EE566 ADAPTATION AND LEARNING
Homework Solutions #1

Instructor: Ali H. Sayed
Due: March 3, 2025

1) (Chapter 1) Consider an arbitrary matrix A € RY** and let AT denote its pseudo inverse, which
is defined as the unique matrix satisfying the 4 properties (1.112a)—(1.112d). Show that

(@) R(AT) = R(AT) and N(AT) = N(AT).
(b) N(A) = R(I — At A).

Solution:

(a) Verifying R(A") = R(AT) is equivalent to showing that R(A") L AN(A). Thus, let x € N'(A)
and y € R(A"), i.e., Az =0 and y = A"z for some 2. It follows that

y'z =

ZT(AN T

2T (ATAAN) Tz
2T(AN (ATA) T2
2T (AN At Az

0

as desired. A similar argument can be used to establish the second result.
(b) Let x € R(I — ATA), ie., v = (I — ATA)z for some z. Then,

Ar = A(I - ATA)z=(A—AATA)z = (A—A)z2=0 = 2 € N(A)

Conversely, let x € N(A). By property (a) we know that x € N(A'T) so that 2T AT = 0.
Assume z ¢ R(I — ATA). This means that there exists a vector 2 € N'(I — (ATA)T) such that

2"z # 0. In this case,

(I —(ATAz=(I-ATA)z =0 = ATAz =2

and

t'z=x2"ATAz =0; a contradiction

2) (Chapter 2) Consider an M x M square invertible real matrix X with entries X,,,,. We know from
row 15 in Table 2.1 that Vy In|det(X)| = X~!. We further know from part (a) of Prob. 2.10 in
the text that 90X ! /0a = —X1(0X/0a)X !, for any parameter a.. Next, consider a matrix-valued
function G(X): RM*M — RM*M n a manner similar to (2.26), we use the notation V xrG(X) to
refer now to the M? x M? matrix whose individual block entries are the M x M matrices given by

OG(X) /X pn:

VxtG(X)

Show that

9G(X)
aan

A

Vihn|det(X)|=X"'® X!

in terms of the Kronecker product operation.

Solution: We already know from row 15 in Table 2.1 that
VxIn|det(X)| = X"

The result is therefore the matrix function G(X) = X . Next we need to differentiate G(X) relative
to X' to arrive at the desired Hessian matrix for In | det(X)|. For each individual entry X,,, of X



we know from part (a) of Prob. 2.10 in the text that
0G(X) oX!

= —X1x

0X
0Xmn
= — X 'xepel x X!

x X!

using the basis vectors e,, and e,, with unit entries at locations m and n, respectively. Multiplying
X1 by e,,el from the left extracts the (n,m)th entry.

It follows that the (k, () entry of the desired gradient to the (m,n) entry of X is given by
[axl

- _ X—l X—l
8an] [ ]k‘m X [ ]nf
ke
If we now collect all the partial derivatives 0G(X)/0X,,, into a matrix we get
VyG(X) =X X!

and consequently
Vihn|det(X)|=X"'o X!

O

3) (Chapter 3) Consider a nonnegative real random variable  with cdf denoted by F(x). Show that
the mean of x can be recovered from the cdf using the expression

Ex = /000(1 _ Ey()dt = /Ooo Plz > f|dt

This result establishes a connection between expectations of random variables and tails of their
distributions. Conclude similarly that when @ is nonnegative and assumes discrete integer values in
N, then

Em:ip[m > n

n=0
How would you adjust the expressions if the random variables were not necessarily nonnegative?

Solution: Recall first that, by definition,

t
Fo(t) =Plx <t] = / fz(x)dz
0
d
) fola) = S Pya)
z\T) =  L'x\T
dt
We now use integration by parts, namely, [udv = uv — [ vdu, to evaluate

/Ooou Rt = il E)| +/°° L ()t

0

= 0+/ tfe(t)dt
0

= Ex

where we used the fact that lim; , ., F(t) = 1.



If  is nonnegative, we express it as the combination of two random variables as follows:
r=yYy+=z
where y = [z > 0] > 0 and z = [z < 0] < 0. It is clear that

By — /oop[a; > fdt
On the other hand, the variable z is defined fo[; x < 0. Note that
Ez = E (wﬂ[—w > 0])
— -E(-all-z>0))

_ —/OOOIP’[—th]dt
_ —/OOOP[azg—t]dt

0
= / Plx < t'|dt', using ¢’ = —t

We conclude that - 0
Ex— / Pla > #)dt + / Plz < #ldt
0 —o0
When x happens to be discrete and nonnegative, the cdf will have jumps at the integer locations. In
particular, it will hold that

F.(0) = Plxz <0] =Plx=0]
Fo(1) <
Fe(2) = Plx<2

Il
s
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=
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and so on, so that

Therefore,

|12

Ex Z nPlxz = n|
n=0

- in(Fm(n) ~ Fy(n— 1))

n=0
oo

= Yn(t- Feln-1)] -

n=0

[1-
- [1_Fx(0)]_[1_Fm(1)]+2[
= -0+ - RO +[1-FRE@)]+[1 - FRE)+...

o0

= > (1- )

Fo(n))
1

— Fp(1)] = 2[1 — Fp(2)] +3[1 — Fo(2)] = 3[1 — F(3)] + ...



4) (Chapter 8) Consider the following set defined in terms of the p—norm of a vector z for p > 0:
Sp = {37 € ]RM> [zl < 1}

For which values of p is this set convex?

Solution: For every p > 1, the {,—norm is convex, i.e.,
oz + (1 —a)yll, < alzll, + (1 —a)|yll,, o €[0,1]

It follows that S, will be a convex set for p > 1. Now consider the case 0 < p < 1. In this situation,
the set S, is not convex. Consider the vectors

r=¢e€, Y=~€em

M 1/p
zll, = (295%) =1
mz\;1 1/p
lyll, = (Z%) =1
m=1

Both points belong to S,. Next, consider the convex combination

11
z2=-r+ =
ot T ¥

We have

and note that

M 1/p
1 IN\VPr 1 1-p
_ p Y e — Zol/p _ 95"
Il = (;m> = (3 +g) =527=2

The norm is not bounded by 1 for 0 < p < 1 and therefore =z ¢ S,,.
O

5) (Chapter 11) Let P(w) = q(w) + E(w) where w € R, g(w) is closed, proper, convex function,
and E(w) is also a convex function with §—Lipschitz gradients. Let wy = prox,,, (w — up) where
p >0 and p € RM. Show that for any w; € IR, it holds that

1 1 1
q(ws) < q(wy) + p' (wy — wy) + ZHUJ —wy || — ﬂ”w —wy® — EHW — wy |

Solution: Since wy = proxuq(w — up), we know from (11.13) that
1

. (s = (w = ) € Durg(ws)

That is, )
;(wg —w) 4+ p € Oyrq(ws)

Now, since g(w) is convex we have, for any w:

q(wi) > q(wa) + Ouq(ws)(wr — wo)



That is,

q(ws) < q(wr) — 310161(102)(101 - w2)T
= q(wi) — (;(wz —w) +p> (w1 — ws)

T —w —lw—wTwl—wg
= q(w1) +p (wy 1) #( 2 ) ( )

Expanding the rightmost term gives
(wy —w) (wy —wy) = (wy —wy +wy —w)' (wy — ws)

= —lws —wi]* + (w1 — w)T (wr — ws)

= —flwy — wr [ + (w1 — w)" (wy — w + w — wy)

= —|jwy — wi|]* + [Jwr — w||* + (wy — wa + wy — w) " (w — wy)

—lJwz = wi® + [wr = w|* = Jlws = w[* + (w1 — wa) " (w — wy)
The last term on the RHS coincides with the term on the left hand side (apart from a negative sign).
Therefore,
2(wy —w)T(wy —wy) = —[lwy —wi* + [fwr — wl|* — [|ws — w|®

and we get

q(wz) < q(wr) — Owq(wa)(wr — wy)

1
= q(w1) +p(wy —w1) + —[Jwy = w|* = —[Jwy —wi || = —[Jwy — w]]?
p @ 21

]

6) (Chapter 12) Consider a first-order differentiable risk function P(w) : R® — R. We seek a
minimizer w* for P(w) by means of the gradient-descent recursion with a constant step size
parameter,

Wy, = Wp_1 — pVyurP(w,—1), n>0

Assume the initial condition w_; is such that ||w_;|| < W, where w,, = w* — w,. We focus on the

excess risk quantity AP(n) = P(w,) — P(w*). Assume the step-size parameter is small enough to

ensure a decaying risk value.

(a) Assume first that P(w) is v—strongly convex with §—Lipschitz gradients. Show that the number
of iterations necessary for AP(n) < e is O(In(1/¢)).

(b) Assume next that P(w) is only convex with d—Lipschitz gradients. Show that the number of
iterations necessary for AP(n) < e is O(1/e).

(c) Assume now that P(w) is convex and d—Lipschitz itself (rather than its gradients). Show that
the number of iterations necessary for AP(n) < e is O(1/¢?).

Solution:

(a) We know from result (12.43b) in the text that
AP, < gWQ)\"“
where A = 1 — 2uv + p?62 € [0,1] for 0 < p < 2v/62. Setting AP, < € gives

gW2)\n+1 S €



(b)

(c)

which leads to n > O(In(1/¢)). It is worth remarking that P(w,,) is nonincreasing as can be
seen, for example, from (12.55) for pu < 2/4.

We know from Prob. 12.13 part (d) that for u < 1/9,
1
AP, < —W?
2un
Setting AP, < € gives
LI/V2 <e
2un

which leads to n > O(1/€). Again it is worth remarking that P(w,) is nonincreasing for
i < 1/6. Indeed, using property (10.13) for convex functions with —Lipschitz gradients, we
get

)
P(wn) S P(wn—l) + pr(wn—l)(wn - wn—l) + §||wn - wn—1||2

5 2
= P(wn_1) =tV Pw, 1)V, 1 P(w,_1) + %HVMT Plw, )|

5 2
= P(wn = 1) = |V P(wn)|* + 51|V Pl
< P(wn1) = pl|Vu Plwn) I + 5V P(w,-)|?
= P(wa-1) = S|V Plwn)|?

where the last inequality follows from the condition p < 1/6.
We also note that the risk function is nonincreasing since, by convexity,

P(wn) S P<wn—1) + va(wn—l)(wn - wn—l)

= Plwn,—1) — NHVwP(wn—l)Hz
where we used the gradient descent update in the second equality. Next, we know from (10.41)
that the condition of a Lipschitz function P(w) translates into bounded gradients, i.e., ||V, P(w)|| <
0. Now note that
[@all* = N @n-r + V1 P(wn-)|*

@[l + 206 Vogr P(wn—1) + 4[|V Pwn 1))
< || 4 200 Vo Plwy 1) + p20°

From the convexity of P(w) we have
P(w*) > P(wy—1) + Vi P(wy 1) (w* — wy, 1)

or equivalently
pr(wn_l)ﬁ;n_l S P(w*) — P(wn_l)

so that
1@l < N@ucal? + 202(Plw) = Plwnr)) + 4%

We conclude by iterating that

0 < [|@nl> <W? = 2> pa(m) (P(wm-1) = P(w")) + p*6°n
m=0



Since P(w,) is nonincreasing, we know that, for any 0 < m < n:
P(w,) — P(w*) < P(wy_1) — P(w")

and we arrive at
W2 262 W2 52
AP, = P(w,) — P(w*) < —— 10 _ L kT
2npu 2nu 2
We can bound each term on the RHS by €/2. Thus, setting 16%/2 < €/2 gives p < /6. And
setting

W? e
<=
2np — 2

gives n > W252 /%,



