
3 Random Variables

The material in future chapters will require familiarity with basic concepts
from probability theory, random variables, and random processes. For the ben-
efit of the reader, we review in this and the next chapters several concepts of
general interest. The discussion is not meant to be comprehensive or exhaustive.
Only concepts that are necessary for our treatment of inference and learning are
reviewed. It is assumed that readers have had some prior exposure to random
variables and probability theory.

3.1 PROBABILITY DENSITY FUNCTIONS

In loose terms, the designation “random variable” refers to a variable whose
value cannot be predicted with certainty prior to observing it. This is because
the variable may assume any of a collection of values in an experiment, and some
of the values can be more likely to occur than other values. In other words, there
is an element of chance associated with each possibility.

In our treatment, we will often (but not exclusively) be interested in random
variables whose observations assume numerical values. Obviously, in many situa-
tions of interest, the random variables need not be numerical but are categorical
in nature. One example is when a ball is drawn from an urn and is either blue-
colored with probability 1/4 or red-colored with probability 3/4. In this case,
the qualifications {red, blue} refer to the two possible outcomes, which are not
numerical. Nevertheless, it is common practice in scenarios like this to associate
numerical values with each category, such as assigning the numerical value +1 to
the color red and the numerical value −1 to the color blue. In this way, drawing
a red ball amounts to observing the value +1 with probability 3/4 and drawing
a blue ball amounts to observing the value −1 with probability 1/4.

We will use boldface symbols to refer to random variables and symbols in
normal font to refer to their realizations or observations. For example, we let
x denote the random variable that corresponds to the outcome of throwing a
dice. Each time the experiment is repeated, one of six possible outcomes can be
observed, namely, x ∈ {1, 2, 3, 4, 5, 6} — see Fig. 3.1. We cannot tell beforehand
which value will occur (assuming a fair dice). We say that the random variable, x,
represents the outcome of the experiment and each observation x is a realization

Copyright 2022. All Rights Reserved. These notes cannot be copied or distributed 
in print or electronically without the written consent of Cambridge University Press 
and the author. The notes are distributed to students attending the course  EE566: 
Adaptation and Learning taught by the author at EPFL during Spring 2022. The 
notes originate from the text: A. H. Sayed, Inference and Learning from Data, Vol. I: 
Foundations, Cambridge University Press, 2022.



3.1 Probability Density Functions 69

for x. In this example, the realization x can assume one of six possible integer
values, which constitute the sample space for x and is denoted by the letter
Ω = {1, 2, 3, 4, 5, 6}. Our choice of notation {x, x} is meant to distinguish between
a random variable and its realizations or observations.

Figure 3.1 The sample space for a dice consists of the outcomes Ω = {1, 2, 3, 4, 5, 6}.

Discrete variables
A numerical random variable can be discrete or continuous depending on the
range of values it assumes. The realizations of a discrete random variable can
only assume values from a countable set of distinct possibilities. For example, the
outcome of the throw of a dice is a discrete random variable since the realizations
can only assume one of six possible values from the set Ω = {1, 2, 3, 4, 5, 6}. In
contrast, the realizations of a continuous random variable can assume an infinite
number of possible values, e.g., values within an interval on the real line.

When a random variable is discrete, we associate with each element of the
sample space, Ω, a nonnegative number in the range [0, 1]. This number repre-
sents the probability of occurrence of that particular element of Ω. For example,
assuming a fair dice throw, the probability that the realization x = 4 is observed
is equal to 1/6. This is because all six possible outcomes are equally likely with
the same probability of occurrence, which we denote by

pm = 1/6, m = 1, 2, 3, 4, 5, 6 (3.1)

with one value pm for each possible outcome m. Obviously, the sum of all six
probabilities must add up to one. We refer to the {pm} as representing the
probability distribution or the probability mass function (pmf) that is associated
with the dice experiment. More generally, for a discrete random variable, x, with
M possible realizations, {xm}, we associate with each outcome a probability
value pm for all 1 ≤ m ≤ M . These probabilities need not be identical because
some outcomes may be more likely to occur than others, but they must satisfy
the following two conditions:

0 ≤ pm ≤ 1 and
M∑

m=1

pm = 1 (3.2)

with the number pm corresponding to the probability of the m−th event occur-
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ring, written as

pm
∆
= P(x = xm) (3.3)

When convenient, we will also use the alternative function notation fx(xm) to
refer to the probability of event xm, namely,

fx(xm)
∆
= P(x = xm) = pm (3.4)

where fx(x) refers to a function that assumes the value pm at each location xm,
and the value zero at all other locations. More formally, fx(x) can be expressed
in terms of the Dirac delta function, δ(x), as follows:

fx(x) =

M∑

m=1

pm δ(x− xm) (3.5)

where the delta function is defined by the sifting property:ˆ ∞
−∞

g(x)δ(x− xm)dx = g(xm) (3.6)

for any function g(x) that is well-defined at x = xm. Representation (3.5) high-
lights the fact that the probability distribution of a discrete random variable, x,
is concentrated at a finite number of locations defined by the coordinates {xm}.

Continuous variables
The function notation fx(x) for the pmf of a discrete random variable is useful
because, as explained next, it will allow us to adopt a common notation for both
discrete and continuous random variables.

When the random variable x is continuous, the probability that x assumes any
particular value x from its sample space is equal to zero. This is because there are
now infinitely many possible realization values. For this reason, for continuous
random variables, we are more interested in the probability of events involving a
range of values rather than a specific value. To evaluate the probability of such
events, we associate with the random variable x a probability density function
(pdf), which we will denote by the same notation fx(x). The pdf is a function
of x and it is required to satisfy the following two conditions:

fx(x) ≥ 0 and
ˆ ∞
−∞

fx(x)dx = 1 (3.7)

The pdf of x allows us to evaluate probabilities of events of the form

P(a ≤ x ≤ b) (3.8)

which refer to the probability that x assumes values within the interval [a, b].
This probability is obtained through the integral calculation:

P(a ≤ x ≤ b) =

ˆ b

a

fx(x)dx (3.9)
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We will use the terminology of “probability mass functions” for discrete random
variables, and “probability density functions” for continuous random variables.
Moreover, we will often use the same pdf notation, fx(x), to refer to probability
distributions in both cases.

Example 3.1 (Uniform random variable) A continuous random variable x is said to
be uniformly distributed within the interval [a, b] if its pdf is constant over this interval
and zero elsewhere, namely,

fx(x) =

{
c, a ≤ x ≤ b
0, otherwise (3.10)

for some constant c > 0 and where b > a. The value of c can be determined from the
normalization requirement ˆ ∞

−∞
fx(x)dx = 1 (3.11)

so that we must have ˆ b

a

c dx = 1 =⇒ c =
1

b− a (3.12)

We conclude that the pdf of a uniform random variable is given by

fx(x) =

{
1

b− a , a ≤ x ≤ b
0, otherwise

(3.13)

3.2 MEAN AND VARIANCE

Consider a continuous real-valued random variable x and let x ∈ X denote the
domain of its realizations (i.e., the range of values that can be assumed by x). For
example, for the uniform variable described in Example 3.1, we have X = [a b].

Definitions
The mean x is denoted by x̄ or Ex and is defined as the calculation:

Ex ∆
= x̄ =

ˆ
x∈X

xfx(x)dx (3.14)

The mean of x is also called the expected value or the first-moment of x, and
its computation can be interpreted as determining the center of mass of the pdf.
This interpretation is illustrated by the following example.

Likewise, the variance of a real-valued random variable x is denoted by σ2
x and

defined by the following equivalent expressions:

σ2
x

∆
= E (x− x̄)2 =

ˆ
x∈X

(x− x̄)2fx(x)dx (3.15a)

= Ex2 − x̄2 =

( ˆ
x∈X

x2fx(x)dx

)
− x̄2 (3.15b)
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Obviously, the variance is a nonnegative number,

σ2
x ≥ 0 (3.16)

and its square-root, which we denote by σx, is referred to as the standard de-
viation of x. When x has zero mean, it is seen from (3.15a) that its variance
expression reduces to the second-order moment of x, i.e.,

σ2
x = Ex2 =

ˆ ∞
−∞

x2fx(x)dx, when Ex = 0 (3.17)

Example 3.2 (Mean and variance of a uniform random variable) Let us reconsider the
uniform pdf from Example 3.1. The mean of x is given by

x̄ =

ˆ b

a

x
1

b− adx =
1

b− a
x2

2

∣∣∣∣b
a

=
1

2
(a+ b) (3.18)

which is the midpoint of the interval [a, b]. The variance of x is given by

σ2
x =

ˆ b

a

x2 1

b− adx −
(
a+ b

2

)2

=
1

b− a
x3

3

∣∣∣∣b
a

−
(
a+ b

2

)2

=
1

12
(b− a)2 (3.19)

Example 3.3 (Center of mass) Consider a rod of length ` and unit-mass lying hori-
zontally along the x−axis. The left-end of the rod is the origin of the horizontal axis,
and the distribution of mass density across the rod is described by the function fx(x)
(measured in mass/unit length). Specifically, the mass content between locations x1 and
x2 is given by the integral of fx(x) over the interval [x1, x2]. The unit-mass assumption
means that ˆ `

0

fx(x)dx = 1 (3.20)

If left unattended, the rod will swing around its left-end. We would like to determine
the x−coordinate of the center of mass of the rod where it can be stabilized. We denote
this location by x̄. The mass of the rod to the left of x̄ exerts a torque that would
make the rod rotate in an anti-clockwise direction, while the mass of the rod to the
right of x̄ exerts a torque that would make the rod rotate in a clockwise direction —
see Fig. 3.2. An equilibrium is reached when these two torques are balanced against
each other. Recall that torque is force multiplied by distance and the forces present
are the cumulative weights of the respective parts of the rod to the left and right of x̄.
Therefore, the equilibrium condition amounts to:

ˆ x̄

0

(x̄− x)gfx(x)dx =

ˆ `

x̄

(x− x̄)gfx(x)dx (3.21)

where g is the gravitational acceleration constant, approximately equal to g = 9.8 m/s2.
Solving for x̄ we find that

x̄ =

ˆ `

0

xfx(x)dx (3.22)
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fx(x)

Figure 3.2 A rod of unit-mass and length ` is balanced horizontally at location x̄.

Although the previous definitions for mean and variance assume a continuous
random variable, they are also applicable to discrete random variables if we
resort to the representation (3.5). Indeed, in this case, and assuming M possible
outcomes {xm}, each with a probability of occurrence pm, the mean and variance
relations (3.14) and (3.15b) simplify to the following expressions where integrals
are replaced by sums:

x̄ =

M∑

m=1

pmxm (3.23)

σ2
x =

(
M∑

m=1

pmx
2
m

)
− x̄2 (3.24)

Measure of uncertainty
The variance of a random variable admits a useful interpretation as a measure
of uncertainty. Intuitively, the variance σ2

x defines an interval on the real axis
around the mean x̄ where the values of the random variable x are most likely to
occur:

(a) A small value of σ2
x indicates that x is more likely to assume values close to

its mean, x̄. In this case, we would have a reasonably good idea about what
range of values are likely to be observed for x in experiments.

(b) A large value of σ2
x indicates that x can assume values over a wider interval

around its mean. In this case, we are less certain about what values to expect
for x in experiments.

For this reason, it is customary to regard the variance of a random variable as a
measure of the uncertainty about the value it will assume in a given experiment.
A small variance indicates that we are more certain about what values to expect
for x (namely, values that are close to its mean), while a large variance indicates
that we are less certain about what values to expect. These two situations are
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illustrated in Figs. 3.3 and 3.4 for two different probability density functions.
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Figure 3.3 Probability density functions fx(x) of a Gaussian random variable x with
mean x̄ = 10, variance σ2

x = 100 in the top plot, and variance σ2
x = 10 in the bottom

plot.

Figure 3.3 plots the probability density function of a Gaussian-distributed
random variable x for two different variances. In both cases, the mean of the
random variable is fixed at x̄ = 10 while the variance is σ2

x = 100 in one case and
σ2
x = 10 in the other. We explain Chapter 4 that the pdf of a Gaussian random

variable is defined in terms of (x̄, σ2
x) by the following expression — see (4.4):

fx(x) =
1√

2π σx
e−(x−x̄)2/2σ2

x , x ∈ (−∞,∞) (Gaussian) (3.25)

From Fig. 3.3 we observe that the smaller the variance of x is, the more concen-
trated its pdf is around its mean. Figure 3.4 provides similar plots for a second
random variable x with a Rayleigh distribution, namely, with a pdf given by

fx(x) =
x

α2
e−x

2/2α2

, x ≥ 0, α > 0 (Rayleigh) (3.26)

where α is a positive parameter. The value of α determines the mean and variance
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Figure 3.4 Probability density functions fx(x) of a Rayleigh random variable x with
mean x̄ = 3.7599 and variance σ2

x = 3.8628 in the top plot, and mean x̄ = 1.2533 and
variance σ2

x = 0.4292 in the bottom plot.

of x according to the following expressions (see Prob. 3.15):

x̄ = α

√
π

2
, σ2

x =
(

2− π

2

)
α2 (3.27)

so that, in contrast to the Gaussian case, the mean and variance of a Rayleigh-
distributed random variable cannot be chosen independently of each other since
their values are linked through α. In Fig. 3.4, the top plot corresponds to x̄ =

3.7599 and σ2
x = 3.8628, while the bottom plot corresponds to x̄ = 1.2533 and

σ2
x = 0.4292.

Chebyshev inequality
The above remarks on the variance of a random variable can be qualified more
formally by invoking a well-known result from probability theory known as
Chebyshev inequality — see Probs. 3.17 and 3.18. The result states that for a
random variable x with mean x̄ and finite variance σ2

x, and for any given scalar
δ > 0, it holds that

P(|x− x̄| ≥ δ) ≤ σ2
x/δ

2 (3.28)
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This inequality is meaningful only for values of δ satisfying δ ≥ σx; otherwise, the
right-hand side becomes larger than one and the inequality becomes trivial Result
(3.28) states that the probability that x assumes values outside the interval
(x̄ − δ, x̄ + δ) does not exceed σ2

x/δ
2, with the bound being proportional to the

variance of x. Hence, for a fixed δ, the smaller the variance of x is, the smaller
the probability that x will assume values outside the interval (x̄− δ, x̄+ δ). If δ
is selected as a multiple of the standard deviation of x, say, as δ = qσx, for some
q ≥ 1, then we conclude from Chebyshev inequality that

P(|x− x̄| ≥ qσx) ≤ 1/q2, q ≥ 1 (3.29)

Let us choose, for example, δ = 5σx. Then, expression (3.29) gives

P(|x− x̄| ≥ 5σx) ≤ 1/25 = 4% (3.30)

In other words, there is at most 4% chance that x will assume values outside the
interval (x̄ − 5σx, x̄ + 5σx). Actually, the bound that is provided by Chebyshev
inequality is generally loose, as the following example illustrates.

Example 3.4 (Gaussian case) Consider a zero-mean Gaussian random variable x with
variance σ2

x and choose δ = 2σx. Then, from Chebyshev inequality (3.29) we obtain

P(|x| ≥ 2σx) ≤ 1/4 = 25% (3.31)

whereas direct evaluation of the probability using the Gaussian pdf (3.25) gives

P(|x| ≥ 2σx) = P(x ≥ 2σx) + P(x ≤ −2σx)

=
1√

2π σx

(ˆ ∞
2σx

e−x
2/2σ2

x dx +

ˆ −2σx

−∞
e−x

2/2σ2
x dx

)
= 1− 2

(
1√

2π σx

ˆ 2σx

0

e−x
2/2σ2

x dx

)
(3.32)

which can be evaluated numerically to yield:

P(|x| ≥ 2σx) ≈ 4.56% (3.33)

Example 3.5 (Zero-variance random variables) One useful consequence of Chebyshev
inequality (3.28) is that it allows us to interpret a zero-variance random variable as one
that is equal to its mean in probability — see also Prob. 3.42. This is because when
σ2
x = 0, we obtain from (3.28) that for any small δ > 0:

P(|x− x̄| ≥ δ) ≤ 0 (3.34)

But since the probability of any event is necessarily a nonnegative number, we conclude
that

P(|x− x̄| ≥ δ) = 0, for any δ > 0 (3.35)

We say in this case that the equality x = x̄ holds in probability:

σ2
x = 0 =⇒ x = x̄ in probability (3.36)

For the benefit of the reader, we explain in Appendix 3.A various notions of convergence
for random variables, including convergence in probability, convergence in distribution,
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almost-sure convergence, and mean-square convergence. For the current example, the
convergence in probability result (3.36) is equivalent to statement (3.35).

3.3 DEPENDENT RANDOM VARIABLES

In inference problems, it is generally the case that information about one unob-
servable random variable is inferred from observations of another random vari-
able. The observations of the second random variable will convey more or less
information about the desired variable depending on how closely related (i.e.,
dependent) the two random variables are. Let us illustrate this concept using
two examples.

Example 3.6 (Independent random variables) Assume a dice is rolled twice. Let x
denote the random variable that represents the outcome of the first roll and let z
denote the random variable that represents the outcome of the second roll. These two
random variables are independent of each other since the outcome of one experiment
does not influence the outcome of the other. For example, if it is observed that z = 5,
then this value does not tell us anything about what value x assumed in the first roll.
Likewise, if x = 4, then this value does not tell us anything about what value z will
assume in the second roll. That is, observations of one variable do not provide any
information about the other variable.

Example 3.7 (Two throws of a dice) Assume again that the dice is rolled twice. Let
x denote the random variable that represents the outcome of the first roll. Let y denote
the random variable that represents the sum of the two rolls. Assume we only observe
the outcome of y and are unaware of the outcome of x. Obviously, the observation of y
conveys some information about x. For example, if the observation of y is y = 10, then
x could not be 1, 2, or 3 because in these cases the result of the second roll can never
result in a sum that is equal to 10. We therefore say that the random variables x and y
are dependent (the value assumed by one variable in a given experiment conveys some
information about the potential value assumed by the other variable). When random
variables are dependent in this way, it becomes possible to use observations of one
variable to infer the value of the other random variable. Obviously, the result of the
estimation is generally imperfect and it is rarely the case that we can infer precisely
the value of the unobserved variable. In most situations, we will be satisfied with close
enough guesses, where the measure of “closeness” will be formalized in some well-defined
manner, e.g., by using the mean-square-error criterion or other criteria.

3.3.1 Bayes Rule

The dependency between two real-valued random variables {x,y} is captured
by their joint probability density function, which is a two-dimensional function
denoted by fx,y(x, y). The joint pdf allows us to evaluate probabilities of events
of the form:

P(a ≤ x ≤ b, c ≤ y ≤ d) =

ˆ d

c

ˆ b

a

fx,y(x, y)dxdy (3.37)
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namely, the probability that x and y assume values inside the intervals [a, b] and
[c, d], respectively. We also introduce the conditional pdf of x given y, which is
denoted by fx|y(x|y); this function allows us to evaluate probabilities of events
of the form:

P(a ≤ x ≤ b | y = y) =

ˆ b

a

fx|y(x|y)dx (3.38)

namely, the probability that x assumes values inside the interval [a, b] given that
y assumes the value y. It is a well-known result in probability theory that the
joint and conditional pdfs of two random variables are related via Bayes rule,
which states that:

(x and y are continuous)

fx,y(x, y) = fy(y) fx|y(x|y) = fx(x) fy|x(y|x)
(3.39)

This relation expresses the joint pdf as the product of the individual and condi-
tional probability density functions of x and y; it also implies that

fx|y(x|y) =
fx(x) fy|x(y|x)

fy(y)
(3.40)

This relation will arise frequently in our study of inference problems, so much so
that the different terms in this expression have their own terminology:

fy(y) is called the evidence of y (3.41a)

fy|x(y|x) is called the likelihood of y (3.41b)

fx(x) is called the prior of x (3.41c)

fx|y(x|y) is called the posterior of x (3.41d)

In inference problems, we will deal frequently with the problem of observing re-
alizations for some random variable and using them to infer the values for some
other hidden or unobservable variable. Usually, the notation y plays the role of
the observation and fy(y) refers to its pdf, which is also called its evidence. The
evidence provides information about the distribution of the observations. Like-
wise, the notation x plays the role of the hidden variable we are interested in
estimating or learning about. Its distribution fx(x) is called the prior: it repre-
sents the distribution of x prior to observing y. In the same token, the conditional
pdf fx|y(x|y) is called the posterior because it represents the distribution of x
after observing y. The second conditional pdf fy|x(y|x) is called the likelihood
of y because it shows how likely the values of y are if x were known. The like-
lihood can also be interpreted as representing a model for the generation of the
observation y from knowledge of x.

Form (3.39) for Bayes rule assumes that both variables x and y are continuous.
There are variations of this rule when one or both of the random variables happen
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to be discrete, namely,

(x continuous, y discrete)

fx,y(x, y) = P(y = y) fx|y(x|y = y) (3.42a)

= fx(x) P(y = y|x = x)

(x discrete, y continuous)

fx,y(x, y) = P(x = x) fy|x(y|x = x) (3.42b)

= fy(y)P(x = x|y = y)

(x and y discrete)

P(x = x,y = y) = P(y = y) P(x = x|y = y) (3.42c)

= P(x = x) P(y = y|x = x)

Table 3.1 summarizes these variations. We will continue our discussion by consid-
ering form (3.39) for continuous random variables, but note that the conclusions
can be easily extended to combinations of discrete and continuous variables.

Table 3.1 Different forms of Bayes rule depending on the discrete or continuous
nature of the random variables.

x y Bayes rule

continuous continuous fx,y(x, y) = fy(y) fx|y(x|y)

fx,y(x, y) = fx(x) fy|x(y|x)

discrete discrete P(x = x,y = y) = P(y = y) P(x = x|y = y)

P(x = x,y = y) = P(x = x) P(y = y|x = x)

discrete continuous fx,y(x, y) = P(x = x) fy|x(y|x = x)

fx,y(x, y) = fy(y)P(x = x|y = y)

continuous discrete fx,y(x, y) = P(y = y) fx|y(x|y = y)

fx,y(x, y) = fx(x) P(y = y|x = x)

Example 3.8 (Observation under additive noise) Assume x is a discrete random vari-
able that assumes the values ±1 with probability p for +1 and 1 − p for −1. Assume
further that v is a zero-mean Gaussian random variable with variance σ2

v. In a given
experiment, the user observes a scaled version of x in the presence of the noise variable
v. Specifically, the user observes the random variable

y =
1

2
x+ v (3.43)

Clearly, the random variables x and y are dependent since realizations of x alter the pdf
of y. For example, if x = +1, then the random variable y will be Gaussian-distributed
with mean + 1

2
and variance σ2

v, written as

fy|x(y|x = +1) = Ny

(
1/2, σ2

v

)
(3.44)
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where the notation Na(ā, σ2
a) denotes a Gaussian random variable a with mean ā and

variance σ2
a, namely, a random variable with pdf given by

Na(ā, σ2
a) ≡ 1√

2π σa
e−(a−ā)2/2σ2

a (notation) (3.45)

On the other hand, if the realization for x happens to be x = −1, then the random
variable y will be Gaussian-distributed with mean − 1

2
and same variance σ2

v:

fy|x(y|x = −1) = Ny

(
−1/2, σ2

v

)
(3.46)

The overall pdf of y will then be given by:

fy(y) = pNy

(
1/2, σ2

v

)
+ (1− p)Ny

(
−1/2, σ2

v

)
(3.47)

It is clear that x alters the pdf of y so that x and y are dependent random variables.

3.3.2 Marginal and Conditional Distributions

Given the joint pdf fx,y(x, y) of two random variables x and y we can use this
information to determine several other distributions related to the same random
variables:

(a) We can determine the marginal pdfs corresponding to each of the variables
separately, namely, the distributions fx(x) and fy(y). For continuous vari-
ables, these can be obtained by integrating the joint pdf over the relevant
variables such as

fx(x) =

ˆ
y∈Y

fx,y(x, y)dy (3.48a)

fy(y) =

ˆ
x∈X

fx,y(x, y)dx (3.48b)

where the sets {X,Y} refer to the domains over which the variables x and y
are defined. The first integral removes the contribution of y while the second
integral removes the contribution of x. If the variables x and y happen to
be discrete and described by their joint pmf P(x,y), we would determine the
marginal pmfs by using sums rather than integrals:

P(x = x) =
∑

y∈Y
P(x = x,y = y) (3.49a)

P(y = y) =
∑

x∈X
P(x = x,y = y) (3.49b)

(b) We can also determine the conditional pdfs corresponding to each of the vari-
ables conditioned on the other variable, namely, the distributions fx|y(x|y)

and fy|x(y|x). These can be obtained by appealing to Bayes rule:

fx|y(x|y) = fx,y(x, y)/fy(y) (3.50a)

fy|x(y|x) = fx,y(x, y)/fx(x) (3.50b)
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In other words, the joint pdf needs to be scaled by the marginal pdfs. For
discrete random variables, we would use instead:

P(x = x|y = y) =
P(x = x,y = y)

P(y = y)
(3.51a)

P(y = y|x = x) =
P(x = x,y = y)

P(x = x)
(3.51b)

Example 3.9 (Law of total probability) Consider two random variables x and y with
conditional pdf fy|x(y|x) and marginal pdf fx(x). Using Bayes rule we have that the
joint pdf factorizes as

fx,y(x, y) = fx(x) fy|x(y|x) (3.52)

Marginalizing over x we arrive at the useful relation, also known as the law of total
probability:

fy(y) =

ˆ
x∈X

fx(x)fy|x(y|x)dx (3.53)

In other words, we can recover the marginal of y from knowledge of the marginal of x
and the conditional of y given x.

Example 3.10 (Useful conditional relation) Consider three discrete random variables
{A,B,C} and note that

P(A|B,C) =
P(A,B,C)

P(B,C)

=�
��P(B)P(A|B)P(C|A,B)

��
�P(B)P(C|B)

(3.54)

so that

P(A|B,C) =
P(A|B)P(C|A,B)

P(C|B)
(3.55)

Example 3.11 (Finding marginal and conditional distributions) Let us consider a sit-
uation involving two discrete random variables, denoted by C (cold) andH (headache).
Each variable is binary and assumes the values {0, 1}. For example, C = 1 and H = 0
means that the individual has a cold but does not have a headache. Likewise, the
combination C = 0 and H = 0 means that the individual neither has a cold nor a
headache. There are four combinations for the random variables and we describe their
joint pmf in the following tabular form (the numbers in the table are for illustration
purposes only and do not correspond to any actual measurements or have any medical
significance):
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C (cold) H (headache) P(C,H) (joint pmf)
0 0 0.60
0 1 0.10
1 0 0.10
1 1 0.20

Observe how all entries in the last column corresponding to the joint pmf add up to
one, as expected. Let us determine first the marginal pmf for the variable C. For this
purpose, we need to determine the two probabilities: P(C = 1) and P(C = 0). This is
because the variable C can assume one of two values in {0, 1}. For the first probability,
we add over H when C = 1 to get

P(C = 1) =
∑

H∈{0,1}

P(C = 1,H = H)

= P(C = 1,H = 1) + P(C = 1,H = 0)

= 0.20 + 0.10

= 0.3 (3.56)

Observe that we simply added the probabilities in the last two rows of the table corre-
sponding to C = 1. We repeat for P(C = 0) to find that

P(C = 0) =
∑

H∈{0,1}

P(C = 0,H = H)

= P(C = 0,H = 1) + P(C = 0,H = 0)

= 0.10 + 0.60

= 0.7 (3.57)

Here we added the probabilities in the first two rows of the table corresponding to
C = 0. Note that the two probabilities for C add up to one, as is expected for a valid
pmf. In a similar manner we find that the pmf for the variable H is given by

P(H = 1) = 0.3, P(H = 0) = 0.7 (3.58)

Using the marginal pmfs, we can now determine conditional pmfs. For example, assume
we observe that H = 1 (that is, the individual has a headache), and we would like to
know the likelihood that the individual has a cold too. To do so, we appeal to Bayes
rule and write

P(C = 1|H = 1) =
P(C = 1,H = 1)

P(H = 1)
= 0.2/0.3 = 2/3 (3.59)

Accordingly, we also have
P(C = 0|H = 1) = 1/3 (3.60)

since these two conditional probabilities need to add up to one. In a similar manner,
we find that

P(C = 1|H = 0) = 1/7, P(C = 0|H = 0) = 6/7 (3.61)

Observe that in order to specify the conditional pmf of C givenH we need to determine
four probability values since each of the variables C or H assumes 2 levels in {0, 1}.
We repeat similar calculations to compute the conditional pmf of H given C (with the
roles of C and H) reversed. We summarize these conditional calculations in tabular
form:
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C H P(C|H) (conditional pmf) P(H|C) (conditional pmf)
0 0 6/7 6/7
0 1 1/3 1/7
1 0 1/7 1/3
1 1 2/3 2/3

Observe that the entries in the third column corresponding to the conditional pmf of
C given H do not add up to one. Likewise, for the last column corresponding to the
conditional pmf of H given C.

3.3.3 Dependent Random Variables

We say that two continuous random variables {x,y} are independent of each
other if, and only if,:

fx|y(x|y) = fx(x) and fy|x(y|x) = fy(y) (3.62)

In other words, the pdfs of x and y are not modified by conditioning on knowledge
of y or x. Otherwise, the random variables are dependent. It follows directly from
Bayes rule that dependency is equivalent to saying that the joint pdf factorizes
as the product of the two marginal pdfs:

fx(x,y) = fx(x) fy(y) (3.63)

We will employ the following notation to refer to the fact that the random
variables x and y are independent:

x |= y (independent random variables) (3.64)

When the variables are discrete, they will be independent of each other if, and
only if,

P(x|y) = P(x) and P(y|x) = P(y) (3.65)

or, equivalently,

P(x,y) = P(x)P(y) (3.66)

The notation in the last two expressions needs some clarification. Consider the
equality P(x|y) = P(x), where the random variables are indicated in boldface
and no specific values are listed for them. This compact relation is read as follows.
Regardless of which value we observe for y, and for any value of x, the likelihood
of observing that value for x given y will remain unchanged. We can write the
relation more explicitly as follows:

P(x = x|y = y) = P(x = x), for any x ∈ X, y ∈ Y (3.67)

or, in terms of the joint and marginal pmfs

P(x = x,y = y) = P(x = x)P(y = y), for any x ∈ X, y ∈ Y (3.68)
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It is sufficient to find one combination of values (x, y) for which the equality does
not hold to conclude that x and y are dependent.

Example 3.12 (Checking for dependency) Let us reconsider Example 3.11 involving
the variablesC (cold) andH (headache). We know from the calculations in the example
that:

P(C = 1) = 0.3, P(C = 1|H = 1) = 2/3, P(C = 1|H = 0) = 1/7 (3.69)
P(C = 0) = 0.7, P(C = 0|H = 1) = 1/3, P(C = 0|H = 0) = 6/7 (3.70)

It is clear from these values that the random variables C andH are dependent; knowl-
edge of one variable alters the likelihood of the other variable. For instance, knowing
that the individual has a headache (H = 1), raises the likelihood of the individual
having a cold from 0.3 to 2/3.

Example 3.13 (Dependency is not causality) The notion of statistical dependence is
bidirectional or symmetric. When x and y are dependent, this means that x depends on
y and y depends on x in the sense that their conditional pdfs (or pmfs) satisfy (3.62)
or (3.65). This also means that observing one variable alters the likelihood about the
other variable. Again, from Example 3.11, the variables C and H are dependent on
each other. Observing whether an individual has a cold or not, alters the likelihood of
whether the same individual has a headache or not. Similarly, observing whether the
individual has a headache or not, alters the likelihood of that individual having a cold
or not.

The notion of dependency between random variables is sometimes confused with the
notion of causality or causation. Causality implies dependency but not the other way
around. In other words, statistical dependence is a necessary but not sufficient condition
for causality:

causality =⇒ statistical dependence (3.71)

One main reason why these two notions are not equivalent is because dependency is
symmetric while causality is asymmetric. If a random variable y depends causally on
another random variable x, this means that x assuming certain values will contribute
to (or have an effect on) y assuming certain values of its own. For example, if x is
the random variable that indicates whether it is raining or not and y is the random
variable that indicates whether the grass in the garden is wet or not, then having x
assume the value x = 1 (raining) will cause y to assume the value y = 1 (wet grass):

x = 1 (raining)
causes

−−−−−−−−→ y = 1 (wet grass) (3.72)

Here, we say that raining (x) influences the grass (y) in a causal manner. As a result,
the variables {x,y} will be statistically dependent as well. This is because knowing that
it has rained influences the likelihood of observing a wet grass and, conversely, knowing
the state of the grass influences the likelihood of having observed rain. However, while
dependency is bidirectional, the same is not true for causality: observing a wet grass
does not cause the rain to fall. That is, the state of the grass variable (y) does not have
a cause effect on the state of the rain variable (x).

One formal way to define causality is to introduce the do operator. Writing do(x = 1)
means that we manipulate the value of the random variable x and set it to one (rather
than observe it as having assumed the value one). Using this abstraction, we say that
a random variable x has a cause effect on another random variable y if, and only if,
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the following two conditional probability relations hold:

P
(
y = y|do(x = x)

)
6= P(y = y) (3.73a)

P
(
x = x|do(y = y)

)
= P(x = x) (3.73b)

for any (x, y) ∈ X × Y. The first relation says that having x assume particular values
will alter the distribution of y, while the second relation says that the reverse effect
does not hold. These two conditions highlight the asymmetric nature of causality.

Example 3.14 (Conditional independence) We can extend the notion of independence
to conditional distributions. Given three continuous random variables {x,y,z}, we say
that x and y are conditionally independent given z, written as

x |= y |z (3.74)

if, and only if,

fx,y|z(x, y|z) = fx|z(x|z) fy|z(y|z) (3.75)

That is, the conditional pdf of {x,y} given z decouples into the product of the indi-
vidual conditional distributions of x and y given z. For discrete random variables, the
independence relation translates into requiring

P(x,y|z) = P(x|z)P(y|z) (3.76)

Conditional dependence will play a prominent role in the study of Bayesian networks
and probabilistic graphical models later in out treatment. Let us illustrate the definition
by means of a numerical example involving three binary random variables assuming
the values {0, 1}:

R = indicates whether it is raining (1) or not (0) (3.77a)
A = indicates whether there has been a traffic accident (1) or not (0) (3.77b)
L = indicates whether the individual is late to work (1) or not (0) (3.77c)

For example, R = 1, A = 0, and L = 0 means that it is raining, there has been no
traffic accident on the road, and the individual is not late to work. Since each variable is
binary, there are eight possible combinations. We describe the joint pmf in the following
tabular form (the numbers in the table are for illustration purposes only):

R (rain) A (accident) L (late) P(R,A,L) (joint pmf)
0 0 0 4/15
0 0 1 8/45
0 1 0 1/48
0 1 1 1/16
1 0 0 2/15
1 0 1 4/45
1 1 0 1/16
1 1 1 3/16

Assume we are able to observe whether there has been an accident on the road (i.e., we
are able to know whether A = 1 or A = 0). Given this knowledge, we want to verify
whether the random variables R and L are independent of each other. In particular,
if these variables turn out to be dependent, then observing the individual arriving late
to work would influence the likelihood of whether it has been raining or not.
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To answer these questions, we need to determine the conditional pmfs P(R,L|A),
P(R|A) and P(L|A), and then verify whether they satisfy the product relation:

P(R,L|A)
?
= P(R|A)P(L|A) (3.78)

We start by computing the marginal pmf for the variable A:

P(A = 1) =
∑

R∈{0,1}

∑
L∈{0,1}

P(R = R,L = L,A = 1)

= 1/48 + 1/16 + 1/16 + 3/16

= 1/3 (3.79)

Observe that this probability is obtained by adding the entries in the last column of
the table that correspond to the rows with A = 1. It follows that

P(A = 0) = 2/3 (3.80)

Next, we determine the joint pmfs P(R,A = 1) and P(L,A = 1):

P(R = 1,A = 1) =
∑

L∈{0,1}

P(R = 1,L = L,A = 1) =
1

16
+

3

16
= 1/4 (3.81)

P(R = 0,A = 1) =
∑

L∈{0,1}

P(R = 0,L = L,A = 1) =
1

48
+

1

16
= 1/12 (3.82)

and

P(L = 1,A = 1) =
∑

R∈{0,1}

P(R = R,L = 1,A = 1) =
1

16
+

3

16
= 1/4 (3.83)

P(L = 0,A = 1) =
∑

R∈{0,1}

P(R = R,L = 0,A = 1) =
1

48
+

1

16
= 1/12 (3.84)

We similarly determine the joint pmfs P(R,A = 0) and P(L,A = 0):

P(R = 1,A = 0) =
∑

L∈{0,1}

P(R = 1,L = L,A = 0) =
2

15
+

4

45
= 2/9 (3.85)

P(R = 0,A = 0) =
∑

L∈{0,1}

P(R = 0,L = L,A = 0) =
4

15
+

8

45
= 4/9 (3.86)

and

P(L = 1,A = 0) =
∑

R∈{0,1}

P(R = R,L = 1,A = 0) =
8

15
+

4

45
= 4/15 (3.87)

P(L = 0,A = 0) =
∑

R∈{0,1}

P(R = R,L = 0,A = 0) =
4

15
+

2

45
= 2/5 (3.88)
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Next, appealing to Bayes rule we get

P(R = 1|A = 1) =
P(R = 1,A = 1)

P(A = 1)
=

1/4

1/3
= 3/4 (3.89a)

P(R = 0|A = 1) =
P(R = 0,A = 1)

P(A = 1)
=

1/12

1/3
= 1/4 (3.89b)

P(R = 1|A = 0) =
P(R = 1,A = 0)

P(A = 0)
=

2/9

2/3
= 1/3 (3.89c)

P(R = 0|A = 0) =
P(R = 0,A = 0)

P(A = 0)
=

4/9

2/3
= 2/3 (3.89d)

and

P(L = 1|A = 1) =
P(L = 1,A = 1)

P(A = 1)
=

1/4

1/3
= 3/4 (3.90a)

P(L = 0|A = 1) =
P(L = 0,A = 1)

P(A = 1)
=

1/12

1/3
= 1/4 (3.90b)

P(L = 1|A = 0) =
P(L = 1,A = 0)

P(A = 0)
=

4/15

2/3
= 2/5 (3.90c)

P(L = 0|A = 0) =
P(L = 0,A = 0)

P(A = 0)
=

2/5

2/3
= 3/5 (3.90d)

We still need to compute the joint conditional pmf P(R,L|A). Thus, note that

P(R = 1,L = 1|A = 1) =
P(R = 1,L = 1,A = 1)

P(A = 1)
= (3/16)/(1/3) = 9/16

(3.91a)

P(R = 1,L = 0|A = 1) =
P(R = 1,L = 0,A = 1)

P(A = 1)
= (1/16)/(1/3) = 3/16

(3.91b)

P(R = 0,L = 1|A = 1) =
P(R = 0,L = 1,A = 1)

P(A = 1)
= (1/16)/(1/3) = 3/16

(3.91c)

P(R = 0,L = 0|A = 1) =
P(R = 0,L = 0,A = 1)

P(A = 1)
= (1/48)/(1/3) = 1/16

(3.91d)
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and

P(R = 1,L = 1|A = 0) =
P(R = 1,L = 1,A = 0)

P(A = 0)
= (4/45)/(2/3) = 2/15

(3.92a)

P(R = 1,L = 0|A = 0) =
P(R = 1,L = 0,A = 0)

P(A = 0)
= (2/15)/(2/3) = 1/5

(3.92b)

P(R = 0,L = 1|A = 0) =
P(R = 0,L = 1,A = 0)

P(A = 0)
= (8/45)/(2/3) = 4/15

(3.92c)

P(R = 0,L = 0|A = 0) =
P(R = 0,L = 0,A = 0)

P(A = 0)
= (4/15)/(2/3) = 2/5

(3.92d)

We collect the results in tabular form and conclude from comparing the entries in the
fourth and last columns that the variables R and L are independent conditioned on A.

R A L P(R,L|A) P(R|A) P(L|A) P(R|A) × P(L|A)

0 0 0 2/5 2/3 3/5 2/5
0 0 1 4/15 2/3 2/5 4/15
0 1 0 1/16 1/4 1/4 1/16
0 1 1 3/16 1/4 3/4 3/16
1 0 0 1/5 1/3 3/5 1/5
1 0 1 2/15 1/3 2/5 2/15
1 1 0 3/16 3/4 1/4 3/16
1 1 1 9/16 3/4 3/4 9/16

Example 3.15 (Other conditional independence relations) We list additional proper-
ties for conditionally independent random variables; we focus on discrete random vari-
ables for illustration purposes although the results are applicable to continuous random
variables as well.

a) First, consider two variables x and y that are independent given z. It then holds:

x |= y |z ⇐⇒ P(x|y,z) = P(x|z) (3.93)

Proof: Indeed, note from Bayes rule that

P(x|y,z) =
P(x,y,z)

P(y,z)

= ��
�P(z)P(x,y|z)

�
��P(z)P(y|z)

(3.76)
=

P(x|z)P(y|z)

P(y|z)
, since x |= y |z

= P(x|z) (3.94)

�
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b) Second, we consider the following result referred to as the weak union property for
conditional independence:

x |= {y,z} =⇒ (x |= y |z) and (x |= z |y) (3.95)

That is, if x is independent of both y and z, then x is conditionally independent of y
given z and of z given y.

Proof: Since x is independent of both y and z, it holds that

P(x|y,z) = P(x), P(x|y) = P(x), P(x|z) = P(x) (3.96)

Consequently, we have

P(x|y,z) = P(x|y) and P(x|y,z) = P(x|z) (3.97)

which, in view of (3.93) allow us to conclude that x is independent of z given y and of
y given z.

�

c) Third, we consider the following result referred to as the contraction property for
conditional independence:

(x |= y |z) and (x |= z) =⇒ (x |= {y,z}) (3.98)

That is, if x is independent of z and conditionally independent of y given z, then x is
independent of both y and z.

Proof: From the assumed independence properties we have

P(x|y,z) = P(x|z) = P(x) (3.99)

from which we conclude that x is independent of both y and z.
�

3.3.4 Conditional Mean

The conditional mean of a real-valued random variable x given observations of
another real-valued random variable y denoted by E (x|y) and is defined as the
calculation:

E (x|y) =

ˆ
x∈X

xfx|y(x|y)dx (3.100)

where both variables are assumed to be continuous in this representation. This
computation amounts to determining the center of gravity of the conditional pdf
of x given y. When both variables are discrete, expression (3.100) is replaced by

E (x|y) =

M∑

m=1

xm P(x = xm|y = y) (3.101)

where we are assuming that x admitsM possible outcomes {xm} with probability
pm each. The next example considers a situation where one random variable is
continuous and the other is discrete.
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Example 3.16 (Conditional mean computation) Assume y is a random variable that
is red with probability 1/3 and blue with probability 2/3:

P(y = red) = 1/3, P(y = blue) = 2/3 (3.102)

Likewise, assume x is a random variable that is Gaussian with mean 1 and variance 2 if
y is red, and uniformly distributed between −1 and 1 if y is blue. Then, the conditional
pdfs of x given observations of y are given by:

fx|y(x|y = red) = Nx(1, 2), fx|y(x|y = blue) = U[−1, 1] (3.103)

where we are using the notation U[a, b] to refer to a uniform distribution in the interval
[a, b]. It follows that the conditional means of x are:

E (x|y = red) = 1, E (x|y = blue) = 0 (3.104)

We can now employ these values, along with the pmf of the discrete variable y to
compute the mean of x. Thus, note that the mean of x is equal to one with probability
1/3 and to zero with probability 2/3. It follows that:

Ex = E (x|y = red)× P(y = red) + E (x|y = blue)× P(y = blue)

= 1× 1

3
+ 0× 2

3
=

1

3
(3.105)

An alternative way to understand this result is to introduce the variable z = E (x|y).
This is a discrete random variable with two values: z = 1 (which happens when y is
red with probability 1/3) and z = 0 (which happens when y is blue with probability
2/3). That is,

P(z = 1) = 1/3, P(z = 0) = 2/3 (3.106)

Now, it is shown in Prob. 3.25 that, for any two random variables {x,y}, it holds that

E
{
E (x|y)

}
= Ex (3.107)

where the outermost expectation is over the pdf of y while the innermost expectation
is over the conditional pdf x given y. We can indicate these facts explicitly by adding
subscripts and writing

E y

{
E x|y(x|y)

}
= Ex (3.108)

In this way, the desired mean of x is simply the mean of z itself. We conclude that

Ex = Ez = 1× P(z = 1) + 0× P(z = 0)

= 1× 1

3
+ 0× 2

3
= 1/3 (3.109)

Example 3.17 (Another conditional mean computation) Assume x is a binary ran-
dom variable that assumes the values ±1 with probability 1/2 each. Assume in addition
that we observe a noisy realization of x, say,

y = x+ v (3.110)

where v is a zero-mean Gaussian random variable that is independent of x and has
variance equal to one, i.e., its pdf is given by

fv(v) =
1√
2π

e−v
2/2 (3.111)

Let us evaluate the conditional mean of x given observations of y. From definition
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(3.100), we find that we need to know the conditional pdf, fx|y(x|y), in order to evaluate
the integral expression. For this purpose, we call upon future result (3.160), which states
that the pdf of the sum of two independent random variables, namely, y = x + v, is
equal to the convolution of their individual pdfs, i.e.,

fy(y) =

ˆ ∞
−∞

fx(x)fv(y − x)dx (3.112)

In this example, we have

fx(x) =
1

2
δ(x− 1) +

1

2
δ(x+ 1) (3.113)

where δ(·) is the Dirac-delta function, so that fy(y) is given by

fy(y) =
1

2
fv(y + 1) +

1

2
fv(y − 1) (3.114)

Moreover, in view of Bayes rule (3.42b), the joint pdf of {x,y} is given by

fx,y(x, y) = fx(x) fy|x(y|x)

=

(
1

2
δ(x− 1) +

1

2
δ(x+ 1)

)
fv(y − x)

=
1

2
fv(y − 1)δ(x− 1) +

1

2
fv(y + 1)δ(x+ 1) (3.115)

Using Bayes rule again we get

fx|y(x|y) =
fx,y(x, y)

fy(y)

=
fv(y − 1)δ(x− 1)

fv(y + 1) + fv(y − 1)
+

fv(y + 1)δ(x+ 1)

fv(y + 1) + fv(y − 1)
(3.116)

Substituting into expression (3.100) and integrating we obtain

E (x|y) =
fv(y − 1)

fv(y + 1) + fv(y − 1)
− fv(y + 1)

fv(y + 1) + fv(y − 1)

=
1(

e−(y+1)2/2

e−(y−1)2/2

)
+ 1
− 1(

e−(y−1)2/2

e−(y+1)2/2

)
+ 1

=
ey − e−y
ey + e−y

∆
= tanh(y) (3.117)

In other words, the conditional mean of x given observations of y is the hyperbolic
tangent function, which is shown in Fig. 3.5.

3.3.5 Correlated and Orthogonal Variables

The covariance between two random variables, x and y, is denoted by the symbol
σxy and is defined by either of the following equivalent expressions:

σxy
∆
= E (x− x̄)(y − ȳ) = Exy − x̄ȳ (covariance) (3.118)
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Figure 3.5 A plot of the hyperbolic tangent function, tanh(y) = ey−e−y
ey+e−y .

We say that the random variables are uncorrelated if, and only if, their covariance
is zero, i.e.,

σxy = 0 (3.119)

which, in view of the defining relation (3.118), is also equivalent to requiring

Exy = (Ex) (Ey) (uncorrelated random variables) (3.120)

so that the mean of the product is equal to the product of the means. On the
other hand, we say that two random variables are orthogonal if, and only if,

Exy = 0 (orthogonal random variables) (3.121)

Observe that the means of x and y do not enter into this condition. It then
follows that the concepts of orthogonality and uncorrelatedness coincide with
each other if at least one of the random variables has zero mean.

When two random variables x and y are independent, it will also hold that

Exy = (Ex) (Ey) (3.122)

This is because

Exy =

ˆ
x∈X

ˆ
y∈Y

xyfx,y(x, y)dxdy

(3.62)
=

ˆ
x∈X

ˆ
y∈Y

xyfx(x)fy(y)dxdy

=

(ˆ
x∈X

xfx(x)dx

) (ˆ
y∈Y

yfy(y)dy

)

= (Ex) (Ey) (3.123)

It follows that independent random variables are uncorrelated:

independent random variables =⇒ uncorrelated random variables

(3.124)
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The converse statement is not true.

Example 3.18 (Uncorrelatedness and dependency) Let θ be a random variable that
is uniformly distributed over the interval [0, 2π]. Introduce the zero-mean random vari-
ables:

x = cosθ and y = sinθ (3.125)

Then, it holds that x2 + y2 = 1 so that x and y are dependent. However,

Exy = E cosθ sinθ

=
1

2
E sin 2θ

=
1

2

1

2π

ˆ 2π

0

sin 2θ dθ

= 0 (3.126)

so that x and y are uncorrelated. Therefore, we have an example of two uncorrelated
random variables that are dependent.

3.4 RANDOM VECTORS

It is common in applications to encounter vector-valued (as opposed to scalar)
random variables; also known as random vectors. A random vector consists of
a collection of scalar random variables grouped together either in column form
or row form. For example, assume x1 and x2 are two scalar random variables.
Then, the column vector

x =

[
x1

x2

]
(3.127a)

is a vector-valued random variable in column form; its dimensions are 2× 1. We
sometimes use the compact notation

x = col
{
x1,x2

}
(3.127b)

to denote a column vector with entries x1 and x2 stacked on top of each other.
Alternatively, we could have collected the entries {x1,x2} into a row vector and
obtained a row random vector instead, say,

x =
[
x1 x2

]
(3.127c)

In this case, the dimensions of the random vector are 1× 2. Working with either
the column or row format is generally a matter of convenience.

We continue, for illustration purposes, with the 2× 1 vector x = col{x1,x2}.
The mean of x is defined as the vector of individual means, namely,

x̄ = Ex ∆
=

[
x̄1

x̄2

]
=

[
Ex1

Ex2

]
(3.128)
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The definition extends trivially to vectors of larger dimensions so that the mean
of a random vector is the vector of individual means.

With regards to the “variance” of a random vector, it will now be a matrix
(and not a scalar) and will be referred to as the covariance matrix (rather than
the variance). For the same 2 × 1 vector x as above, its covariance matrix is
denoted by Rx and is defined as the following 2× 2 matrix:

Rx =

[
σ2
x1

σx1,x2

σx2,x1
σ2
x2

]
(3.129)

in terms of the variances {σ2
x1
, σ2
x2
} of the individual entries x1 and x2,

σ2
x1

= E (x1 − x̄1)2 (3.130a)

σ2
x2

= E (x2 − x̄2)2 (3.130b)

and the covariances between these individual entries:

σx1,x2

∆
= E (x1 − x̄1)(x2 − x̄2) (3.130c)

σx2,x1

∆
= E (x2 − x̄2)(x1 − x̄1) = σx1,x2

(3.130d)

The matrix form (3.129) can be described in the form:

Rx
∆
= E (x− x̄)(x− x̄)T (when x is a column vector) (3.131)

Expression (3.131) is general and applies to random vectors x of higher dimension
than 2. It is worth noting that if x were constructed instead as a row (rather
than a column) vector, then the covariance matrix Rx in (3.131) would instead
be defined as

Rx
∆
= E (x− x̄)T(x− x̄), (when x is a row vector) (3.132)

with the transposed term coming first. This is because it is now the product
(x− x̄)T(x− x̄) that yields a matrix and leads to (3.129).

We can also extend the notion of correlations to random vectors. Thus, let x
and y be two column random vectors. Their cross-covariance matrix is denoted
by Rxy and is defined as

Rxy
∆
= E (x− x̄)(y − ȳ)T, (x and y are column vectors) (3.133a)

Rxy
∆
= E (x− x̄)T(y − ȳ), (x and y are row vectors) (3.133b)

Example 3.19 (Mean and covariance of a random vector) Let us reconsider the set-
ting of Example 3.8 where x assumes the values ±1 with probability p for +1 and 1−p
for −1, and v is a zero-mean Gaussian random variable with variance σ2

v. The variables
x and v are further assumed to be uncorrelated and the measurement y is given by

y =
1

2
x+ v (3.134)
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Introduce the 2× 1 column vector z = col{x,y} and let us evaluate its mean and 2× 2
covariance matrix. To begin with, using (3.23), the mean of x is given by

Ex = x̄ = p× 1 + (1− p)× (−1) = 2p− 1 (3.135)

and the mean-square of x is given by

Ex2 = p× (1)2 + (1− p)× (−1)2 = 1 (3.136)

so that the variance of x is

σ2
x = Ex2 − (x̄)2 = 1− (2p− 1)2 = 4p(1− p) (3.137)

Now using the measurement relation (3.134), we find that

Ey =
1

2
Ex+ Ev =

1

2
(2p− 1) + 0 = p− 1

2
(3.138)

and we conclude that

Ez = z̄ =

[
x̄
ȳ

]
=

[
2p− 1
p− 1

2

]
(3.139)

Moreover, using the assumed uncorrelatedness between x and v we further get:

Ey2 = E
(

1

2
x+ v

)2

=
1

4
Ex2 + Ev2 + Exv

=
1

4
+ σ2

v + ExEv

=
1

4
+ σ2

v + 0, since Ev = 0

=
1

4
+ σ2

v (3.140)

It follows that

σ2
y = Ey2 − ȳ2

=
1

4
+ σ2

v −
(
p− 1

2

)2

= p(1− p) + σ2
v (3.141)

The last expression is simply stating that

σ2
y =

1

4
σ2
x + σ2

v (3.142)

when x and v are uncorrelated. Finally, the correlation between x and y is given by

σxy = Exy − x̄ȳ

= Ex
(

1

2
x+ v

)
− (2p− 1)

(
p− 1

2

)
=

1

2
Ex2 + Exv − (2p− 1)

(
p− 1

2

)
=

1

2
+ 0 − (2p− 1)

(
p− 1

2

)
= 2p(1− p) (3.143)
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We conclude that the covariance matrix of the vector z = col{x,y} is given by

Rz =

[
σ2
x σxy

σxy σ2
y

]
=

[
4p(1− p) 2p(1− p)
2p(1− p) p(1− p) + σ2

v

]
(3.144)

3.5 PROPERTIES OF COVARIANCE MATRICES

Covariance matrices of random vectors satisfy two important properties: (a)

they are symmetric and (b) they are nonnegative-definite. Both properties can
be easily verified from the definition. Indeed, using the matrix property

(AB)T = BTAT (3.145)

for any two matrices A and B of compatible dimensions, we find that for any
column random vector x,

RT
x =

(
E (x− x̄)(x− x̄)T

)T

= E
(

(x− x̄)︸ ︷︷ ︸
A

(x− x̄)T︸ ︷︷ ︸
B

)T

= E (x− x̄)(x− x̄)T, using (3.145)

= Rx (3.146)

so that

Rx = RT
x (3.147)

and the covariance matrix is symmetric. It follows that covariance matrices can
only have real eigenvalues.

Example 3.20 (Eigenvalues of 2× 2 covariance matrix) Consider again Example 3.19
where we encountered the covariance matrix

Rz =

[
4p(1− p) 2p(1− p)
2p(1− p) p(1− p) + σ2

v

]
(3.148)

The result just established about the nature of the eigenvalues of a covariance matrix
can be used to affirm that the eigenvalues of the above Rz will be real-valued no matter
what the values of p ∈ [0, 1] and σ2

v ≥ 0 are! Let us verify this fact from first principles
by determining the eigenvalues of Rz. Recall that the eigenvalues {λ} can be determined
by solving the polynomial equation (also called the characteristic polynomial of Rz):

det(λI2 −Rz) = 0 (3.149)

in terms of the determinant of the difference λI2 − Rz, where I2 is the 2 × 2 identity
matrix. We denote the characteristic polynomial by the notation q(λ):

q(λ)
∆
= det(λI2 −Rz) (3.150)
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In our example we have

λI2 −Rz =

[
λ− 4p(1− p) −2p(1− p)
−2p(1− p) λ− p(1− p)− σ2

v

]
(3.151)

so that
q(λ) = λ2 − λ

(
5p(1− p) + σ2

v

)
+ 4p(1− p)σ2

v (3.152)

which is a quadratic polynomial in λ. The discriminant of q(λ) is given by

∆ =
(
5p(1− p) + σ2

v

)2 − 16p(1− p)σ2
v

= 25p2(1− p)2 + σ4
v − 6p(1− p)σ2

v

=
(
5p(1− p)− σ2

v

)2
+ 4p2(1− p)2

≥ 0 (3.153)

so that q(λ) has real roots. We conclude that the eigenvalues of Rz are real for any
p ∈ [0, 1] and σ2

v ≥ 0, as expected.

Covariance matrices are also non-negative definite, i.e.,

Rx ≥ 0 (3.154)

To see this, let v denote an arbitrary column vector and introduce the scalar-
valued random variable

y = vT(x− x̄) (3.155)

Then, the variable y has zero mean and its variance is given by

σ2
y

∆
= Ey2

= EvT(x− x̄)(x− x̄)Tv

= vT
(
E (x− x̄)(x− x̄)T

)
v

= vTRxv (3.156)

But the variance of any scalar-valued random variable is always nonnegative
so that that σ2

y ≥ 0. It follows that vTRxv ≥ 0 for any v. This means that
Rx is nonnegative definite, as claimed. It then follows that the eigenvalues of
covariance matrices are not only real but also nonnegative.

3.6 ILLUSTRATIVE APPLICATIONS

In this section, we consider some applications of the concepts covered in the
chapter in the context of convolution sums, characteristic functions, random
walks, and statistical mechanics. The last two examples are meant to show how
randomness is useful in modeling important physical phenomena, such as Brow-
nian motion by particles suspended in fluids and the regulation of ion channels
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in cell membranes. We will encounter some of these concepts in future sections
and use them to motivate useful inference and learning methods — see, e.g., the
discussion in future Sec. 66.2 on Boltzmann machines.

3.6.1 Convolution Sums

We examine first the pmf of the sum of two independent discrete random vari-
ables and show that this pdf can be obtained by convolving the individual pmfs.

Thus, let a and b be two independent discrete scalar-valued random variables:
a assumes the integer values n = 0, 1, . . . , Na with probabilities {pa(n)} each,
while b assumes the integer values n = 0, 1, . . . , Nb with probabilities {pb(n)}
each. The probabilities {pa(n), pb(n)} are zero outside the respective intervals
for n. Let

c
∆
= a+ b (3.157)

denote the sum variable. The possible realizations for c are the integer values
that occur between n = 0 and n = Na + Nb. Each possible realization n occurs
with some probability pc(n) that we wish to determine. For each realization m
for a, the corresponding realization for b should be the value n−m. This means
that the probability of the event c = n is given by the following expression:

pc(n)
∆
= P(c = n)

=

∞∑

m=−∞
P(a = m, b = n−m)

=

∞∑

m=−∞
P(a = m)P(b = n−m), (by independence)

=

∞∑

m=−∞
pa(m)pb(n−m) (3.158)

That is,

pc(n) = pa(n) ? pb(n) (convolution sum) (3.159)

where the equality in the third line is due to the assumed independence of the
random variables a and b, and the symbol ? denotes the convolution operation.
We therefore observe that the sequence of probabilities {pc(n)} is obtained by
convolving the sequences {pa(n), pb(n)}.

Likewise, if x and v are two independent continuous random variables with
pdfs fx(x) and fv(v), respectively, and y = x+ v, then the pdf of y is given by
the convolution integral — see Prob. 3.29:

fy(y) =

ˆ ∞
−∞

fx(x)fv(y − x)dx (3.160)



3.6 Illustrative Applications 99

3.6.2 Characteristic Functions1

Our second example illustrates how the continuous-time Fourier transform is
applicable to the study of random variables. Thus, consider a continuous random
variable x with probability density function, fx(x). The characteristic function
of x is denoted by ϕx(t) and is defined as the mean value of the exponential
variable ejtx, where t is a real-valued argument. That is,

ϕx(t)
∆
= E ejtx, t ∈ IR (3.161)

or, more explicitly,

ϕx(t)
∆
=

ˆ ∞
−∞

fx(x)ejtxdx, (characteristic function) (3.162)

Comparing this expression with the definition for the Fourier transform of a
continuous-time signal x(t), shown in the first line of Table 3.2, we see that the
time-variable t is replaced by x and the frequency variable Ω is replaced by −t.

Table 3.2 Analogy between the Fourier transform of a continuous-time signal, x(t),
and the characteristic function of a random variable x.

signal transform name definition

x(t) X(jΩ) Fourier transform X(jΩ) =

ˆ ∞
−∞

x(t)e−jΩtdt

fx(x) ϕx(t) characteristic transform ϕx(t) =

ˆ ∞
−∞

fx(x)ejtxdx

A useful property of the characteristic function is that the value of its succes-
sive derivatives at t = 0 can be used to evaluate the moments of the random
variable x. Specifically, it holds that

Exk = (−j)k dkϕx(t)

dtk

∣∣∣∣
t=0

, k = 1, 2, 3, . . . (3.163)

in terms of the k−th order derivative of ϕx(t) evaluated at t = 0, and where
j =

√
−1. Moreover, in a manner similar to the inversion formula for Fourier

transforms, we can recover the pdf, fx(x), from knowledge of the characteristic
function as follows — see Probs. 3.30–3.32:

fx(x) =
1

2π

ˆ ∞
−∞

ϕx(t)e−jtxdt (3.164)

3.6.3 Statistical Mechanics

Our next example deals with the Boltzmann distribution, which plays a critical
role in statistical mechanics; it provides a powerful tool to model complex systems
1 This section can be skipped on a first reading.
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consisting of a large number of interacting components, including interactions
at the molecular level. In statistical mechanics, complex systems are modeled as
having a large number of microstates. Each microstate i occurs with probability
pi and is assigned an energy level Ei. The Boltzmann distribution states that
the probability that a system is at state i is proportional to e−βEi , i.e.,

pi
∆
= P(complex system is at microstate i) = α e−βEi (3.165)

where α describes the proportionality constant and

β =
1

kBT
(3.166)

which involves the temperature T measured in Kelvin and the Boltmann con-
stant kB = 1.38× 10−23 J/K (measured in Joules/Kelvin).

Boltzmann distribution. If a complex system has N microstates, then it must
hold that

N∑

i=1

pi = 1 ⇐⇒ α

(
N∑

i=1

e−βEi

)
= 1 (3.167)

which enables us to determine the value of α. It follows that the Boltzmann
distribution (also called the Gibbs distribution) is given by

P(complex system is at microstate i) =
e−βEi

∑N
k=1 e

−βEk
(3.168)

Ion channels. Let us illustrate how these results can be used to model the be-
havior of ion channels, which regulate the flow of ions through biological cell
membranes. A simple model for ion channels assumes that they can be either
closed or open. A channel in its closed state has energy Ec and a channel in
its open state has energy Eo — see Fig. 3.6. These energy levels can be mea-
sured through experimentation. Using the Boltzmann distribution (3.168), we
can evaluate the probability that the channel will be open as follows:

P(channel open) =
e−βEo

e−βEo + e−βEc
(3.169)

Dividing the numerator and denominator by e−βEo , we can express the proba-
bility of an open or closed channel as

P(channel open) =
1

1 + e−β(Ec−Eo)
(3.170a)

P(channel closed) =
1

1 + eβ(Ec−Eo)
(3.170b)

Thus, observe that the probabilities of either state depend only on the difference
between the energies of the states and not on the individual values of their
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Figure 3.6 The energy of an open ion channel is assumed to be Eo and the energy of a
closed ion channel is assumed to be Ec. The Boltzmann distribution allows us to
evaluate the probability of encountering the channel in either state based on these
energy values.

energies. Given the above probabilities, we can evaluate the average channel
energy as

Echannel =
Eoe

−βEo + Ece
−βEc

e−βEo + e−βEc
(3.171)

Folding and unfolding of proteins. Similar arguments can be applied to the
problem of protein folding, which refers to the process by which proteins fold into
their three-dimensional structure – see Fig. 3.7. We assume the folded microstate
has energy Ef and the unfolded microstate has energy Eu. We also assume that
there is one folded microstate and L possible unfolded microstates. Assume we
have a total of N proteins. Given this information, we would like to evaluate
how many proteins on average we would encounter in their folded state among
the N proteins.

The system has a total of L+ 1 microstates: one of them has energy Ef and L
of them have energy Eu each. Using the Boltzmann distribution, we can evaluate
the probability that the protein is folded as follows:

P(protein folded) =
e−βEf

e−βEf + Le−βEu
(3.172)

Dividing the numerator and the denominator by e−βEf , we can express the
probability of a folded or unfolded protein as

P(protein folded) =
1

1 + Le−β(Eu−Ef )
(3.173a)

P(protein unfolded ) =
1

1 + 1
L e

β(Eu−Ef )
(3.173b)

Observe again that the probabilities of either state depend only on the difference
between the energies of the states and not on the individual values of their
energies. It follows that the average number of proteins that will be encountered
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Figure 3.7 The figure shows a protein before (left) and after (right) folding into its
three-dimensional structure. The source for the image is Wikimedia Commons, where
the image is available in the public domain at the link
https://commons.wikimedia.org/wiki/File:Protein_folding.png.

in the folded state from among a total of N proteins is:

Nf = N P(protein folded) =
N

1 + Le−β(Eu−Ef )
(3.174)

3.6.4 Random Walks and Diffusion2

In this section we illustrate another useful application of randomness involving
Brownian motion, which is used to model the random displacement of particles
suspended in a fluid, such as a liquid or gas. In these environments, the random
motion of particles results from collisions among molecules, leading to a random
walk process where particles take successive random steps.

It is sufficient for our purposes to focus on one-dimensional (1-D) random
walks; these random walks are examples of Markov chains to be discussed in
greater detail in future Chapter 38. Thus, consider a particle that is initially
located at the origin of displacement. At each interval of time ∆t, the particle
takes one step randomly along the direction of a fixed line passing through the
origin (say, along the direction of the horizontal axis). The particle may step a
distance dr to the right with probability p or a distance d` to the left with prob-
ability 1− p, as illustrated in top plot of Fig. 3.8. Let r denote the displacement
of the particle after one step. Obviously, the quantity r is a random variable
and we can evaluate its mean and variance. On average, the particle would be
located at

Er = p dr + (1− p) (−d`) = (dr + d`)p− d` (3.175)

2 This section can be skipped on a first reading.

https://commons.wikimedia.org/wiki/File:Protein_folding.png
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and the displacement variance would be

σ2
r = Er2 − (Er)2

= pd2
r + (1− p)d2

` − ((dr + d`)p− d`)2

= (dr + d`)
2p(1− p) (3.176)

In the special case when dr = d` = ∆x, the above expressions simplify to

Er = ∆x(2p− 1), σ2
r = 4∆x2p(1− p) (when dr = d` = ∆x) (3.177)
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after N = 9 random steps

Figure 3.8 During each interval ∆t, a particle takes random steps to the left (of size
d`) or to the right (of size dr) in one-dimensional space. After N such steps, and at
time t = N∆t, the particle would be located at some random displacement that
results from the aggregate effect of all individual steps.

After N successive independent random steps, and at time t = N∆t, the par-
ticle will be located at some displacement x along the same line. The quantity x
is a random variable that is the result of summing N independent and identically
distributed random variables {rn} corresponding to the individual displacements
over n = 1, 2, . . . , N :

x = r1 + r2 + . . .+ rN (3.178)

Therefore, the mean and variance of x are given by

Ex = N Er = N(dr + d`)p−Nd` (3.179)

σ2
x = N σ2

r = N(dr + d`)
2p(1− p) (3.180)

Diffusion coefficient and drift velocity. We focus henceforth on the case dr =
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d` = ∆x, where the sizes of the steps to the left or to the right are identical.
Replacing N by t/∆t, we find that

Ex =
∆x

∆t
(2p− 1) t (3.181)

σ2
x = 2

2∆x2 p(1− p)
∆t

t (3.182)

The quantity

D
∆
=

2∆x2 p(1− p)
∆t

, (diffusion coefficient) (3.183)

is referred to as the diffusion coefficient of the random walk process, while the
quantity

v =
∆x

∆t
(2p− 1), (drift velocity) (3.184)

is called the drift velocity of the particle. Using these variables, we find that the
average displacement and variance of a random walk particle at time t are given
by

Ex = vt, σ2
x = 2Dt (3.185)

The variance expression can be used to estimate how far diffusing particles wan-
der around over time. For example, assume D = 10−6cm2/sec and let us estimate
how far the particle wanders in 5 seconds. To do so, we evaluate the variance:

σ2
x = 2Dt = 10−5cm2 (3.186)

and use the corresponding standard deviation as an estimate for the distance
covered:

σx =
√

10−5 ≈ 0.0032 cm (3.187)

Central limit theorem. When the number of steps N is large (for example, when
t is large and ∆t is small), then the variable x in (3.178) can be regarded as
the sum of a large number of independent and identically distributed random
variables. Accordingly, by the central limit theorem (see comments at end of
Chapter 4), the probability density function of the displacement variable x will
approach a Gaussian distribution with mean vt and variance 2Dt, namely,

fx(x, t) =
1√

4πDt
exp

{
− (x− vt)2

4Dt

}
(3.188)

This distribution is a function of both x and time; it specifies the likelihood of
the locations of the particle at any time t.

Einstein-Smoluchowski relation. Observe from (3.184) that the drift velocity of
a diffusing particle is nonzero whenever p 6= 1/2. But what can cause a particle
in a random-walk motion to operate under p 6= 1/2 and give preference to one
direction of motion over another? This preferential motion can be the result of
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an external force, such as gravity, which would result in a nonzero drift velocity.
For example, assume a particle of massm is diffusing down a fluid — see Fig. 3.9.
Two forces act on the particle: the force of gravity, f , which acts downwards, and
a drag force, ζv, which opposes the motion of the particle and acts upwards. The
drag force is proportional to the velocity v through a frictional drag coefficient
denoted by ζ.

 

 

 

Figure 3.9 A particle of mass m diffuses down a fluid. Two forces act on it: the force
of gravity, f , and the drag force, ζv.

Taking the downward direction to be the positive direction, a straightforward
application of Newton’s second law to the motion of the particle gives

m
dv

dt
= f − ζv (3.189)

In steady-state, we must have dv/dt = 0 and, therefore, the particle attains the
nonzero drift velocity v = f/ζ. Substituting into (3.184), we can solve for p and
deduce how the external force influences the probability value:

p =
1

2
+

f

2ζ

∆x

∆t
(3.190)

It turns out that a fundamental relation exists between the diffusion coefficient,
D, and the frictional coefficient, ζ, known as the Einstein-Smoluchowski relation:

Dζ = kBT (3.191)

where T is the temperature in Kelvin and kB is the Boltzmann constant. In other
words, the product Dζ is constant and independent of the size of the particle and
the nature of the medium where diffusion is taking place. At room temperature
(T = 300K), the value of kBT is equal to

kBT = 4.14× 10−14 g cm2/s2 (3.192)
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For a spherical particle of radius R diffusing in a medium with viscosity η (η =

0.01 g/cm s for water), the values of D and ζ are given by

ζ = 6πηR, D =
kBT

6πηR
(3.193)

3.7 COMPLEX-VALUED VARIABLES3

It is common in many domains to encounter complex-valued random variables, as
happens for example in the study of digital communications systems. Although
the presentation in the earlier sections has focused on real-valued random vari-
ables and vectors, most of the concepts and results extend almost effortlessly to
complex-valued random quantities.

A complex-valued random variable is one whose real and imaginary parts are
real-valued random variables themselves. Specifically, if x is a scalar complex
random variable, this means that it can be written in the form:

x = a+ jb, j
∆
=
√
−1 (3.194)

where a and b denote the real and imaginary parts of x and they are both real-
valued random variables. Therefore, the pdf of x is completely characterized in
terms of the joint pdf, fa,b(a, b), of its real and imaginary parts. This means
that we can regard (treat) a complex random variable as a function of two real
random variables.

The mean of x is obtained as

x̄
∆
= Ex ∆

= Ea + jEb = ā + jb̄ (3.195)

in terms of the means of its real and imaginary parts. The variance of x, on
the other hand, continues to be denoted by σ2

x but is now defined by any of the
following equivalent expressions:

σ2
x

∆
= E (x− x̄)(x− x̄)∗ = E |x− x̄|2 = E |x|2 − |x̄|2 (3.196)

where the symbol ∗ denotes complex conjugation. Comparing with the earlier def-
inition (3.15a)–(3.15b) in the real case, we see that the definition in the complex
case is different because of the use of the conjugation symbol (in the real case, the
conjugate of (x− x̄) is itself and the above definitions reduce to (3.15a)–(3.15b)).
The use of the conjugate term in (3.196) is necessary in order to guarantee that
σ2
x will remain a nonnegative number. In particular, it is immediate to verify

from (3.196) that

σ2
x = σ2

a + σ2
b (3.197)

3 This section can be skipped on a first reading.
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in terms of the sum of the individual variances of a and b.
Likewise, the covariance between two complex-valued random variables, x and

y, is now defined as

σxy
∆
= E (x− x̄)(y − ȳ)∗ (covariance) (3.198)

with the conjugation symbol used in comparison with the real case in (3.118).
We again say that the random variables are uncorrelated if, and only if, their
covariance is zero, i.e.,

σxy = 0 (3.199)

In view of the definition (3.198), this condition is equivalent to requiring

Exy∗ = (Ex) (Ey)
∗

(uncorrelated random variables) (3.200)

On the other hand, we say that x and y are orthogonal if, and only if,

Exy∗ = 0 (orthogonal random variables) (3.201)

It can again be verified that the concepts of orthogonality and uncorrelatedness
coincide if at least one of the random variables has zero mean.

Example 3.21 (QPSK constellation) Consider a signal x that is chosen uniformly
from a quadrature-phase-shift-keying (QPSK) constellation, i.e., x assumes any of the
four values:

xm = ±
√

2

2
± j
√

2

2
(3.202)

with equal probability pm = 1/4 (see Fig. 3.10). Clearly, x is a complex-valued random
variable; its mean and variance are easily found to be x̄ = 0 and σ2

x = 1. Indeed, note
first that

x̄ =
1

4

(√
2

2
+

√
2

2
−
√

2

2
−
√

2

2

)
+ j

1

4

(√
2

2
+

√
2

2
−
√

2

2
−
√

2

2

)
= 0 (3.203)

while the variance of the real part of x = a+ jb is given by:

σ2
a =

1

4

[(√
2

2

)2

+

(√
2

2

)2

+

(
−
√

2

2

)2

+

(
−
√

2

2

)2
]

=
1

2
(3.204)

and, similarly, the variance of its imaginary part is σ2
b = 1/2. It follows that the variance

of x is

σ2
x =

1

2
+

1

2
= 1 (3.205)
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Figure 3.10 QPSK constellation with four equally probable complex symbols.

Alternatively, observe that |x| = 1 for all four possibilities of x, and each of these
possibilities occurs with probability 1/4. Therefore,

σ2
x = E |x|2 − |x̄|2

=
1

4
(1 + 1 + 1 + 1)− 0

= 1 (3.206)

When x is vector-valued, its mean consists of the vector of means and its
covariance matrix is defined as

Rx
∆
= E (x− x̄)(x− x̄)∗ (when x is a column vector) (3.207)

where the symbol ∗ now denotes complex-conjugate transposition (i.e., we trans-
pose the vector and then replace each of its entries by the corresponding conju-
gate value). If x is instead a row random vector, then its covariance matrix is
defined as

Rx
∆
= E (x− x̄)∗(x− x̄) (when x is a row vector) (3.208)

with the conjugated term coming first. This is because it is now the product
(x− x̄)∗(x− x̄) that yields a matrix.
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3.8 COMMENTARIES AND DISCUSSION

Probability theory. The exposition in this chapter assumes some basic knowledge of
probability theory; mainly with regards to the concepts of mean, variance, proba-
bility density function, and vector-random variables. Most of these ideas, including
some of the examples, were introduced in the chapter from first principles follow-
ing the overviews from Sayed (2003,2008). If additional help is needed, some acces-
sible references on probability theory and random variables are Kolmogorov (1960),
Feller (1968,1971), Billingsley (1986), Papoulis (1991), Picinbono (1993), Stark and
Woods (1994), Durrett (1996), Gnedenko (1998), Chung (2000), Grimmett and Stirza-
ker (2001), Dudley (2002), Ash (2008), and Leon-Garcia (2008). For an insightful dis-
cussion on the notions of statistical dependence and causality, the reader may refer to
Pearl (1995,2000). In Sec. 3.6.2 we illustrated how Fourier analysis is useful in the study
of randomness through the notion of the characteristic function — see, e.g., Bochner
(1955), Lukacs (1970), Feller (1971), and Billingsley (1986). Some good references on
Fourier analysis in mathematics and signal processing are Stein and Shakarchi (2003),
Katznelson (2004), Oppenheim, Schafer, and Buck (2009) and Vetterli, Kovacevic, and
Goyal (2014).

The modern formulation of probability theory is due to the Soviet mathematician
Andrey Kolmogorov (1903–1987), who put forward in Kolmogorov (1931,1933) a
collection of axioms that form the foundations for probabilistic modeling and reasoning
— see the accounts by Kolmogorov (1960), Doob (1996), and Shafer and Vovk (2006).
We illustrate these axioms for the case of discrete random variables.

To begin with, the finite or countable set of all possible outcomes in an experiment
with discrete random results is called the sample space, and is denoted by the letter
Ω. For example, in an experiment that involves rolling a dice, the sample space is
Ω = {1, 2, 3, 4, 5, 6}. Any subset of the sample space is called an event, and is denoted by
the letter E. For example, observing an even outcome in the roll of the dice corresponds
to observing an outcome from the event E = {2, 4, 6}. A probability measure, P(E), is
assigned with every possible event. The three axioms of probability state that:

0 ≤ P(E) <∞, for every E ⊂ Ω (3.209a)
P(Ω) = 1 (3.209b)
P(E1 ∪ E2) = P(E1) + P(E2), for mutually exclusive events (3.209c)

P

(
N⋃
n=1

En

)
=

N∑
n=1

P(En), for mutually exclusive events (3.209d)

where N can be countably infinite. The first axiom states that the probability of any
event is a nonnegative real number that cannot be infinite. The second axiom means
that the probability of at least one event from the sample space occurring is equal to
one; this statement assumes that the sample space captures all possible outcomes for
the random experiment. The third equality is a special case of the last one for N = 2;
these equalities constitute the third axiom.

Concentration inequalities. The Chebyshev inequality (3.28) is a useful result that
reveals how realizations for random variables are more likely to concentrate around
their means for distributions with small variances. We explain in Probs. 3.17 and 3.18
that the inequality is related to another result in probability theory known as Markov
inequality, namely, that for any scalar nonnegative real-valued random variable, x, it
holds that:

P(x ≥ α) ≤ Ex/α, for any α > 0 (3.210)

According to Knuth (1997), the Chebyshev inequality was originally developed by Bi-
enaymé (1853) and later proved by the Russian mathematician Pafnuty Chebyshev
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(1821-1894) in the work by Chebyshev (1867) and subsequently by his student Markov
(1884) in his PhD dissertation — see also the accounts by Hardy, Littlewood, and Pólya
(1934), Bernshtein (1945), Shiryayev (1984), Papoulis (1991), and Fischer (2011).

The Markov and Chebyshev bounds are examples of concentration inequalities, which
help bound the deviation of a random variable (or combinations of random variables)
away from certain values (typically their means). In Appendix 3.B we establish three
famous results known as Azuma inequality, Hoeffding inequality, and McDiarmid in-
equality, which provide bounds on the probability of the sum of a collection of random
variables deviating from their mean. The Hoeffding inequality is due to the Finnish
statistician Wassily Hoeffding (1914-1991) and appeared in the work by Hoeffding
(1963). Earlier related investigations appear in Chernoff (1952) and Okamoto (1958).
The McDiarmid inequality extends the results of Hoeffding to more general functions
that satisfy a bounded variations property. This extension was proven by McDiarmid
(1989). Both inequalities play an important role in the analysis of learning algorithms
and will be used, for example, in the derivation of generalization bounds in future Chap-
ter 64. For further details on concentration inequalities, readers may refer to Ledoux
(2001), Boucheron, Lugosi, and Bousquet (2004), Chung and Lu (2006a,b), Massart
(2007), Alon and Spencer (2008), Boucheron, Lugosi, and Massart (2013), Mohri, Ros-
tamizadeh, and Talwalkar (2018), Vershynin (2018), and Wainwright (2019).

Bayes rule. Expression (3.39) is one manifestation of a fundamental result in probability
theory known as Bayes rule, which is applicable to both cases of discrete and contin-
uous random variables. For instance, if the letters A,B, and C denote some discrete
probability events, then Bayes rule ensures that

P(A,B) = P(A|B)P(B) = P(B|A)P(A) (3.211)

in terms of the joint probability of events A and B, and their individual and conditional
probabilities. In particular, it follows that

P(A|B) =
P(B|A)P(A)

P(B)
(3.212)

which enables us to update the belief in event A following the observation of event B.
In this way, Bayes rule allows us to update prior probabilities into posterior (condi-
tional) probabilities. A similar construction applies when one or both random variables
happen to be continuous, in which case their distributions are described in terms of
probability density functions. In that situation, relation (3.211) would be replaced by
(3.39), namely,

fx,y(x, y) = fx|y(x|y)fy(y) = fy|x(y|x)fx(x) (3.213)

A special case of Bayes rule (3.211) was first proposed by the English statistician
Thomas Bayes (1701–1761) in his study of the problem of inferring the probability
of success, p, based on observing S successes in N repeated Bernoulli trials. His work
was published posthumously by the Welsh philosopher Robert Price (1723–1791)
in the work by Bayes and Price (1763). Interestingly, Bayes rule in its general form
(3.211) appears to have been independently discovered by the French mathematician
Pierre-Simon Laplace (1749–1827) and published about a decade later in the work
by Laplace (1774). The article by Stigler (1983) suggests a different historical timeline
and argues that the rule may have been discovered over a decade before Bayes by an-
other English mathematician named Nicholas Saunderson (1682–1739). However, this
interpretation is not universally accepted by statisticians and the controversy remains
— see, e.g., Edwards (1986), Hald (1998), Dale (2003), and Feinberg (2003).

Random walks and Brownian motion. In Sec. 3.6.4 we described one application of the
central limit theorem by examining the diffusive behavior of particles. The example is
motivated by the discussion in Berg (1993). The Einstein-Smoluchowski relation (3.191)
is a fundamental result in physics relating the diffusion coefficient, D, of a particle and
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the frictional coefficient, ζ. It was discovered independently and almost simultaneously
by the German-American physicist and Nobel Laureate Albert Einstein (1879–
1955) in the work Einstein (1905), and by Sutherland (1905) and Smoluchwski (1906)
in their studies of the Brownian motion.

Brownian motion refers to the random motion of particles suspended in a fluid, where
the displacements of the particles result from collisions among molecules. This expla-
nation was provided by Einstein (1905); it was subsequently used as one indirect proof
for the existence of elementary particles such as atoms and molecules. The designa-
tion “Brownian motion” is after the Scottish botanist Robert Brown (1773–1858)
who observed under a microscope in 1827 the motion of tiny particles suspended in
water — see the useful account by Pearle et al. (2010) and also Brown (1828,1866).
There have been earlier observations of “Brownian motion” and Brown (1828) lists in
his paper the names of several researchers who have commented before on aspects of
this behavior. For instance, the study by van der Pas (1971) notes that the Dutch bi-
ologist Jan Ingenhousz (1730–1799), who is credited with discovering the process
of photosynthesis, had also reported observing the motion of coal dust particles in a
liquid almost four decades before Brown in 1784 — see Ingenhousz (1784) and the
English translation that appears in van der Pas (1971). In this translation, Ingenhousz
comments on how “the entire liquid and consequently everything which is contained in
it, is kept in continuous motion by the evaporation, and that this motion can give the
impression that some of these corpuscules are living, even if they have not the slightest
life in them.”

One useful way to describe Brownian motion is in terms of a random walk process,
where a particle takes successive random steps. The designation “random walk” is due
to the English statistician Karl Pearson (1857–1936), who is credited along with
Ronald Fisher (1890–1962) with establishing the modern field of mathematical
statistics — see the exposition by Tankard (1984). We will comment on other contribu-
tions by Pearson later in this text, including his development of the method of principal
component analysis (PCA) and the Neyman-Pearson technique for hypothesis testing.
For further accounts on the theory of Brownian motion and random walks, the reader
may refer to several texts including by Rogers and Williams (2000), Morters and Peres
(2010), Lawler and Limic (2010), Bass (2011), and Gallager (2014).

Boltzmann distribution. We described the Boltzmann distribution in expression (3.168)
and explained how it is useful in characterizing the probability distribution of the states
of a complex system as a function of the energies of the state levels. This probability
distribution is widely used in statistical mechanics, which is the field that deals with
understanding how microscopic properties at the atomic level translate into physical
properties at the macroscopic level. In particular, the Boltzmann distribution encodes
the useful property that lower-energy states are more likely to occur than higher-energy
states — see, e.g., the treatments in Gibbs (1902), Landau and Lifshitz (1980), Hill
(1987), Tolman (2010), and Pathria and Beale (2011). The distribution is named after
the Austrian physicist Ludwig Boltzmann (1844–1906), who is regarded as one
of the developers of the field of statistical physics/mechanics. He introduced it in the
work by Boltzmann (1877,1909) while developing a probabilistic view of the second
law of thermodynamics. A useful historical overview of Boltzmann’s work is given by
Uffink (2014). Boltzmann’s visionary contributions at the time, and his statistical anal-
ysis of the motion of atoms and the resulting macroscopic properties of matter, were
harshly criticized by some fellow scientists who were unable to grasp his probabilistic
reasoning. Unfortunately, he committed suicide in 1906. Since then, his theories and
explanations have been validated by experimentation and the atomic theory of mat-
ter. We will encounter the Boltzmann distribution later in Sec. 66.2 when we study
restricted Boltzmann machines in the context of deep learning networks. Applications
of the Boltzmann distribution to molecular biology problems, such as the ion-channel
states and protein folding examples discussed in the text, can be found in Onuchic,
Luthey-Schulten, and Wolynes (1997), Huang (2005), Santana, Larranaga, and Lozano
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(2008), Dubois, Gilles, and Rouzaire-Dubois (2009), and Phillips et al. (2012).

Law of large numbers. The weak and strong laws of large numbers are discussed in
Appendix 3.A, along with various notions of convergence for random variables such
as convergence in distribution, convergence in probability, almost-sure convergence,
and convergence in mean-square. The weak law of large numbers is due to the Swiss
mathematician Jacob Bernoulli (1654–1705); it was published posthumously in
his book on combinatorics by Bernoulli (1713). The law was known as the “Bernoulli
theorem” for many decades and was later referred to as the “law of large numbers”
by the French mathematician Simeon Poisson (1781–1840) in the work by Poisson
(1837). The latter name has since become the common reference to these results. Many
other mathematicians followed suit, refining and weakening the conditions required for
the conclusions of the law to hold. In particular, the strong version of the law was
first proven by the French mathematician Emile Borel (1871–1956) in the work by
Borel (1909). Some of the weakest conditions for its validity were given later by the
Russian mathematician Andrey Kolmogorov (1903–1987) in Kolmogorov (1927).
A historical account on the laws of large numbers appears in Seneta (2013), in addition
to the earlier account given by the Russian mathematician Andrey Markov (1856–
1922), which appears in Appendix 1 of Ondar (1981). A useful account on the strong
version of the law is given by Prokhorov (2011). For technical details on the laws,
the reader may consult Feller (1968,1971), Billingsley (1986,1999), Durrett (1996), and
Grimmett and Stirzaker (2001).

PROBLEMS4

3.1 Refer to the calculations in Example 3.14 on conditional independence. Verify
that the marginal pmfs for the variables R and L are given by

P(R = 1) = 17/36, P(R = 0) = 19/36, P(L = 1) = 31/60, P(L = 0) = 29/60

3.2 Refer to the calculations in Example 3.14 on conditional independence. Verify
that the conditional pmf of A given R assumes the following values:

P(A = 1|R = 1) = 9/17, P(A = 0|R = 1) = 8/17

P(A = 1|R = 0) = 3/19, P(A = 0|R = 0) = 16/19

3.3 Conclude from the results of Probs. 3.1 and 3.2 and Example 3.14 that the joint
pmf of the variables {R,A,L} factorizes as

P(R,A,L) = P(R)P(A|R)P(L|A)

3.4 Refer to the calculations in Example 3.14 on conditional independence. Verify
that the conditional pmf of L given R assumes the following values:

P(L = 1|R = 1) = 199/340, P(L = 0|R = 1) = 141/340

P(L = 1|R = 0) = 173/380, P(L = 0|R = 0) = 207/380

Use the result of Prob. 3.2 to conclude that the variables L and A are not independent
conditioned on R and, hence, the joint pmf of {R,A,L} factors in the form

P(R,A,L) = P(A)P(R|A)P(L|R,A)

4 A couple of problems in this section are adapted from exercises in Sayed (2003,2008).
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where the last factor cannot be replaced by P(L|R). Compare with the factorization
in Prob. 3.3.
3.5 Refer to the calculations in Example 3.14 on conditional independence.

Table 3.3 Joint probability mass function for the variables {R,L,A} in Prob. 3.5.
R (rain) A (accident) L (late) P(R,A,L) (joint pmf)

0 0 0 0.40
0 0 1 0.05
0 1 0 0.10
0 1 1 0.10
1 0 0 0.10
1 0 1 0.10
1 1 0 0.05
1 1 1 0.10

Assume instead that the joint pmf of the variables {R,A,L} has the values shown in
Table 3.3. Repeat the derivation to verify whether the variables {R,L} continue to be
independent conditioned on knowledge of A. Given that the individual arrived late to
work, what is the likelihood that there was a traffic accident on the road?
3.6 Consider three continuous random variables {x,y,z} and assume their joint pdf
factors in the form fx,y,z(x, y, z) = fx(x)fy|x(y|x)fz|y(z|y). Verify that the variables
{x,z} are independent of each other conditioned on knowledge of y. Verify that the
same conclusion applies to discrete random variables.
3.7 Consider three discrete random variables {x,y,z} and assume their joint pmf fac-
tors in the form P(x,y,z) = P(x)P(y)P(z|x,y). Are the variables {x,y} independent
of each other conditioned on knowledge of z? Verify that the same conclusion applies
to continuous random variables.
3.8 Let y = 1

3
x + 1

2
v, where x is uniformly distributed over the interval [−1, 1]

and v is a zero-mean Gaussian random variable with variance 1/2. Both x and v are
independent random variables.
(a) Find the mean and variance of y.
(b) Find the correlation between y and x.
(c) Find the correlation between y and v.
(d) How would your answers change if x and v were only uncorrelated rather than

independent?
3.9 For what values of the scalar a the matrix below is the covariance matrix of a
2× 1 random vector,

Rz =

[
1 a
a 2

]
?

3.10 Consider a column vector y with mean ȳ and covariance matrix Ry. What is
E (y ⊗ y)? Here, the symbol ⊗ refers to the Kronecker product operation.
3.11 If two scalar zero-mean real random variables a and b are uncorrelated, does it
follow that a2 and b2 are also uncorrelated?
3.12 Consider the column vector x = col{a, b}, where a and b are two scalar random
variables with possibly non-zero means. Use the fact that Rx = E (x− x̄)(x− x̄)T ≥ 0
to establish the following Cauchy-Schwarz inequality for random variables:(

E (a− ā)(b− b̄)
)2

≤ E (a− ā)2 × E (b− b̄)2

3.13 Problems 3.13–3.18 are adapted from exercises in Sayed (2003,2008). Consider
two scalar random variables {x,y} with means {x̄, ȳ}, variances {σ2

x, σ
2
y}, and corre-

lation σxy. Define the correlation coefficient ρxy = σxy/σxσy. Show that it is bounded
by one, i.e., |ρxy| ≤ 1.
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3.14 A random variable x1 assumes the value +1 with probability p and the value −1
with probability 1− p. A random variable x2 is distributed as follows:

if x1 = +1 then x2 =

{
+2 with probability q
−2 with probability 1− q

if x1 = −1 then x2 =

{
+3 with probability r
−3 with probability 1− r

Find the means and variances of x1 and x2.
3.15 Consider a Rayleigh-distributed random variable x with pdf given by (3.26).
Show that its mean and variance are given by (3.27).
3.16 Suppose we observe y = x+v, where x and v are independent random variables
with exponential distributions with parameters λ1 and λ2 (λ1 6= λ2). That is, the pdfs
of x and v are fx(x) = λ1e

−λ1x for x ≥ 0 and fv(v) = λ2e
−λ2v for v ≥ 0, respectively.

(a) Using the fact that the pdf of the sum of two independent random variables is the
convolution of the individual pdfs, show that

fy(y) =
λ1λ2

λ2 − λ1
e−λ2y

(
e(λ2−λ1)y − 1

)
, y ≥ 0

(b) Establish that fx,y(x, y) = λ1λ2e
(λ2−λ1)x−λ2y, for x ≥ 0 and y ≥ 0.

3.17 Suppose x is a scalar nonnegative real-valued random variable with probability
density function fx(x). Show that P(x ≥ α) ≤ Ex/α, for any α > 0. This result is
known as Markov inequality.
3.18 Consider a scalar real-valued random variable x with mean x̄ and variance σ2

x.
Let y = (x − x̄)2. Apply Markov inequality to y to establish Chebyshev inequality
(3.28).
3.19 Consider a scalar real-valued random variable x with mean x̄ and assuming
values in the interval x ∈ [0, 1]. Apply Markov inequality from Prob. 3.17 to show that,
for any real number in the interval α ∈ (0, 1), it holds:
(a) P(x > 1− α) ≥ (x̄− (1− α))/α.
(b) P(x > α) ≥ (x̄− α)/(1− α).
3.20 Show that for any positive scalar random variable x with nonzero mean, it holds
1/Ex < E (1/x).
3.21 Suppose x is a scalar real-valued random variable with probability density func-
tion fx(x) and E |x|r <∞. Show that, for any α > 0 and r > 2, P(|x| ≥ α) ≤ E |x|r/αr.
This result is a more general version of Markov inequality.
3.22 Consider a real-valued random variable, x, with mean x̄ and variance σ2

x < ∞.
Let a < b and a+ b = 2x̄. Conclude from Chebyshev inequality (3.28) that

P(a < x < b) ≥ 1− 4σ2
x

(b− a)2

3.23 Consider a real-valued random variable, x, with mean x̄ and variance σ2
x < ∞.

For any real c, conclude from the result of Prob. 3.21 that the following bound also
holds:

P(|x− c| ≥ δ) ≤ σ2
x + (x̄− c)2

δ2

3.24 Consider a real-valued random variable, x, with mean x̄ and variance σ2
x < ∞.

Apply Markov inequality from Prob. 3.21 to establish the following one-sided versions
of Chebyshev inequality, for any δ > 0,

P(x ≥ x̄+ δ) ≤ σ2
x

σ2
x + δ2

, P(x ≤ x̄− δ) ≤ σ2
x

σ2
x + δ2
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3.25 Consider two real-valued random variables x and y. Establish that E [E (x|y)] =
Ex, where the outermost expectation is over the pdf of y while the innermost expec-
tation is over the conditional pdf fx|y(x|y).
3.26 Consider two random variables x and y and a random vector z ∈ IRM that is
deterministic conditioned on knowledge of y, i.e., E (z|y) = z. For any deterministic
set S ⊂ IRM , establish the identity

E
{
E (x|y) |z ∈ S

}
= E (x|z ∈ S)

where we are further conditioning on the event z ∈ S. How does this result compare
to Prob. 3.25? Remark. This result is a special case of the law of total expectations —
see, e.g., Billingsley (1986) and Weiss (2005).
3.27 Consider a discrete scalar random variable u = 0, 1, . . . , N − 1, and two continu-
ous random vector variables x and y. Assume u and y are independent of each other.
Verify that

E (x|y = y) =

N−1∑
u=0

P(u = u)E (x|y = y,u = u)

3.28 The following problem is based on an exercise from Sayed (2003,2008). Consider
anM×M positive-definite symmetric matrix R and introduce its eigen-decomposition,
R =

∑M
m=1 λmumu

T
m, where the λm are the eigenvalues of R (all positive) and the um

are the eigenvectors of R. The um are orthonormal, i.e., uT
muk = 0 for all m 6= k

and uT
mum = 1. Let h be a random vector with probability distribution P(h = um) =

λm/Tr(R), where Tr(R) denotes the trace of R and is equal to the sum of its eigenvalues.
(a) Show that EhhT = R/Tr(R) and EhhThhT = R/Tr(R).
(b) Show that EhTR−1h = M/Tr(R) and EhhTR−1hhT = IM/Tr(R), where IM is

the identity matrix of size M ×M .

(c) Show that EhTh = 1 and Eh =
1

Tr(R)

∑M
m=1 λmum.

3.29 Establish the validity of (3.160).
3.30 Starting from (3.162), verify that:
(a) ϕx(0) = 1.
(b) |ϕx(t)| ≤ 1.
(c) ϕx(t) = ϕ∗x(−t).
(d) Establish the validity of (3.164).
3.31 Assume x is uniformly distributed over the interval [a, b]. Show that the charac-
teristic function of x is given by

ϕx(t) =
ejtb − ejta
jt(b− a)

3.32 Assume x takes the value x = 1 with probability p and the value x = 0 with
probability 1−p. What is the characteristic function of x. Use the characteristic function
to evaluate all moments of x.
3.33 What is the mean and variance of a Boltzmann distribution with 2 states?
3.34 If the probability of a closed ion channel is twice the probability of an open ion
channel, what is the relation between the energies of the respective states?
3.35 Let ∆E = Eu −Ef . Verify that the probability of encountering a folded protein
can be written in the form

P(protein folded) =
1

1 + e−∆G/kBT
, where ∆G = ∆E − kBT lnL

3.36 What is the average energy of N proteins?
3.37 Let x = cosθ+j sinθ, where θ is uniformly distributed over the interval [−π, π].
Determine the mean and variance of x.
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3.38 Let

x =

[
1 + cosφ+ j sinφ

cosφ+ j sinφ

]
, y =

[
1 + cosθ + j sinθ

cosθ + j sinθ

]
where φ and θ are independent of each other and uniformly distributed over the interval
[−π, π]. Determine Ex, Rx, and Rxy.
3.39 Conclude from the axioms of probability (3.209a)–(3.209d) that the probability
of any event must be bounded by one, i.e., P(E) ≤ 1.
3.40 Conclude from the axioms of probability (3.209a)–(3.209d) that the probability
of the empty event is zero, i.e., P(∅) = 0.
3.41 The pdf of a random variable x ≥ 0 that is exponentially-distributed with pa-
rameter λ > 0 has the form fx(x) = λe−λx.
(a) Verify that Ex = 1/λ and σ2

x = 1/λ2. What is the median of x?
(b) Verify that the cumulative density function (cdf) of x is given by Fx(x) = 1−e−λx.

Recall that the cdf at location x is defined as the area under the pdf until that
location, i.e., Fx(x) =

´ x
−∞ fx(x′)dx′.

(c) Consider a sequence of positive-valued random variables xn with cdf defined as
follows:

Fxn(x) = 1− (1− λ/n)nx, x > 0

Show that xn converges to the exponentially-distributed random variable x in
distribution.

3.42 Consider a sequence of random variables xn such that Exn → µ and σ2
xn → 0 as

n → ∞. Show that xn
p→ µ. That is, show that xn converges to the constant random

variable µ in probability. According to definition (3.220a), this is equivalent to showing
P(|xn − µ| ≥ ε)→ 0 for any ε ≥ 0.
3.43 Consider the random sequence xn = x + vn, where the perturbation vn has
mean Evn = µ/n2 and variance σ2

v = σ2/
√
n for some µ and σ2 > 0. Show that the

sequence xn converges to x in probability.
3.44 Consider the random sequence xn = (1 − 1√

n
)x, where x is a binary random

variable with P(x = 0) = p > 0 and P(x = 1) = 1 − p. Show that the sequence xn
converges to x in probability.
3.45 Consider two random sequences {xn,yn}. Establish the following conclusions,
which amount to the statement of Slutsky theorem due to Slutsky (1925) — see also
Davidson (1994) and van der Vaart (2000):
(a) xn

d→ x and (yn − xn)
p→ 0 ⇒ yn

d→ x.
(b) xn

p→ x and (yn − xn)
p→ 0 ⇒ yn

p→ x.
(c) xn

a.s.→ x and (yn − xn)
a.s.→ 0 ⇒ yn

a.s.→ x.
3.46 Consider a random sequence {xn} that converges in distribution to x, and a
second random sequence {yn} that converges in probability to a constant c, i.e., xn  x

and yn
p→ c. Establish the following consequences of Slutsky theorem:

(a) xn + yn  x+ c.
(b) xnyn  cx.
(c) xn/yn  x/c, c 6= 0.
3.47 A random variable x is selected uniformly from the interval [0, 1/2]. Let xn =
1 + 3x+ (2x)n.
(a) Verify that xn approaches 1 + 3x as n→∞ for any value of x in the semi-open

interval [0, 1/2). What happens when x = 1/2?
(b) Show that the sequence {xn} converges almost surely? To which random variable?
3.48 Consider a sequence of fair coin tosses with outcome bn = 1 when the coin
lands a Head at the n−th toss or bn = 0 otherwise. We use this sequence to construct
xn =

∏n
m=1 bn. Show that the sequence xn converges almost surely to the constant 0.

3.49 Consider a sequence of random variables xn that are uniformly distributed within
the interval [0 1

n2 ]. For what values of p ≥ 1 does the sequence {xn} converge in the
p−th mean to x = 0?
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3.50 Consider a sequence of random variables {xn} that converge in the p−th mean
to x for some p ≥ 1. Use the Markov inequality to conclude that the sequence {xn}
converges to x in probability, i.e., show that xn

Lp→ x =⇒ xn
p→ x.

3.51 Show that xn
Lp→ x =⇒ xn

Lq→ x for any p > q ≥ 1. Conclude that convergence
in mean-square (for which p = 2) implies convergence in mean (for which p = 1).
3.52 A biased dice is rolled once resulting in P(odd) = p and P(even) = 1 − p. A
sequence of random variables {xn} is constructed as follows:

xn =


2n2

n2 + 1/2
, when the dice roll is even

2 cos(πn), when the dice roll is odd

Verify that P(limn→∞ xn = 2) = 1 − p. Does the sequence {xn} converge when the
result of the dice roll is odd?
3.53 Consider the random sequence

xn =

{
µ1, with probability 1− 1/n
µ2, with probability 1/n

(a) Show that xn converges in the mean-square sense to x = µ1. Does it also converge
almost surely to the same limit?

(b) What happens if we change the probabilities to 1− (1/2)n and (1/2)n?
3.54 Let {xn, n = 1, . . . , N} denote N independent scalar random variables with
mean µ, with each variable satisfying an ≤ xn ≤ bn. Let SN =

∑N
n=1 xn denote the

sum of these random variables. Let ∆ =
∑N
n=1(bn−an)2 denote the sum of the squared

lengths of the respective intervals. A famous inequality known as Hoeffding inequality
is derived in Appendix 3.B; it asserts that for any δ > 0:

P
(
|SN − ESN | ≥ δ

)
≤ 2e−2δ2/∆

Introduce the sample average µ̂N = 1
N

∑N
n=1 xn, and assume the bounds an = a and

bn = b are uniform over n so that a ≤ xn ≤ b. Use Hoeffding inequality to justify the
following bound, which is independent of the unknown µ:

P
(
|µ̂N − µ| ≥ ε

)
≤ 2e−2ε2N/(b−a)

for any ε > 0. Conclude the validity of the weak law of large numbers, namely, the fact
that the sample average converges in probability to the actual mean as N →∞.
3.55 We continue with the setting of Prob. 3.54. Let {xn, n = 1, . . . , N} denote
N independent scalar random variables, with each variable lying within the interval
xn ∈ [an, bn]. Introduce the sample mean:

x̄
∆
=

1

N

N∑
n=1

xn

(a) Assume an = 0 and bn = 1, where all random variables lie within the interval
[0, 1]. Use Hoeffding inequalities (3.232a)–(3.232b) to show that

P
(
x̄− E x̄ ≥ δ

)
≤ e−2Nδ2 , P

(
|x̄ − E x̄| ≥ δ

)
≤ 2e−2Nδ2

(b) Assume we wish to ensure that the likelihood (confidence level) of the sample mean
x̄ lying within the interval [E x̄−δ, E x̄+δ] is 1−α, for some small significance level
α. Show that the number of samples needed to ensure this property is bounded
by N ≤ ln(2/α)/2δ2.
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3.56 Consider scalar random variables xn ∈ [0, 1] and their zero-mean centered ver-
sions denoted by xc,n = xn − Exn. Use Hoeffding lemma (3.233) to establish the
following result, which provides a bound on the expectation of the maximum of a
collection of centered random variables:

E

(
max

1≤n≤N

{
xc,1, xc,2, . . . , xc,N

})
≤
√

1

2
lnN

3.57 Consider two scalar random variables {y,z} satisfying E (y|z) = 0. Assume there
exists a function f(z) and some constant c ≥ 0 such that f(z) ≤ y ≤ f(z) + c. Extend
the derivation of the Hoeffding lemma (3.233) to verify that the following result also
holds for any t:

E (ety|z) ≤ et
2c2/8

3.58 Consider the problem of multiplying two N ×N matrices A and B to generate
C = AB. For big data problems, the size of N can be prohibitively largely. Let {an}
denote the N × 1 columns of A, and let {bTn} denote the 1×N rows of B. Then, C is
a sum of N rank-one products of the form

C =

N∑
n=1

anb
T
n (3.214)

One simple approximation for computing C employs a randomized algorithm and is
based on selecting at random R rank-one factors. Indeed, let pn denote a discrete
probability distribution over the indexes 1 ≤ n ≤ N with

∑N
n=1 pn = 1. Select R

independent integer indexes r from the range [1, N ] with P(r = n) = pn. Denote the
set of selected indexes by R and set

Ĉ =
∑
r∈R

1

pr
arb

T
r

Verify that E Ĉ = C.
3.59 Consider the same setting of Prob. 3.58. We wish to select the sampling prob-
abilities in order to minimize the mean-square-error of the difference between the ap-
proximation Ĉ and the product AB:

{pon} = argmin
{pn}

E ‖Ĉ −AB‖2F

Let ‖x‖ denote the Euclidean norm of vector x. Show that the optimal probabilities
are given by

pon =
‖an‖ ‖bn‖∑N

m=1 ‖am‖ ‖bm‖
Remark. For additional details, the reader may refer to Drineas, Kannan, and Mahoney
(2006a).
3.60 A drunken wanders randomly moving either 10m to the right or 5m to the left
every minute. Where do you expect to find the drunken after 1 hour? Find the expected
location and the corresponding standard deviation.
3.61 A particle wanders on average 1nm every 1 ps with velocity 1000 cm/s. What is
the value of the probability p? What is the value of the diffusion coefficient?
3.62 A particle wanders on average 1nm every 1 ps with velocity −1000 cm/s (the
negative sign means that the velocity is in the negative direction of the x-axis). What is
the value of the probability p in this case? What is the value of the diffusion coefficient?
How does it compare to the case v = +1000 cm/s?
3.63 What is the diffusion coefficient of a particle of radius 1nm diffusing in water?
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3.64 If a particle of radius R takes t seconds to wander a distance L, how long does
it take a particle of radius R/2 to wander for the same distance?

3.A CONVERGENCE OF RANDOM VARIABLES

There are several notions of convergence for sequences of random variables, such as con-
vergence in probability, convergence in distribution, convergence in mean, mean-square
convergence, and almost sure convergence (or convergence with probability one). We
review them briefly here for ease of reference. The different notions of convergence vary
in how they measure “closeness” between random variables. For additional information
and proofs for some of the statements, including illustrative examples and problems,
the reader may refer to Feller (1968, 1971), Billingsley (1986,1999), Davidson (1994),
Durrett (1996), van der Vaart (2000), Grimmett and Stirzaker (2001), and Dudley
(2002).

Convergence in distribution
Consider a sequence of scalar random variables {xn} indexed by the integer n. Each
variable is described by a probability density function, fxn(x). By referring to a “se-
quence {xn}” we mean that at each n, the realization for xn arises from its pdf and the
collection of these realizations will constitute the sequence. Consider further a separate
random variable x with pdf fx(x). The weakest notion of convergence is convergence
in distribution (also called weak convergence). Let Fx(x) denote the cumulative distri-
bution function (cdf) of the random variable x; this is defined as the area under the
probability density function of x up to location x = x:

Fx(x)
∆
=

ˆ x

−∞
fx(x′)dx′ = P(x ≤ x) (3.215)

Similarly, let Fxn(x) denote the cdf for each xn. The sequence {xn} is said to converge
in distribution to the random variable x if the respective cdfs approach each other for
large n at all points where Fx(x) is continuous, i.e.,

(convergence in distribution I)

xn
d−→ x ⇐⇒ lim

n→∞
Fxn(x) = Fx(x), {∀ x |Fx(x) continuous} (3.216)

Convergence in distribution is also denoted by the notation xn  x. When convergence
occurs, then the cdf Fx(x) is uniquely defined. This type of convergence depends only
on the cdfs (not the actual values of the random variables) and it ensures that, for large
n, the likelihoods that xn and x lie within the same interval are essentially the same:

P(a ≤ xn ≤ b) ≈ P(a ≤ x ≤ b), for large n (3.217)

It also follows from xn  x that, for any continuous function g(x), the sequence
g(xn) converges in distribution to the random variable g(x). This result is known as
the continuous mapping theorem. There are several other equivalent characterizations
of convergence in distribution. One useful characterization motivated by the above
remark is the following:

(convergence in distribution II)

xn
d−→ x ⇐⇒ lim

n→∞
P(xn ≤ x) = P(x ≤ x) (3.218)

{∀ x |P(x ≤ x) continuous}
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A second statement is that

(convergence in distribution III)

xn
d−→ x ⇐⇒ lim

n→∞
E g(xn) = E g(x) (3.219)

∀ g(x): bounded and continuous or Lipschitz

where a Lipschitz function is one for which |g(a) − g(b)| ≤ δ|a − b| for all a, b and for
some δ > 0. The central limit theorem discussed later in (4.159) is one of the most fa-
mous and useful results on convergence in distribution. It is important to note though
that convergence in distribution does not generally imply convergence of the respec-
tive probability density functions (i.e., fxn(x) need not converge to fx(x)). Counter
examples can be found to this effect.

Convergence in probability
The second notion we consider is convergence in probability, which implies convergence
in distribution (the converse is true only when x is the constant random variable). The
sequence {xn} is said to converge in probability to the random variable x if there is a
high probability that the distance |xn − x| becomes very small for large n, i.e.,

(convergence in probability)

xn
p−→ x ⇐⇒ lim

n→∞
P(|xn − x| ≥ ε) = 0, for any ε > 0 (3.220a)

⇐⇒ lim
n→∞

P(|xn − x| < ε) = 1 (3.220b)

This definition is essentially dealing with the convergence of a sequence of probabilities.
Note that checking the condition on the right-hand side requires knowledge of the joint
distribution of the variables {xn,x}. For random vectors {xn}, we would simply replace
|xn−x| in terms of the Euclidean distance ‖xn−x‖. Interestingly, although convergence
in probability does not imply the stronger notion of almost-sure convergence defined
below, it can be shown that convergence in probability of a sequence {xn} to x implies
the existence of a subsequence {xkn} that converges almost surely to x. The above
notion of convergence in probability ensures that, in the limit, xn will lie with high
probability within the disc centered at x and of radius ε. The result still does not
guarantee “point-wise” convergence of xn to x. This is what almost-sure convergence
does.

Almost-sure convergence
The third and strongest notion we consider is almost-sure convergence; it implies the
other two notions — see Fig. 3.11. The sequence {xn} is said to converge almost surely
(or with probability one) to the random variable x if there is a high probability that
xn approaches x for large n, i.e.,

(almost-sure convergence)

xn
a.s.−→ x ⇐⇒ P

(
lim
n→∞

xn = x
)

= 1 (3.221)

This statement guarantees the convergence of xn to x except possibly over a set of
“measure zero” — see, e.g., Prob. 3.47. In this problem, we construct a particular
sequence xn and define a separate random variable x that is uniformly distributed
over the interval [0, 1

2
]. We then verify that xn converges to x for all points in the semi-

open interval [0, 1
2
) but not at the location x = 1/2. Since this is a singleton and the

probability of x assuming values in the interval [0, 1
2
) is still equal to one, we are able

to conclude that xn converges almost surely to x. This example clarifies the reason for
the qualification “almost-surely” since some points in the domain of x may be excluded
(i.e., convergence occurs for almost all points). It is not always straightforward to check
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for almost-sure convergence by applying the definition (3.221). One useful sufficient
condition is to verify that for any ε > 0:

∞∑
n=1

P(|xn − x| > ε) <∞ =⇒ almost-sure convergence (3.222)

The strong law of large numbers is one of the most famous results illustrating almost-
sure convergence. Consider a collection of independent and identically distributed ran-
dom variables {xn} with mean µ each and bounded absolute first-order moment,
E |xn| <∞. The strong law states that the sample average estimator defined by

µ̂N
∆
=

1

N

N∑
n=1

xn (3.223)

converges almost surely to the true mean µ as N →∞, i.e.,

(strong law of large numbers)

µ̂N
a.s.−→ µ ⇐⇒ P

(
lim
N→∞

µ̂N = µ
)

= 1 (3.224)

In other words, as the number of samples increases, the likelihood that µ̂N will converge
to the true value µ tends to one. In addition, it is possible to specify the rate of
convergence of µ̂N towards µ as N → ∞. If the variables xn have uniform and finite
variance, E (xn−µ)2 = σ2

x <∞, then it is further known that (see, e.g., Durrett (1996,
p. 437)):

lim sup
N→∞

{
µ̂N − µ
σx

× N1/2

(2 ln lnN)1/2

}
= 1, almost surely (3.225)

which indicates that, for large enough N , the difference between µ̂N and µ is on the
order of:

µ̂N − µ = O

(√
2σ2

x ln lnN

N

)
(3.226)

using the Big-O notation. This notation will be used frequently in our treatment to
compare the asymptotic convergence rates of two sequences. Thus, writing an = O(bn),
for two sequences {an, bn, n ≥ 0} with bn having positive entries, means that there
exists some constant c > 0 and index no such that |an| ≤ cbn for all n > no. This
also means that the decay rate of the sequence an is at least as fast or faster than bn.
For example, writing an = O(1/n) means that the samples of the sequence an decay
asymptotically at a rate that is comparable to or faster than 1/n.

The weak version of the law of large numbers is studied in Prob. 3.54; it only ensures
convergence in probability, namely, for any ε > 0:

(weak law of large numbers)

µ̂N
p−→ µ ⇐⇒ lim

N→∞
P
(
|µ̂N − µ| ≥ ε

)
= 0 (3.227)

Remark 3.1. (Inference problems) The weak and strong laws of large numbers
provide one useful example of how sequences of random variables arise in inference
problems. In future chapters, we will describe methods that construct estimators, say,
θ̂n, for some unknown parameter θ, where n denotes the number of data points used to
determine θ̂n. We will then be interested in analyzing how well the successive estimators
θ̂n approach θ for increased sample sizes n. In these studies, the notions of convergence
in the mean, mean-square, in distribution, and in probability will be very helpful.

�
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Figure 3.11 Both notions of almost-sure and p−th mean convergence are stronger than
convergence in probability, which in turn is stronger than convergence in distribution.
The direction of an arrow from location A to B means that notion A implies notion B.

Convergence in the p−th mean
The last and also strong notion of convergence we consider is convergence in the p−th
mean; it is stronger than convergence in probability and convergence in distribution
— see Fig. 3.11. Consider an exponent p ≥ 1 and assume the p−th moments of the
variables xn are bounded, i.e., E |xn|p <∞. Then, the sequence {xn} is said to converge
in the p−th mean to the random variable x if

(convergence in p−th mean)

xn
Lp−→ x ⇐⇒ lim

n→∞
E |xn − x|p = 0 (3.228)

The notation Lp above an arrow is used to refer to this notion of convergence. Two
special cases are common: p = 2 corresponds to mean-square convergence and p = 1
corresponds to convergence in the mean. It is easy to verify that convergence in the
p−th mean implies convergence in probability — see Prob. 3.50.

3.B CONCENTRATION INEQUALITIES

The Markov and Chebyshev bounds are examples of concentration inequalities, which
help bound the deviation of a random variable (or combinations of random variables)
away from certain values (typically their means):

P(x ≥ α) ≤ Ex/α, x ≥ 0, α > 0, (Markov inequality) (3.229a)

P(|x− Ex| ≥ δ) ≤ σ2
x/δ

2, δ > 0, (Chebyshev inequality) (3.229b)

In this appendix, we describe three other famous inequalities known as Azuma in-
equality, Hoeffding inequality, and McDiarmid inequality, which provide bounds on the
probability of the sum of a collection of random variables deviating from their mean.
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The Hoeffding and McDiarmid inequalities play an important role in the analysis of
learning algorithms and will be used in the derivation of generalization bounds in future
Chapter 64. There are of course other concentration inequalities but we will limit our
discussion to those that are most relevant to our treatment in this text.

Hoeffding inequality
We first establish Hoeffding inequality from Prob. 3.54 and the supporting Hoeffding
lemma, motivated by arguments from Hoeffding (1963), Serfling (1974), Boucheron,
Lugosi, and Bousquet (2004), Massart (207), Boucheron, Lugosi, and Massart (2013),
Mohri, Rostamizadeh, and Talwalkar (2018), Vershynin (2018), and Wainwright (2019).

Hoeffding inequality (Hoeffding (1963)). Let {xn, n = 1, . . . , N} denote N indepen-
dent scalar random variables, with each variable lying within an interval of the form
an ≤ xn ≤ bn, with endpoints denoted by {an, bn}. Let

SN
∆
=

N∑
n=1

xn, ∆
∆
=

N∑
n=1

(bn − an)2 (3.230)

denote the sum of the random variables and the sum of the squared lengths of their
respective intervals. The Hoeffding inequality asserts that for any δ > 0:

P
(
SN − ESN ≥ δ

)
≤ e−2δ2/∆ (3.231a)

P
( ∣∣∣SN − ESN

∣∣∣ ≥ δ) ≤ 2e−2δ2/∆ (3.231b)

The above inequalities can also be restated in terms of sample means as opposed to
sums. It is straightforward to verify that

P

(
1

N

N∑
n=1

xn − 1

N

N∑
n=1

Exn ≥ δ
)
≤ e−2N2δ2/∆ (3.232a)

P

(∣∣∣∣∣ 1

N

N∑
n=1

xn − 1

N

N∑
n=1

Exn

∣∣∣∣∣ ≥ δ
)
≤ 2e−2N2δ2/∆ (3.232b)

One of the tools we employ to establish the inequalities is Hoeffding lemma, which
is stated next along with one traditional derivation — see, e.g., Boucheron, Lugosi,
and Bousquet (2004), Chung and Lu (2006a,b), Alon and Spencer (2008), Boucheron,
Lugosi, and Massart (2013), and Mohri, Rostamizadeh, and Talwalkar (2018).

Hoeffding lemma (Hoeffding (1963)). Consider a scalar random variable y ∈ [a, b].
Then for any t, we have

E et(y−E y) ≤ et2(b−a)2/8 (3.233)

Proof: We start by noting that the exponential function f(x) = ex is convex and,
therefore, it holds that

ety ≤
(
b− y
b− a

)
eta +

(
y − a
b− a

)
etb (3.234)
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where the nonnegative coefficients (b − y)/(b − a) and (y − a)/(b − a) add up to one.
It follows that

e−tE y E ety ≤ e−tE y ×
{(

b− Ey
b− a

)
eta +

(
Ey − a
b− a

)
etb
}

= e−tE y × eta ×
{

1− Ey − a
b− a +

Ey − a
b− a et(b−a)

}
= exp

{
− t (b− a)

Ey − a
b− a

}
×
{

1− Ey − a
b− a +

(
Ey − a
b− a

)
et(b−a)

}

= exp

{
− t (b− a)

Ey − a
b− a + ln

(
1− Ey − a

b− a +
Ey − a
b− a et(b−a)

)}
∆
= exp

{
−hp+ ln

(
1− p+ peh

)}
∆
= eL(h) (3.235)

where we introduced the quantities:

h , t(b− a) ≥ 0, p ,
Ey − a
b− a , L(h) , −hp+ ln(1− p+ peh) (3.236)

We denote the first and second-order derivatives of L(h) with respect to h by:

L′(h) = −p+ peh
1

1− p+ peh
(3.237a)

L′′(h) =
(1− p)peh

(1− p+ peh)2
(3.237b)

and note that L(0) = L′(0) = 0 and L′′(h) ≤ 1/4. This last inequality follows from the
following equivalent statements:

(1− p)peh
(1− p+ peh)2

≤ 1

4
⇐⇒ 4(1− p)peh ≤ (1− p+ peh)2

⇐⇒ 0 ≤ (1− p− peh)2 (3.238)

and the fact that the last statement is obviously true. Now, since h ≥ 0, we expand
L(h) around h = 0 and use the mean-value theorem to conclude that there exists a
nonnegative value c between 0 and h such that

L(h) = L(0) + L′(0)h+
L′′(c)

2
h2

≤ h2/8

= t2(b− a)2/8 (3.239)

and, consequently,

E et(y−E y) ≤ eL(h) ≤ et2(b−a)2/8 (3.240)

as claimed.
�

We can now return to establish Hoeffding inequality (3.231b).

Proof of Hoeffding inequality (3.231b): To begin with, we note that for any positive
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scalar s > 0, it holds that:

P
(
SN − ESN ≥ δ

)
= P

(
es(SN−ESN ) ≥ esδ

)
≤ e−sδ E

(
es(SN−ESN )

)
(3.241)

where we used Markov inequality from Prob. 3.17, namely, the fact that for any non-
negative real-valued random variable x, it holds that P(x ≥ α) ≤ Ex/α. Now, from
the definition of SN in (3.230) and the independence of the {x(n)} we get:

e−sδ E
(
es(SN−ESN )

)
= e−sδ E

(
es(

∑N
n=1 xn−E xn)

)
= e−sδ E

( N∏
n=1

es(xn−E xn)
)

= e−sδ
N∏
n=1

E
(
es(xn−E xn)

)
(3.242)

so that

P
(
SN − ESN ≥ δ

)
≤ e−sδ

N∏
n=1

E
(
es(xn−E xn)

)
(3.243)

To continue, we call upon result (3.233) from Hoeffding lemma to conclude that

P
(
SN − ESN ≥ δ

)
≤ e−sδ

N∏
n=1

e
s2

8
(bn−an)2

= e−sδ e
s2

8

∑N
n=1(bn−an)2

= e−sδ e
s2∆

8 (3.244)

We can tighten the upper bound by selecting the value of s that minimizes the exponent,
−sδ + s2∆/8, which is given by s = 4δ/∆. Therefore, we get

P
(
SN − ESN ≥ δ

)
≤ e−2δ2/∆ (3.245)

Following similar arguments, we can also get

P
(
SN − ESN ≤ −δ

)
= P

(
− [SN − ESN ] ≥ δ

)
≤ e−2δ2/∆ (3.246)

We then arrive at

P
(
|SN − ESN | ≥ δ

)
= P

(
SN − ESN ≤ −δ

)
+ P

(
SN − ESN ≥ δ

)
≤ 2e−2δ2/∆ (3.247)

�

Azuma and McDiarmid Inequalities
The Hoeffding inequalities (3.232a)–(3.232b) provide bounds for the deviation of the
sample average function:

f(x1,x2, . . . ,xN )
∆
=

1

N

N∑
n=1

xn (3.248)
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away from its mean. The results can be extended to other functions with “bounded
variation.” These are again functions of the N−variables {x1,x2, . . . ,xN}, except that
if any of the variables is changed, say, from xm to x′m, then the variation in the function
remains bounded:

(function with bounded variations)

(3.249)

sup
x1,...,xN ,x

′
m

{∣∣∣f(xn 6=m,xm)− f(xn6=m,x
′
m)
∣∣∣} ≤ cm, ∀ m = 1, 2, . . . , N

For such functions, the Hoeffding inequalities extend to the McDiarmid inequalities
stated in (3.259a)–(3.259b) further ahead. These results were proven by McDiarmid
(1989); see also Ledoux (2001), Chung and Lu (2006a,b), Alon and Spencer (2008),
Boucheron, Lugosi, and Massart (2013), Mohri, Rostamizadeh, and Talwalkar (2018),
and Wainwright (2019). Motivated by the presentation in these references, we pro-
vide one classical derivation that relies on the use of the Azuma inequality, which we
motivate first.

Consider two sequences of random variables {yn,xn} for n ≥ 1, where each yn is a
function of {x1,x2, . . . ,xn}. We say that the sequence {yn} is a martingale difference
relative to the sequence {xn} if the following property holds for every n:

E
(
yn |x1,x2, . . . ,xn−1

)
= 0, (martingale difference) (3.250)

Azuma inequality (Azuma (1967)). Let {yn, n ≥ 1} be a martingale difference rel-
ative to another sequence {xn, n ≥ 1}, and assume there exist random variables
{zn} and constants {cn} such that zn ≤ yn ≤ zn + c for all n. Let ∆′ =

∑N
n=1 c

2
n.

The Azuma inequality asserts that for any δ > 0:

P
( N∑
n=1

yn ≥ δ
)
≤ e−2δ2/∆′ (3.251a)

P
( N∑
n=1

yn ≤ −δ
)
≤ e−2δ2/∆′ (3.251b)

Proof: It is sufficient to establish one of the inequalities. We follow an argument similar
to Chung and Lu (2006b) and Mohri, Rostamizadeh, and Talwalkar (2018). Introduce
the random variable SN =

∑N
n=1 yn, which satisfies SN = SN−1 + yN . For any s > 0

we have

P(SN ≥ δ) = P(esSN ≥ esδ)

≤ E esSN
esδ

, (using Markov inequality from Prob. 3.17)

= e−sδ × E es(SN−1+yN )

= e−sδ × E

{
E
(
es(SN−1+yN ) |x1, . . . ,xN−1

)}
(a)
= e−sδ × E

{
esSN−1 E

(
esyN |x1, . . . ,xN−1

)}
(b)

≤ e−sδ × E esSN−1 × es2c2N/8 (3.252)
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where step (a) is because SN−1 is solely a function of {x1,x2, . . . ,xN−1}, and step (b)
uses the result of Prob. 3.57. We therefore arrive at the inequality recursion:

E esSN ≤ E esSN−1 × es2c2N/8 (3.253)

Iterating starting from S0 = 0 we get

E esSN ≤ e
∑N
n=1 s

2c2n (3.254)

and, hence,

P(SN ≥ δ) ≤ e−sδ × es
2∑N

n=1 c
2
n/8 (3.255)

We can minimize the upper bound over s and select

s = 4δ
/ N∑
n=1

c2n/8 (3.256)

Substituting into the right-hand side of (3.255) gives

P(SN ≥ δ) ≤ e−2δ2/
∑N
n=1 c

2
n (3.257)

and the desired result follows.
�

We are now ready to state the McDiarmid inequality.

McDiarmid inequality (McDiarmid (1989)). Let {xn, n = 1, . . . , N} denote N in-
dependent scalar random variables, and let f(x1,x2, . . . ,xN ) be any function with
bounded variation as in (3.249). Let

∆′
∆
=

N∑
m=1

c2m (3.258)

The McDiarmid inequality asserts that for any δ > 0:

P
(
f(x1, . . . ,xN )− E f(x1, . . . ,xN ) ≥ δ

)
≤ e−2δ2/∆′ (3.259a)

P
(
|f(x1, . . . ,xN )− E f(x1, . . . ,xN )| ≥ δ

)
≤ 2e−2δ2/∆′ (3.259b)

Proof: It is sufficient to establish one of the inequalities. Introduce the following random
variables, where the expression for yn is written in two equivalent forms:

S
∆
= f(x1,x2, . . . ,xN )− E f(x1,x2, . . . ,xN ) (3.260a)

yn
∆
= E

(
S |x1,x2, . . . ,xn

)
− E

(
S |x1,x2, . . . ,xn−1

)
, n ≥ 1 (3.260b)

= E
(
f(x1, . . . ,xN ) |x1,x2, . . . ,xn

)
− E

(
f(x1, . . . ,xN ) |x1,x2, . . . ,xn−1

)
It is clear that S =

∑N
n=1 yn and E (yn|x1, . . . ,xn−1) = 0. The latter result shows

that the sequence {yn} defines a martingale difference relative to the sequence {xn}.
Moreover, the bounded variation property on the function f(·) translates into bounds
on each yn as follows. Let

an
∆
= inf

x

{
E
(
f(x1, . . . ,xN ) |x1, . . . ,xn−1, x

)
− E

(
f(x1, . . . ,xN ) |x1, . . . ,xn−1

)}
(3.261)
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Then, each yn satisfies an ≤ yn ≤ an + cn. We can now apply Azuma inequality
(3.251a) to get (3.259a).

�
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