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EE566 ADAPTATION AND LEARNING Instructor: Ali H. Sayed
Homework Solutions #1 Due: March 3, 2025

1) (Chapter 1) Consider an arbitrary matrix A ∈ IRN×M and let A† denote its pseudo inverse, which
is defined as the unique matrix satisfying the 4 properties (1.112a)–(1.112d). Show that
(a) R(A†) = R(AT) and N (A†) = N (AT).
(b) N (A) = R(I − A†A).

Solution:

(a) Verifying R(A†) = R(AT) is equivalent to showing that R(A†) ⊥ N (A). Thus, let x ∈ N (A)
and y ∈ R(A†), i.e., Ax = 0 and y = A†z for some z. It follows that

yTx = zT(A†)Tx

= zT(A†AA†)Tx

= zT(A†)
T

(A†A)Tx

= zT(A†)
T

A†Ax

= 0

as desired. A similar argument can be used to establish the second result.
(b) Let x ∈ R(I − A†A), i.e., x = (I − A†A)z for some z. Then,

Ax = A(I − A†A)z = (A− AA†A)z = (A− A)z = 0 =⇒ x ∈ N (A)

Conversely, let x ∈ N (A). By property (a) we know that x ∈ N (A†T) so that xTA† = 0.
Assume x /∈ R(I −A†A). This means that there exists a vector z ∈ N (I − (A†A)T) such that
xTz ̸= 0. In this case,

(I − (A†A)T)z = (I − A†A)z = 0 =⇒ A†Az = z

and
xTz = xTA†Az = 0; a contradiction

2) (Chapter 2) Consider an M ×M square invertible real matrix X with entries Xmn. We know from
row 15 in Table 2.1 that ∇X ln | det(X)| = X−1. We further know from part (a) of Prob. 2.10 in
the text that ∂X−1/∂α = −X−1(∂X/∂α)X−1, for any parameter α. Next, consider a matrix-valued
function G(X): IRM×M → IRM×M . In a manner similar to (2.26), we use the notation ∇XTG(X) to
refer now to the M2 ×M2 matrix whose individual block entries are the M ×M matrices given by
∂G(X)/∂Xmn:

∇XTG(X)
∆
=

[
∂G(X)

∂Xmn

]
Show that

∇2
X ln | det(X)| = X−1 ⊗X−1

in terms of the Kronecker product operation.

Solution: We already know from row 15 in Table 2.1 that

∇X ln | det(X)| = X−1

The result is therefore the matrix function G(X) = X−1. Next we need to differentiate G(X) relative
to XT to arrive at the desired Hessian matrix for ln | det(X)|. For each individual entry Xmn of X
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we know from part (a) of Prob. 2.10 in the text that

∂G(X)

∂Xmn

=
∂X−1

∂Xmn

= −X−1 × ∂X

∂Xmn

×X−1

= −X−1 × eme
T
n ×X−1

using the basis vectors em and en with unit entries at locations m and n, respectively. Multiplying
X−1 by eme

T
n from the left extracts the (n,m)th entry.

It follows that the (k, ℓ) entry of the desired gradient to the (m,n) entry of X is given by[
∂X−1

∂Xmn

]
kℓ

= −[X−1]km × [X−1]nℓ

If we now collect all the partial derivatives ∂G(X)/∂Xmn into a matrix we get

∇XTG(X) = −X−1 ⊗X−1

and consequently
∇2

X ln | det(X)| = X−1 ⊗X−1

3) (Chapter 3) Consider a nonnegative real random variable x with cdf denoted by Fx(x). Show that
the mean of x can be recovered from the cdf using the expression

Ex =

∫ ∞

0

(1− Fx(t))dt =

∫ ∞

0

P[x ≥ t]dt

This result establishes a connection between expectations of random variables and tails of their
distributions. Conclude similarly that when x is nonnegative and assumes discrete integer values in
N, then

Ex =
∞∑
n=0

P[x ≥ n]

How would you adjust the expressions if the random variables were not necessarily nonnegative?

Solution: Recall first that, by definition,

Fx(t) = P[x ≤ t] =

∫ t

0

fx(x)dx

and
fx(x) =

d

dt
Fx(x)

We now use integration by parts, namely,
∫
udv = uv −

∫
vdu, to evaluate∫ ∞

0

(1− Fx(t))dt = t[1− Fx(t)]
∣∣∣∞
0
+

∫ ∞

0

tfx(t)dt

= 0 +

∫ ∞

0

tfx(t)dt

= Ex

where we used the fact that limt→+∞ Fx(t) = 1.
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If x is nonnegative, we express it as the combination of two random variables as follows:

x = y + z

where y = xI[x ≥ 0] ≥ 0 and z = xI[x ≤ 0] ≤ 0. It is clear that

Ey =

∫ ∞

0

P[x ≥ t]dt

On the other hand, the variable z is defined for x ≤ 0. Note that

Ez = E
(
xI[−x ≥ 0]

)
= −E

(
− xI[−x ≥ 0]

)
= −

∫ ∞

0

P[−x ≥ t]dt

= −
∫ ∞

0

P[x ≤ −t]dt

=

∫ 0

−∞
P[x ≤ t′]dt′, using t′ = −t

We conclude that

Ex =

∫ ∞

0

P[x ≥ t]dt+

∫ 0

−∞
P[x ≤ t]dt

When x happens to be discrete and nonnegative, the cdf will have jumps at the integer locations. In
particular, it will hold that

Fx(0) = P[x ≤ 0] = P[x = 0]

Fx(1) = P[x ≤ 1] = P[x = 0] + P[x = 1]

Fx(2) = P[x ≤ 2] = P[x = 0] + P[x = 1] + P[x = 2]
...

and so on, so that
P[x = n] = Fx(n)− Fx(n− 1)

Therefore,

Ex
∆
=

∞∑
n=0

nP[x = n]

=
∞∑
n=0

n
(
Fx(n)− Fx(n− 1)

)
=

∞∑
n=0

n
(
[1− Fx(n− 1)]− [1− Fx(n)]

)
= [1− Fx(0)]− [1− Fx(1)] + 2[1− Fx(1)]− 2[1− Fx(2)] + 3[1− Fx(2)]− 3[1− Fx(3)] + . . .

= [1− Fx(0)] + [1− Fx(1)] + [1− Fx(2)] + [1− Fx(3)] + . . .

=
∞∑
n=0

(
1− Fx(n)

)
=

∞∑
n=0

P[x ≥ n]
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4) (Chapter 8) Consider the following set defined in terms of the p−norm of a vector x for p > 0:

Sp =
{
x ∈ IRM , ∥x∥p ≤ 1

}
For which values of p is this set convex?

Solution: For every p ≥ 1, the ℓp−norm is convex, i.e.,

∥αx+ (1− α)y∥p ≤ α∥x∥p + (1− α)∥y∥p, α ∈ [0, 1]

It follows that Sp will be a convex set for p ≥ 1. Now consider the case 0 < p < 1. In this situation,
the set Sp is not convex. Consider the vectors

x = e1, y = eM

We have

∥x∥p =

(
M∑

m=1

xp
m

)1/p

= 1

∥y∥p =

(
M∑

m=1

ypm

)1/p

= 1

Both points belong to Sp. Next, consider the convex combination

z =
1

2
x+

1

2
y

and note that

∥z∥p =

(
M∑

m=1

zpm

)1/p

=
( 1

2p
+

1

2p

)1/p
=

1

2
21/p = 2

1−p
p

The norm is not bounded by 1 for 0 < p < 1 and therefore z /∈ Sp.

5) (Chapter 11) Let P (w) = q(w) + E(w) where w ∈ IRM , q(w) is closed, proper, convex function,
and E(w) is also a convex function with δ−Lipschitz gradients. Let w2 = proxµq(w − µp) where
µ > 0 and p ∈ IRM . Show that for any w1 ∈ IRM , it holds that

q(w2) ≤ q(w1) + pT(w2 − w1) +
1

2µ
∥w − w1∥2 −

1

2µ
∥w − w2∥2 −

1

2µ
∥w2 − w1∥2

Solution: Since w2 = proxµq(w − µp), we know from (11.13) that

1

µ

(
w2 − (w − µp)

)
∈ ∂wTq(w2)

That is,
1

µ
(w2 − w) + p ∈ ∂wTq(w2)

Now, since q(w) is convex we have, for any w1:

q(w1) ≥ q(w2) + ∂wq(w2)(w1 − w2)
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That is,

q(w2) ≤ q(w1)− ∂wq(w2)(w1 − w2)

= q(w1)−
( 1
µ
(w2 − w) + p

)T
(w1 − w2)

= q(w1) + pT(w2 − w1)−
1

µ
(w2 − w)T(w1 − w2)

Expanding the rightmost term gives

(w2 − w)T(w1 − w2) = (w2 − w1 + w1 − w)T(w1 − w2)

= −∥w2 − w1∥2 + (w1 − w)T(w1 − w2)

= −∥w2 − w1∥2 + (w1 − w)T(w1 − w + w − w2)

= −∥w2 − w1∥2 + ∥w1 − w∥2 + (w1 − w2 + w2 − w)T(w − w2)

= −∥w2 − w1∥2 + ∥w1 − w∥2 − ∥w2 − w∥2 + (w1 − w2)
T(w − w2)

The last term on the RHS coincides with the term on the left hand side (apart from a negative sign).
Therefore,

2(w2 − w)T(w1 − w2) = −∥w2 − w1∥2 + ∥w1 − w∥2 − ∥w2 − w∥2

and we get

q(w2) ≤ q(w1)− ∂wq(w2)(w1 − w2)

= q(w1)−
( 1
µ
(w2 − w) + p

)T
(w1 − w2)

= q(w1) + pT(w2 − w1) +
1

2µ
∥w1 − w∥2 − 1

2µ
∥w2 − w1∥2 −

1

2µ
∥w2 − w∥2

6) (Chapter 12) Consider a first-order differentiable risk function P (w) : IRM → IR. We seek a
minimizer w⋆ for P (w) by means of the gradient-descent recursion with a constant step size
parameter,

wn = wn−1 − µ∇wTP (wn−1), n ≥ 0

Assume the initial condition w−1 is such that ∥w̃−1∥ ≤ W , where w̃n = w⋆ − wn. We focus on the
excess risk quantity ∆P (n) = P (wn)− P (w⋆). Assume the step-size parameter is small enough to
ensure a decaying risk value.
(a) Assume first that P (w) is ν−strongly convex with δ−Lipschitz gradients. Show that the number

of iterations necessary for ∆P (n) ≤ ϵ is O(ln(1/ϵ)).
(b) Assume next that P (w) is only convex with δ−Lipschitz gradients. Show that the number of

iterations necessary for ∆P (n) ≤ ϵ is O(1/ϵ).
(c) Assume now that P (w) is convex and δ−Lipschitz itself (rather than its gradients). Show that

the number of iterations necessary for ∆P (n) ≤ ϵ is O(1/ϵ2).

Solution:

(a) We know from result (12.43b) in the text that

∆Pn ≤ δ

2
W 2λn+1

where λ = 1− 2µν + µ2δ2 ∈ [0, 1] for 0 < µ < 2ν/δ2. Setting ∆Pn ≤ ϵ gives

δ

2
W 2λn+1 ≤ ϵ
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which leads to n ≥ O(ln(1/ϵ)). It is worth remarking that P (wn) is nonincreasing as can be
seen, for example, from (12.55) for µ < 2/δ.

(b) We know from Prob. 12.13 part (d) that for µ < 1/δ,

∆Pn ≤ 1

2µn
W 2

Setting ∆Pn ≤ ϵ gives
1

2µn
W 2 ≤ ϵ

which leads to n ≥ O(1/ϵ). Again it is worth remarking that P (wn) is nonincreasing for
µ < 1/δ. Indeed, using property (10.13) for convex functions with δ−Lipschitz gradients, we
get

P (wn) ≤ P (wn−1) +∇wP (wn−1)(wn − wn−1) +
δ

2
∥wn − wn−1∥2

= P (wn−1)− µ∇wP (wn−1)∇wTP (wn−1) +
δµ2

2
∥∇

wTP (wn−1)∥2

= P (wn − 1)− µ∥∇wP (wn−1)∥2 +
δµ2

2
∥∇wP (wn−1)∥2

≤ P (wn−1)− µ∥∇wP (wn−1)∥2 +
µ

2
∥∇wP (wn−1)∥2

= P (wn−1)−
µ

2
∥∇wP (wn−1)∥2

where the last inequality follows from the condition µ < 1/δ.
(c) We also note that the risk function is nonincreasing since, by convexity,

P (wn) ≤ P (wn−1) +∇wP (wn−1)(wn − wn−1)

= P (wn−1)− µ∥∇wP (wn−1)∥2

where we used the gradient descent update in the second equality. Next, we know from (10.41)
that the condition of a Lipschitz function P (w) translates into bounded gradients, i.e., ∥∇wP (w)∥ ≤
δ. Now note that

∥w̃n∥2 = ∥w̃n−1 + µ∇wTP (wn−1)∥2

= ∥w̃n−1∥2 + 2µw̃T
n−1∇wTP (wn−1) + µ2∥∇wTP (wn−1)∥2

≤ ∥w̃n−1∥2 + 2µw̃T
n−1∇wTP (wn−1) + µ2δ2

From the convexity of P (w) we have

P (w⋆) ≥ P (wn−1) +∇wP (wn−1)(w
⋆ − wn−1)

or equivalently
∇wP (wn−1)w̃n−1 ≤ P (w⋆)− P (wn−1)

so that

∥w̃n∥2 ≤ ∥w̃n−1∥2 + 2µ
(
P (w⋆)− P (wn−1)

)
+ µ2δ2

We conclude by iterating that

0 ≤ ∥w̃n∥2 ≤ W 2 − 2
n∑

m=0

µ(m) (P (wm−1)− P (w⋆)) + µ2δ2n
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Since P (wn) is nonincreasing, we know that, for any 0 ≤ m ≤ n:

P (wn)− P (w⋆) ≤ P (wm−1)− P (w⋆)

and we arrive at

∆Pn = P (wn)− P (w⋆) ≤ W 2 + µ2δ2n

2nµ
=

W 2

2nµ
+

µδ2

2

We can bound each term on the RHS by ϵ/2. Thus, setting µδ2/2 ≤ ϵ/2 gives µ < ϵ/δ2. And
setting

W 2

2nµ
≤ ϵ

2

gives n ≥ W 2δ2/ϵ2.


