N)
0

5) (Chapter 27) Consider the noisy observation y = x + v where all variables are M —dimensional

and v is Gaussian noise with zero mean and covariance matrix R,, i.e., v ~ N(0, R,). The noise
and x are independent of each other and R?, is positive definite.

(a) Let fz(z) denote the pdf of . Argue that the pdf of y is given by

o) 2 [ s e R

Argue further that the conditional pdf of x given y is

folw) L 1
Fenlalt) = 05 % s vareel

(b) Verify that the gradient of f,(y ) relative to y satisfies

Vyrfy(y) = =R, (y - 7)

5= 2R - o)}

h@
where T = E (z|y = y).
(c) Conclude that the least mean-squares estimator satisfies the following relation in terms of the
pdf of the observation:

E(xz|ly) =y + R,V,r1In fy(y)
Solution:

(a) From Bayes rule

fay(@,y) = fo(2) fyla(y]2) = fy(Y) fapy(2]y)



Moreover, we have that

fuel0he) = oy =) = s eenp 0= )R-}

Therefore,

fa:,y(x7 y) = fm(x)fy\w(mx)

1 1 1 Tl
= fa(z) X ——(y—2) R —
fa(x) N \/detheXp{ 5y —a) By 93)}
from which we conclude by marginalizing over x that
1 1 1 T
= ——(y—=2)' R — «(1)d
W= | o vmmeel - - TR - o) ala)ds

Likewise, from Bayes rule again

_ fm(x)fy\m(y‘x>
= fa(2) X L L ex
fuy) — /(2n)M \/det R,

(b) Differentiating f,(y) relative to y and switching differentiation with integration gives

Vnyy(y)
1 1 1 -
:VyT{/xeX VR \/detheXp{—E(y—w) R, (y—fv)}fx@)dx}

p{ - %(y — ) Ry — o)}

- \/(217)M \/delt R /eX Ry - $)exp{—%(y —2) R (y — l’)}fw(:c)dx
S mlw)M x/deltR / e’ exp{ (v~ )Ry~ )} fale)do +

1 1
R x
N SV

=-R! x/ Xy X fy|w(y|x)fw(x)da:+R;1 X fy(y)/ T X foy(xly)de

eXx

/M x X exp{—%(y — ) R (y — x)}fm@)dx

=—R,' x / Y X fay(z,y)de+ R, x fu(y) x E(z|ly = y)
reX

= —R," % fy(y) X / y X fa(zly)de + R, < fu(y)E(xly = y)

TeEX

Z—R;1><fy(y)><y></

N Ja(@ly)dz +R," % fy(y)E(z|y = y)

-

= R, X fy(y) x (E(wly = y):— y)

Therefore,

%mey(y) =R, x f,(y) x (E (zly =y) — y)



where 7 = E (z|y = y).
(c) Rearranging terms and noting that

VyT In fy(y) = fL(y)vnyy(y)

we conclude that
E(z|y) =y + R,V,r1In f,(y)



