
4 Gaussian Distribution

The Gaussian distribution plays a prominent role in inference and learning,
especially when we deal with the sum of a large number of samples. In this case,
a fundamental result in probability theory, known as the central limit theorem,
states that under conditions often reasonable in applications, the probability
density function (pdf) of the sum of independent random variables approaches
that of a Gaussian distribution. It is for this reason that the term “Gaussian
noise” generally refers to the combined effect of many independent disturbances.
In this chapter, we describe the form of the Gaussian distribution for both scalar
and vector random variables, and establish several useful properties and integral
expressions that will be used throughout our treatment.

4.1 SCALAR GAUSSIAN VARIABLES

We start with the scalar case. Assume {xn, n = 1, 2, . . . , N} are independent
scalar random variables with means {x̄n} and variances {σ2

x,n} each. Then, as
explained in the comments at the end of the chapter, under some weak technical
conditions represented by expressions (4.162)–(4.163), the pdf of the normalized
variable:

y
∆
=

∑N
n=1(xn − x̄n)

(∑N
n=1 σ

2
x,n

)1/2
(4.1)

can be shown to approach that of a Gaussian distribution with zero mean and
unit variance, i.e.,

fy(y) =
1√
2π
e−y

2/2, as N →∞ (4.2)

or, equivalently,

lim
N→∞

P(y ≤ a) =
1√
2π

â

−∞

e−y
2/2dy (4.3)
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More generally, we denote a Gaussian distribution with mean ȳ and variance σ2
y

by the notation Ny(ȳ, σ2
y) with pdf given by:

y ∼ Ny(ȳ, σ2
y) ⇐⇒ fy(y) =

1√
2πσ2

y

exp

{
− 1

2σ2
y

(y − ȳ)2

}
(4.4)

Figure 4.1 illustrates the form of the Gaussian distribution using ȳ = 2 and
σ2
y = 3. The next example derives three useful integral expressions.
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Figure 4.1 Probability density function of a Gaussian distribution with mean ȳ = 2
and variance σ2

y = 3.

Example 4.1 (Three useful integral expressions) There are many results on integrals
involving the Gaussian distribution, some of which will appear in our treatment of
inference problems. We list some of them here for ease of reference and leave their
derivation to the problems.

Let fx(x) denote the standard Gaussian distribution, x ∼ Nx(0, 1), i.e.,

fx(x) =
1√
2π
e−

1
2
x2

= Nx(0, 1) (4.5)

and introduce its cumulative distribution function (CDF):

Φ(z)
∆
=

1√
2π

ˆ z

−∞
e−x

2/2dx =

ˆ z

−∞
Nx(0, 1)dx = P(x ≤ z) (4.6)

This function measures the area under fx(x) from −∞ up to location z. Note that
Φ(z) maps real values z to the interval [0, 1]. Now, consider a second scalar Gaussian-
distributed random variable y with fy(y) = Ny(ȳ, σ2

y). One useful integral result is the
following identity established in Prob. 4.8 for any a and σa > 0 — a more general result
is considered later in Example 4.7:

Z0
∆
=

ˆ ∞
−∞

Φ
(y − a

σa

)
Ny(ȳ, σ2

y)dy = Φ (ŷ ) (4.7)
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where

ŷ
∆
=

ȳ − a√
σ2
y + σ2

a

(4.8)

Differentiating (4.7) once and then twice relative to ȳ leads to two other useful results
involving multiplication of the integrand by y and y2 — see Prob. 4.9:

Z1
∆
=

ˆ ∞
−∞

yΦ
(y − a

σa

)
Ny(ȳ, σ2

y)dy = ȳΦ(ŷ ) +
σ2
y√

σ2
y + σ2

a

Nŷ(0, 1) (4.9)

and

Z2
∆
=

ˆ ∞
−∞

y2Φ
(y − a

σa

)
Ny(ȳ, σ2

y)dy

= 2ȳZ1 + (σ2
y − ȳ2)Z0 −

σ4
y ŷ

σ2
y + σ2

a

Nŷ(0, 1) (4.10)

so that

Z2 = (σ2
y + ȳ2)Φ(ŷ ) +

σ2
y√

σ2
y + σ2

a

(
2ȳ − σ2

y ŷ√
σ2
y + σ2

a

)
Nŷ(0, 1) (4.11)

All three identities for {Z0, Z1, Z2} involve the cumulative function Φ(z) in the inte-
grand. We will also encounter integrals involving the sigmoid function

σ(z)
∆
=

1

1 + e−z
(4.12)

This function maps real values z to the same interval [0, 1]. For these integrals, we will
employ the useful approximation:

1

1 + e−z
≈ Φ(bz), where b2 = π/8 (4.13)

4.2 VECTOR GAUSSIAN VARIABLES

Vector Gaussian variables arise frequently in learning and inference problems. We
describe next the general form of the pdf for a vector Gaussian random variable,
and examine several of its properties.

4.2.1 Probability Density Function

We start with a p× 1 random vector x with mean x̄ and nonsingular covariance
matrix

Rx
∆
= E (x− x̄)(x− x̄)T > 0 (4.14)
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We say that x has a Gaussian distribution if its pdf has the form

fx(x) =
1√

(2π)p
1√

detRx
exp

{
−1

2
(x− x̄)TR−1

x (x− x̄)

}
(4.15)

in terms of the determinant of Rx. Of course, when p = 1, the above expression
reduces to the pdf considered earlier in (4.4) with Rx replaced by σ2

x. Figure 4.2
illustrates the form of a two-dimensional Gaussian distribution with

x̄ =

[
1

2

]
, Rx =

[
1 1

1 3

]
(4.16)

The individual entries of x are denoted by {x1,x2}.

Figure 4.2 Probability density function of a two-dimensional Gaussian distribution
with mean vector and covariance matrix given by (4.16).

Example 4.2 (Noisy measurements of a DC value) The following example illustrates
one possibility by which Gaussian random vectors arise in practice. Consider a collection
of N noisy measurements of some unknown constant θ:

x(n) = θ + v(n), n = 1, 2, . . . , N (4.17)
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where x(n) is a scalar and v(n) is a zero-mean Gaussian random variable with variance
σ2
v. We assume v(n) and v(m) are independent of each other for all n 6= m. Due to the

noise, the measurements {x(n)} will fluctuate around θ. Each x(n) will be Gaussian
distributed with mean θ and variance σ2

v. We collect the measurements into the vector

x
∆
= col

{
x(1), x(2), . . . , x(N)

}
(4.18)

Then, the vector x will have a Gaussian distribution with mean θ1N and covariance
matrix Rx = σ2

vIN :

x ∼ Nx(θ1N , σ
2
vIN ) (4.19)

where the notation 1 refers to a vector with all its entries equal to one.

Example 4.3 (Linear regression model) Consider next a situation where we observe
N noisy scalar measurements {y(n)} under Gaussian noise as follows:

y(n) = xTnw + v(n), v(n) ∼ Nv(0, σ2
v), n = 1, 2, . . . , N (4.20)

where {xn,w} are vectors in IRp with xn playing the role of an input vector. The
inner product of xn with w is perturbed by v(n) and results in the measurement y(n).
We model the parameter vector w as another Gaussian variable, w ∼ Nw(w̄, Rw).
For simplicity, we assume the noise samples v(n) and v(m) are independent of each
other for n 6= m. We also assume v(n) and w are independent of each other for all n.
Observe from (4.20) that the inner product xTnw combines the entries of xn linearly,
which explains the designation “linear regression model.” We will encounter models of
this type frequently in our treatment.

We rewrite the measurement equation in the equivalent form:

y(n) = g(xn) + v(n), g(xn)
∆
= xTnw (4.21)

where we introduced the scalar-valued function g(x) = xTw; its values are random in
view of the randomness in w. We collect the measurements {y(n)}, the input vectors
{xn}, and the values of g(·) and v(·) into matrix and vector quantities and write:

X
∆
=


xT1
xT2
...
xTN

 (4.22a)

g
∆
= Xw, X ∈ IRN×p (4.22b)


y(1)
y(2)
...

y(N)


︸ ︷︷ ︸

y

=


g(x1)
g(x2)

...
g(xN )


︸ ︷︷ ︸

g

+


v(1)
v(2)
...

v(N)


︸ ︷︷ ︸

v

(4.22c)

y = Xw + v (4.22d)

Note that the input factor g is Gaussian distributed with mean and covariance matrix
given by

ḡ
∆
= Eg = Xw̄ (4.23a)
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and

Rg = E (g − ḡ)(g − ḡ)T

= EX(w − w̄)(w − w̄)TXT

= XRwX
T (4.23b)

where each entry of Rg contains the cross-covariance between individual entries of g,
namely,

[Rg]m,n
∆
= E

(
g(xm)− ḡ(xm)

)(
g(xn)− ḡ(xn)

)
= xTnRwxm (4.23c)

Note further that the mean and covariance matrix of the measurement vector are given
by

ȳ
∆
= Ey = EXw + Ev = Xw̄ + 0 = Xw̄ (4.24a)

and

Ry
∆
= E (y − ȳ)(y − ȳ)T

= E
(
X(w − w̄) + v

)(
X(w − w̄) + v

)T
= σ2

vIN +XRwX
T (4.24b)

Using future result (4.39) that the sum of two independent Gaussian random variables
is another Gaussian random variable, we conclude that y is a Gaussian distributed
vector with

y ∼ Ny

(
Xw̄, σ2

vIN +XRwX
T
)

(4.25)

Example 4.4 (Fourth-order moment) We derive a useful result concerning the fourth-
order moment of a Gaussian random vector. Thus, let x denote a real-valued Gaussian
random column vector with zero mean and a diagonal covariance matrix, say, ExxT =
Λ. Then, for any symmetric matrix W of compatible dimensions it holds that:

E
{
xxTWxxT

}
= ΛTr

(
WΛ

)
+ 2ΛWΛ (4.26)

Proof of (4.26): The argument is based on the fact that uncorrelated Gaussian random
variables are also independent (see Prob. 4.4), so that if xn is the n−th element of x,
then xn is independent of xm for n 6= m. Now let S denote the desired matrix, i.e.,
S = ExxTWxxT, and let Snm denote its (n,m)−th element. Assume also that x is
p-dimensional. Then

Snm = E

{
xnxm

(
p−1∑
i=0

p−1∑
j=0

xiWijxj

)}
(4.27)

The right-hand side is nonzero only when there are two pairs of equal indices {n =
m, i = j} or {n = i, m = j} or {n = i, m = i}. Assume first that n = m (which
corresponds to the diagonal elements of S). Then, the expectation is nonzero only for
i = j, i.e.,

Snn = E

{
x2
n

p−1∑
i=0

Wiix
2
i

}
=

p−1∑
i=0

WiiE
{
x2
nx

2
i

}
= λnTr

(
WΛ

)
+ 2Wnnλ

2
n (4.28)

where we used the fact that for a zero-mean real scalar-valued Gaussian random vari-
able a we have Ea4 = 3

(
Ea2

)2
= 3σ4

a, where σ2
a = Ea2 — see Prob. 4.13. We are also
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denoting the diagonal entries of Λ by {λn}.

For the off-diagonal elements of S (i.e., for n 6= m), we must have either n = j, m = i,
or n = i, m = j, so that

Snm = E
{
xnxm

(
xnWnmxm

)}
+ E

{
xnxm

(
xmWmnxn

)}
=
(
Wnm +Wmn

)
E
{
x2
nx

2
m

}
=
(
Wnm +Wmn

)
λnλm (4.29)

Using the fact thatW is symmetric, so thatWnm = Wmn, and collecting the expressions
for Snm, in both cases of n = m and n 6= m, into matrix form we arrive at the desired
result (4.26).

�

We assumed the covariance matrix of x to be diagonal in expression (4.26) to facilitate
the derivation. However, it can be verified that the result holds more generally for
arbitrary covariance matrices, Rx = ExxT, and would take the following form with Λ
replaced by Rx — see Prob. 4.21:

E
{
xxTWxxT

}
= RxTr

(
WRx

)
+ 2RxWRx (4.30)

4.3 USEFUL GAUSSIAN MANIPULATIONS

The fact that the Gaussian pdf is normalized and must integrate to one can be
exploited to derive a useful multi-dimensional integration result for quadratic
forms, as well as useful expressions for integrals involving the product and divi-
sion of Gaussian distributions.

Multidimensional integral
Consider a p × p positive-definite matrix A, a p × 1 vector b, a scalar α, and
introduce the quadratic form:

J(x)
∆
= −1

2
xTAx+ bTx+ α (4.31)

It is straightforward to verify that

J(x) = −1

2
(x−A−1b)TA(x−A−1b) + α+

1

2
bTA−1b (4.32)

so that
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ˆ ∞
−∞

eJ(x)dx

=

ˆ ∞
−∞

exp
{
−1

2
(x−A−1b)A(x−A−1b) + α+

1

2
bTA−1b

}
dx

= exp
{
α+

1

2
bTA−1b

} ˆ ∞
−∞

exp
{
−1

2
(x−A−1b)A(x−A−1b)

}
dx

= exp
{
α+

1

2
bTA−1b

} √
(2π)p

√
detA−1 ×

ˆ ∞
−∞

1√
(2π)p

1√
detA−1

exp
{
−1

2
(x−A−1b)A(x−A−1b)

}

︸ ︷︷ ︸
=Nx(A−1b,A−1)

dx

(4.33)

and, consequently, for A > 0:

ˆ ∞
−∞

exp
{
−1

2
xTAx+ bTx+ α

}
dx =

√
(2π)p

detA
× exp

{
α+

1

2
bTA−1b

}

(4.34)

Sum of Gaussian distributions
The sum of two independent Gaussian distributions is another Gaussian distri-
bution. Specifically, let x ∼ Nx(x̄, Rx) and y ∼ Ny(ȳ, Ry) be two independent
Gaussian random variables and introduce their sum z = x + y. It is clear that
the mean and covariance matrix of z are given by:

z̄
∆
= Ez = x̄+ ȳ (4.35)

Rz
∆
= E (z − z̄)(z − z̄)T = Rx +Ry (4.36)

The pdf of z, on the other hand, is given by the following convolution expression
in view of the independence of z and y — recall result (3.160):

fz(z) =

ˆ ∞
−∞

fx(x) fy(z − x)dx (4.37)

which involves the integral of the product of two Gaussian distributions. Ignoring
the normalization factors we have

fz(z) ∝ (4.38)ˆ ∞
−∞

exp

{
−1

2
(x− x̄)TR−1

x (x− x̄)

}
exp

{
−1

2
(z − x− ȳ)TR−1

y (z − x− ȳ)

}
dx

The integrand is an exponential function whose exponent is quadratic in x. It can
then be verified by using identity (4.34) that the integration leads to a Gaussian
pdf with mean z̄ = x̄+ ȳ and covariance matrix Rz = Rx+Ry — see Prob. 4.12:
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x ∼ Nx(x̄, Rx), y ∼ Ny(ȳ, Ry)

x and y independent

}
=⇒ z = x+ y ∼ Nz(x̄+ ȳ, Rx +Ry)

(4.39)

Product of Gaussian distributions
Consider two Gaussian distributions over the same random variable x, say,
Nx(x̄a, Ra) and Nx(x̄b, Rb):

fx,a(x) =
1√

(2π)p
1√

detRa
exp

{
−1

2
(x− x̄a)TR−1

a (x− x̄a)

}
(4.40a)

fx,b(x) =
1√

(2π)p
1√

detRb
exp

{
−1

2
(x− x̄b)TR−1

b (x− x̄b)
}

(4.40b)

Lemma 4.1. (Product of two Gaussians) Let g(x) = fx,a(x)fx,b(x) denote the
product of two Gaussian distributions over the same variable x, where fx,a(x) ∼
Nx(x̄a, Ra) and fx,b(x) ∼ Nx(x̄b, Rb). The product is an un-normalized Gaussian
distribution given by:

g(x) = Z ×Nx(x̄c, Rc) (4.41)

where

R−1
c = R−1

a +R−1
b (4.42a)

x̄c = Rc

(
R−1
a x̄a +R−1

b x̄b

)
(4.42b)

Z =
1√

(2π)p
1√

det(Ra +Rb)
exp

{
−1

2
(x̄a − x̄b)T(Ra +Rb)

−1(x̄a − x̄b)
}

(4.42c)

Before proving the result, we recall from Prob. 1.11 that we can rewrite the
expression for x̄c in the equivalent forms:

x̄c = x̄a +RcR
−1
b (x̄b − x̄a) (4.43a)

= x̄b +RcR
−1
a (x̄a − x̄b) (4.43b)

Likewise, we can rewrite the expression for Rc as

Rc = Ra −Ra(Ra +Rb)
−1Ra (4.44a)

= Rb −Rb(Ra +Rb)
−1Rb (4.44b)

Observe further that the expression for Z has the form of a Gaussian distribution,
say, over the variable x̄a:

Z = Nx̄a(x̄b, Ra +Rb) (4.45)
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Proof of (4.42a)–(4.42c) To begin with, note that

g(x) =
1√

(2π)p
1√

detRa
× 1√

(2π)p
1√

detRb
× (4.46)

exp

{
−1

2
(x− x̄a)TR−1

a (x− x̄a)− 1

2
(x− x̄b)TR−1

b (x− x̄b)
}

The term in the exponent is quadratic in x. Expanding it gives:

(x− x̄a)TR−1
a (x− x̄a) + (x− x̄b)TR−1

b (x− x̄b)
= xT (R−1

a +R−1
b )︸ ︷︷ ︸

∆
= R−1

c

x− 2 (R−1
a x̄a +R−1

b x̄b)
T︸ ︷︷ ︸

∆
= x̄TcR

−1
c

x+ x̄aR
−1
a x̄a + x̄TbR

−1
b x̄b︸ ︷︷ ︸

∆
= α

= xTR−1
c x− 2x̄TcR

−1
c x+ α

= xTR−1
c x− 2x̄TcR

−1
c x+ x̄TcR

−1
c x̄c−x̄TcR−1

c x̄c + α︸ ︷︷ ︸
∆
= β

= (x− x̄c)TR−1
c (x− x̄c) + β (4.47)

where

β = α− x̄TcR−1
c x̄c

= x̄aR
−1
a x̄a + x̄TbR

−1
b x̄b − (R−1

a x̄a +R−1
b x̄b)

TRc(R
−1
a x̄a +R−1

b x̄b)

= x̄Ta(R−1
a −R−1

a RcR
−1
a )x̄a + x̄Tb (R−1

b −R−1
b RcR

−1
b )x̄b

−x̄Ta(Ra +Rb)
−1xb − x̄Tb (Ra +Rb)

−1x̄a

= x̄Ta(Ra +Rb)
−1x̄a + x̄Tb (Ra +Rb)

−1x̄b

−x̄Ta(Ra +Rb)
−1xb − x̄Tb (Ra +Rb)

−1x̄a

= (x̄a − x̄b)T(Ra +Rb)
−1(x̄a − x̄b) (4.48)

We therefore conclude that

g(x) = Z1 × exp

{
−1

2
(x− x̄c)TR−1

c (x− x̄c)
}

(4.49)

where

Z1 =
1

(2π)p
1√

detRa

1√
detRb

exp

{
−1

2
(x̄a − x̄b)T(Ra +Rb)

−1(x̄a − x̄b)
}
(4.50)

We can re-normalize g(x) to transform its exponential term into a Gaussian distribution
as follows. Introduce the block matrix:

X
∆
=

[
Ra +Rb Ra
Ra Ra

]
(4.51)

We can express the determinant of X in two equivalent ways using the Schur comple-
ments relative to Ra +Rb (which is equal to Rc) and the Schur complement relative to
Ra (which is equal to Rb):

detX = det(Ra +Rb)× detRc = detRa × detRb (4.52)

so that

detRc =
detRa × detRb
det(Ra +Rb)

(4.53)
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Using this expression to replace the terms involving detRa and detRb in (4.50) we
arrive at (4.41).

�

We conclude from (4.41) that the product of two Gaussian distributions is an
unnormalized Gaussian. Equivalently, we obtain a properly normalized Gaussian
through scaling by Z as follows:

1

Z
×Nx(x̄a, Ra)×Nx(x̄b, Rb) = Nx(x̄c, Rc) (4.54)

Obviously, the scaling factor Z has the interpretation

Z =

ˆ ∞
−∞

Nx(x̄a, Ra)×Nx(x̄b, Rb)dx (4.55)

Division of Gaussian distributions
Consider the same Gaussian distributions over the random variable x. Let now
g(x) = fx,a(x)/fx,b(x) denote their ratio. Repeating the previous arguments we
find that

g(x) = Z1 × exp

{
−1

2
(x− x̄c)TR−1

c (x− x̄c)
}

(4.56)

where now

R−1
c = R−1

a −R−1
b (4.57a)

x̄c = Rc(R
−1
a x̄a −R−1

b x̄b) (4.57b)

Z1 =

√
detRb√
detRa

exp

{
−1

2
(x̄a − x̄b)T(Ra −Rb)−1(x̄a − x̄b)

}
(4.57c)

Observe that in this case, the matrix Rc is not guaranteed to be positive-definite;
it can become indefinite. When Rc is positive-definite (which happens when
Ra < Rb), we observe that g(x) will have the form of an unnormalized Gaussian
distribution and it can be normalized by noting that

1

Z1

1√
(2π)p

1√
detRc

g(x) = Nx(x̄c, Rc) (4.58)

and, consequently,

1

Z

Nx(x̄a, Ra)

Nx(x̄b, Rb)
= Nx(x̄c, Rc) (4.59)

where

Z
∆
=
√

(2π)p
√

detRc Z1 (4.60)

Let us introduce the block matrix

X
∆
=

[
Rb −Ra Rb
Rb Rb

]
(4.61)
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Its Schur complement relative to (Rb − Ra) is equal to −Rc, whereas its Schur
complement relative to Rb is −Ra. It follows that

detX = det(Rb −Ra)× det(−Rc) = detRb × det(−Ra) (4.62)

Using the fact that det(−A) = (−1)p det(A) for p×p matrices, we conclude that

detRc =
detRb detRa
det(Rb −Ra)

(4.63)

so that Z admits the following expression as well:

Z =
√

(2π)p
detRb√

det(Rb −Ra)
exp

{
−1

2
(x̄a − x̄b)T(Ra −Rb)−1(x̄a − x̄b)

}

(4.64)

Stein lemma
A useful result pertaining to the evaluation of expectations involving transfor-
mations of Gaussian variables is Stein Lemma. We state the result for vector
random variables. Let x ∈ IRp denote a Gaussian-distributed random variable
with mean x̄ and covariance matrix Rx:

fx(x) =
1√

(2π)p
1√

detRx
exp

{
−1

2
(x− x̄)TR−1

x (x− x̄)

}
(4.65)

We will often encounter situations where it is necessary to compute expectations
of terms of the form xg(x) for some scalar-valued function g(x). This computa-
tion is equivalent to evaluating integral expressions of the form:

Exg(x) =
1√

(2π)p
1√

detRx

ˆ ∞
−∞

xg(x) exp

{
−1

2
(x− x̄)TR−1

x (x− x̄)

}
dx

(4.66)

Lemma 4.2. (Stein lemma) Assume the function g(x) satisfies the finite ex-
pectation conditions E |∂g(x)/∂xm| <∞, relative to the individual entries of x.
Then, it holds that

E (x− x̄)g(x) = Rx E∇xT g(x) (4.67)

For scalar Gaussian random variables x ∼ Nx(x̄, σ2
x), the lemma reduces to

E (x− x̄)g(x) = σ2
x Eg′(x) (4.68)

in terms of the derivative of g(x). Later, in Example 5.2 we extend Stein lemma
to the exponential family of distributions.

Proof: We establish the result for scalar x and defer the vector case to Prob. 4.33 —
see also future Example 5.2. Thus, note that in the scalar case:

E (x− x̄)g(x) =
1√

2πσ2
x

ˆ ∞
−∞

(x− x̄)g(x) exp

{
− 1

2σ2
x

(x− x̄)2

}
dx (4.69)
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We carry out the integration by parts. Let

u = g(x) =⇒ du = g′(x)dx (4.70)

and

dv = (x− x̄) exp

{
− 1

2σ2
x

(x− x̄)2

}
dx =⇒ v = −σ2

x exp

{
− 1

2σ2
x

(x− x̄)2

}
(4.71)

It follows that

E (x− x̄)g(x) =
1√

2πσ2
x

{
uv
∣∣∣∞
−∞
−
ˆ
u

vdu

}

= − 1√
2πσ2

x

g(x)σ2
x exp

{
− 1

2σ2
x

(x− x̄)2

} ∣∣∣∣∣
∞

−∞

+

σ2
x

(
1√

2πσ2
x

ˆ ∞
−∞

g′(x) exp

{
− 1

2σ2
x

(x− x̄)2

}
dx

)
= 0 + σ2

x E g′(x) (4.72)

as claimed. The mean of g′(x) exists in view of the condition E |g′(x)| <∞.
�

Example 4.5 (Fifth-order moment of Gaussian) Let us apply Stein lemma to evalu-
ate the 5th-order moment of a Gaussian distribution, x ∼ Nx(x̄, σ2

x). Thus, note the
following sequence of calculations using (4.68):

Ex5 = E (x− x̄+ x̄)x4

= E (x− x̄)x4 + x̄Exx3

= 4σ2
xEx3 + x̄E (x− x̄+ x̄)x3

= 4σ2
xEx3 + x̄E (x− x̄)x3 + x̄2Ex3

= (4σ2
x + x̄2)Ex3 + 3x̄σ2

xEx2

= (4σ2
x + x̄2)E (x− x̄+ x̄)x2 + 3x̄σ2

xEx2

= 2(4σ2
x + x̄2)σ2

xEx+ (7σ2
x + x̄2)x̄Ex2

= 2(4σ2
x + x̄2)σ2

xx̄+ (7σ2
x + x̄2)x̄(σ2

x + x̄2)

= 15x̄σ4
x + 10x̄3σ2

x + x̄5 (4.73)

4.4 JOINTLY-DISTRIBUTED GAUSSIAN VARIABLES

Consider two random vectors x of size p× 1 and y of size q× 1. We denote their
respective means by {x̄, ȳ} and their respective covariance matrices by:

Rx
∆
= E (x− x̄)(x− x̄)T (4.74a)

Ry
∆
= E (y − ȳ)(y − ȳ)T (4.74b)
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We further let Rxy denote the cross-covariance matrix between x and y, i.e.,

Rxy
∆
= E (x− x̄)(y − ȳ)T = RT

yx (4.75)

and introduce the covariance matrix, R, of the aggregate vector col{x,y}:

R
∆
= E

([
x

y

]
−
[
x̄

ȳ

])([
x

y

]
−
[
x̄

ȳ

])T

=

[
Rx Rxy
RT
xy Ry

]
(4.76)

We then say that the random variables {x,y} have a joint Gaussian distribution
if their joint pdf has the form:

fx,y(x, y) (4.77)

=
1√

(2π)p+q
1√

detR
exp

{
− 1

2

[
(x− x̄)T (y − ȳ)T

]
R−1

[
x− x̄
y − ȳ

]}

It can be seen that the joint pdf of {x,y} is completely determined by the mean,
covariances, and cross-covariance of {x,y}, i.e., by the first and second-order
moments {x̄, ȳ, Rx, Ry, Rxy}. It is also straightforward to conclude from (4.77)
that uncorrelated Gaussian random vectors are independent — see Prob. 4.4. It
takes more effort though to show that if {x,y} are jointly Gaussian-distributed
as above, then each of the variables is individually Gaussian-distributed as well,
namely, it holds:

x ∼ Nx(x̄, Rx), y ∼ Ny(ȳ, Ry) (4.78)

so that

fx(x) =
1√

(2π)p
1√

detRx
exp

{
−1

2
(x− x̄)TR−1

x (x− x̄)

}
(4.79a)

fy(y) =
1√

(2π)q
1√

detRy
exp

{
−1

2
(y − ȳ)TR−1

y (y − ȳ)

}
(4.79b)

Lemma 4.3. (Marginal and conditional pdfs) Consider two random vectors
{x,y} that are jointly Gaussian distributed as in (4.77), namely,

[
x

y

]
∼ Nx,y

([
x̄

ȳ

]
,

[
Rx Rxy
RT
xy Ry

])
(4.80)

It follows that the individual marginal distributions are Gaussian, x ∼ Nx(x̄, Rx)

and y ∼ Ny(ȳ, Ry). Moreover, by marginalizing over y and x separately, the
resulting conditional pdfs turn out to be Gaussian as well, as listed in Table 4.1.

Table 4.1 Conditional Gaussian distributions.

fx|y(x|y) ∼ Nx(x̂, Σx) fy|x(y|x) ∼ Ny(ŷ, Σy)

x̂ = x̄+RxyR
−1
y (y − ȳ) ŷ = ȳ +RyxR

−1
x (x− x̄)

Σx = Rx −RxyR−1
y Ryx Σy = Ry −RyxR−1

x Rxy
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Proof: We start by noting that the block covariance matrix R in (4.76) can be factored
into a product of three upper-triangular, diagonal, and lower-triangular matrices, as
follows (this can be checked by straightforward algebra or see (1.63)):

R =

[
Ip RxyR

−1
y

0 Iq

] [
Σx 0
0 Ry

] [
Ip 0

R−1
y Ryx Iq

]
(4.81)

where we introduced the Schur complement Σx = Rx −RxyR−1
y Ryx. The matrix Σx is

guaranteed to be positive-define in view of the assumed positive-definiteness of R itself
— recall Example 1.5. It follows that the determinant of R factors into the product

detR = det Σx × detRy (4.82)

Inverting both sides of (4.81), we find that the inverse of R can be factored as

R−1 =

[
Ip 0

−R−1
y Ryx Iq

] [
Σ−1
x 0
0 R−1

y

] [
Ip −RxyR−1

y

0 Iq

]
(4.83)

where we used the fact that for any matrix A of appropriate dimensions,[
Ip 0
A Iq

]−1

=

[
Ip 0
−A Iq

]
,

[
Ip A
0 Iq

]−1

=

[
Ip −A
0 Iq

]
(4.84)

Then, substituting into the exponent of the joint distribution (4.77) we can rewrite it
in the equivalent form:

exp

{
−1

2

[
(x− x̄)T (y − ȳ)T

]
R−1

[
x− x̄
y − ȳ

]}
= exp

{
−1

2
(x− x̂)TΣ−1

x (x− x̂)
}

exp
{
−1

2
(y − ȳ)TR−1

y (y − ȳ)
}

(4.85)

where we introduced x̂ = x̄+RxyR
−1
y (y− ȳ). Substituting (4.85) into (4.77) and using

(4.82) we find that the joint pdf of {x,y} factorizes into the form

fx,y(x, y) =
1√

(2π)p
1√

det Σx
exp

{
−1

2
(x− x̂)TΣ−1

x (x− x̂)

}
×

1√
(2π)q

1√
detRy

exp

{
−1

2
(y − ȳ)TR−1

y (y − ȳ)

}
(4.86)

We conclude from Bayes rule (3.39) that the marginal pdf of y is Gaussian with mean
ȳ and covariance matrix Ry:

y ∼ Ny(ȳ, Ry) (4.87)

and, moreover, the conditional pdf fx|y(x|y) is Gaussian with mean x̂ and covariance
matrix Σx:

fx|y(x|y) ∼ Nx(x̂, Σx) (4.88a)

x̂ = x̄+RxyR
−1
y (y − ȳ) (4.88b)

Σx = Rx −RxyR−1
y Ryx (4.88c)

If we repeat the same argument using instead the following alternative factorization for
R (which can again be checked by straightforward algebra or using (1.63)):

R =

[
Iq 0

RyxR
−1
x Ip

] [
Rx 0
0 Σy

] [
Iq R−1

x Rxy
0 Ip

]
(4.89)
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where Σy = Ry − RyxR−1
x Rxy, then we can similarly conclude that the marginal pdf

of x is Gaussian with mean x̄ and covariance matrix Rx:

x ∼ Nx(x̄, Rx) (4.90)

Moreover, the reverse conditional pdf fy|x(y|x) is also Gaussian with mean ŷ and
covariance matrix Σy:

fy|x(y|x) ∼ Ny(ŷ, Σy) (4.91a)

ŷ = ȳ +RyxR
−1
x (x− x̄) (4.91b)

Σy = Ry −RyxR−1
x Rxy (4.91c)

�

Example 4.6 (Joint pdf from marginal and conditional pdfs) Consider two random vari-
ables x and y with marginal and conditional pdfs given by

fx(x) ∼ Nx(x̄, Rx), fy|x(x|y) ∼ Ny(Fx, P ) (4.92)

for some matrices F and P > 0. The resulting joint pdf is Gaussian and given by

fx,y(x, y) ∼ Nx,y

([
x̄
F x̄

]
,

[
Rx RxF

T

FRx FRxF
T + P

])
(4.93)

Proof: We rewrite the Gaussian distribution for y conditioned on x in the following
form by adding and subtracting F x̄ in the second line:

fy|x(x|y) ∝ exp
{
−1

2
(y − Fx)TP−1(y − Fx)

}
(4.94)

= exp
{
−1

2

(
(y − F x̄)− F (x− x̄)

)T
P−1

(
(y − F x̄)− F (x− x̄)

)}
From Bayes rule (3.39), the joint pdf is given by:

fx,y(x, y) = fx(x)fy|x(x|y)

∝ exp
{
−1

2
(x− x̄)TR−1

x (x− x̄)
}
×

exp
{
−1

2

(
(y − F x̄)− F (x− x̄)

)T
P−1

(
(y − F x̄)− F (x− x̄)

)}
= exp

{
− 1

2

[
(x− x̄)T (y − F x̄)T

] [ R−1
x + FTP−1F −FTP−1

−P−1F P−1

] [
x− x̄
y − F x̄

]}
(1.67)

= exp

{
− 1

2

[
(x− x̄)T (y − F x̄)T

] [ Rx RxF
T

FRx FRxF
T + P

]−1 [
x− x̄
y − F x̄

]}
(4.95)

from which we conclude that (4.93) holds.
�

Example 4.7 (Useful integral expressions) We generalize Example 4.1 to vector Gaus-
sian random variables. Let fx(x) denote the standard N−dimensional Gaussian distri-
bution, x ∼ Nx(0, IN ), and introduce its cumulative distribution function (CDF):

Φ(z)
∆
=

ˆ z

−∞

1√
(2π)N

exp
{
−1

2
‖x‖2

}
dx =

ˆ z

−∞
Nx(0, IN )dx (4.96)
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which is now a multi-dimensional integral since x is a vector. Let y ∼ Ny(ȳ, Ry) denote
anM−dimensional Gaussian distribution. We wish to evaluate an integral expression of
the following form involving the product of a Gaussian distribution and the cumulative
distribution:

Z0
∆
=

ˆ ∞
−∞

Φ(Ay + b)Ny(ȳ, Ry)dy, for some given A ∈ IRN×M , b ∈ IRN

=
1√

(2π)M+N

1√
detRy

×
ˆ ∞
−∞

ˆ Ay+b

−∞
exp
{
−1

2
‖x‖2

}
exp
{
−1

2
(y − ȳ)R−1

y (y − ȳ)
}
dxdy

(4.97)

The evaluation takes some effort. We start with the change of variables

w
∆
= y − ȳ ∈ IRM , z

∆
= x−Aw ∈ IRN (4.98)

and replace the integration over x and y by an integration over z and w:

Z0 =
1√

(2π)M+N

1√
detRy

× (4.99)

ˆ ∞
−∞

ˆ Aȳ+b

−∞
exp
{
−1

2
(z +Aw)T(z +Aw)

}
exp
{
−1

2
wTR−1

y w
}
dzdw

The advantage of the change of variables is that the limit of the inner integral, Aȳ+ b,
is now independent of the variables {z, w} over which the integration is performed. The
exponent in (4.99) is quadratic in {z, w} since

(z +Aw)T(z +Aw) + wTR−1
y w =

[
zT wT

] [ IN A
AT R−1

y +ATA

] [
z
w

]
(4.100)

This means that the integrand in (4.99) can be written as a joint Gaussian distribution
over the extended variable col{z, w} with zero mean and covariance matrix

R
∆
=

[
IN A
AT R−1

y +ATA

]−1
(1.67)

=

[
IN +ARyA

T −ARy
−RyAT Ry

]
(4.101)

This shows that the covariance matrix of z is

Rz
∆
= IN +ARyA

T (4.102)

Note further that detR = detRy since the Schur complement of R relative to Ry is
the identity matrix. It follows that

Z0 =

ˆ Aȳ+b

−∞

( ˆ ∞
−∞

Nz,w(0, R)dw

)
︸ ︷︷ ︸

marginalization

dz (4.103)

The inner integral amounts to marginalizing the joint distribution of {z,w} over w
so that the result is the marginal distribution for z, namely, fz(z) = Nz(0, Rz) and,
consequently,

Z0 =

ˆ Aȳ+b

−∞
Nz(0, Rz)dz

=
1√

(2π)N
1√

detRz

ˆ Aȳ+b

−∞
exp
{
−1

2
zTR−1

z z
}
dz (4.104)
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This expression almost has the form of a cumulative distribution calculation except that
the Gaussian distribution is not standard (it has covariance matrix Rz rather than the
identity matrix). Let X denote a square-root factor for Rz (recall the definition in
Sec. 1.8), namely, X is any invertible square matrix that satisfies Rz = XXT. We can
also use the more explicit notation R

1/2
z to refer to X. One choice for X arises from

the eigendecomposition Rz = UΛUT, where U is orthogonal and Λ is diagonal with
positive entries. Using U and Λ, we can select X = UΛ1/2. Note that

Rz = XXT =⇒ detRz = (detX)2 (4.105)

Next, we introduce the change of variables

s = X−1z =⇒ zTR−1
z z = sTs (4.106)

and the N ×N Jacobian matrix J whose entries consist of the partial derivatives:[
J
]
m,n

=
∂zm
∂sn

= X (4.107)

where zm is the m−th entry of z and sn is the n−th entry of s. We know from the
study of multi-dimensional integrals that when a change of variables is used, we need
to account for the (absolute value of the) determinant of the Jacobian matrix so that
expression (4.104) is replaced by

Z0 =
1√

(2π)N
1√

detRz

ˆ X−1(Aȳ+b)

−∞
exp
{
−1

2
‖s‖2

}
|detX| ds

=
| detX|√

detRz︸ ︷︷ ︸
=1

ˆ X−1(Aȳ+b)

−∞

1√
(2π)N

exp
{
−1

2
‖s‖2

}
ds

(4.105)
= Φ

(
X−1(Aȳ + b)

)
(4.108)

In summary, we arrive at the result:

Z0 =

ˆ ∞
−∞

Φ(Ay + b)Ny(ȳ, Ry)dy = Φ(ŷ ) (4.109)

where

ŷ
∆
= R−1/2

z (Aȳ + b) (4.110)

It is easy to see that the above result reduces to (4.7) with the identifications A← 1/σa,
b← −a/σa, and Rz ← 1+σ2

y/σ
2
a. Another useful special case is when A is a row vector

and b is a scalar, say, A = hT and b = α, in which case we get

Z0 =

ˆ ∞
−∞

Φ(hTy + α)Ny(ȳ, Ry)dy = Φ(ŷ ) (4.111)

where now

ŷ
∆
=

hTȳ + α√
1 + hTRyh

(4.112)

If we differentiate (4.111) relative to ȳ once and then twice, we arrive at two additional
relations where the integrands are further multiplied by y and yyT — see Prob. 4.34:

Z1 =

ˆ ∞
−∞

yΦ(hTy + α)Ny(ȳ, Ry)dy = ȳΦ(ŷ ) +
Ryh√

1 + hTRyh
Nŷ(0, 1) (4.113)
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and

Z2
∆
=

ˆ ∞
−∞

yyTΦ(hTy + α)Ny(ȳ, Ry)dy (4.114)

= (Ry + ȳȳT)Φ(ŷ ) +
1√

1 + hTRyh

(
2Ryhȳ

T − ŷRyhh
TRy√

1 + hTRyh

)
Nŷ(0, 1)

4.5 GAUSSIAN PROCESSES

If we consider a p−dimensional Gaussian random vector x ∼ Nx(x̄, Rx) with
entries {x1,x2, . . . ,xp}, then we know from Lemma 4.3 that any sub-collection
of entries of x will be jointly Gaussian as well. In other words, the Gaussianity
property is inherited by any sub-grouping within x. For example, {x1,x2} will
be jointly Gaussian with mean vector col{x̄1, x̄2} formed from the two top entries
of x̄ and with covariance matrix formed from the leading 2× 2 submatrix of Rx.

The notion of Gaussian processes (GPs) allows us to extend this property to
sequences of vectors. The concept will be useful when we study learning and
inference problems in the kernel domain later in this text. For now, we define a
Gaussian process as a sequence of random vectors where any finite sub-collection
of entries in each vector is jointly Gaussian-distributed. Moreover, entries across
vectors can be correlated with each other.

Remark 4.1. (Terminology) We will discuss “random processes” in Chapter 7. We
explain there that random processes consist of sequences of random variables (or vec-
tors). We will denote the random process by the notation xn, with a time (or space)
index n added. This notation means that a realization for x is selected at each instant
n, and the index n evolves sequentially from lower values to higher values. Moreover,
there can be correlation between different samples xn and xm. For the Gaussian pro-
cesses discussed in this section, the index n need not be time or space (e.g., it can refer
to something more abstract, such as repeated experiments involving separate data col-
lections as the next example and the discussion following it illustrate).

�

Example 4.8 (Nonlinear transformations) We reconsider the linear regression model
from Example 4.3, namely,

y(n) = xTnw + v(n), v(n) ∼ Nv(0, σ2
v), n = 1, 2, . . . , N (4.115)

where xn,w ∈ IRM . This expression models the observation y(n) as a noisy measure-
ment of a linear combination of the individual entries {xn,m} of xn, written explicitly
as

y(n) =

M∑
m=1

xTn,mwm + v(n) (4.116)

In many situations, it will be advantageous to consider more elaborate models for
the mapping from the input xn to the output y(n). One possibility is to replace the
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M × 1 vector xn by a longer Mφ × 1 vector φ(xn), where the notation φ(·) represents
some nonlinear transformation applied to the entries of xn. For example, if xn is two-
dimensional with individual entries xn = [a b], then one possibility is to use φ(xn) =
[a b a2 b2 ab]. For this case, M = 2 and Mφ = 5. The M−dimensional weight vector w
would also be extended and replaced by wφ ∈ IRMφ , in which case the original model
would be:

y(n) = (φ(xn))Twφ + v(n) (4.117)

This representation captures more nonlinear dynamics from xn to y(n). Many other
choices for φ(·) are of course possible. We rewrite the measurement equation in the
equivalent form:

y(n) = g(xn) + v(n), g(xn)
∆
= (φ(xn))Twφ (4.118)

where the scalar-valued function g(x) now depends on xn through the transformation
φ(·); it assumes random values because we model wφ as Gaussian-distributed:

wφ ∼ Nwφ(w̄φ, Rφw) (4.119)

for some mean vector w̄φ and covariance matrix Rφw. We collect the measurements
{y(n)}, the input vectors {xn}, and the values of g(·) and v(·) into matrix and vector
quantities and write:

Φ
∆
=


(φ(x1))T

(φ(x2))T

...
(φ(xN ))T

 (4.120a)

g
∆
= Φwφ, Φ ∈ IRN×Mφ (4.120b)


y(1)
y(2)
...

y(N)


︸ ︷︷ ︸

y

=


g(x1)
g(x2)

...
g(xN )


︸ ︷︷ ︸

g

+


v(1)
v(2)
...

v(N)


︸ ︷︷ ︸

v

(4.120c)

y = Φwφ + v (4.120d)

where y continues to be Gaussian-distributed with mean and covariance matrix given
by

y ∼ Ny

(
Φw̄φ, σ2

vIN + ΦRφwΦT
)

(4.121)

Moreover, the factor g is Gaussian-distributed with mean and covariance matrix given
by

ḡ = Φw̄φ, Rg = ΦRφwΦT (4.122a)

where each entry of Rg corresponds to the cross-covariance:

[Rg]m,n = (φ(xn))TRφw φ(xm) (4.122b)

The vector g is an example of a Gaussian process: any sub-collection of entries in g
follows a joint Gaussian distribution. The same is true for the vector g defined earlier
in (4.22d). However, the addition of the nonlinear mapping φ(·) to the model enriches
the scenario under consideration, as we proceed to explain.
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Model (4.120d) involves a finite number of observations in y; this observation
vector is a perturbed version of the Gaussian process g. The mean and covariance
matrix of g are described by (4.122a); they both depend on Φ, which in turn is
defined in terms of the input vectors {xn}. It would appear at first sight that
we are dealing with a Gaussian vector with a finite number of elements in it.
However, on closer examination, g(·) is a Gaussian process. This is because, in
general, we would not know beforehand which input vectors {xn} to expect. For
instance, in a second experiment, the observation vector y will be determined by
some other collection of input vectors {x′n}. In that case, the mean and covariance
matrix of this new observation y′ would not be given by (4.121) because the
matrix Φ will now be different and defined in terms of the {x′n} rather than
{xn}. Nevertheless, we would still be able to identify the mean and covariance
matrix of the new observation vector y′ if we define the mean and covariance
matrix of the Gaussian process g more broadly, for any possible choice of its
arguments {xn}. To do so, we proceed as follows.

We let g(x) denote any generic entry of the Gaussian process. Observe that
the argument is the M−dimensional vector x; it can assume any value in IRM .
We associate with the process g(·) a mean function and a covariance function
defined as follows:

m(x)
∆
= Eg(x) (4.123a)

K(x, x′)
∆
= E

(
g(x)−m(x)

)(
g(x′)−m(x′)

)
(4.123b)

Using these functions, we can evaluate the mean of g(x) for any x, and the cross-
covariance between g(x) and g(x′) for any x, x′. The expectations are over the
sources of randomness in g(x). For example, for the case studied above we have

m(x) = (φ(x))Tw̄φ, K(x, x′) = (φ(x))TRφw φ(x′) (4.124)

so that the mean and covariance matrix that correspond to the particular input
vectors {xn} would be constructed as follows (say, for N = 4 measurements):

ḡ =




m(x1)

m(x2)

m(x3)

m(x4)


 , Rg =




K(x1, x1) K(x1, x2) K(x1, x3) K(x1, x4)

K(x2, x1) K(x2, x2) K(x2, x3) K(x2, x4)

K(x3, x1) K(x3, x2) K(x3, x3) K(x3, x4)

K(x4, x1) K(x4, x2) K(x4, x3) K(x4, x4)




(4.125)

We will denote a Gaussian process by the notation

g ∼ GPg

(
m(x), K(x, x′)

)
(4.126)

It is important to note that not any function K(x, x′) can be selected as the
covariance function for a Gaussian process. This is because when K(x, x′) is
applied to data to construct matrices like Rg above, these matrices will need
to behave like covariance matrices (i.e., they will need to be symmetric and
nonnegative definite). We will examine conditions on K(x, x′) in greater detail
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later in Chapter 63 when we study kernel methods. Here, we summarize the main
requirement and leave the details to that chapter.

The function K(x, x′) will generally be selected to be a kernel, which is a func-
tion that maps two vector arguments (x, x′) into the inner-product of similarly-
transformed versions of these same vectors, namely, a function that can be writ-
ten in the form:

K(x, x′) = (φ(x))Tφ(x′) (4.127)

for some mapping φ(·). Note that the covariance function used in (4.124) is of
this form. It is written in terms of a weighted inner product but can be easily
recast in the standard form (4.127). For instance, assume for simplicity that Rφw
is positive-definite and introduce the eigendecomposition Rφw = UΛUT (where U
is orthogonal and Λ is diagonal with positive entries). Then, we can redefine

φ(x)← Λ1/2UTφ(x) (4.128)

and K(x, x′) would reduce to the form (4.127). In the above notation, Λ1/2 is a
diagonal matrix with the positive square roots of the entries of Λ.

Note from definition (4.127) that kernels are symmetric functions since

K(x, x′) = K(x′, x) (4.129)

We say that kernel functions induce inner-product operations in the transformed
domain. Obviously, not every function, K(x, x′), can be expressed in the inner-
product form (4.127) and, therefore, not every function is a kernel. A fundamental
theorem in functional analysis, known as Mercer theorem, clarifies which func-
tions K(x, x′) can be expressed in the form (4.127) — see future Sec. 63.2. For
any integer N , we introduce the following N × N Gramian matrix, RN , which
is symmetric:

[RN ]m,n
∆
= K(xm, xn), m, n = 1, 2, . . . , N (4.130)

(Mercer theorem). The theorem affirms that a symmetric and square-
integrable function K(x, x′) is a kernel if, and only if, the Gramian matrix
RN defined by (4.130) is positive semidefinite for any size N and any data
{xn}.

There are many popular choices for K(x, x′) that satisfy Mercer condition. One
choice is the Gaussian kernel (also called the radial basis function or the squared
exponential kernel):

K(x, x′)
∆
= exp

{
− 1

2σ2
‖x− x′‖2

}
(4.131)

for some parameter σ2 > 0. This parameter controls the width of the Gaussian
pulse. One could also replace the exponent by a weighted squared norm such as

K(x, x′)
∆
= exp

{
−1

2
(x− x′)TW (x− x′)

}
(4.132)
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with different choices for the positive-definite matrix W , such as

W =
1

σ2
IN or W = a diagonal matrix (4.133)

Another kernel choice is the Ornstein-Uhlenbeck kernel:

K(x, x′)
∆
= exp

{
− 1

σ
‖x− x′‖

}
, σ > 0 (4.134)

defined in terms of the distance between x and x′ rather than their squared
distance. The parameter σ is referred to as the length-scale of the process; it de-
termines how close points x and x′ will need to be to each other for a meaningful
correlation between them. We can interpret these kernel functions as providing
measures of “similarity” between points in space.

We will explain later in Example 63.4 that the Gaussian kernel (4.131) can be
written in the inner-product form (4.127) for some function φ(·); similarly, for the
Ornstein-Uhlenbeck kernel. Fortunately, explicit knowledge of φ(·) is unnecessary
(and this important fact is what makes kernel methods powerful; as explained
later in Chapter 63). Observe that the kernel functions in (4.131)–(4.134) are
written directly in terms of the input vectors (x, x′) and not their transformed
versions φ(x) or φ(x′). Usually, the mean function of a Gaussian process is taken
to be zero. In this way, characterization of the first and second-order moments of
g ∼ GPg(0,K(x, x′)) would not require knowledge of the nonlinear mapping φ(·).
Once a kernel function is specified, we are implicitly assuming some nonlinear
mapping is applied to the input vectors {xn}.

Example 4.9 (Polynomial kernel) Let us illustrate the last point by considering a sim-
plified example. Assume x ∈ IR2 with entries x = [a b]. We select the polynomial kernel

K(x, x′)
∆
= (1 + xTx′)2 (4.135)

and verify that it is a kernel function. To do so, and according to definition (4.127), we
need to identify a transformation φ(x) that allows us to express K(x, x′) as the inner
product (φ(x))Tφ(x′). Indeed, note that

K(x, x′) = (1 + aa′ + bb′)2

= (1 + aa′)2 + b2b′2 + 2(1 + aa′)bb′

= 1 + a2a′2 + 2aa′ + b2b′2 + 2bb′ + 2aa′bb′ (4.136)

which we can express more compactly as follows. We introduce the transformed vector:

φ(x) = col
{

1,
√

2a,
√

2b,
√

2ab, a2, b2
}

(4.137)

and note from (4.136) that K(x, x′) = (φ(x))T φ(x′). In other words, the function
(4.135) can be expressed as an inner product between the two transformed vectors
(φ(x), φ(x′)), both of dimension 6 × 1. Observe further the important fact that the
vectors, x and x′, have both been transformed in an identical manner.
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4.6 CIRCULAR GAUSSIAN DISTRIBUTION1

The Gaussian distribution can be extended to complex variables as well. Thus,
consider a complex random vector z = x + jy ∈ Cp. We say z is Gaussian-
distributed if its real and imaginary parts are jointly Gaussian (cf. (4.77)),
namely, their joint pdf is of the form:

fx,y(x, y) =
1

(2π)p
1√

detR
exp

{
−1

2

[
(x− x̄)T (y − ȳ)T

]
R−1

[
x− x̄
y − ȳ

]}

(4.138)

The mean of z is clearly

z̄ = Ez = x̄+ jȳ (4.139)

while its covariance matrix is

Rz
∆
= E (z − z̄)(z − z̄)∗ = (Rx +Ry) + j(Ryx −Rxy) (4.140)

which is expressed in terms of both the covariances and cross-covariance of {x,y}.
Note that the variable z can be regarded as a function of the two variables {x,y}
and, therefore, its probabilistic nature is fully characterized by the joint pdf of
{x,y}. This joint pdf is defined in terms of the first and second-order moments
of {x,y}, i.e., in terms of {x̄, ȳ, Rx, Ry, Rxy}.

It is useful to verify whether it is possible to express the pdf of z directly in
terms of its own first and second-order moments, i.e., in terms of {z̄, Rz}. It turns
out that this is not always possible. This is because knowledge of {z̄, Rz} alone
is not enough to recover the moments {x̄, ȳ, Rx, Ry, Rxy}. More information is
needed in the form of a circularity condition. To see this, assume we only know
{z̄, Rz}. Then, this information is enough to recover {x̄, ȳ} since z̄ = x̄ + jȳ.
However, the information is not enough to recover {Rx, Ry, Rxy}. This is because,
as we see from (4.140), knowledge of Rz allows us to recover (Rx + Ry) and
(Ryx −Rxy) via

Rx +Ry = Re(Rz), Ryx −Rxy = Im(Rz) (4.141)

in terms of the real and imaginary parts of Rz. This information is not sufficient
to determine the individual covariances {Rx, Ry, Rxy}.

In order to be able to uniquely recover {Rx, Ry, Rxy} from Rz, it will be further
assumed that the random variable z satisfies a circularity condition, namely, that

E (z − z̄)(z − z̄)T = 0 (circularity condition) (4.142)

with the transposition symbol T used instead of Hermitian conjugation. Knowl-
edge of Rz, along with circularity, are enough to recover {Rx, Ry, Rxy} from Rz.

1 This section can be skipped on a first reading.
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Indeed, using the fact that

E (z − z̄)(z − z̄)T = (Rx −Ry) + j(Ryx +Rxy) (4.143)

we find that, in view of the circularity assumption (4.142), it must now hold that
Rx = Ry and Rxy = −Ryx. Consequently, combining with (4.141), we can solve
for {Rx, Ry, Rxy} to get

Rx = Ry =
1

2
Re(Rz) and Rxy = −Ryx = −1

2
Im(Rz) (4.144)

It follows that the covariance matrix of col{x,y} can be expressed in terms of
Rz as

R =
1

2

[
Re(Rz) −Im(Rz)

Im(Rz) Re(Rz)

]
(4.145)

Actually, it also follows that R should have the symmetry structure:

R =

[
Rx Rxy
−Rxy Rx

]
(4.146)

with the same matrix Rx appearing on the diagonal, and with Rxy and its neg-
ative appearing at the off-diagonal locations. Observe further that when z hap-
pens to be scalar-valued, then Rxy becomes a scalar, say, σxy, and the condition
Rxy = −Ryx can only hold if σxy = 0. That is, the real and imaginary parts of
z will need to be independent in the scalar case.

Using result (4.146), we can now verify that the joint pdf of {x,y} in (4.138)
can be rewritten in terms of {z̄, Rz} as shown below — compare with (4.79a) in
the real case. Observe in particular that the factors of 2, as well as the square-
roots, disappear from the pdf expression in the complex case:

fz(z) =
1

πp
1

detRz
exp

{
−(z − z̄)∗R−1

z (z − z̄)
}

(4.147)

We say that z ∈ Cp is a circular or spherically-invariant Gaussian random vari-
able. When (4.147) holds, we can check that uncorrelated jointly Gaussian ran-
dom variables will also be independent; this is one of the main reasons for the
assumption of circularity — see Prob. 4.22.

Proof of (4.147): Using (4.146) and the determinantal formula (1.64a), we have

detR = det(Rx) det(Rx +RxyR
−1
x Rxy) (4.148)

Likewise, using the expression Rz = 2(Rx − jRxy), we obtain

(detRz)
2 = det(Rz) det(RT

z )

= 22p det(Rx(I − jR−1
x Rxy)) det(Rx − jRT

xy) (4.149)

Noting that

RT
xy = Ryx

(4.144)
= −Rxy (4.150)
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and, for matrices A and B of compatible dimensions, det(AB) = det(BA), we get

(detRz)
2 = 22p detRx det[(Rx + jRxy)(I − jR−1

x Rxy)]

= 22p det(Rx) det(Rx +RxyR
−1
x Rxy)

(4.148)
= 22p detR (4.151)

so that
1

(2π)p
1√

detR
=

1

πp
1

detRz
(4.152)

To conclude the argument, some algebra will show that the exponents in (4.138) and
(4.147) are identical — see Prob. 4.23.

�
We can also determine an expression for the fourth-order moment of a circular
Gaussian random variable. Following the same argument that led to (4.26), we
can similarly verify that if z is a circular Gaussian vector with zero mean and
covariance matrix Ezz∗ = Rz then, for any Hermitian matrix W of compatible
dimensions:

E
{
zz∗Wzz∗

}
= RzTr

(
WRz

)
+RzWRz (4.153)

4.7 COMMENTARIES AND DISCUSSION

Gaussian distribution. The origin of the Gaussian distribution is attributed to the
German mathematician Carl Friedrich Gauss (1777–1855) who published it in
Gauss (1809) while working on two other original ideas, namely, the formulation of
the least-squares criterion and the formulation of an early version of the maximum
likelihood criterion. He started from a collection of N independent noisy measurements,
y(n) = θ + v(n), of some unknown parameter θ where the perturbation error was
assumed to arise from some unknown probability density function, fv(v). Gauss (1809)
formulated the problem of estimating the parameter by maximizing the product of the
individual probabilities:

θ̂ = argmax
θ

{
N∏
n=1

fv
(
y(n)− θ

)}
(4.154)

He actually worked on a “reverse” problem. He posed the question of determining the
form of the noise pdf that would result in an estimate for θ that is equal to the sample
mean of the observations, namely, he wanted to arrive at a solution of the form:

θ̂ =
1

N

N∑
n=1

y(n) (4.155)

He argued that what we refer to today as the Gaussian distribution is the answer to
his inquiry, i.e.,

fv(v) =
1√

2πσ2
v

e
− v2

2σ2
v (4.156)
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For this choice of pdf, the maximum-likelihood formulation (4.154) reduces to the least-
squares problem

θ̂ = argmin
θ

{
N∑
n=1

(y(n)− θ)2

}
(4.157)

whose solution is (4.155).
Independently of Gauss, the Irish-American mathematicianRobert Adrain (1775–

1843) also arrived at the Gaussian distribution (as well as the least-squares formula-
tion) in the work by Adrain (1808). He considered a similar estimation problem involv-
ing a collection of noisy measurements and postulated that the size of the error in each
measurement should be proportional to the size of the measurement itself (namely,
larger measurements should contain larger errors). He also postulated that the errors
across measurements are independent of each other and moved on to derive the form of
the error probability measure that would satisfy these properties, arriving again at the
Gaussian distribution — he arrived at the exponential curve e−v

2

and refers to it as
“the simplest form of the equation expressing the nature of the curve of probability.” He
used this conclusion to determine the most probable value for the unknown parameter
from the noisy observations and arrived again at the sample mean estimate (4.155). In
the solution to this problem, he writes: “Hence the following rule: Divide the sum of all
the observed values by their number, and the quotient will be the most probable value
required.” For further details on the early developments of this branch of statistical
analysis, the reader may refer to Stigler (1986).

We will encounter the maximum likelihood formulation more generally in later chap-
ters. It has become a formidable tool in modern statistical signal analysis, pushed
largely by the foundational work of the English statistician Ronald Fisher (1890–
1962), who formulated and studied the maximum likelihood approach in its generality
in Fisher (1912,1922,1925).

Central limit theorem. We explained in the introductory section of this chapter that
the Gaussian distribution, also called normal distribution, derives its eminence from
the central limit theorem. According to Feller (1945), the name “central limit theorem”
is due to Pólya (1920). The earliest formulation of the central limit theorem, and its
recognition as a powerful universal approximation law for sums of independent random
variables, is due to the French mathematician Pierre Laplace (1749–1827) in the
treatise by Laplace (1812). He considered a collection of N independent and identically
distributed scalar random variables {xn} with mean x̄ and finite variance σ2

x and showed
that the normalized variable:

y
∆
=
√
N

(
1

N

N∑
n=1

(xn − x̄)

)
(4.158)

converges in distribution to Ny(0, σ2
x) as N →∞, written as

y
d−→ Ny(0, σ2

x) (4.159)

It was not, however, until almost a century later in the works by the Russian and
Finnish mathematicians Aleksandr Lyapunov (1857–1918) and Jarl Lindeberg
(1876–1932), respectively, that the central limit theorem was generalized and placed
on a more solid and formal footing — see the treatments by Billingsley (1986) and
Fischer (2011). Weaker versions of the theorem were developed where, for example, the
requirement of identically distributed random variables was dropped. Both Lyapunov
(1901) and Lindeberg (1922) derived sufficient conditions under which the theorem
would continue to hold, with Lindeberg condition being one of the weakest sufficient
(and almost necessary) condition available.

More specifically, let {xn, n = 1, 2, . . . , N} denote a collection of independent scalar
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random variables, with possibly different means and variances denoted by {x̄n, σ2
x,n <

∞}. We introduce the sum of variances factor

σ2
N

∆
=

N∑
n=1

σ2
x,n (4.160)

and consider the normalized variable

y
∆
=

1

σN

N∑
n=1

(xn − x̄n) (4.161)

Lyapunov condition guarantees the convergence of the distribution of y to Ny(0, 1) if
there exists some λ > 0 for which

lim
N→∞

{
1

σ2+λ
N

N∑
n=1

E (xn − x̄n)2+λ

}
= 0 (4.162)

A weaker condition is Lindeberg requirement: it guarantees the convergence of the
distribution of y to Ny(0, 1) if for every ε > 0 it holds that

lim
N→∞

{
1

σ2
N

N∑
n=1

E (xn − x̄n)2 I
[
|xn − x̄n| > εσN

]}
= 0 (4.163)

where the notation I[x] denotes the indicator function and is defined as follows:

I[x]
∆
=

{
1, when argument x is true
0, otherwise (4.164)

It can be verified that if condition (4.162) holds then so does (4.163) so that Lindeberg
condition is weaker than Lyapunov condition. Both conditions essentially amount to
requiring the summands that appear in (4.162) and (4.163) to assume small values with
high probability.

Stein identity. Stein lemma (4.68), also known as Stein identity, is a useful tool in the
study of Gaussian-distributed random variables — see Prob. 4.32. The identity is due
to Stein (1973,1981) and was generalized by Hudson (1978) to the family of exponential
distributions, as shown later in Example 5.2. It was also extended to the vector case
by Arnold, Castillo, and Sarabia (2001). The identity is useful in computing moments
of transformations of Gaussian random variables. It arises, for example, in the context
of the expectation propagation algorithm, which we study in a later chapter. It has
also found applications in many domains, including in finance and asset pricing —
see, e.g., Ingersoll (1987) and Cochrane (2001). Several of the other integral identities
involving Gaussian distributions derived in Examples 4.1 and 4.7 are motivated by ar-
guments and derivations from Owen (1980), Patel and Read (1996), and Rasmussen
and Williams (2006, Sec. 3.9). The proofs of Lemma 4.3 and Example 4.4 are motivated
by the derivations from Sayed (2003,2008).

Gaussian processes. We introduced in Sec. 4.5 the notion of Gaussian processes and
commented on their relation to kernel methods in learning and inference; we will dis-
cuss these latter methods in greater detail in Chapter 63. Gaussian processes are a
useful modeling tool in the study of learning algorithms, as detailed, for example, in
the text by Rasmussen and Williams (2006). We observe from expressions (4.131) and
(4.134) for the Gaussian and Ornstein-Uhlenbeck kernels that the “correlation” between
two points (x, x′) in space decreases as the points move further apart from each other.
For this reason, when Gaussian processes are used to model and solve learning and
inference problems, it is noted that this property of their kernel translates into the
inference decisions being based largely on the closest points in the training data (this
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behavior is similar to the nearest-neighbor rule discussed later in Chapter 52). One
early reference on the application of Gaussian processes to statistical inference is the
work by O’Hagan (1978). Other notable references on the use of Gaussian processes
and kernels for regression and learning applications include Blight and Ott (1975), Pog-
gio and Girosi (1990), Neal (1995,1996), and Williams and Rasmussen (1995). Similar
techniques have also been used in geostatistics under the name of “krigging” — see,
e.g., Journel and Huijbregts (1978), Ripley (1981), and Fedorov (1987).

Circular Gaussian distribution. The presentation in Sec. 4.6 is adapted from Kailath,
Sayed, and Hassibi (2000). Expression (4.147) shows the form of a complex Gaussian
distribution under the circularity assumption. The original derivation of this form is
due to Wooding (1956) — see also Goodman (1963) and the texts by Miller (1974) and
Picinbono (1993). This distribution was derived under the circularity condition (4.142),
which enables the (pdf) to be completely characterized by the first and second-order
moments of the complex variable. Under this same condition, uncorrelated Gaussian
variables continue to be independent.

PROBLEMS2

4.1 Consider two independent and zero-mean real random variables {u,w}, where u
and w are column vectors; both are M -dimensional. The covariance matrices of u and
w are defined by EuuT = σ2

uI and EwwT = C. Let ea = uTw.
(a) Show that Ee2

a = σ2
uTr(C).

(b) Assume u is Gaussian-distributed. Show that Ee2
a‖u‖2 = (M+2)σ4

uTr(C), where
the notation ‖ · ‖ denotes the Euclidean norm of its argument.

4.2 Consider K Gaussian distributions with mean µk and variance σ2
k each. We index

these components by k = 1, 2, . . . ,K. We select one component k at random with
probability πk. Subsequently, we generate a random variable y according to the selected
Gaussian distribution Ny(µk, σ

2
k).

(a) What is the pdf of y?
(b) What is the mean of y?
(c) What is the variance of y?
4.3 Let x be a real-valued random variable with pdf fx(x). Define y = x2.
(a) Use the fact that for any nonnegative y, the event {y ≤ y} occurs whenever

{−√y ≤ x ≤ √y} to conclude that the pdf of y is given by

fy(y) =
1

2

fx(
√
y)

√
y

+
1

2

fx(−√y)
√
y

, y > 0

(b) Assume x is Gaussian with zero mean and unit variance. Conclude that fy(y) =
1√
2πy

e−y/2 for y > 0. Remark. The above pdf is known as the Chi-square distri-
bution with one degree of freedom. A Chi-square distribution with k degrees of
freedom is characterized by the pdf:

fy(y) =
1

2k/2Γ(k/2)
y(k−2)/2e−y/2, y > 0

where Γ(·) is the so-called Gamma function; it is defined by the integral Γ(z) =´∞
0
sz−1e−sds for z > 0. The function Γ(·) has the following useful properties:

Γ(1/2) =
√
π, Γ(z + 1) = zΓ(z) for any z > 0, and Γ(n+ 1) = n! for any integer

2 Some problems in this section are adapted from exercises in Sayed (2003,2008).
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n ≥ 0. The Chi-square distribution with k−degrees of freedom is a special case
of the Gamma distribution considered later in Prob. 5.2 using the parameters
α = k/2 and β = 1/2. The mean and variance of y are Ey = k and σ2

y = 2k.
(c) Let y =

∑k
j=1 x

2
j denote the sum of the squares of k independent Gaussian random

variables xj , each with zero mean and unit variance. Show that y is chi-square
distributed with k degrees of freedom.

4.4 Refer to the pdf expression (4.77) for jointly-distributed Gaussian random vectors.
Show that if x and y are uncorrelated, then they are also independent.
4.5 Consider the product of three Gaussian distributions over the same random vari-
able x ∈ IRM :

g(x) = Nx(x̄a, Ra)×Nx(x̄b, Rb)×Nx(x̄c, Rc)

Find an expression for g(x). How should the product be normalized so that g(x)/Z is
a Gaussian distribution over x? Find Z.
4.6 Consider a Gaussian distribution over θ ∼ Nθ(θ̄, Rθ), and a second Gaussian
distribution over y ∼ Ny(θ,Ry) where the mean is defined in terms of a realization for
θ ∈ IRM . Find closed-form expressions for the following integrals:

I1 =

ˆ
θ

θ Ny(θ,Ry)Nθ(θ̄, Rθ)dθ, I2 =

ˆ
θ

θθT Ny(θ, Ry)Nθ(θ̄, Rθ)dθ

4.7 Consider two distributions over the random variables θ,y ∈ IRM of the form:

fθ(θ) = Nθ(θ̄, Rθ)

f
y|θ(y|θ) = (1− α)Ny(θ,R1) + αNy(0, R2), α ∈ (0, 1)

In other words, the conditional pdf of y is parameterized by θ, which appears as the
mean of the first Gaussian term. Determine a closed-form expression for the marginal
of y.
4.8 Let y be a scalar Gaussian-distributed random variable, y ∼ Ny(ȳ, σ2

y). Establish
(4.7). Remark. The reader can refer to Owen (1980) and Patel and Read (1996) for a
list of similar integral expressions involving Gaussian distributions. Related discussions
also appear in Rasmussen and Williams (2006, Ch. 3).
4.9 Differentiate both sides of the identity (4.7) once and twice relative to ȳ and
establish identities (4.9) and (4.11).
4.10 Consider a standard Gaussian distribution with zero mean and unit variance.
The error function that is associated with it is denoted by erf(z) and is defined as the
integral

erf(z) ∆
=

2√
π

ˆ z

0

e−x
2

dx

The complementary error function is defined by erfc(z) = 1− erf(z).
(a) Verify that erf(0) = 0 and that the function tends to ±1 as z → ±∞.
(b) Comparing with (4.6), verify that erf(z) = 2Φ(

√
2z)− 1.

4.11 Consider a Gaussian random vector w ∼ Nw(0, Rw) where w ∈ IRM . Show that
ˆ ∞
−∞

erf
(
hT
aw
)
erf
(
hT
bw
)
Nw(0, Rw)dw=

2

π
arcsin

(
2hT

aRwhb√
(1 + 2hT

aRwha)(1 + 2hT
bRwhb)

)
Remark. See Williams (1996) for a related discussion.
4.12 Use identity (4.34) to show that the calculation in (4.38) leads to a Gaussian pdf
with mean z̄ = x̄+ ȳ and covariance matrix Rz = Rx +Ry.
4.13 Let a denote a real scalar-valued Gaussian random variable with zero mean and
variance σ2

a. Show that Ea4 = 3σ4
a.

4.14 Let a denote a complex circular Gaussian random variable with zero mean and
variance σ2

a. Show that E |a|4 = 2σ4
a.
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4.15 Assume u is a real Gaussian random column vector with a diagonal covariance
matrix Λ. Define z = ‖u‖2. What is the variance of z?
4.16 Consider two column vectors {w,z} that are related via z = w+µu(d−uTw),
where u is a real Gaussian column vector with a diagonal covariance matrix, EuuT = Λ.
Moreover, µ is a positive constant and d = uTwo + v, for some constant vector wo
and random scalar v with variance σ2

v. The variables {v,u,w} are independent of each
other. Define ea = uT(wo−w), as well as the error vectors z̃ = wo−z and w̃ = wo−w,
and denote their covariance matrices by {Rz̃, Rw̃}. Assume Ez = Ew = wo, while all
other random variables are zero-mean.
(a) Verify that z̃ = w̃ − µu(ea + v).
(b) Show that Rz̃ = Rw̃ − µRw̃Λ− µΛRw̃ + µ2

(
ΛTr

(
Rw̃Λ

)
+ 2ΛRw̃Λ

)
+ µ2σ2

vΛ.
4.17 Consider a collection of N measurements {γ(n),hn} where each scalar γ(n)
is modeled as a noisy perturbation of some Gaussian process g(hn) defined over the
M−dimensional vectors {hn}:

γ(n) = g(hn) + v(n), g ∼ GPg

(
0,K(h, h′)

)
Assume the mean function for the Gaussian process g(·) is zero and denote its covari-
ance function by the kernel K(h, h′). Assume further that the noise v(n) ∼ Nv(0, σ2

v)
is white Gaussian with variance σ2

v and independent of g(·). Collect the measurements
{γ(n)}, the Gaussian process values of g(·), and the perturbations {v(n)} into vector
quantities: 

γ(1)
γ(2)
...

γ(N)


︸ ︷︷ ︸

γN

=


g(h1)
g(h2)

...
g(hN )


︸ ︷︷ ︸

gN

+


v(1)
v(2)
...

v(N)


︸ ︷︷ ︸

vN

so that γN = gN+vN . Let RN denote the covariance matrix of the vector gN evaluated
at the given feature data, RN = [K(hn, hm)]N−1

n,m=0.
(a) Argue that γN has a Gaussian distribution. What is its mean and covariance

matrix?
(b) Consider a new vector h and its label γ. What is the conditional pdf of γ given

the past data {γ(n), hn}Nn=1?
4.18 Let a and b be scalar real-valued zero-mean jointly Gaussian random variables
and denote their correlation by ρ = Eab. Price theorem states that for any function
f(a, b), for which the required derivatives and integrals exist, the following equality
due to Price (1958) holds

∂nE f(a, b)

∂ρn
= E

(
∂2nf(a, b)

∂an∂bn

)
in terms of the n-th and 2n−th order partial derivatives. In simple terms, Price theorem
allows us to move the expectation on the left-hand side outside of the differentiation
operation.
(a) Choose n = 1 and assume f(a, b) has the form f(a, b) = ag(b). Verify from Price

theorem that

∂Eag(b)

∂ρ
= E

(
dg

dx
b

)
in terms of the derivative of g(·). Integrate both sides over ρ to establish that
Eag(b) = (Eab) E (dg/dx)b.
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(b) Show further that Ebg(b) = σ2
b E (dg/dx)b and conclude that the following rela-

tion also holds:

Eag(b) =
Eab
σ2
b

Ebg(b)

(c) Assume g(b) = sign(b). Conclude from part (b) that

Ea sign(b) =

√
2

π

1

σb
Eab

4.19 Bussgang theorem is a special case of Price theorem and is due to Bussgang
(1952). Let {a, b} be two real zero-mean Gaussian random variables and define the
function

g(b)
∆
=

ˆ b

0

e−z
2/σ2

dz

for some σ > 0. Bussgang theorem states that

Eag(b) =
1√

σ2
b
σ2 + 1

Eab

The proof of the theorem is as follows. Let ρ = Eab. Use Price general statement from
Prob. 4.18 to verify that

∂Eag(b)

∂ρ
= E

(
∂2ag(b)

∂a∂b

)
= E

(
e−b2/σ2

z

)
Integrate both sides over ρ to establish Bussgang theorem.
4.20 Consider two real-valued zero-mean jointly Gaussian random variables {x,y}
with covariance matrix

E
[
x
y

] [
x y

]
=

[
1 ρ
ρ 1

]
That is, {x,y} have unit variances and correlation ρ. Define the function

g(x,y) =
2

πσ2

ˆ x

0

ˆ y

0

e−α
2/2σ2

e−β
2/2σ2

dαdβ

for some σ > 0.
(a) Verify that ∂2g(x,y)/∂x∂y = 2

πσ2 e
−x2/2σ2

e−y2/2σ2

, and show that

E ∂
2g(x,y)

∂x∂y
=

2

π

1√
(σ2 + 1)2 − ρ2

(b) Integrate the equality of part (a) over ρ ∈ (0, 1) and conclude that
ˆ 1

0

E
(
∂2g(x,y)

∂x∂y

)
dρ =

2

π
arcsin

(
1

1 + σ2

)
(c) Use Price identity (cf. Prob. 4.18) to conclude that

E g(x,y) =
2

π
arcsin

(
1

1 + σ2

)
4.21 Start from (4.26) and show that result (4.30) holds.
4.22 Refer to the general form (4.147) of a circular Gaussian random vector. Show
that uncorrelated Gaussian vectors are also independent.
4.23 Show that the exponents in (4.138) and (4.147) coincide.
4.24 Prove that if condition (4.162) holds then so does condition (4.163).
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4.25 Let x denote a Bernoulli random variable, assuming the value one with probabil-
ity p and the value zero with probability 1−p. Let SN denote the sum of N independent
Bernoulli experiments. What is the asymptotic distribution of SN/N?
4.26 Let xn denote a Bernoulli random variable, assuming the value one with prob-
ability pn and the value zero with probability 1 − pn. Note that we are allowing the
probability of success to vary across experiments. Set λ = 1 and show that Lyapunov
condition (4.162) is satisfied if

lim
N→∞

N∑
n=1

pn(1− pn) =∞

4.27 Let xn denote a sequence of independent and identically distributed random
variables with mean µ and variance σ2

x <∞. Show that Lindeberg condition (4.163) is
satisfied.
4.28 Let xn denote a sequence of independent and identically distributed scalar ran-
dom variables with mean Exn = µ and finite variance, σ2

x = E (x(n) − µ)2 < ∞.
Introduce the sample average estimator µ̂ = 1

N

∑N
n=1 x(n) and let σ2

µ̂ denote its vari-
ance.
(a) Verify that σ2

µ̂ = σ2
x/N .

(b) Use Chebyshev inequality (3.28) to conclude the validity of the weak law of large
numbers, namely, the fact that the sample average converges in probability to the
actual mean as N →∞ — see also future Prob. 3.54:

lim
N→∞

P (|µ̂− µ| ≥ ε) = 0, for any ε ≥ 0

4.29 Let {x(n), n = 1, . . . , N} denote N independent realizations with mean µ and
and finite variance, σ2

x = E (x(n) − µ)2 < ∞. Introduce the weighted sample average
µ̂ =

∑N
n=1 α(n)x(n), where the scalars {α(n)} satisfy

α(n) ≥ 0,

N∑
n=1

α(n) = 1, lim
N→∞

N∑
n=1

α2(n) = 0

(a) Verify that E µ̂ = µ and σ2
µ̂ = σ2

x

(∑N
n=1 α

2(n)
)
.

(b) Conclude that σ2
µ̂ → 0 as N →∞.

4.30 A sequence of M × 1 random vectors xn converges in distribution to a Gaussian
random vector x with zero mean and covariance matrix Rx. A sequence of M ×M
random matrices An converges in probability to a constant matrix A. What is the
asymptotic distribution of the random sequence Anxn?
4.31 Consider a collection of N independent and identically distributed random vari-
ables {xn}, each with mean µ and variance σ2

x. Introduce the sample mean estimator
µ̂N = (1/N)

∑N
n=1 xn, whose mean and variance are given by E µ̂ = µ and σ2

µ̂ = σ2
x/N .

(a) Let a and δ be small positive numbers. Use Chebyshev inequality (3.28) to con-
clude that at least N ≥ 1/a2δ samples are needed to ensure that the sample mean
lies within the interval µ ± aσx with high likelihood of at least 1 − δ, namely,
P(|µ̂N − µ| < aσx) ≥ 1− δ.

(b) Use the central limit theorem (4.158) to find that the conclusion holds by selecting
N to satisfy δ ≤ 2Q(a

√
N), where Q(·) denotes the standard Gaussian cumula-

tive distribution function (i.e., the area under the standard Gaussian distribution
N(0, 1)):

Q(x) ,
1√
2π

ˆ x

−∞
e−

1
2
t2dt

The Q−function is usually tabulated in books on statistics.
(c) Compare the results of parts (a) and (b) to ensure that µ̂ lies within the interval

µ± 0.05σx with probability larger than or equal to 0.995.
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4.32 Consider the same setting of Stein lemma stated in (4.68). Consider two jointly
Gaussian distributed scalar random variables x and y. Show that it also holds

E
(
g(x)− E g(x)

)
(y − ȳ) = E (x− x̄)(y − ȳ)E g′(x)

4.33 Repeat the proof of Stein Lemma and establish the validity of (4.67) for vector
random variables x ∈ IRM .
4.34 Refer to expression (4.111) for Z0. Compute the gradient vector and Hessian
matrix of both sides of the equality and establish the validity of results (4.113) and
(4.114).
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