
We collect in this chapter useful background material on matrix theory and
linear algebra. The emphasis is on results that are needed for future develop-
ments. Among other concepts, we review symmetric and non-negative definite
matrices, range spaces and nullspaces, as well as several matrix decompositions
including the spectral decomposition, the triangular decomposition, the QR de-
composition, and the singular value decomposition (SVD). We also discuss vec-
tor and matrix norms, Kronecker products, Schur complements, and the useful
Rayleigh-Ritz characterization of the eigenvalues of symmetric matrices.

1.1 SYMMETRIC MATRICES

Symmetric and non-negative definite matrices play a prominent role in data
analysis. We review some of their properties in this section. Thus, consider an
arbitrary square matrix of size N ×N with real entries, written as A ∈ IRN×N .
The transpose of A is denoted by AT and is obtained by transforming the rows
of A into columns of AT. For example,

A =




1 −1 3

−2 4 5

0 6 8


 =⇒ AT =




1 −2 0

−1 4 6

3 5 8


 (1.1)

The matrix A is said to be symmetric if it happens to coincide with its matrix
transpose, i.e., if it satisfies

A = AT, (symmetry) (1.2)

Real eigenvalues
A useful property of symmetric matrices is that they can only have real eigen-
values. To see this, let u represent a column eigenvector of A corresponding to
some eigenvalue λ, i.e., u is nonzero and satisfies along with λ the relation:

Au = λu (1.3)

The eigenvector u may be complex-valued so that, in general, u ∈ CN . Let the
symbol ∗ denote the operation of complex conjugate transposition, so that u∗
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is the row vector that is obtained by transposing u and replacing its entries by
their complex conjugate values, e.g.,

u
∆
=




1 + j

2

−2 + 3j


 =⇒ u∗ =

[
1− j 2 −2− 3j

]
(1.4)

where j ∆
=
√
−1. The same complex conjugation operation can be applied to

matrices as well so that, for example,

B =

[
1 j −2 + j

3− j 1− 2j 0

]
=⇒ B∗ =




1 3 + j

−j 1 + 2j

−2− j 0


 (1.5)

Returning to (1.3) and multiplying from the left by the row vector u∗ we get

u∗Au = λu∗u = λ‖u‖2 (1.6)

where the notation ‖ ·‖ denotes the Euclidean norm of its vector argument. Note
that the quantity u∗Au is a scalar. Moreover, it is real-valued because it coincides
with its complex conjugate value:

(u∗Au)
∗

= u∗A∗(u∗)∗ = u∗Au (1.7)

where in the last step we used the fact that A∗ = A since A is real-valued and
symmetric. Therefore, u∗Au is real and, from equality (1.6), we conclude that
λ‖u‖2 must also be real. But since ‖u‖2 is real and nonzero, we conclude that
the eigenvalue λ must be real too.

One consequence of this conclusion is that we can always find real-valued eigen-
vectors for symmetric matrices. Indeed, if we express u in terms of its real and
imaginary vector components, say, as

u = p+ jq, p, q ∈ IRN (1.8)

Then, using (1.3) and the fact that λ is real, we conclude that it must hold:

Ap = λp, Aq = λq (1.9)

so that p and q are eigenvectors associated with λ.

Spectral theorem
A second important property of real symmetric matrices, one whose proof re-
quires a more elaborate argument and is deferred to Appendix 1.A, is that such
matrices always have a full set of orthonormal eigenvectors. That is, if A ∈ IRN×N

is symmetric, then there will exist a set of N orthonormal real eigenvectors
un ∈ IRN satisfying

Aun = λnun, ‖un‖2 = 1, uTnum = 0 for n 6= m (1.10)

where all N eigenvalues {λn, n = 1, 2, . . . , N} are real, and all eigenvectors {un}
have unit norm and are orthogonal to each other. This result is known as the
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spectral theorem. For illustration purposes, assume A is 3 × 3. Then, the above
statement asserts that there will exist three real orthonormal vectors {u1, u2, u3}
and three real eigenvalues {λ1, λ2, λ3} such that

A
[
u1 u2 u3

]
︸ ︷︷ ︸

∆
= U

=
[
u1 u2 u3

]
︸ ︷︷ ︸

U



λ1

λ2

λ3




︸ ︷︷ ︸
∆
= Λ

(1.11)

where we are introducing the matrices U and Λ for compactness of notation: U
contains real eigenvectors forA and Λ is a diagonal matrix with the corresponding
eigenvalues. Then, we can write (1.11) more compactly, as

AU = UΛ (1.12)

However, the fact that the columns of U are orthogonal to each other and have
unit norms implies that U satisfies the important normalization property:

UUT = IN and UTU = IN (1.13)

That is, the product of U with UT (or UT with U) results in the identity matrix
of size N × N — see Prob. 1.1. We say that U is an orthogonal matrix. Using
this property and multiplying the matrix equality (1.12) by UT from the right
we get

AUUT
︸ ︷︷ ︸

=I

= UΛUT (1.14)

We therefore conclude that every real symmetric matrix A can be expressed in
the following spectral (or eigen-) decomposition form:

A = UΛUT (eigen-decomposition) (1.15a)

where, for general dimensions, the N×N matrices Λ and U are constructed from
the eigenvalues and orthonormal eigenvectors of A as follows:

Λ = diag{λ1, λ2, . . . , λN} (1.15b)

U =
[
u1 u2 . . . uN

]
(1.15c)

Rayleigh-Ritz ratio
There is a useful characterization of the smallest and largest eigenvalues of real
symmetric matrices, known as the Rayleigh-Ritz ratio. Specifically, if A ∈ IRN×N

is symmetric, then it holds that for all vectors x ∈ IRN :

λmin‖x‖2 ≤ xTAx ≤ λmax‖x‖2 (1.16)
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as well as

λmin = min
x6=0

(
xTAx

xTx

)
= min
‖x‖=1

xTAx (1.17a)

λmax = max
x6=0

(
xTAx

xTx

)
= max
‖x‖=1

xTAx (1.17b)

where {λmin, λmax} denote the smallest and largest eigenvalues of A. The ratio
xTAx/xTx is called the Rayleigh-Ritz ratio.

Proof of (1.16) and (1.17a)–(1.17b): Consider the eigen-decomposition (1.15a) and
introduce the vector y = UTx for any vector x. Then,

xTAx = xTUΛUTx = yTΛy =

N∑
n=1

λny
2
n (1.18)

with the {yn} denoting the individual entries of y. Now since the squared terms {y2
n}

are nonnegative and the {λn} are real, we get

λmin

(
N∑
n=1

y2
n

)
≤

N∑
n=1

λny
2
n ≤ λmax

(
N∑
n=1

y2
n

)
(1.19)

or, equivalently,

λmin‖y‖2 ≤ xTAx ≤ λmax‖y‖2 (1.20)

Using the fact that U is orthogonal and, hence,

‖y‖2 = yTy = xUUT︸ ︷︷ ︸
=I

x = ‖x‖2 (1.21)

we conclude that (1.16) holds. The lower (upper) bound in (1.19) is achieved when x
is chosen as the eigenvector umin(umax) corresponding to λmin(λmax).

�

Example 1.1 (Quadratic curve) Consider the two-dimensional function

g(r, s) = ar2 + as2 + 2brs, r, s ∈ IR (1.22)

We would like to determine the largest and smallest values that the function attains
on the circle r2 + s2 = 1. One way to solve the problem is to recognize that g(r, s) can
be rewritten as

g(r, s) =
[
r s

]︸ ︷︷ ︸
∆
= xT

[
a b
b a

]
︸ ︷︷ ︸

∆
= A

[
r
s

]
︸ ︷︷ ︸

=x

= xTAx (1.23)

We therefore want to determine the extreme values of the quadratic form xTAx un-
der the constraint ‖x‖ = 1. According to (1.17a)–(1.17b), these values correspond to
λmin(A) and λmax(A). It can be easily verified that the eigenvalues of A are given by
λ(A) = {a− b, a+ b} and, hence,

λmin(A) = min{a− b, a+ b}, λmax(A) = max{a− b, a+ b} (1.24)
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1.2 POSITIVE-DEFINITE MATRICES

An N×N real symmetric matrix A is said to be nonnegative-definite (also called
positive semi-definite) if it satisfies the property:

vTAv ≥ 0, for all column vectors v ∈ IRN (1.25)

The matrix A is said to be positive-definite if vTAv > 0 for all v 6= 0. We denote
a positive-definite matrix by writing A > 0 and a positive semi-definite matrix
by writing A ≥ 0.

Example 1.2 (Diagonal matrices) The notion of positive semi-definiteness is trivial
for diagonal matrices. Consider the diagonal matrix

A = diag{a1, a2, a3} ∈ IR3×3 (1.26)

and let

v =

 v1

v2

v3

 ∈ IR3 (1.27)

denote an arbitrary vector. Then, some simple algebra shows that

vTAv = a1v
2
1 + a2v

2
2 + a3v

2
3 (1.28)

This expression will be nonnegative for any v if, and only if, the entries an are all
nonnegative. This is because if any an is negative, say a2, then we can select a vector v
with an entry v2 that is large enough to result in a negative term a2v

2
2 that exceeds the

contribution of the other two terms in the sum vTAv. Therefore, for a diagonal matrix
to be positive semi-definite, it is necessary and sufficient that its diagonal entries be
nonnegative. Likewise, a diagonal matrix A is positive definite if, and only if, its diagonal
entries are positive. We cannot extrapolate and say that a general non-diagonal matrix
A is positive semi-definite if all its entries are nonnegative; this conclusion is not true,
as the next example shows.

Example 1.3 (Non-diagonal matrices) Consider the 2× 2 matrix

A =

[
3 −1
−1 3

]
(1.29)

This matrix is positive-definite. Indeed, pick any nonzero column vector v ∈ IR2. Then,

vTAv =
[
v1 v2

] [ 3 −1
−1 3

] [
v1

v2

]
= 3v2

1 + 3v2
2 − 2v1v2

= (v1 − v2)2 + 2v2
1 + 2v2

2

> 0, for any v 6= 0 (1.30)
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Among the several equivalent characterizations of positive-definite matrices, we
note that an N ×N real symmetric matrix A is positive-definite if, and only if,
all its N eigenvalues are positive:

A > 0 ⇐⇒ {λn > 0}Nn=1 (1.31)

One proof relies on the use of the eigen-decomposition of A.

Proof of (1.31): We need to prove the statement in both directions. Assume initially
that A is positive-definite and let us establish that all its eigenvalues are positive.
Let A = UΛUT denote the spectral decomposition of A. Let also un denote the n-th
column of U corresponding to the eigenvalue λn, i.e., Aun = λnun with ‖un‖2 = 1. If
we multiply this equality from the left by uT

n we get

uT
nAun = λn‖un‖2 = λn > 0 (1.32)

where the last inequality follows from the fact that uTAu > 0 for any nonzero vector
u since A is assumed to be positive-definite. Therefore, A > 0 implies λn > 0 for
n = 1, 2, . . . , N .

Conversely, assume all λn > 0 and let us show that A > 0. Multiply the equality
A = UΛUT by any nonzero vector v and its transpose, from right and left, to get

vTAv = vTUΛUTv (1.33)

Now introduce the real diagonal matrix

D
∆
= diag

{√
λ1,
√
λ2, . . . ,

√
λn
}

(1.34)

and the vector

s
∆
= DUTv (1.35)

The vector s is nonzero. This can be seen as follows. Let w = UTv. Then, the vectors
v and w have the same Euclidean norm since

‖w‖2 = wTw = vT UUT︸ ︷︷ ︸
=I

v = vTv = ‖v‖2 (1.36)

It follows that the vector w is nonzero since v is nonzero. Now since s = Dw and all
entries of D are nonzero, we conclude that s 6= 0. Returning to (1.33), we get

vTAv = ‖s‖2 > 0 (1.37)

for any nonzero v, which establishes that A > 0.
�

In a similar vein, we can show that

A ≥ 0 ⇐⇒ {λn ≥ 0}Nn=1 (1.38)

Example 1.4 (Positive-definite matrix) Consider again the 2× 2 matrix from Exam-
ple 1.3:

A =

[
3 −1
−1 3

]
(1.39)
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We established in that example from first principles that A > 0. Alternatively, we can
determine the eigenvalues of A and verify that they are positive. The eigenvalues are
the roots of the characteristic equation, det(λI −A) = 0, which leads to the quadratic
equation (λ− 3)2 − 1 = 0 so that λ1 = 4 > 0 and λ2 = 2 > 0.

A second useful property of positive-definite matrices is that they have positive
determinants. To see this, recall first that for two square matrices A and B it
holds that

det(AB) = det(A) det(B) (1.40)

That is, the determinant of the product is equal to the product of the determi-
nants. Now starting with a positive-definite matrix A, and applying the above
determinant formula to its eigen-decomposition (1.15a), we get

detA = (detU) (det Λ)
(
detUT

)
(1.41)

But UUT = I so that

(detU)
(
detUT

)
= 1 (1.42)

and we conclude that

detA = det Λ =
N∏

n=1

λn (1.43)

This result is actually general and holds for arbitrary square matrices A (the
matrices do not need to be symmetric or positive-definite): the determinant of a
matrix is always equal to the product of its eigenvalues (counting multiplicities)
— see Prob. 1.2. Now, when the matrix A happens to be positive-definite, all its
eigenvalues will be positive and, hence,

A > 0 =⇒ detA > 0 (1.44)

Note that this statement goes in one direction only; the converse is not true.

1.3 RANGE SPACES AND NULLSPACES

Let A denote an N ×M real matrix without any constraint on the relative sizes
of N and M . When N = M , we say that A is a square matrix. Otherwise, when
N > M , we say that A is a “tall” matrix and when N < M we say that A is a
“fat” matrix.
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Definitions
The column span or the range space of A is defined as the set of all N ×1 vectors
q that can be generated by Ap, for all M × 1 vectors p. We denote the column
span of A by

R(A)
∆
=
{
set of all q ∈ IRN such that q = Ap for some p ∈ IRM

}
(1.45)

Likewise, the nullspace of A is the set of all M × 1 vectors p that are annihilated
by A, namely, that satisfy Ap = 0. We denote the nullspace of A by

N(A)
∆
=
{
set of all p ∈ IRM such that Ap = 0

}
(1.46)

The rank of a matrix A is defined as the number of linearly independent
columns of A. It can be verified that, for any matrix A, the number of linearly
independent columns is also equal to the number of linearly independent rows
— see Prob. 1.5. It therefore holds that

rank(A) ≤ min{N,M} (1.47)

That is, the rank of a matrix never exceeds its smallest dimension. A matrix is
said to have full rank if

rank(A) = min{N,M} (1.48)

Otherwise, the matrix is said to be rank deficient.
If A is a square matrix (i.e., N = M), then rank deficiency is equivalent to a

zero determinant, detA = 0. Indeed, if A is rank deficient, then there exists a
nonzero p such that Ap = 0. This means that λ = 0 is an eigenvalue of A so that
its determinant must be zero.

Useful relations
One useful property that follows from the definition of range spaces and nullspaces
is that any vector z ∈ IRN from the nullspace of AT (not A) is orthogonal to any
vector q ∈ IRN in the range space of A, i.e.,

z ∈ N(AT), q ∈ R(A) =⇒ zTq = 0 (1.49)

Proof of (1.49): Indeed, z ∈ N(AT) implies that ATz = 0 or, equivalently, zTA = 0.
Now write q = Ap for some p. Then, zTq = zTAp = 0, as desired.

�

A second useful property is that the matrices ATA and AT have the same range
space (i.e., they span the same space). Also, A and ATA have the same nullspace,
i.e.,

R(AT) = R(ATA), N(A) = N(ATA) (1.50)
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Proof of (1.50): Consider a vector q ∈ R(ATA), i.e., q = ATAp for some p. Define r =
Ap, then q = ATr. This shows that q ∈ R(AT) and we conclude that R(ATA) ⊂ R(AT).
The proof of the converse statement requires more effort.

Consider a vector q ∈ R(AT) and let us show by contradiction that q ∈ R(ATA).
Assume, to the contrary, that q does not lie in R(ATA). This implies by (1.49) that there
exists a vector z in the nullspace of ATA that is not orthogonal to q, i.e., ATAz = 0 and
zTq 6= 0. Now, if we multiply the equality ATAz = 0 by zT from the left we obtain that
zTATAz = 0 or, equivalently, ‖Az‖2 = 0. Therefore, Az is necessarily the zero vector,
Az = 0. But from q ∈ R(AT) we have that q = ATp for some p. Then, it must hold that
zTq = zTATp = 0, which contradicts zTq 6= 0. Therefore, we must have q ∈ R(ATA)
and we conclude that R(AT) ⊂ R(ATA).

The second assertion in (1.50) is more immediate. If Ap = 0 then ATAp = 0 so
that N(A) ⊂ N(ATA). Conversely, if ATAp = 0 then pTATAp = ‖Ap‖2 = 0 and we
must have Ap = 0. That is, N(ATA) ⊂ N(A). Combining both facts we conclude that
N(A) = N(ATA).

�

Normal equations
One immediate consequence of result (1.50) is that linear systems of equations
of the following form:

ATAx = ATb (normal equations) (1.51)

are always consistent, i.e., they always have a solution x for any vector b. This
is because ATb belongs to R(AT) and, therefore, also belongs to R(ATA). This
type of linear systems of equations will appear as normal equations when we
study least-squares problems later in Chapter 50 — see Eq. (50.25); the reason
for the designation “normal equations” will be explained there. We can say more
about the solution of such equations. For example, when the coefficient matrix
ATA, which is always square regardless of the column and row dimensions of the
N×M matrix A, happens to be invertible, then the normal equations (1.51) will
have a unique solution given by

x = (ATA)−1ATb (1.52)

We explain further ahead in (1.58) that the matrix product ATA will be invertible
when the following two conditions hold: N ≥ M and A has full rank. In all
other cases, the matrix product ATA will be singular and will, therefore, have a
nontrivial nullspace. Let p be any nonzero vector in the nullspace of ATA. We
know from (1.50) that this vector also lies in the nullspace of A. Since we know
that a solution x always exists for (1.51) then, by adding any such p to x, we
obtain another solution. This is because:

ATA(x+ p) = ATAx+ATAp

= ATAx+ 0

= ATAx

= ATb (1.53)
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Knowing that there exist infinitely many vectors in N(ATA), e.g., any scaled
multiple of p belongs to the same nullspace, we conclude that when ATA is
singular, there will exist infinitely many solutions to the normal equations (1.51).
We therefore find that the normal equations (1.51) either have a unique solution
(when ATA is invertible) or infinitely many solutions (when ATA is singular).

We can be more explicit about the latter case and verify that, when infinitely
many solutions exist, they all differ by a vector in the nullspace of A. Indeed,
assume ATA is singular and let x1 and x2 denote two solutions to the normal
equations (1.51). Then,

ATAx1 = ATb, ATAx2 = ATb (1.54)

Subtracting these two equalities we find that

ATA(x1 − x2) = 0 (1.55)

which means that the difference x1 − x2 belongs to the nullspace of ATA or,
equivalently, to the nullspace of A in view of (1.50), namely,

x1 − x2 ∈ N(A) (1.56)

as claimed. We collect the results in the following statement for ease of reference.

Lemma 1.1. (Solution of normal equations) Consider the normal system of
equations ATAx = ATb, where A ∈ IRN×M , b ∈ IRN , and x ∈ IRM . The following
facts hold:

(a) A solution x always exists.
(b) The solution x is unique when ATA is invertible (i.e., when N ≥M and A

has full rank). In this case, the solution is given by expression (1.52).
(c) There exist infinitely many solutions x when ATA is singular.
(d) Under (c), any two solutions x1 and x2 will differ by a vector in N(A), i.e.,

(1.56) holds.

The next result clarifies when the matrix product ATA is invertible. Note in
particular that the matrix ATA is symmetric and nonnegative-definite; the latter
property is because, for any nonzero x, it holds that

xTATAx = ‖Ax‖2 ≥ 0 (1.57)

Thus, let A be N ×M , with N ≥M (i.e., A is a “tall” or square matrix). Then,

A has full rank ⇐⇒ ATA is positive-definite (1.58)

That is, every tall full rank matrix is such that the square matrix ATA is invert-
ible (actually, positive-definite).

Proof of (1.58): Assume first that A has full rank. This means that all columns of
A are linearly independent, which in turn means that Ax 6= 0 for any nonzero x.
Consequently, it holds that ‖Ax‖2 > 0, which is equivalent to xTATAx > 0 for any
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x 6= 0. It follows that ATA > 0. Conversely, assume that ATA > 0. This means that
xTATAx > 0 for any nonzero x, which is equivalent to ‖Ax‖2 > 0 and, hence, Ax 6= 0.
It follows that the columns of A are linearly independent so that A has full column
rank.

�

In fact, when A has full rank, not only ATA is positive-definite, but also any
product of the form ATBA for any symmetric positive-definite matrix B. Specif-
ically, if B > 0, then

A : N ×M, N ≥M, full rank ⇐⇒ ATBA > 0 (1.59)

Proof of (1.59): Assume first that A has full rank. This means that all columns of A are
linearly independent, which in turn means that the vector z = Ax 6= 0 for any nonzero
x. Now, since B > 0, it holds that zTBz > 0 and, hence, xTATBAx > 0 for any nonzero
x. It follows that ATBA > 0. Conversely, assume that ATBA > 0. This means that
xTATBAx > 0 for any nonzero x, which allows us to conclude, by contradiction, that
A must be full rank. Indeed, assume not. Then, there should exist a nonzero vector p
such that Ap = 0, which implies that pTATBAp = 0. This conclusion contradicts the
fact that xTATBAx > 0 for any nonzero x. Therefore, A has full rank, as desired.

�

1.4 SCHUR COMPLEMENTS

There is a useful block triangularization formula that can often be used to fa-
cilitate the computation of matrix inverses or to reduce matrices to convenient
block diagonal forms.

In this section we assume inverses exist whenever needed. Thus, consider a
real block matrix:

S =

[
A B

C D

]
(1.60)

The Schur complement of A in S is denoted by ∆A and is defined as the quantity:

∆A
∆
= D − CA−1B (1.61)

Likewise, the Schur complement of D in S is denoted by ∆D and is defined as

∆D
∆
= A−BD−1C (1.62)

Block triangular factorizations
In terms of these Schur complements, it is easy to verify by direct calculation
that the block matrix S can be factored in either of the following two useful
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forms:
[
A B

C D

]
=

[
I 0

CA−1 I

] [
A 0

0 ∆A

] [
I A−1B

0 I

]

=

[
I BD−1

0 I

] [
∆D 0

0 D

] [
I 0

D−1C I

] (1.63)

Two useful results that follow directly from these factorizations are the determi-
nantal formulae:

det

[
A B

C D

]
= detA det(D − CA−1B) (1.64a)

= detD det(A−BD−1C) (1.64b)

Block inversion formulas
Moreover, by inverting both sides of (1.63), we readily conclude that
[
A B

C D

]−1

=

[
I −A−1B

0 I

] [
A−1 0

0 ∆−1
A

] [
I 0

−CA−1 I

]

=

[
I 0

−D−1C I

] [
∆−1
D 0

0 D−1

] [
I −BD−1

0 I

] (1.65)

where we used the fact that for block triangular matrices it holds
[
I 0

X I

]−1

=

[
I 0

−X I

]
,

[
I X

0 I

]−1

=

[
I −X
0 I

]
(1.66)

If we expand expressions (1.65) we can also write

[
A B

C D

]−1

=

[
A−1 +A−1B∆−1

A CA−1 −A−1B∆−1
A

−∆−1
A CA−1 ∆−1

A

]

=

[
∆−1
D −∆−1

D BD−1

−D−1C∆−1
D D−1 +D−1C∆−1

D BD−1

] (1.67)

Matrix inertia and congruence
When the block matrix S is symmetric, its eigenvalues are real. We define the
inertia of S as the triplet:

In{S} ∆
=
{
I+, I−, I0

}
(1.68)
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in terms of the integers:

I+(S) = the number of positive eigenvalues of S (1.69a)

I−(S) = the number of negative eigenvalues of S (1.69b)

I0(S) = the number of zero eigenvalues of S (1.69c)

Now, given a symmetric matrix S and any invertible matrix Q, the matrices S
and QSQT are said to be congruent. An important result regarding congruent
matrices is that congruence preserves inertia, i.e., it holds that

In{S} = In
{
QSQT

}
(congruence) (1.70)

so that the matrices S andQSQT will have the same number of positive, negative,
and zero eigenvalues for any invertible Q. This result is known as Sylvester law
of inertia.

Example 1.5 (Inertia and Schur complements) One immediate application of the above
congruence result is the following characterization of the inertia of a matrix in terms of
the inertia of its Schur complements. Thus, assume that S is symmetric with the block
structure:

S =

[
A B
BT D

]
, where A = AT and D = DT (1.71)

Consider the corresponding block factorizations (1.63):[
A B
BT D

]
=

[
I 0

BTA−1 I

] [
A 0
0 ∆A

] [
I A−1B
0 I

]
(1.72a)

=

[
I BD−1

0 I

] [
∆D 0
0 D

] [
I 0

D−1BT I

]
(1.72b)

in terms of the Schur complements:

∆A = D −BTA−1B, ∆D = A−BD−1BT (1.73)

The factorizations (1.72a)–(1.72b) have the form of congruence relations so that we
must have

In{S} = In
{[

A 0
0 ∆A

]}
and In{S} = In

{[
∆D 0
0 D

]}
(1.74)

When S is positive-definite, all its eigenvalues are positive. Then, from the above in-
ertia equalities, it follows that the matrices {A,∆A,∆D, D} can only have positive
eigenvalues. In other words, it must hold that

S > 0 ⇐⇒ A > 0 and ∆A > 0 (1.75a)

Likewise,

S > 0 ⇐⇒ D > 0 and ∆D > 0 (1.75b)
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Example 1.6 (A completion-of-squares formula) Consider a quadratic expression of
the form

J(x) = xTAx− 2bTx+ α, A ∈ IRM×M , b ∈ IRM×1, α ∈ IR (1.76)

where A is assumed invertible and symmetric. We write J(x) in the form

J(x) =
[
xT 1

] [ A −b
−bT α

] [
x
1

]
(1.77)

Usually, the block matrix [
A −b
−bT α

]
(1.78)

is positive-definite in which case A is positive-definite and the Schur complement rel-
ative to it, namely, α − bTA−1b, is also positive. Next, we introduce the triangular
factorization[

A −b
−bT α

]
=

[
IM 0

−bTA−1 1

] [
A 0
0 α− bTA−1b

] [
IM −A−1b
0 1

]
(1.79)

and substitute it into (1.77) to get

J(x) = (x− x̂)TA(x− x̂) + (α− bTA−1b) (1.80)

where x̂ = A−1b. Decomposition (1.80) is referred to as a “sum-of-squares” expression
since it is the sum of two positive terms.

Matrix inversion formula
For matrices of compatible dimensions, and invertible A, it holds that

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1 (1.81)

This is a useful matrix identity that shows how the inverse of a matrix A is
modified when it is perturbed by a product, BCD. The validity of the expression
can be readily checked by multiplying both sides by A+BCD.

1.5 CHOLESKY FACTORIZATION

The Cholesky factorization of a positive-definite matrix is a useful computational
tool and it can be motivated by means of the Schur decomposition results dis-
cussed above. Thus, consider an M ×M symmetric positive-definite matrix A
and partition it in the following manner

A =

[
α bT

b D

]
(1.82)

where α is its leading diagonal entry, b is an (M − 1) × 1 column vector, and
D has dimensions (M − 1)× (M − 1). The positive-definiteness of A guarantees
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α > 0 and D > 0. Using (1.72a), let us consider the following block factorization
for A:

A =

[
1 0

b/α IM−1

] [
α 0

0 ∆α

] [
1 bT/α

0 IM−1

]
(1.83a)

∆α = D − bbT/α (1.83b)

We can rewrite the factorization more compactly in the form:

A = L0

[
d(0)

∆0

]
LT

0 (1.84)

where L0 is the lower-triangular matrix

L0
∆
=

[
1 0

b/α IM−1

]
(1.85)

and d(0) = α, ∆0 = ∆α. Observe that the first column of L0 is the first column of
A normalized by the inverse of its leading diagonal entry. Moreover, the positive-
definiteness of A guarantees d(0) > 0 and ∆0 > 0.

Expression (1.84) provides a factorization for A that consists of a lower-
triangular matrix L0 followed by a block-diagonalmatrix and an upper-triangular
matrix. Now since ∆0 is itself positive-definite, we can repeat the construction
and introduce a similar factorization for it, which we denote by

∆0 = L1

[
d(1)

∆1

]
LT

1 (1.86)

for some lower-triangular matrix L1 and where d(1) is the leading diagonal entry
of ∆0. Moreover, ∆1 is the Schur complement relative to d(1) in ∆0, and its
dimensions are (M − 2)× (M − 2). In addition, the first column of L1 coincides
with the first column of ∆0 normalized by the inverse of its leading diagonal
entry. Also, the positive-definiteness of ∆0 guarantees d(1) > 0 and ∆1 > 0.
Substituting the above factorization for ∆0 into the factorization for A we get

A = L0

[
1

L1

]

d(0)

d(1)

∆1



[

1

LT
1

]
LT

0 (1.87)

But since the product of two lower-triangular matrices is also lower-triangular,
we conclude that the product

L1
∆
= L0

[
1

L1

]

is lower-triangular and we denote it by L1. Using this notation, we write instead

A = L1



d(0)

d(1)

∆1


LT

1 (1.88)



16 Matrix Theory

Clearly, the first column of L1 is the first column of L0 and the second column
of L1 is formed from the first column of L1.

We can proceed to factor ∆1, which would lead to an expression of the form

A = L2




d(0)

d(1)

d(2)

∆2


LT

2 (1.89)

where d(2) > 0 is the (0, 0) entry of ∆1 and ∆2 > 0 is the Schur complement
of d(2) in ∆1. Continuing in this fashion we arrive after (M − 1) Schur comple-
mentation steps at a factorization for A of the form

A = LM−1DLT
M−1 (1.90)

where LM−1 is M ×M lower-triangular and D is M ×M diagonal with positive
entries {d(m)}. The columns of LM−1 are the successive leading columns of the
Schur complements {∆m}, normalized by the inverses of their leading diagonal
entries. The diagonal entries of D coincide with these leading entries.

If we define L̄ ∆
= Ln−1D

1/2, where D1/2 is a diagonal matrix with the positive
square-roots of the {a(m)}, we obtain

A = L̄L̄T (lower-upper triangular factorization) (1.91)

In summary, this constructive argument shows that every positive-definite matrix
can be factored as the product of a lower-triangular matrix with positive diagonal
entries by its transpose. This factorization is known as the Cholesky factorization
of A. Had we instead partitioned A as

A =

[
B b

bT β

]
(1.92)

where β > 0 is now a scalar, and had we used the block factorization (1.72b),
we would have arrived at a similar factorization for A albeit one of the form:

A = Ū ŪT (upper-lower triangular factorization) (1.93)

where Ū is an upper-triangular matrix with positive diagonal entries. The two
triangular factorizations are illustrated in Fig. 1.1.

Lemma 1.2. (Cholesky factorization) Every positive-definite matrix A admits
a unique factorization of either form A = L̄L̄T = Ū ŪT, where L̄ (Ū) is a lower
(upper)-triangular matrix with positive entries along its diagonal.

Proof: The existence of the factorizations was proved prior to the statement of the
lemma. It remains to establish uniqueness. We show this for one of the factorizations.
A similar argument applies to the other factorization. Thus, assume that

A = L̄1L̄
T
1 = L̄2L̄

T
2 (1.94)
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Figure 1.1 Two triangular factorizations for an N ×N matrix A. The triangular
factors {L̄, Ū} are both N ×N with positive entries on their main diagonal.

are two Cholesky factorizations for A. Then,

L̄−1
2 L̄1 = L̄T

2 L̄
−T
1 (1.95)

where the compact notation A−T stands for [AT]−1. But since the inverse of a lower-
triangular matrix is lower-triangular, and since the product of two lower-triangular
matrices is also lower-triangular, we conclude that L̄−1

2 L̄1 is lower-triangular. Likewise,
the product L̄T

2 L̄
−T
1 is upper-triangular. Therefore, equality (1.95) will hold if, and only

if, L̄−1
2 L̄1 is diagonal, which means that

L̄1 = L̄2D (1.96)

for some diagonal matrix D. We want to show that D is the identity matrix. Indeed,
it is easy to see from (1.94) that the (0, 0) entries of L̄1 and L̄2 must coincide so that
the leading entry of D must be unity. This further implies from (1.96) that the first
column of L̄1 should coincide with the first column of L̄2, so that using (1.94) again we
conclude that the (1, 1) entries of L̄1 and L̄2 also coincide. Hence, the second entry of
D is also unity. Proceeding in this fashion we conclude D = I.

�

Remark 1.1. (Triangular factorization) We also conclude from the discussion in this
section that every positive-definite matrix A admits a unique factorization of either
form A = LDLT = UDuU

T, where L (U) is a lower (upper)-triangular matrix with
unit diagonal entries, and D and Du are diagonal matrices with positive entries.

�
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1.6 QR DECOMPOSITION

The QR decomposition of a matrix is a very useful tool; for example, it can be
used to derive numerically robust implementations for the solution of normal
equations of the form (1.51) — see the comments at the end of the chapter
following (1.216) and also future Prob. 50.5. It can also be used to replace a
collection of vectors by an orthonormal basis.

Consider an N ×M real matrix A with N ≥ M . We denote the individual
columns of A by {hm, m = 1, 2, . . . ,M}:

A =
[
h1 h2 . . . hM

]
, hm ∈ IRN (1.97)

The column span, R(A), is the result of all linear combinations of these columns.
The vectors {hm} are not generally orthogonal to each other. They can, however,
be converted into an orthonormal set of vectors, which we denote by {qm, m =

1, 2, . . . ,M} and which will span the same R(A). This objective can be achieved
by means of the Gram-Schmidt procedure. It is an iterative procedure that starts
by setting:

q1 = h1/‖h1‖, r1
∆
= h1 (1.98)

and then repeats for m = 2, . . . ,M :

rm = hm −
m−1∑

j=1

(
hTmqj

)
qj (1.99a)

qm = rm/‖rm‖ (1.99b)

By iterating this construction, we end up expressing each column hm as a linear
combination of the vectors {q1, q2, . . . , qm} as follows:

hm = (hTmq1)q1 + (hTmq2)q2 + . . .+ (hTmqm−1)qm−1 + ‖rm‖ qm (1.100)

If we collect the coefficients of this linear combination, for all m = 1, 2, . . . ,M,

into the columns of an M ×M upper-triangular matrix R:

R
∆
=




‖r1‖ hT2 q1 hT3 q1 . . . hTMq1

‖r2‖ hT3 q2 . . . hTMq2

‖r3‖
...

. . . hTMqM−1

‖rM‖




(1.101)

we conclude from (1.100) that

A = Q̂R (1.102)

where Q̂ is the N ×M matrix with orthonormal columns {qm}, i.e.,

Q̂ =
[
q1 q2 . . . qM

]
(1.103)
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with

qTmqs =

{
0, m 6= s

1, m = s
(1.104)

When A has full rank, i.e., when A has rank M , all the diagonal entries of R
will be positive. The factorization A = Q̂R is referred to as the reduced QR
decomposition of A, and it simply amounts to the orthonormalization of the
columns of A.

It is often more convenient to employ the full QR decomposition of A ∈
IRN×M , as opposed to its reduced decomposition. The full decomposition is ob-
tained by appending N −M orthonormal columns to Q̂ so that it becomes an
orthogonal N ×N (square) matrix Q. We also append rows of zeros to R so that
(1.102) becomes — see Fig. 1.2:

A = Q

[
R

0

]
, Q (N ×N), R (M ×M) (1.105)

where

Q =
[
Q̂ qM+1 . . . qN

]
, QTQ = IN (1.106)

Figure 1.2 Full QR decomposition of an N ×M matrix A, where Q is N ×N
orthogonal and R is M ×M upper triangular.

Example 1.7 (Cholesky and QR factorizations) Consider a full rank N ×M matrix
A with N ≥ M and introduce its QR decomposition (1.105). Then, ATA is positive-
definite and its Cholesky factorization is given by

ATA = RTR (1.107)
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1.7 SINGULAR VALUE DECOMPOSITION

The singular value decomposition (SVD) of a matrix is another powerful tool that
is useful for both analytical and numerical purposes. It enables us to represent
any matrix (square or not, invertible or not, symmetric or not) as the product
of three matrices with special and desirable properties: two of the matrices are
orthogonal and the third matrix is composed of a diagonal matrix and a zero
block.

Definition
The SVD of a real matrix A states that if A is N×M , then there exist an N×N
orthogonal matrix U (UUT = IN ), anM×M orthogonal matrix V (V V T = IM ),

and a diagonal matrix Σ with nonnegative entries such that:

(a) If N ≤M , then Σ is N ×N and

A = U
[

Σ 0
]
V T, A ∈ IRN×M , N ≤M (1.108a)

(b) If N ≥M , then Σ is M ×M and

A = U

[
Σ

0

]
V T, A ∈ IRN×M , N ≥M (1.108b)

Observe that U and V are square matrices, while the central matrix in (1.108a)–
(1.108b) has the dimensions of A. Both factorizations are illustrated in Fig. 1.3.
The diagonal entries of Σ are called the singular values of A and are ordered in
decreasing order, say,

Σ = diag
{
σ1, σ2, . . . , σr, 0, . . . , 0

}
(1.109)

with

σ1 ≥ σ2 ≥ . . . ≥ σr > 0 (1.110)

If Σ has r nonzero diagonal entries then A has rank r. The columns of U and V
are called the left and right singular vectors of A, respectively. The ratio of the
largest to smallest singular value of A is called the condition number of A and is
denoted by

κ(A)
∆
= σ1/σr (1.111)

One constructive proof for the SVD is given in Appendix 1.B.
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Figure 1.3 Singular value decompositions of an N ×M matrix A for both cases when
N ≥M and N ≤M .

Pseudo Inverses
The pseudo-inverse of a matrix is a generalization of the concept of inverses for
square invertible matrices; it is defined for matrices that need not be invertible
or even square.

Given an N×M matrix A of rank r, its pseudo-inverse is defined as the unique
M ×N matrix A† that satisfies the following four requirements:

(i) AA†A = A (1.112a)

(ii) A†AA† = A† (1.112b)

(iii) (AA†)T = AA† (1.112c)

(iv) (A†A)T = A†A (1.112d)

The SVD of A can be used to determine its pseudo-inverse as follows. Introduce
the matrix

Σ† = diagonal
{
σ−1

1 , σ−1
2 , . . . , σ−1

r , 0, . . . , 0
}

(1.113)

That is, we invert the nonzero entries of Σ and keep the zero entries unchanged.

(a) When N ≤M , we define

A† = V

[
Σ†

0

]
UT (1.114)
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(b) When N ≥M , we define

A† = V
[

Σ† 0
]
UT (1.115)

It can be verified that these expressions for A† satisfy the four defining properties
(1.112a)–(1.112d) listed above.

Example 1.8 (Full rank matrices) It can also be verified, by replacing A by its SVD
in the expressions below, that when A ∈ IRN×M has full rank, its pseudo-inverse is
given by the following expressions:

A† = AT(AAT)−1, when N ≤M (1.116a)

A† = (ATA)−1AT, when N ≥M (1.116b)

1.8 SQUARE-ROOT MATRICES

One useful concept in matrix analysis is that of the square-root matrix. Although
square-roots can be defined for nonnegative-definite matrices, it is sufficient for
our purposes to focus on positive-definite matrices. Thus, consider an N × N
positive-definite matrix A and introduce its eigen-decomposition

A = UΛUT (1.117)

where Λ is an N ×N diagonal with positive entries and U is N ×N orthogonal:

UUT = UTU = IN (1.118)

Let Λ1/2 denote the diagonal matrix whose entries are the positive square-roots
of the diagonal entries of Λ. Then, we can rewrite (1.117) as

A =
(
UΛ1/2

) (
UΛ1/2

)T
(1.119)

which expresses A as the product of an N ×N matrix and its transpose, namely,

A = XXT, with X = UΛ1/2 (1.120)

We say that X is a square-root for A.

Definition 1.1. (Square-root factors) A square-root of an N ×N positive-
definite matrix A is any N ×N matrix X satisfying A = XXT. The square-root
is said to be symmetric if X = XT in which case A = X2.

The construction prior to the definition exhibits one possible choice for X,
namely, X = UΛ1/2, in terms of the eigenvectors and eigenvalues of A. However,
square-root factors are not unique. If we consider the above X and multiply it
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by any orthogonal matrix Θ, say, X̄ = XΘ where ΘΘT = IN , then X̄ is also a
square-root factor for A since

X̄X̄T = X ΘΘT
︸ ︷︷ ︸

=I

XT = XXT = A (1.121)

In particular, for the same matrix A = UΛUT, the matrix X = UΛ1/2UT is
also a square-root for A. And, this particular square-root factor happens to be
symmetric. This argument shows that every symmetric positive-definite matrix
A admits a symmetric square-root factor for which we can write A = X2.

Notation
It is customary to use the notation A1/2 to refer to a square-root of a matrix A
and, therefore, we write

A = A1/2
(
A1/2

)T
(1.122a)

It is also customary to employ the compact notation

AT/2 ∆
=
(
A1/2

)T
, A−1/2 ∆

=
(
A1/2

)−1

, A−T/2
∆
=
(
A1/2

)−T
(1.122b)

so that

A = A1/2AT/2, A−1 = A−T/2A−1/2 (1.122c)

Cholesky factor
One of the most widely used square-root factors of a positive-definite matrix is
its Cholesky factor. Recall that we showed in Sec. 1.5 that every positive-definite
matrix A admits a unique triangular factorization of the form A = L̄L̄T, where L̄
is a lower-triangular matrix with positive entries on its diagonal. We could also
consider the alternative factorization A = Ū ŪT in terms of an upper triangular
matrix Ū . Comparing these forms with the defining relation A = XXT, we
conclude that L̄ and Ū are valid choices for square-root factors of A. When one
refers to the square-root of a matrix, it is generally meant its (lower or upper
triangular) Cholesky factor. This choice has two advantages in relation to other
square-root factors: it is triangular and is uniquely defined (i.e., there is no other
triangular square-root factor with positive diagonal entries).

Example 1.9 (Basis rotation) The following is an important matrix result that is crit-
ical to the development of algorithms that compute and propagate square-root factors.
Consider two N ×M (N ≤ M) matrices A and B. Then AAT = BBT if, and only if,
there exists an M ×M orthogonal matrix Θ such that A = BΘ.

Proof: One direction is obvious. If A = BΘ, for some orthogonal matrix Θ, then

AAT = (BΘ)(BΘ)T = B(ΘΘT)BT = BBT (1.123)
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One proof for the converse implication follows by using the singular value decomposi-
tions of A and B:

A = UA
[

ΣA 0
]
V T
A , B = UB

[
ΣB 0

]
V T
B (1.124)

where UA and UB are N ×N orthogonal matrices, VA and VB are M ×M orthogonal
matrices, and ΣA and ΣB are N ×N diagonal matrices with nonnegative entries. The
squares of the diagonal entries of ΣA (ΣB) are the eigenvalues of AAT (BBT). Moreover,
UA (UB) are constructed from an orthonormal basis for the right eigenvectors of AAT

(BBT). Hence, it follows from the identity AAT = BBT that ΣA = ΣB and UA = UB .
Let Θ = VBV

T
A . Then, it holds that ΘΘT = I and BΘ = A.

�

1.9 KRONECKER PRODUCTS

Let A = [aij ]
N
i,j=1 and B = [bij ]

M
i,j=1 be N ×N and M ×M real-valued matrices,

respectively, whose individual (i, j)−th entries are denoted by aij and bij . Their
Kronecker product is denoted by K = A ⊗ B and is defined as the NM ×NM
matrix whose entries are given by:

K
∆
= A⊗B =




a11B a12B . . . a1NB

a21B a22B . . . a2NB
...

...
aN1B aN2B . . . aNNB


 (1.125)

In other words, each scalar entry aij of A is replaced by a block quantity that is
equal to a scaled multiple of B, namely, aijB.

1.9.1 Properties

Let {λi(A), i = 1, . . . , N} and {λj(B), j = 1, . . . ,M} denote the eigenvalues of A
and B, respectively. Then, the eigenvalues of A⊗B will consist of all nm product
combinations {λi(A)λj(B)}. A similar conclusion holds for the singular values
of A ⊗ B in relation to the singular values of the individual matrices A and B,
which we denote by {σi(A), σj(B)}. Table 1.1 lists several well-known properties
of Kronecker products for matrices {A,B,C,D} of compatible dimensions and
column vectors {x, y}. The last three properties involve the trace and vec opera-
tions: the trace of a square matrix is the sum of its diagonal elements, while the
vec operation transforms a matrix into a vector by stacking the columns of the
matrix on top of each other.

Example 1.10 (Derivation of select properties) Property (2) in Table 1.1 follows by
direct calculation from the definition of Kronecker products. Property (4) follows by
using property (2) to note that

(A⊗B)(A−1 ⊗B−1) = IN ⊗ IM = INM (1.126)
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Table 1.1 Properties for the Kronecker product (1.125).
relation property

1. (A+B)⊗ C = (A⊗ C) + (B ⊗ C) distributive property

2. (A⊗B)(C ⊗D) = (AC ⊗BD) multiplication property

3. (A⊗B)T = AT ⊗BT transposition property

4. (A⊗B)−1 = A−1 ⊗B−1 inversion property

5. (A⊗B)` = A` ⊗B`, integer ` exponentiation property

6. {λ(A⊗B)} = {λi(A)λj(B)}N,Mi=1,j=1 eigenvalues

7. {σ(A⊗B)} = {σi(A)σj(B)}N,Mi=1,j=1 singular values

8. det(A⊗B) = (detA)M (detB)N determinant property

9. Tr(A⊗B) = Tr(A)Tr(B) trace of Kronecher product

10. Tr(AB) =
(
vec(BT)

)T
vec(A) trace of matrix product

11. vec(ACB) = (BT ⊗A)vec(C) vectorization property

12. vec(xyT) = y ⊗ x vectorization of outer product

Property (6) follows from property (2) by choosing C as a right eigenvector for A and
D as a right eigenvector for B, say, C = qi and D = pj where

Aqi = λi(A)qi, Bpj = λj(B)pj (1.127)

Then,
(A⊗B)(qi ⊗ pj) = λi(A)λj(B)(qi ⊗ pj) (1.128)

which shows that (qi ⊗ pj) is an eigenvector of (A ⊗ B) with eigenvalue λi(A)λj(B).
Property (9) follows from property (6) for square matrices since

Tr(A) =

N∑
i=1

λi(A), Tr(B) =

M∑
j=1

λj(B) (1.129)

and, therefore,

Tr(A)Tr(B) =

(
N∑
i=1

λi(A)

)(
M∑
j=1

λj(B)

)

=

N∑
i=1

M∑
j=1

λi(A)λj(B)

= Tr(A⊗B) (1.130)

Property (8) also follows from property (6) since

det(A⊗B) =

N∏
i=1

M∏
j=1

λi(A)λj(B)

=

(
N∏
i=1

λi(A)

)M (
M∏
j=1

λj(B)

)N
= (detA)M (detB)N (1.131)
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Property (11) follows from the definition of Kronecker products and from noting that,
for any two column vectors x and y, the vec representation of the rank one matrix xyT
is y ⊗ x, i.e., vec(xyT) = y ⊗ x, which is property (12). Finally, property (3) follows
from the definition of Kronecker products.

Example 1.11 (Discrete-time Lyapunov equations) Consider N × N matrices X,A,
and Q, where Q is symmetric and non-negative definite. The matrix X is said to
satisfy a discrete-time Lyapunov equation, also called a Stein equation, if

X −ATXA = Q (1.132)

Let λk(A) denote any of the eigenvalues of A. We say that A is a stable matrix when
all of its eigenvalues lie strictly inside the unit disc (i.e., their magnitudes are strictly
less than one). Using properties of the Kronecker product, it can be verified that the
following important facts hold:

(a) The solution X of (1.132) is unique if, and only if, λk(A)λ`(A) 6= 1 for all k, ` =
1, 2, . . . , N . In this case, the unique solution X is symmetric.

(b) When A is stable, the solution X is unique, symmetric, and nonnegative-definite.
Moreover, it admits the series representation:

X =

∞∑
n=0

(AT)nQAn (1.133)

Proof: We call upon property (11) from Table 1.1 and apply the vec operation to both
sides of (1.132) to get

(I −AT ⊗AT)vec(X) = vec(Q) (1.134)

This linear system of equations has a unique solution, vec(X), if, and only if, the coeffi-
cient matrix, I−AT⊗AT, is nonsingular. This latter condition requires λk(A)λ`(A) 6= 1
for all k, ` = 1, 2, . . . , N . When A is stable, all of its eigenvalues lie strictly inside the
unit disc and this uniqueness condition is automatically satisfied. If we transpose both
sides of (1.132) we find that XT satisfies the same Lyapunov equation as X and, hence,
by uniqueness, we must have X = XT. Finally, let F = AT⊗AT. When A is stable, the
matrix F is also stable by property (6) from Table 1.1. In this case, the matrix inverse
(I − F )−1 admits the series expansion

(I − F )−1 = I + F + F 2 + F 3 + . . . (1.135)

so that using (1.134) we have

vec(X) = (I − F )−1vec(Q)

=

∞∑
n=0

Fn vec(Q)

=

∞∑
n=0

(
(AT)n ⊗ (AT)n

)
vec(Q)

=

∞∑
n=0

vec
(

(AT)nQAn
)

(1.136)

from which we deduce the series representation (1.133). The last equality in (1.136)
follows from property (11) in Table 1.1.
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Example 1.12 (Continuous-time Lyapunov equations) We extend the analysis of Ex-
ample 1.11 to the following continuous-time Lyapunov equation (also called a Sylvester
equation):

XAT +AX +Q = 0 (1.137)

where Q continues to be symmetric and nonnegative definite. In the continuous-time
case, a stable matrix A is one whose eigenvalues lie in the open left-half plane (i.e.,
they have strictly negative real parts). The following facts hold:

(a) The solution X of (1.137) is unique if, and only if, λk(A) + λ`(A) 6= 0 for all
k, ` = 1, 2, . . . , N . In this case, the unique solution X is symmetric.

(b) When A is stable (i.e., all its eigenvalues lie in the open left-half plane), the
solution X is unique, symmetric, and nonnegative-definite. Moreover, it admits
the integral representation

X =

ˆ ∞
0

eAtQeA
Ttdt (1.138)

where the notation eAt refers to the matrix exponential function evaluated at At.
By definition, this function is equal to the following series representation:

eAt = IN +
1

1!
At+

1

2!
A2t2 +

1

3!
A3t3 + . . . (1.139)

Proof: We use property (11) from Table 1.1 and apply the vec operation to both sides
of (1.137) to get [

(AT ⊗ I) + (I ⊗A)
]
vec(X) = −vec(Q) (1.140)

This linear system of equations has a unique solution, vec(X), if, and only if, the
coefficient matrix, (AT ⊗ I) + (I ⊗ A), is nonsingular. This latter condition requires
λk(A) +λ`(A) 6= 0 for all k, ` = 1, 2, . . . , N . To see this, let F = (AT⊗ I) + (I ⊗A) and
let us verify that the eigenvalues of F are given by all linear combinations λk(A)+λ`(A).
Consider the eigenvalue-eigenvector pairs Axk = λk(A)xk and ATy` = λ`(A)y`. Then,
using property (2) from Table 1.1 for Kronecker products we get

F (y` ⊗ xk) =
[
(AT ⊗ I) + (I ⊗A)

]
(y` ⊗ xk)

= (ATy` ⊗ xk) + (y` ⊗Axk)

= λ`(A)(y` ⊗ xk) + λk(A)(y` ⊗ xk)

= (λk(A) + λ`(A))(y` ⊗ xk) (1.141)

so that the vector (y` ⊗ xk) is an eigenvector for F with eigenvalue λk(A) + λ`(A), as
claimed. If we now transpose both sides of (1.137) we find that XT satisfies the same
Lyapunov equation as X and, hence, by uniqueness, we must have X = XT. Moreover,
it follows from the integral representation (1.138) that X is nonnegative-definite since
Q ≥ 0 and eA

Tt = (eAt)T. To establish the integral representation we verify that it
satisfies the Sylvester equation (1.137) so that, by uniqueness, the solution X should
agree with it. Thus, let

Y
∆
=

ˆ ∞
0

eAtQeA
Ttdt (1.142)
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and note that — refer to Prob. 1.20:

AY + Y AT =

ˆ ∞
0

(
AeAtQeA

Tt + eAtQeA
TtAT

)
dt

=

ˆ ∞
0

d

dt

(
eAtQeA

Tt
)
dt

= eAtQeA
Tt
∣∣∣∞
t=0

= −Q (1.143)

so that AY + Y AT + Q = 0 and Y satisfies the same Sylvester equation as X. By
uniqueness, we conclude that the integral representation (1.138) holds.

1.9.2 Block Kronecker Products

Let A now denote a block matrix of size NP ×NP with each block having size
P ×P . We denote the (i, j)−th block of A by the notation Aij ; it is a matrix of
size P ×P . Likewise, let B denote a second block matrix of size MP ×MP with
each of its blocks having the same size P × P . We denote the (i, j)−th block of
B by the notation Bij ; it is a matrix of size P × P :

A =




A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

AN1 AN2 . . . ANN


 (1.144a)

B =




B11 B12 . . . B1M

B21 B22 . . . B2M

...
...

BM1 BM2 . . . BMM


 (1.144b)

The block Kronecker product of these two matrices is denoted by K = A ⊗b B
and is defined as the following block matrix of dimensions NMP 2 ×NMP 2:

K
∆
= A⊗b B =




K11 K12 . . . K1N

K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN


 (1.145)

where each block Kij is MP 2 ×MP 2 and is constructed as follows:

Kij =




Aij ⊗B11 Aij ⊗B12 . . . Aij ⊗B1M

Aij ⊗B21 Aij ⊗B22 . . . Aij ⊗B2M

...
...

. . .
...

Aij ⊗BM1 Aij ⊗BM2 . . . Aij ⊗BMM


 (1.146)
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Table 1.2 lists some useful properties of block Kronecker products for matrices
{A,B,C,D} with blocks of size P × P . The last three properties involve the
block vectorization operation denoted by bvec: it vectorizes each block entry of
the matrix and then stacks the resulting columns on top of each other, i.e.,

bvec(A)
∆
=




vec(A11)
...

vec(AN1)

vec(A21)
...

vec(AN2)

...

vec(A1N )
...

vec(ANN )




}
first block column of A

}
last block column of A

(1.147)

Expression (1.148) illustrates one of the advantages of working with the bvec
operation for block matrices. It compares the effect of the block vectorization
operation to that of the regular vec operation. It is seen that bvec preserves
the locality of the blocks from the original matrix: entries arising from the same
block appear together followed by entries from other blocks. In contrast, in the
regular vec construction, entries from different blocks are mixed together.




◦
◦
�
�

•
•
�
�

M
M
?

?

N
N
F
F




vec(A)⇐=




◦ • M N
◦ • M N

� � ? F
� � ? F




︸ ︷︷ ︸
=A

bvec(A)
=⇒




◦
◦
•
•
�
�
�
�

M
M
N
N

?

?

F
F




(1.148)
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Table 1.2 Properties for the block Kronecker product (1.145).
relation property

1. (A + B)⊗b C = (A⊗b C) + (B⊗b C) distributive property

2. (A⊗b B)(C⊗b D) = (AC⊗b BD) multiplication property

3. (A⊗b B)T = AT ⊗b BT transposition property

4. {λ(A⊗b B)} = {λi(A)λj(B)}NP,MP
i=1,j=1 eigenvalues

5. Tr(AB) =
(
bvec(BT)

)T
bvec(A) trace of matrix product

6. bvec(ACB) = (BT ⊗b A)bvec(C) block vectorization property

7. bvec(xyT) = y ⊗b x vectorization of outer product

1.10 VECTOR AND MATRIX NORMS

We list in this section several useful vector and matrix norms, which will arise
regularly in studies of inference and learning methods.

Definition of norms
If we let X denote an arbitrary real matrix or vector quantity, then a matrix
or vector norm, denoted by ‖X‖, is any function that satisfies the following
properties, for any X and Y of compatible dimensions and scalar α:

‖X‖ ≥ 0 (1.149a)

‖X‖ = 0 if, and only if, X = 0 (1.149b)

‖αX‖ = |α| ‖X‖ (1.149c)

‖X + Y ‖ ≤ ‖X‖+ ‖X‖, (triangle inequality) (1.149d)

‖XY ‖ ≤ ‖X‖ ‖Y ‖, (sub-multiplicative property) (1.149e)

For any column vector x ∈ IRN with individual entries {xn}, any of the defini-
tions listed in Table 1.3 constitutes a valid vector norm.
It is straightforward to verify the validity of the following inequalities relating
these norms:

‖x‖2 ≤ ‖x‖1 ≤
√
N ‖x‖2 (1.150a)

‖x‖∞ ≤ ‖x‖2 ≤
√
N ‖x‖∞ (1.150b)

‖x‖∞ ≤ ‖x‖1 ≤ N ‖x‖∞ (1.150c)

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 (1.150d)

‖x‖∞ ≤ ‖x‖p ≤ N1/p ‖x‖∞, p ≥ 1 (1.150e)

There are similarly many useful matrix norms. For any matrix A ∈ IRN×M with
individual entries {a`k}, any of the definitions listed in Table 1.4 constitutes a
valid matrix norm. In particular, the 2−induced norm of A is a special case of
the p−induced norm and reduces to the maximum singular value of A — see
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Table 1.3 Useful vector norms, where the {xn} denote the entries of the vector x.
vector norm name

‖x‖1 ∆
=

N∑
n=1

|xn| (1−norm or `1−norm)

‖x‖∞ ∆
= max

1≤n≤N
|xn| (∞−norm or `∞−norm)

‖x‖2 ∆
=

(
N∑
n=1

|xn|2
)1/2

(Euclidean or `2−norm, also written as ‖x‖)

‖x‖p ∆
=

(
N∑
n=1

|xn|p
)1/p

(p−norm or `p−norm, for any real p ≥ 1)

next Example 1.13. A fundamental result in matrix theory is that all matrix
norms in finite dimensional spaces are equivalent. Specifically, if ‖A‖a and ‖A‖b
denote two generic matrix norms, then there exist positive constants c` and cu
that bound one norm by the other from above and from below, namely,

c` ‖A‖b ≤ ‖A‖a ≤ cu ‖A‖b (1.151)

The values of {c`, cu} are independent of the matrix entries but they may be
dependent on the matrix dimensions. Vector norms are also equivalent to each
other.

Table 1.4 Useful matrix norms, where the {anm} denote the entries of A.
matrix norm name

‖A‖1 ∆
= max

1≤m≤M

(
N∑
n=1

|anm|
)

(1−norm, or maximum absolute column sum)

‖A‖∞ ∆
= max

1≤n≤N

(
M∑
m=1

|anm|
)

(∞−norm, or maximum absolute row sum)

‖A‖F ∆
=
√

Tr(ATA) (Frobenius norm)

‖A‖p ∆
= max

x6=0

‖Ax‖p
‖x‖p

(p−induced norm for any real p ≥ 1)

‖A‖2 ∆
= max

x6=0

‖Ax‖
‖x‖ (2−induced norm)

Example 1.13 (Spectral norm of a matrix) Assume N ≥M and consider the M ×M
square matrix ATA. Using the Rayleigh-Ritz characterization (1.17b) for the maximum
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eigenvalue of a matrix we have that

λmax(ATA) = max
x6=0

(
xTATAx

xTx

)
= max

x6=0

(‖Ax‖2
‖x‖2

)
(1.152)

But we already know from the argument in Appendix 1.B that σ2
1 = λmax(ATA). We

conclude that the largest singular value of A satisfies:

σ1 = max
x6=0

(‖Ax‖
‖x‖

)
(1.153)

This maximum value is achieved if we select x = v1 (i.e., as the right singular vector
corresponding to σ1). Indeed, using Av1 = σ1u1 we get

‖Av1‖2
‖v1‖2

=
‖σ1u1‖2
‖v1‖2

= σ2
1 (1.154)

since ‖u1‖ = ‖v1‖ = 1. We therefore find that the square of the maximum singular
value, σ2

1 , measures the maximum energy gain from x to Ax. The same conclusion
holds when N ≤M since then σ2

1 = λmax(AAT) and the argument can be repeated to
conclude that

σ1 = max
x6=0

(‖ATx‖
‖x‖

)
(1.155)

The maximum singular value of a matrix is called its spectral norm or its 2-induced
norm, also written as

σ1 = ‖A‖2 = ‖AT‖2 = max
‖x‖=1

‖Ax‖ = max
‖x‖=1

‖ATx‖ (1.156)

Dual norms
An important concept in matrix theory is that of the dual norm. Let ‖ · ‖ denote
some vector norm in IRM . The associated dual norm is denoted by ‖x‖? and
defined as

‖x‖? ∆
= sup

y

{
xTy | ‖y‖ ≤ 1

}
(1.157)

In other words, we consider all vectors y that lie inside the ball ‖y‖ ≤ 1 and
examine their transformation by x through the inner product xTy. The largest
value this transformation attains is taken as the dual norm of x. It is shown
in Prob. 1.24 that ‖x‖? is a valid vector norm and that it can be expressed
equivalently as

‖x‖? ∆
= sup

y 6=0

{
xTy

‖y‖

}
(1.158)

where we scale the inner product by ‖y‖ and compute the supremum over all
nonzero vectors y. Using (1.158), we can readily write the following Cauchy-
Schwarz inequality involving a norm and its dual:

xTy ≤ ‖y‖ ‖x‖? (1.159)
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This result will be useful in our analysis of inference methods. This is because
we will often deal with norms other than the Euclidean norm, and we will need
to bound inner products between vectors. The above inequality shows that the
bound will involve the product of two norms: the regular norm and its dual.

For the sake of illustration, let us determine the dual norm of the Euclidean
norm, ‖ · ‖2. To do so, we need to assess:

‖x‖? = sup
y

{
xTy | ‖y‖2 ≤ 1

}
(1.160)

We know from the classical Cauchy-Schwarz inequality for inner products in Eu-
clidean space that xTy ≤ ‖x‖2 ‖y‖2, with equality when the vectors are parallel
to each other and pointing in the same direction, say, y = αx for some α > 0.
Given that the norm of y should be bounded by one, we must set α ≤ 1/‖x‖2.
The inner product xTy becomes α‖x‖22 and it is maximized when α = 1/‖x‖, in
which case we conclude that ‖x‖? = ‖x‖2. In other words, the dual norm of the
Euclidean norm is the Euclidean norm itself.

Several other dual norms are determined in Probs. 1.26–1.29 for both vector
and matrix norms, where the definition of the dual norm for matrices is taken
as:

‖A‖? ∆
= sup

Y

{
Tr(ATY ) | ‖Y ‖ ≤ 1

}
(1.161)

We collect the results into Table 1.5. The last line introduces the nuclear norm
of a matrix, which is equal to the sum of its singular values. The notation for
the nuclear norm continues to use the star subscript. The results in the table
show that we can interpret the (`1, `2, `p, `∞)−norms of vectors in the equivalent
forms:

‖x‖2 = sup
y

{
xTy | ‖y‖2 ≤ 1

}
(1.162a)

‖x‖∞ = sup
y

{
xTy | ‖y‖1 ≤ 1

}
(1.162b)

‖x‖1 = sup
y

{
xTy | ‖y‖∞ ≤ 1

}
(1.162c)

‖x‖q = sup
y

{
xTy | ‖y‖p ≤ 1

}
, p, q ≥ 1, 1/p+ 1/q = 1 (1.162d)

Likewise, the Forbenius and nuclear norms of a matrix A can be interpreted as
corresponding to:

‖A‖F = sup
Y

{
Tr(ATY ) | ‖Y ‖F ≤ 1

}
(1.163a)

‖A‖? = sup
Y

{
Tr(ATY ) | ‖Y ‖2 ≤ 1

}
(1.163b)

It is straightforward to verify the validity of the following inequalities relating



34 Matrix Theory

Table 1.5 List of dual norms for vectors and matrices.
original norm dual norm

‖x‖2 ‖x‖2
‖x‖1 ‖x‖∞
‖x‖∞ ‖x‖1
‖x‖p ‖x‖q, p, q ≥ 1, 1/p+ 1/q = 1

‖A‖F ‖A‖F

‖A‖2 ‖A‖? =

rank(A)∑
r=1

σr, (nuclear norm)

several matrix norms for matrices A of size N ×M and rank r:

M−1/2 ‖A‖∞ ≤ ‖A‖2 ≤ N1/2 ‖A‖∞ (1.164a)

N−1/2 ‖A‖1 ≤ ‖A‖2 ≤M1/2 ‖A‖1 (1.164b)

‖A‖∞ ≤M1/2 ‖A‖2 ≤M ‖A‖1 (1.164c)

‖A‖2 ≤ ‖A‖F ≤
√
r ‖A‖2 (1.164d)

‖A‖F ≤ ‖A‖? ≤
√
r ‖A‖F (1.164e)

‖A‖22 ≤ ‖A‖1 × ‖A‖∞ (1.164f)

ρ-norm1

In this section and the next we introduce two specific norms; the discussion can
be skipped on a first reading. Let B denote an N×N real matrix with eigenvalues
{λn}. The spectral radius of B, denoted by ρ(B), is defined as

ρ(B)
∆
= max

1≤n≤N
|λn| (1.165)

A fundamental result in matrix theory asserts that every matrix admits a so-
called canonical Jordan decomposition, which is of the form

B = UJU−1 (1.166)

for some invertible matrix U and where

J = blkdiag{J1, J2, . . . , JR} (1.167)

is a block diagonal matrix, say with R blocks. When B happens to be symmetric,
we already know from the spectral decomposition (1.15a) that J will be diagonal
and U will be orthogonal so that U−1 = UT. More generally, each block Jr will
have a Jordan structure with an eigenvalue λr on its diagonal entries, unit entries
on the first sub-diagonal, and zeros everywhere else. For example, for a block of

1 The two sections on the block-maximum and ρ−norms can be skipped on a first reading.
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size 4× 4:

Jr =




λr
1 λr

1 λr
1 λr


 (1.168)

Let ε denote an arbitrary positive scalar that we are free to choose and define
the N ×N diagonal scaling matrix:

D
∆
= diag

{
ε, ε2, . . . , εN

}
(1.169)

We can use the matrix U originating from B to define the following matrix norm,
denoted by ‖ · ‖ρ, for any matrix A of size N ×N :

‖A‖ρ ∆
=

∥∥DU−1AUD−1
∥∥

1
(1.170)

in terms of the 1−norm (i.e., maximum absolute column sum) of the matrix
product on the right-hand side. It is not difficult to verify that the transformation
(1.170) is a valid matrix norm, namely, that it satisfies the following properties,
for any matrices A and C of compatible dimensions and for any scalar α:

(a) ‖A‖ρ ≥ 0 with ‖A‖ρ = 0 if, and only if, A = 0

(b) ‖αA‖ρ = |α| ‖A‖ρ
(c) ‖A+ C‖ρ ≤ ‖A‖ρ + ‖C‖ρ, (triangular inequality)

(d) ‖AC‖ρ ≤ ‖A‖ρ ‖C‖ρ, (sub-multiplicative property)

(1.171)

One important property of the ρ−norm defined by (1.170) is that when it is
applied to the matrix B itself, it will hold that:

ρ(B) ≤ ‖B‖ρ ≤ ρ(B) + ε (1.172)

That is, the ρ−norm of B lies between two bounds defined by its spectral radius.
It follows that if the matrix B happens to be stable to begin with, so that
ρ(B) < 1, then we can always select ε small enough to ensure ‖B‖ρ < 1.

The matrix norm defined by (1.170) is an induced norm relative to the follow-
ing vector norm:

‖x‖ρ ∆
= ‖DU−1x‖1 (1.173)

That is, for any matrix A, it holds that

‖A‖ρ = max
x6=0

{‖Ax‖ρ
‖x‖ρ

}
(1.174)

Proof of (1.174): Indeed, using (1.173), we first note that for any vector x 6= 0:
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‖Ax‖ρ = ‖DU−1Ax‖1
= ‖DU−1AUD−1DU−1 x‖1
≤ ‖DU−1AUD−1‖1 ‖DU−1x‖1
= ‖A‖ρ ‖x‖ρ (1.175)

so that

max
x6=0

{‖Ax‖ρ
‖x‖ρ

}
≤ ‖A‖ρ (1.176)

To show that equality holds in (1.176), it is sufficient to exhibit one nonzero vector
xo that attains it. Let ko denote the index of the column that attains the maximum
absolute column sum in the matrix product DU−1AUD−1. Let eko denote the column
basis vector of size N × 1 with one at location ko and zeros elsewhere. Select

xo
∆
= UD−1eko (1.177)

Then, it is straightforward to verify that

‖xo‖ρ ∆
= ‖DU−1xo‖1 (1.177)

= ‖eko‖1 = 1 (1.178)

and

‖Axo‖ρ ∆
= ‖DU−1Axo‖1
= ‖DU−1AUD−1DU−1 xo‖1

(1.177)
= ‖DU−1AUD−1eko‖1

(1.170)
= ‖A‖ρ (1.179)

so that, for this particular vector, we have

‖Axo‖ρ
‖xo‖ρ

= ‖A‖ρ (1.180)

as desired.
�

Block maximum norm
Let

x
∆
= blkcol{x1, x2, . . . , xN} (1.181)

denote an N×1 block column vector whose individual entries {xk} are themselves
vectors of size M × 1 each. The block maximum norm of x is denoted by ‖x‖b,∞
and is defined as

‖x‖b,∞ ∆
= max

1≤k≤N
‖xk‖ (1.182)

That is, ‖x‖b,∞ is equal to the largest Euclidean norm of its block components.
This vector norm induces a block maximum matrix norm. Let A denote an
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arbitrary N ×N block matrix with individual block entries of size M ×M each.
Then, the block maximum norm of A is defined as

‖A‖b,∞ ∆
= max

x6=0

{
‖Ax‖b,∞
‖x‖b,∞

}
(1.183)

The block maximum norm has several useful properties — see Prob. 1.23:

(a) Let U = diag{U1, U2, . . . , UN} denote an N ×N block diagonal matrix with
M ×M orthogonal blocks {Uk}. Then, transformations by U do not mod-
ify the block maximum norm, i.e., it holds that ‖Ux‖b,∞ = ‖x‖b,∞ and
‖UAUT‖b,∞ = ‖A‖b,∞.

(b) Let D = diag{D1, D2, . . . , DN} denote an N × N block diagonal matrix
with M ×M symmetric blocks {Dk}. Then, ρ(D) = ‖D‖b,∞.

(c) Let A be an N×N matrix and define A = A⊗IM whose blocks are therefore
of size M ×M each. If A is left-stochastic (i.e., the entries on each column
of A add up to one, as defined further ahead by (1.193)), then ‖AT‖b,∞ = 1.

(d) For any block diagonal matrix D, and any left-stochastic matrices A1 =

A1 ⊗ IM and A2 = A2 ⊗ IM constructed as in part (c), it holds that

ρ
(
AT

2 DAT
1

)
≤ ‖D‖b,∞ (1.184)

(e) If the matrix D in part (d) has symmetric blocks, it holds that

ρ
(
AT

2 DAT
1

)
≤ ρ(D) (1.185)

1.11 PERTURBATION BOUNDS ON EIGENVALUES2

We state below two useful results that bound matrix eigenvalues.

Weyl theorem
The first result, known as Weyl theorem, shows how the eigenvalues of a sym-
metric matrix are disturbed through additive perturbations to the entries of the
matrix. Thus, let {A′, A,∆A} denote arbitrary N ×N real symmetric matrices
with ordered eigenvalues {λm(A′), λm(A), λm(∆A)}, i.e.,

λ1(A) ≥ λ2(A) ≥ . . . ≥ λN (A) (1.186)

and similarly for the eigenvalues of {A′,∆A}, with the subscripts 1 and N repre-
senting the largest and smallest eigenvalues, respectively. Weyl Theorem states
that if A is perturbed to

A′ = A + ∆A (1.187)

2 This section can be skipped on a first reading.
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then the eigenvalues of the new matrix are bounded as follows:

λn(A) + λN (∆A) ≤ λn(A′) ≤ λn(A) + λ1(∆A) (1.188)

for 1 ≤ n ≤ N . In particular, it follows that the maximum eigenvalue is perturbed
as follows:

λmax(A) + λmin(∆A) ≤ λmax(A′) ≤ λmax(A) + λmax(∆A) (1.189)

In the special case when ∆A ≥ 0, we conclude from (1.188) that λn(A′) ≥ λn(A)

for all n = 1, 2, . . . , N .

Gershgorin theorem
The second result, known as Gershgorin theorem, specifies circular regions within
which the eigenvalues of a matrix are located. Thus, consider an N × N real
matrix A with scalar entries {a`k}. With each diagonal entry a`` we associate a
disc in the complex plane centered at a`` and with radius

r`
∆
=

N∑

k 6=`,k=1

|a`k| (1.190)

That is, r` is equal to the sum of the magnitudes of the non-diagonal entries
on the same row as a``. We denote the disc by D`; it consists of all points that
satisfy

D` =
{
z ∈ CN such that |z − a``| ≤ r`

}
(1.191)

The theorem states that the spectrum of A (i.e., the set of all its eigenvalues,
denoted by λ(A)) is contained in the union of all N Gershgorin discs:

λ(A) ⊂
{

N⋃

`=1

D`

}
(1.192)

A stronger statement of the Gershgorin theorem covers the situation in which
some of the Gershgorin discs happen to be disjoint. Specifically, if the union of
L of the discs is disjoint from the union of the remaining N − L discs, then the
theorem further asserts that L eigenvalues of A will lie in the first union of L
discs and the remaining N − L eigenvalues of A will lie in the second union of
N − L discs.

1.12 Stochastic Matrices

Consider N × N matrices A with nonnegative entries, {a`k ≥ 0}. The matrix
A = [a`k] is said to be left-stochastic if it satisfies

AT1 = 1, (left-stochastic) (1.193)
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where 1 denotes the column vector whose entries are all equal to one. That is,
the entries on each column of A should add up to one. The matrix A is said to
be right-stochastic if

A1 = 1, (right-stochastic) (1.194)

so that the entries on each row of A add up to one. The matrix A is doubly-
stochastic if the entries on each of its columns and on each of its rows add up to
one (i.e., if it is both left and right stochastic):

A1 = 1, AT1 = 1, (doubly-stochastic) (1.195)

Stochastic matrices arise frequently in the study of Markov chains, multi-agent
networks, and signals over graphs. The following statement lists two properties
of stochastic matrices:

(a) The spectral radius of A is equal to one, ρ(A) = 1. It follows that all eigen-
values of A lie inside the unit disc, i.e., |λ(A)| ≤ 1. The matrix A may have
multiple eigenvalues with magnitude equal to one — see Prob. 1.49.

(b) Assume A is additionally a primitive matrix, i.e., there exists some finite
integer power of A such that all its entries are strictly positive:

[Ano ]`k > 0, for some integer no > 0 (1.196)

and for all 1 ≤ `, k ≤ N . Then, the matrix A will have a single eigenvalue at
one (i.e., the eigenvalue at one will have multiplicity one). All other eigen-
values of A will lie strictly inside the unit circle. Moreover, with proper sign
scaling, all entries of the right-eigenvector of A corresponding to the single
eigenvalue at one will be strictly positive, namely, if we let p denote this
right-eigenvector with entries {pk} and normalize its entries to add up to
one, then

Ap = p, 1Tp = 1, pk > 0, k = 1, 2, . . . , N (1.197)

We refer to p as the Perron eigenvector of A. All other eigenvectors of A as-
sociated with the other eigenvalues will have at least one negative or complex
entry.

1.13 COMPLEX-VALUED MATRICES

Although the presentation in the earlier sections has focused exclusively on real-
valued matrices, most of the concepts and results extend almost effortlessly to
complex-valued matrices. For example, in relation to symmetry, if A ∈ CN×N ,
then the matrix A will be said to be Hermitian if it satisfies

A = A∗, (Hermitian symmetry) (1.198)
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where the symbol ∗ denotes complex conjugate transposition — recall (1.5).
This notion extends the definition of matrix symmetry (which requires A = AT)
to the complex case. Hermitian matrices can again be shown to have only real
eigenvalues and their spectral decomposition will now take the form:

A = UΛU∗ (1.199)

where Λ continues to be a diagonal matrix with the eigenvalues of A, while U is
now a unitary (as opposed to an orthogonal) matrix, namely, it satisfies

UU∗ = U∗U = IN (1.200)

In other words, most of the results discussed so far extend rather immediately by
replacing transposition by complex conjugation, such as replacing xT by x∗ and
AT by A∗. For example, while the squared Euclidean norm of a vector x ∈ IRN is
given by ‖x‖2 = xTx, the same squared norm for a vector x ∈ CN will be given
by ‖x‖2 = x∗x. In this way, the Rayleigh-Ritz characterization of the smallest
and largest eigenvalues of A will become

λmin = min
‖x‖=1

{
x∗Ax

}
, λmax = max

‖x‖=1

{
x∗Ax

}
(1.201)

Likewise, positive-definite matrices will be ones that satisfy

v∗Av > 0, for any v 6= 0 ∈ CN (1.202)

These matrices will continue to have positive eigenvalues and positive determi-
nants. In addition, the range space and nullspace of A will be defined similarly
to the real case:

R(A)
∆
=
{
q ∈ CN | such that q = Ap for some p ∈ CM

}
(1.203a)

N(A)
∆
=
{
p ∈ CM | such that Ap = 0

}
(1.203b)

with the properties

z ∈ N(A∗), q ∈ R(A) =⇒ z∗q = 0 (1.204a)

R(A∗) = R(A∗A) (1.204b)

N(A) = N(A∗A) (1.204c)

Moreover, two square matrices A and B will be congruent if A = QBQ∗, for
some nonsingular Q. Finally, the SVD of A ∈ CN×M will now take the following
form with unitary matrices U ∈ CN×N and V ∈ CM×M :

(a) If N ≤M , then Σ is N ×N and

A = U
[

Σ 0
]
V ∗ (1.205)

(b) If N ≥M , then Σ is M ×M and

A = U

[
Σ

0

]
V ∗ (1.206)
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1.14 COMMENTARIES AND DISCUSSION

Linear algebra and matrix theory. The presentation in this chapter follows the overviews
from Sayed (2003,2008,2014a). Throughout our treatment of inference and learning the-
ories, the reader will be exposed to a variety of concepts from linear algebra and matrix
theory in a motivated manner. In this way, after progressing sufficiently enough into
our treatment, readers will be able to master many useful concepts. Several of these
concepts are summarized in this chapter. If additional help is needed, some accessible
references on matrix theory are the works by MacDuffee (1946), Gantmacher (1959),
Bellman (1970), Horn and Johnson (1990), Golub and Van Loan (1996), Meyer (2001),
Laub (2004), and Bernstein (2018) Accessible references on linear algebra are the books
by Halmos (1974), Strang (1988,2009), Gelfand (1989), Lay (1994), Lax (1997), Lay,
Lay, and McDonald (2014), Hogben (2014), and Nicholson (2019).

Kronecker products. We introduced the Kronecker product in Sec. 1.9. This product
provides a useful and compact representation for generating a block matrix structure
from two separate matrices. We illustrated two useful applications of Kronecker prod-
ucts in Examples 1.11 and 1.12 in the context of Lyapunov equations. There are of
course many other applications. The notion of Kronecker products was introduced by
the German mathematician Johann Zehfuss (1832–1901) in the work by Zehfuss
(1858) — see the historical accounts by Henderson, Pukelsheim, and Searle (1983) and
Hackbusch (2012). In his article, Zehfuss (1858) introduced the determinantal formula

det(A⊗B) = (det(A))M (det(B))N (1.207)

for square matrices A and B of sizes N×N andM×M , respectively. This formula was
later attributed erroneously by Hensel (1891) to the German mathematician Leopold
Kronecker (1823–1891) who discussed it in some of his lectures in the 1880’s. The
operation ⊗ became subsequently known as the Kronecker product instead of the more
appropriate “Zehfuss product”. Useful surveys on Kronecker products, their properties
and applications appear in Henderson and Searle (1981b), Regalia and Mitra (1989),
and Van Loan (2000). Useful references on block Kronecker products are the works by
Tracy and Singh (1972), Koning, Neudecker, and Wansbeek (1991), and Liu (1999).
The block Kronecker product (1.145) is also known as the Tracy-Singh product.

Schur complements. According to the historical overview by Puntanen and Styan
(2005), the designation “Schur complement” is due to Haynsworth (1968) in her study
of the inertia of a block-partitioned matrix. If we consider a block symmetric matrix of
the form

S =

[
A B
BT D

]
, A = AT, D = DT (1.208)

with a nonsingular A, we recognize that the following block triangular factorization of
S amounts to a congruence relation:

S =

[
I 0

BTA−1 I

] [
A 0
0 ∆A

] [
I A−1B
0 I

]
(1.209)

where ∆A = D −BTA−1B. It follows that

In(S) = In(A) + In(∆A) (1.210)

where the addition operation means that the individual components of the inertia mea-
sure, namely, I+, I−, I0, are added together. This inertia additivity formula was derived
by Haynsworth (1968) and the factor ∆A was referred to as the “Schur complement”
relative to A. The attribution to “Schur” is because the determinantal formula (1.211)
involving ∆A was given by the German mathematician Issai Schur (1875–1941) in a
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famous paper by Schur (1917), where he studied the characterization of functions that
are analytic and contractive inside the unit disc — see the the survey articles by Cottle
(1974), Kailath (1986), and Kailath and Sayed (1995), and the books by Constanti-
nescu (1996) and Zhang (2005). In Schur (1917), the following expression appeared,
which is now easy to conclude from the block factorization expression (1.209):

det(S) = det(A) det(∆A) (1.211)

Schur was a student of the German mathematician Georg Frobenius (1849–1917).
His determinantal formula extended a special case studied by Frobenius (1908), which
corresponds to the situation in which D is a scalar δ, and B is a column vector b, i.e.,

det

([
A b
bT δ

])
= det(A) (δ − bTA−1b) (1.212)

The fact that congruence preserves inertia, as illustrated in Example 1.5 in connection
with Schur complements, was established by Sylvester (1852) and is known as the
Sylvester law of inertia.

The block triangular factorization formulas (1.63)–(1.65), written in various equiv-
alent forms, appear less directly in the work of Schur (1917) and more explicitly in
the works by Banachiewicz (1937a,b), Aitken (1939), Hotelling (1943a,b), and Duncan
(1944) — see the overviews by Henderson and Searle (1981a) and Puntanen, Styan,
and Isotalo (2011). The matrix inversion formula (1.81) was apparently first given by
Duncan (1944) and Guttman (1946), though it is often attributed to Sherman and
Morrison (1949,1950) and Woodbury (1950) and referred to as the Sherman-Morrison-
Woodbury formula. A special case when C = 1, B is a column vector b, and D is a row
vector, dT, appeared in Bartlett (1951), namely,

(A+ bdT)−1 = A−1 − A−1bdTA−1

1 + dTA−1b
(1.213)

This particular inversion formula was also introduced independently by Plackett (1950)
in his study of recursive updates of least-squares problems, as we are going to discuss
later in Sec. 50.3.2. Useful overviews on the origin of the matrix inversion formula
appear in Householder (1953,1957,1964), Henderson and Searle (1981a), and Hager
(1989). One of the first uses of the formula in the context of filtering theory appears to
be Kailath (1960) and Ho (1963).

Spectral theorem. We established the spectral theorem for finite-dimensional matrices
in Sec. 1.1, which states that every N ×N symmetric matrix A has N real eigenvalues,
{λn}, and a complete set of N orthonormal eigenvectors, {un}. This means that A can
be expressed in either form:

A = UΛUT =

N∑
n=1

λnunu
T
n (1.214)

where U is an orthogonal matrix whose columns are the {un} and Λ is a diagonal
matrix with real entries {λn}. For any vector x ∈ IRn, we introduce the change of
variables y = UTx and let {yn} denote the individual entries of y. Then, one useful
consequence of the spectral decomposition (1.214) is that every generic quadratic term
of the form xTAx can be decomposed into the sum of N elementary quadratic terms,
namely,

xTAx = (xTU)Λ(UTx) = yTΛy =

N∑
n=1

λny
2
n (1.215)

The property that every symmetric matrix is diagonalizable holds more generally and
is part of the spectral theory of self-adjoint linear operators in Hilbert space (which
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extends the study of symmetric finite-dimensional matrix mappings to infinite dimen-
sional mappings defined over spaces endowed with inner products) — an accessible
overview is given by Halmos (1963,1974,2013). It is sufficient for our purposes to
focus on finite-dimensional matrices. The result in this case was first established by
the French mathematician Augustine Cauchy (1789–1857) in the work by Cauchy
(1829) — see the useful historical account by Hawkins (1975). It was later generalized
to the operator setting by the Hungarian-American mathematician John von Neu-
mann (1903–1957) in the work by von Neumann (1929,1932) in his studies of linear
operators in the context of quantum mechanics — see the overview in the volume edited
by Bródy and Vámos (1995). The derivation of the spectral theorem in Appendix 1.A
relies on the fundamental theorem of algebra, which guarantees that every polynomial
of order N has N roots — see, e.g., the text by Fine and Rosenberger (1997) and Car-
rera (1992). The argument in the appendix is motivated by the presentations in Horn
and Johnson (1990), Trefethen and Bau (1997), Calafiore and El Ghaoui (2014), and
Nicholson (2019).

QR decomposition. The matrix decomposition (1.102) is a restatement of the Gram-
Schmidt orthonormalization procedure, whereby the columns of a matrix A are replaced
by an orthonormal basis for the linear subspace that is spanned by them. The Gram-
Schmidt procedure is named after the Danish and German mathematicians Jorgen
Gram (1850–1916) and Erhard Schmidt (1876–1959), respectively. The latter
published the procedure in the work by Schmidt (1907,1908) and acknowledged that his
algorithm is the same as one published earlier by Gram (1883). Nevertheless, a similar
construction was already proposed over half a century before by the French mathe-
matician Pierre-Simon Laplace (1749–1827) in the treatise by Laplace (1812). He
orthogonalized the columns of a (tall) observation matrix A ∈ IRN×M in order to solve
a least-squares problem of the form:

min
w∈IRM

‖y −Aw‖2 (1.216)

His solution method is a precursor of the QR-method for solving least-squares problems.
Specifically, assuming A has full rank, we introduce the full QR decomposition of A,

A = Q

[
R
0

]
(1.217)

where Q is N ×N orthogonal and R is M ×M upper-triangular with positive diagonal
entries. We further let [

z1

z2

]
∆
= QTy (1.218)

where z1 is M × 1. It then follows that

‖y −Aw‖2 = ‖z1 −Rw‖2 + ‖z2‖2 (1.219)

so that the solution to (1.216) is obtained by solving the triangular system of equations
Rŵ = z1, i.e.,

ŵ = R−1z1 (1.220)

According to Bjorck (1996), the earliest work linking the names of Gram and Schmidt
to the orthogonalization procedure appears to be Wong (1935). Today, the QR decom-
position is one of the main tools in modern numerical analysis. For further information
and discussions, the reader may refer to the texts by Bjorck (1996), Golub and Van
Loan (1996), and Trefethen and Bau (1997).

Singular value decomposition. The singular value decomposition (SVD) is one of the
most powerful matrix decompositions, valid for both rectangular and square matrices
and useful for both analysis and numerical computations. It has a rich history with
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contributions from notable mathematicians. The article by Stewart (1993) provides an
excellent overview of the historical evolution of the SVD and the main contributors to
its development. The SVD was proposed independently by the Italian mathematician
Eugenio Beltrami (1835–1900) and the French mathematician Camille Jordan
(1838–1922) in the works by Beltrami (1873) and Jordan (1874a,b). According to
Stewart (1993), they were both interested in bilinear forms of the form f(x, y) = xTAy,
where A is a square real matrix of size N×N and x and y are column vectors. They were
motivated to introduce and compute a decomposition for A in the form A = UΣV T in
order to reduce the bilinear form to the canonical form

f(x, y) = xTU︸︷︷︸
∆
= aT

ΣV Ty︸︷︷︸
∆
= b

= aTΣb =

N∑
n=1

σn anbn (1.221)

in terms of the entries of {a, b} and the diagonal entries of Σ. Beltrami (1873) focused
on square and invertible matrices A while Jordan (1874a,b) considered degenerate sit-
uations with singularities as well. Beltrami (1873) exploits property (1.240) and uses it
to relate the SVD factors U and V to the eigen-decompositions of the matrix products
ATA and AAT. Unaware of the works by Beltrami and Jordan, the English mathemati-
cian James Sylvester (1814–1897) also introduced the singular value decomposition
over a decade later in the works by Sylvester (1889a,b). The SVD was later extended
to complex-valued matrices by Autonne (1913) and to rectangular matrices by Eckart
and Young (1939). In the process, Eckart and Young (1936) re-discovered a low-rank
approximation theorem established earlier by the same German mathematician Erhard
Schmidt (1876–1959) of Gram-Schmidt fame in the work by Schmidt (1907), and
which is nowadays known as the Eckart-Young theorem — see the account by Stewart
(1993). The proof of the following statement is left to Prob. 1.56 — see also Van Huffel
and Vandewalle (1987).

Eckart-Young theorem (Schmidt (1907), Eckart and Young (1936)): Given an N×N
real matrix A, consider the problem of seeking a low-rank approximation for A of
rank no larger than r < N by solving the problem:

Â
∆
= argmin
{xm,ym}

{ ∥∥∥A− r∑
m=1

xmy
T
m

∥∥∥2

F

}
(1.222)

in terms of the Frobenius norm of the difference between A and its approximation,
and where {xm, ym} are column vectors to be determined. If we introduce the SVD
of A:

A =

N∑
n=1

σnunv
T
n (1.223)

and order the singular values {σn} in decreasing order, i.e., σ1 ≥ σ2 ≥ . . . ≥ σN ,
then the solution to (1.222) is given by

Â =

r∑
n=1

σnunv
T
n (1.224)

in terms of the singular vectors {un, vn} associated with the r largest singular values.

Today, the SVD is a widely adopted tool in scientific computing. One of the most
widely used procedures for its evaluation is the algorithm proposed by Golub and Ka-
han (1965) and refined by Golub and Reinsch (1970). For additional discussion on the
SVD and its properties, the reader may consult Horn and Johsnon (1990) and Golub
and Van Loan (1996). In Appendix 1.B we provide one constructive proof for the SVD
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motivated by arguments from Horn and Johnson (1990), Strang (2009), Calafiore and
El Ghaoui (2014), Lay, Lay, and McDonald (2014), and Nicholson (2019).

Matrix norms. A useful reference for the induced matrix norm (1.170) and, more gen-
erally, for vector and matrix norms and their properties, is Horn and Johnson (1990)
— see also Golub and Van Loan (1996) and Meyer (2001). References for the block
maximum norm (1.182) and (1.183) are Bertsekas and Tsitsiklis (1997), Takahashi and
Yamada (2008), Takahashi, Yamada, and Sayed (2010), and Sayed (2014c); the latter
reference provides several additional properties in its Appendix D and shows how this
norm is useful in the study of multi-agent systems where block vector structures arise
naturally.

Rayleigh-Ritz ratio. We described in Sec. 1.1 the Rayleigh-Ritz characterization of the
eigenvalues of symmetric matrices, which we already know are real-valued. For anN×N
real symmetric matrix, the quantity xTAx/xTx is called the Rayleigh-Ritz ratio after
Ritz (1908,1909) and the Nobel Laureate in Physics Lord Rayleigh (1842–1919) in
the works by Rayleigh (1877,1878). Both authors developed methods for determining
the natural frequencies of vibrating systems (such as strings or bars). They transformed
the problem of finding the natural frequencies into equivalent problems involving the
determination of the stationary points of the ratio of quadratic terms. It appears that
the solution method by Ritz (1908,1909) was more complete with performance guar-
antees and is more widely adopted. Nevertheless, both authors relied on the use of the
ratio of quadratic terms, which justifies the designation Rayleigh-Ritz quotient or ratio.
Accounts on the contributions of Rayleigh and Ritz are given by Courant (1943) and
Leissa (2005), and by Lindsay (1945) in the introduction to the 1945 Dover editions of
Rayleigh (1877,1878).

Eigenvalue perturbations. We described in Sec. 1.11 two useful results that provide
bounds on the eigenvalues of matrices. The first result is Weyl Theorem, which shows
how the eigenvalues of a symmetric matrix are disturbed through additive perturba-
tions to the entries of the matrix. The second result is Gershgorin Theorem (also known
as Gershgorin circle theorem or Gershogorin disc theorem), which specifies circular re-
gions within which the eigenvalues of a matrix are located. The original references for
these results are Weyl (1909,1912) and Gerschgorin (1931). A useful overview of Weyl
inequality and its ramifications, along with historical remarks, appear in Bhatia (2001)
and Stewart (1993); the latter reference discusses the significance of Weyl (1912) in
the development of the theory of the singular value decomposition. A second useful
overview of eigenvalue problems and perturbation results from the 20th Century ap-
pears in Golub and van der Vost (2001). For extensions and generalized treatments of
both theorems, the reader my refer to Feingold and Varga (1962), Wilkinson (1965),
Horn and Johnson (1990), Stewart and Sun (1990), Brualdi and Mellendorf (1994),
Golub and Van Loan (1996), Demmel (1997), Parlett (1998), and Varga (2004).

Stochastic matrices. These matrices are prevalent in the study of Markov chains in-
volving a finite number of states and in the study of distributed learning over graphs
(see future Chapters 25 and 38). The matrices are used to represent the transition
probabilities from one state to another in the Markov chain:

[A]nm = P (transitioning from state n to state m) (1.225)

Discussions on properties of stochastic matrices can be found in Minc (1988), Horn
and Johnson (1990), Berman and Plemmons (1994), Meyer (2001), Seneta (2007), and
Sayed (2014c, App. C). The existence of the Perron vector defined by (1.197) is guaran-
teed by a famous result known as the Perron-Frobenius theorem due to Perron (1907)
and Frobenius (1908,1909,1912). The theorem applies more generally to matrices with
nonnegative entries (i.e., the columns or rows of A do not need to add up to one). A
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useful survey appears in Pillai, Suel, and Cha (2005). To state the theorem, we first
introduce the notions of irreducible and primitive matrices.

Let A denote an N ×N matrix with nonnegative entries. We view each entry a`k as
a weight from state ` to state k. The matrix A is said to be irreducible if, and only if,
for every pair of indices (`, k), there exists a finite integer n`k > 0 such that

[An`k ]`k > 0 (1.226)

From the rules of matrix multiplication, the (`, k)−th entry of the n`k−th power of A
is given by:

[An`k ]`k =

N∑
m1=1

N∑
m2=1

. . .

N∑
mn`k−1=1

a`m1am1m2 . . . amn`k−1k (1.227)

Therefore, property (1.226) means that there should exist a sequence of integer indexes,
denoted by (`,m1,m2, . . . ,mn`k−1, k), which forms a path from state ` to state k with
n`k nonzero weights denoted by {a`m1 , am1,m2 , . . . , amn`k−1,k} such that

`
a`m1−→ m1

am1,m2−→ m2 −→ . . . −→ mn`k−1

amn`k
−1,k

−→ k [n`k edges] (1.228)

We assume that n`k is the smallest integer that satisfies this property. Note that under
irreducibility, the power n`k is allowed to be dependent on the indexes (`, k). Therefore,
irreducibility ensures that we can always find a path with nonzero weights linking state
` to state k.

A primitive matrix A is an irreducible matrix where, in addition, at least one ako,ko
is positive for some state ko. That is, there exists at least one state with a self-loop.
It can be shown that when this holds, then an integer no > 0 exists such that — see
Meyer (2001), Seneta (2007), Sayed (2014a), Prob. 1.50, and future Appendix 25.A:

[Ano ]`k > 0, uniformly for all (`, k) (1.229)

Observe that the value of no is now independent of (`, k). The following statement lists
some of the properties that are guaranteed by the Perron-Frobenius theorem.

Perron-Frobenius theorem (Perron (1907) and Frobenius (1908,1909,1912)): Let A
denote a square irreducible matrix with nonnegative entries and spectral radius de-
noted by λ = ρ(A). Then, the following properties hold:

(1) λ > 0 and λ is a simple eigenvalue of A (i.e., it has multiplicity one).
(2) There exists a right-eigenvector, p, with all its entries positive, such that Ap =

λp.
(3) There exists a left-eigenvector, q, with all its entries positive, such that ATq =

λq.
(4) All other eigenvectors, associated with the other eigenvalues of A, do not share

the properties of p and q, i.e., their entries are not all positive (they can have
negative and/or complex entries).

(5) The number of eigenvalues of A whose absolute values match ρ(A) is called the
period of A; we denote it by the letter P . Then, all eigenvalues of A whose
absolute value match ρ(A) are of the form e

j2πk
P λ, for k = 0, 1, . . . , P − 1. The

period P is also equal to the greatest common divisor of all integers n for which
[An]kk > 0.

(6) When A is primitive, there exists a single eigenvalue of A that matches ρ(A).
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PROBLEMS

1.1 Consider a matrix U ∈ IRN×N satisfying UUT = IN . Show that UTU = IN .
1.2 Consider a square matrix A ∈ IRN×N . As explained prior to (1.168), the matrix A
admits the canonical Jordan decompositionA = UJU−1, where J = blkdiag{J1, . . . , JR}
is a block diagonal matrix, say, with R blocks. Each Jr has dimensions Nr ×Nr where
Nr represents the multiplicity of the eigenvalue λr. Show that detA =

∏R
r=1 (λr)

Nr .
1.3 The trace of a square matrix is the sum of its diagonal entries. Use the canonical
Jordan factorization of Prob. 1.2, and the property Tr(XY ) = Tr(Y X) for any matrices
{X,Y } of compatible dimensions, to show that the trace of a matrix is also equal to
the sum of its eigenvalues.
1.4 What are the eigenvalues of the 2× 2 matrix:

A =

[
cos θ − sin θ
sin θ cos θ

]
for any angle θ ∈ [0, 2π]? What are the eigenvectors of A for any θ 6= 0?
1.5 Consider an arbitrary matrix A ∈ IRN×M . Show that its row rank is equal to its
column rank. That is, show that the number of independent columns is equal to the
number of independent rows (for any N and M).
1.6 Consider two square matrices A,B ∈ IRN×N . The matrices are said to be similar
if there exists a nonsingular matrix T such that A = TBT−1. Show that similarity
transformations preserve eigenvalues, i.e., the eigenvalues of A and B coincide.
1.7 Consider an arbitrary matrix A ∈ IRN×M . Show that the nonzero eigenvalues of
AAT and ATA coincide with each other.
1.8 Consider two symmetric and nonnegative-definite matrices A and B. Verify that
λmin(B)Tr(A) ≤ Tr(AB) ≤ λmax(B)Tr(A).
1.9 Consider two N ×N matrices A and B with singular values {σA,n, σB,n} ordered
such that σA,1 ≥ σA,2 ≥ . . . ≥ σA,N and σB,1 ≥ σB,2 ≥ . . . ≥ σB,N . Establish the
following trace inequality due to von Neumann (1937): |Tr(AB)| ≤∑N

n=1 σA,nσB,n.
1.10 Consider arbitrary column vectors x, y ∈ IRN . Verify that

(IN + xyT)−1 = IN − xyT

1 + yTx

1.11 Consider twoM×M invertible matrices {Ra, Rb} and twoM×1 vectors {xa, xb}.
In many inference problems, we will be faced with constructing a new matrix Rc and
a new vector xc using the following two relations (also known as fusion equations)

R−1
c

∆
= R−1

a +R−1
b , R−1

c xc
∆
= R−1

a xa +R−1
b xb

Show that these equations can be rewritten in any of the following equivalent forms:

Rc = Ra −Ra(Ra +Rb)
−1Ra, xc = xa +RcR

−1
b (xb − xa)

Rc = Rb −Rb(Ra +Rb)
−1Rb, xc = xb +RcR

−1
a (xa − xb)

1.12 Verify that the vectors {qm} that result from the Gram-Schmidt construction
(1.99a)–(1.99b) are orthonormal.
1.13 Consider an arbitrary matrix A ∈ IRN×M of rank r and refer to its SVD repre-
sentation (1.108a) or (1.108b). Introduce the partitioning U =

[
U1 U2

]
and V =[

V1 V2

]
where U1 is N ×r and V1 isM ×r. Show that the matrices {U1, U2, V1, V2}

provide orthonormal basis for the four fundamental spaces {R(A),N(AT),R(AT),N(A)}.
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1.14 Assume A,B are symmetric positive-definite. Show that

λmax(B−1A) = max
x6=0

{
xTAx

xTBx

}

and that the maximum is attained when x is an eigenvector of B−1A that is associated
with its largest eigenvalue.
1.15 Consider matrices A,B,C, and D of compatible dimensions. Show that

Tr(ATBCDT) = (vec(A))T (D ⊗B)vec(C)

1.16 Establish the singular value property (7) for Kronecker products from Table 1.1.
1.17 Establish the validity of property (10) from Table 1.1. Show that it can also be
written in the equivalent form Tr(AB) = (vec(B∗))∗ vec(A) in terms of the complex
conjugation operation (instead of matrix transposition).
1.18 Verify that when B ∈ CN×N is Hermitian (i.e., B = B∗), it holds that Tr(AB) =
(vec(B))∗ vec(A).
1.19 Consider a Lyapunov recursion of the form Zi+1 = AZiA

T + B, for i ≥ 0 and
where Zi ∈ IRN×N with square matrices {A,B}. Shown that when A is stable (i.e.,
when all its eigenvalues lie strictly inside the unit disc), the matrix Zi will converge to
the unique solution of the Lyapunov equation Z = AZAT +B.
1.20 Refer to the exponential function series (1.139). Show that d

dt
eAt = AeAt.

1.21 Show that the infinity and p−norms of a vector x ∈ IRM are related via ‖x‖∞ =
limp→∞ ‖x‖p.
1.22 Partition a vector into sub-vectors as x = blkcol{x1, x2, . . . , xK} and define
‖x‖1,p =

∑K
k=1 ‖xk‖p, which is equal to the sum of the `p−norms of the sub-vectors.

Show that ‖x‖1,p is a valid vector norm.
1.23 Establish properties (a)–(e) for the block maximum norm stated right after
(1.183). Remark. More discussion on the properties of this norm appears in Appendix
D of Sayed (2014c).
1.24 Let ‖ ·‖ denote some norm in IRM . The associated dual norm is denoted by ‖x‖?
and defined by (1.157). Show that ‖x‖? is a valid vector norm. Show that it can be
expressed equivalently by (1.158).
1.25 Let p, q ≥ 1 satisfy 1/p+ 1/q = 1. Show that the norms ‖x‖q and ‖x‖p are dual
of each other.
1.26 Show that:
(a) The dual of the `1−norm is the `∞−norm.
(b) The dual of the `∞−norm is the `1−norm.
1.27 Show that the dual norm of a dual norm is the original norm, i.e., ‖x‖?? = ‖x‖.
1.28 Show that the dual norm of the Frobenius norm is the Frobenius norm itself.
1.29 Show that the dual norm of the 2−induced norm of a matrix is the nuclear norm,
which is defined as the sum of its singular values.
1.30 Refer to the matrix norms in Table 1.4. Does it hold that ‖A‖ = ‖AT‖?
1.31 Show that, for any matrix norm, |Tr(A)| ≤ c ‖A‖ for some constant c ≥ 0.
1.32 Let Ru denote an M ×M symmetric positive-definite matrix with eigenvalues
{λm}. Show that Tr(Ru)Tr(R−1

u ) ≥M2 and (Tr(Ru))2 ≤MTr(R2
u).

1.33 Consider two symmetric non-negative definite matrices, A ≥ 0 and B ≥ 0. Show
that Tr(AB) ≤ Tr(A)Tr(B).
1.34 For any symmetric matrices A and B satisfying A ≥ B ≥ 0, show that detA ≥
detB. Here, the notation A ≥ B means that the difference A−B is nonnegative definite.
1.35 Consider a symmetric N ×N non-negative definite matrix, A ≥ 0, and a second
arbitrary matrix B also of size N ×N . Show that |Tr(AB)| ≤ Tr(A) ‖B‖, in terms of
the 2−induced norm (maximum singular value) of B.
1.36 Show that the spectral radius of a square symmetric matrix A agrees with its
spectral norm (maximum singular value), i.e., ρ(A) = ‖A‖.
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1.37 For any matrix norm, show that the spectral radius of a square matrix A satisfies
ρ(A) ≤ ‖A‖.
1.38 For any matrix norm and ε > 0, show that ‖An‖1/n ≤ ρ(A) + ε for n large
enough.
1.39 For any matrix norm, show that the spectral radius of a square matrix A satisfies
ρ(A) = limn→∞ ‖An‖1/n.
1.40 Let H denote a positive-definite symmetric matrix and let G denote a symmetric
matrix of compatible dimensions. Show that HG ≥ 0 if, and only if, G ≥ 0, where the
notation A ≥ 0 means that all eigenvalues of matrix A are nonnegative.
1.41 Introduce the notation ‖x‖2Σ = xTΣx, where Σ is a symmetric and non-negative
definite matrix.
(a) Show that ‖x‖Σ =

√
xTΣx is a valid vector norm when Σ is positive-definite, i.e.,

verify that it satisfies all the properties of vector norms.
(b) When Σ is singular, which properties of vector norms are violated?
1.42 Show that the condition numbers of H and HTH satisfy κ(HTH) = κ2(H).
1.43 Consider a linear system of equations of the form Ax = b and let κ(A) denote
the condition number of A. Assume A is invertible so that the solution is given by
x = A−1b. Now assume that b is perturbed slightly to b+δb. The new solution becomes
x+δx, where δx = A−1δb. The relative change in b is β = ‖δb‖/‖b‖. The relative change
in the solution is α = ‖δx‖/‖x‖. When the matrix is ill-conditioned, the relative change
in the solution can be much larger than the relative change in b. Indeed, verify that
α/β ≤ κ(A). Can you provide an example where the ratio achieves κ(A)?
1.44 Consider a matrix Y of the form Y = I −βxxT, for some real scalar β. For what
condition on β is Y positive semi-definite? When this is the case, show that Y admits
a symmetric square-root factor of the form Y 1/2 = I − αxxT for some real scalar α.
1.45 Let Φ =

∑N
n=0 λ

N−nhnh
T
n, where the hn are M × 1 vectors and 0� λ ≤ 1. The

matrix Φ can have full-rank or it may be rank deficient. Assume its rank is r ≤M . Let
Φ1/2 denote an M × r full-rank square-root factor, i.e., Φ1/2 has rank r and satisfies
Φ1/2ΦT/2 = Φ. Show that hn belongs to the column span of Φ1/2.
1.46 Refer to Example 1.9. Extend the result to the case ATA = BTB where now
N ≥M .
1.47 We provide another derivation for the basis rotation result from Example 1.9 by
assuming that the matrices A and B have full rank. Introduce the QR decompositions

AT = QA

[
RA
0

]
, BT = QB

[
RB
0

]
where QA and QB are M ×M orthogonal matrices, and RA and RB are N ×N upper
triangular matrices with positive diagonal entries (due to the full rank assumption on
A and B).
(a) Show that AAT = RT

ARA = RT
BRB .

(b) Conclude, by uniqueness of the Cholesky factorization, that RA = RB . Verify
further that Θ = QBQ

T
A is orthogonal and maps B to A.

1.48 Consider a matrix B ∈ IRN×M and let σ2
min(B) denote its smallest nonzero

singular value. Let x ∈ R(B) (i.e., x is any vector in the range space of B). Use the
eigenvalue decomposition of BTB to verify that ‖BTx‖2 ≥ σ2

min(B) ‖x‖2.
1.49 Refer to Sec. 1.12 on stochastic matrices. Show that the spectral radius of a left
or right-stochastic matrix is equal to one.
1.50 LetA denote an irreducible matrix with nonnegative entries. Show that if ako,ko >
0 for some ko, then A is a primitive matrix.
1.51 Let A denote a matrix with positive entries. Show that A is primitive.
1.52 Show that to check whether an N × N left-stochastic matrix A is irreducible
(primitive), we can replace all nonzero entries in A by ones and verify instead whether
the resulting matrix is irreducible (primitive).
1.53 Consider an N×N left-stochastic matrix A that is irreducible but not necessarily
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primitive. Let B = 0.5(I +A). Is B left-stochastic? Show that the entries of BN−1 are
all positive. Conclude that B is primitive.
1.54 Assume A is a left-stochastic primitive matrix of size N ×N .
(a) Show that A is power convergent and the limit converges to the rank-one product

limn→∞A
n = p1T, where p is the Perron vector of A. Is the limit a primitive

matrix?
(b) For any vector b = col{b1, b2, . . . , bN}, show that limn→∞A

nb = αp, where α =
b1 + b2 + . . .+ bN .

(c) If A is irreducible but not necessarily primitive, does the limit of part (a) exist?
1.55 Consider an N ×N left-stochastic matrix A. Let no = N2 − 2N + 2. Show that
A is primitive if, and only if, [Ano ]`k > 0 for all ` and k.
1.56 Establish the validity of the Eckart-Young approximation expression (1.224).
1.57 Consider an M ×N matrix A (usually N ≥ M with more columns than rows).
The spark of A is defined as the smallest number of linearly dependent columns in A,
also written as:

spark(A)
∆
= min

d6=0

{
‖d‖0

}
, subject to Ad = 0

where ‖d‖0 denotes the number of nonzero arguments in the vector d. If A has full
rank, then its spark is set to ∞. Now consider the linear system of equations Axo = b
and assume xo is k−sparse in the sense that only k of its entries are nonzero. Show
that xo is the only solution to the following problem (i.e., the only k−sparse vector
satisfying the linear equations):

xo = argmin
x∈IRM

{
‖x‖0

}
, subject to Ax = b

if, and only if, spark(A) > 2k. Remark. We describe later in Appendix 58.A the orthog-
onal matching pursuit (OMP) algorithm for finding the sparse solution xo.
1.58 Consider an M ×N matrix A. The matrix is said to satisfy a restricted isometry
property (RIP) with constant λk if for any k−sparse vector x it holds (1 − λk)‖x‖2 ≤
‖Ax‖2 ≤ (1 + λk)‖x‖2. Now let Ax1 = b1 and Ax2 = b2. Assume A satisfies RIP
for any sparse vectors of level 2k. Show that for any k−sparse vectors {x1, x2}, the
corresponding measurements {b1, b2} will be sufficiently away from each other in the
sense that ‖b1 − b2‖2 ≥ (1− λ2k)‖x1 − x2‖2. Remark. For more discussion on sparsity
and the RIP condition, the reader may refer to the text by Elad (2010) and the many
references therein, as well as to the works by Candes and Tao (2006) and Candes,
Romberg, and Tao (2006).

1.A PROOF OF SPECTRAL THEOREM

The arguments in this appendix and the next on the spectral theorem and the singular
value decomposition are motivated by the presentations in Horn and Johnson (1990),
Trefethen and Bau (1997), Strang (2009), Calafiore and El Ghaoui (2014), Lay, Lay,
and McDonald (2014), and Nicholson (2019).

In this first appendix, we establish the validity of the eigen-decomposition (1.15a)
for N × N real symmetric matrices A. We start by verifying that A has at least one
real eigenvector. For this purpose, we first recall that an equivalent characterization of
the eigenvalues of a matrix is that they are the roots of its characteristic polynomial,
defined as

p(λ)
∆
= det(λIN −A) (1.230)

in terms of the determinant of the matrix λIN − A. Note that p(λ) is a polynomial
of order N and, by the fundamental theorem of algebra, every such polynomial has N
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roots. We already know that these roots are all real when A is symmetric. Therefore,
there exists some real value λ1 such that p(λ1) = 0. The scalar λ1 makes the matrix
λ1IN − A singular since its determinant will be zero. In this way, the columns of the
matrix λ1IN − A will be linearly dependent and there must exist some nonzero real
vector u1 such that

(λ1IN −A)u1 = 0 (1.231)

This relation establishes the claim that there exists some nonzero real vector u1 satis-
fying Au1 = λ1u1. We can always scale u1 to satisfy ‖u1‖ = 1.

Induction argument
One traditional approach to establish the spectral theorem is by induction. Assume the
theorem holds for all symmetric matrices of dimensions up to (N −1)× (N −1) and let
us prove that the statement also holds for the next dimension N ×N ; it certainly holds
when N = 1 (in which case A is a scalar). Thus, given an N×N real symmetric matrix
A, we already know that it has at least one real eigenvector u1 of unit-norm associated
with a real eigenvalue λ1. Since u1 lies in N−dimensional space, we can choose N − 1
real vectors {v̄2, v̄3, . . . , v̄N} such that the columns of the N ×N matrix

V̄ =
[
u1 v̄2 v̄3 . . . v̄N

]
(1.232)

are linearly independent. The columns of V̄ constitute a basis for the N−dimensional
space, IRN . We apply the Gram-Schmidt orthogonalization procedure to the trailing
columns of V̄ and replace the {v̄n} by a new set of vectors {vn} that have unit norm
each, and such that the columns of the matrix V below are all orthogonal to each other:

V =
[
u1 v2 v3 . . . vN

] ∆
=
[
u1 V1

]
(1.233)

Note that we kept u1 unchanged; we are also denoting the trailing columns of V by V1.
Now, multiplying A by V T from the left and by V from the right we get

V TAV =

[
uT

1Au1 uT
1AV1

V T
1 Au1 V T

1 AV1

]
=

[
λ1‖u1‖2 λ1u

T
1V1

λ1V
T
1 u1 V T

1 AV1

]
=

[
λ1 0
0 V T

1 AV1

]
(1.234)

since ‖u1‖2 = 1 and u1 is orthogonal to the columns of V1 (so that V T
1 u1 = 0). Note

that we used the fact that A is symmetric in the above calculation to conclude that

uT
1A = uT

1A
T = (Au1)T = (λ1u1)T = λ1u

T
1 (1.235)

Thus, observe that the matrix product V TAV turns out to be block diagonal with
λ1 as its (1, 1) leading entry and with the (N − 1) × (N − 1) real symmetric matrix,
V T

1 AV1, as its trailing block. We know from the induction assumption that this smaller
symmetric matrix admits a full set of orthonormal eigenvectors. That is, there exists
an (N − 1) × (N − 1) real orthogonal matrix W1 and a diagonal matrix Λ1 with real
entries such that

V T
1 AV1 = W1Λ1W

T
1 , WT

1 W1 = IN−1 (1.236)

or, equivalently,

WT
1 V

T
1 AV1W1 = Λ1 (1.237)

Using this equality, we obtain from (1.234) that[
1

WT
1

]
V T︸ ︷︷ ︸

= UT

AV

[
1

W1

]
︸ ︷︷ ︸

∆
= U

=

[
λ1

Λ1

]
︸ ︷︷ ︸

∆
= Λ

(1.238)
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with a diagonal matrix on the right-hand side. The matrix U can be verified to be
orthogonal since

UTU =

[
1

WT
1

]
V TV︸ ︷︷ ︸

=I

[
1

W1

]
=

[
1

WT
1 W1

]
= IN (1.239)

Therefore, we established that an orthogonal matrix U and a real diagonal matrix Λ
exist such that A = UΛUT, as claimed.

1.B CONSTRUCTIVE PROOF OF SVD

One proof of the singular value decomposition defined by (1.108a)–(1.108b) follows from
the eigen-decomposition of symmetric nonnegative-definite matrices. The argument
given here assumes N ≤ M , but it can be adjusted to handle the case N ≥ M . Thus,
note that the product AAT is a symmetric nonnegative-definite matrix of size N ×N .
Consequently, from the spectral theorem, there exists an N ×N orthogonal matrix U
and an N ×N diagonal matrix Σ2, with nonnegative entries, such that

AAT = UΣ2UT (1.240)

This representation corresponds to the eigen-decomposition of AAT. The diagonal en-
tries of Σ2 are the eigenvalues of AAT, which are nonnegative (and, hence, the notation
Σ2); the nonzero entries of Σ2 also coincide with the nonzero eigenvalues of ATA —
see Prob. 1.7. The columns of U are the orthonormal eigenvectors of AAT. By proper
reordering, we can arrange the diagonal entries of Σ2, denoted by {σ2

r}, in decreasing
order so that Σ2 can be put into the form

Σ2 = diagonal
{
σ2

1 , σ
2
2 , . . . , σ

2
r , 0, . . . , 0

}
∆
=

[
Λ2

0N−r

]
(1.241)

where r = rank(AAT) and σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
r > 0. The r × r diagonal matrix Λ

consists of the positive entries

Λ
∆
= diagonal{σ1, σ2, . . . , σr} > 0 (1.242)

We partition U =
[
U1 U2

]
, where U1 is N×r, and conclude from the orthogonality

of U (i.e., from UTU = I) that UT
1 U1 = Ir and UT

1 U2 = 0. If we substitute into (1.240)
we find that

AAT = U1Λ2UT
1 (1.243a)

AATU = UΣ2 =⇒ AATU2 = 0
(1.50)⇐⇒ ATU2 = 0 (1.243b)

where the middle expression in the last line is indicating that the columns of U2 belong
to the nullspace ofAAT. But since we know from property (1.50) thatN(AAT) = N(AT),
we conclude that the columns of U2 also belong to the nullspace of AT. Next, we
introduce the M × r matrix

V1
∆
= ATU1 Λ−1 (1.244)

The columns of V1 are orthonormal since

V T
1 V1 = Λ−1UT

1 A︸ ︷︷ ︸
=V T

1

ATU1Λ−1︸ ︷︷ ︸
V1

= Λ−1UT
1 U1Λ2UT

1︸ ︷︷ ︸
=AAT

U1Λ−1 = Ir (1.245a)
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Moreover, it also holds that

V T
1 A

TU1 = Λ−1UT
1 A︸ ︷︷ ︸

=V T
1

ATU1 = Λ−1UT
1 U1Λ2UT

1︸ ︷︷ ︸
=AAT

U1 = Λ−1Λ2 = Λ (1.245b)

and, similarly,

V T
1 A

TU2 = 0r×(N−r), since ATU2 = 0 (1.245c)

Combining (1.245b)–(1.245c) gives

V T
1 A

TU =
[

Λ 0r×(N−r)
]

(1.246)

Now, since V1 has r orthonormal columns in M−dimensional space, we can add M − r
more columns to enlarge V1 into an M ×M orthogonal matrix V as follows:

V
∆
=
[
V1 V2

]
, V TV = IM (1.247)

which implies that the new columns in V2 ∈ IRM×(M−r) should satisfy V T
2 V1 = 0 and

V T
2 V2 = I. It follows that

V T
2 V1 = 0 =⇒ V T

2 ATU1Λ−1︸ ︷︷ ︸
=V1

= 0

=⇒ V T
2 A

TU1 = 0(M−r)×r, since Λ > 0 (1.248)

and

V T
2 A

TU2 = 0(M−r)×(N−r), since ATU2 = 0. (1.249)

Adding these conclusions into (1.246) we can write[
V T

1

V T
2

]
ATU =

[
Λ 0r×(N−r)

0(M−r)×r 0(M−r)×(N−r)

]
(1.250)

and we conclude that orthogonal matrices U and V exist such that

A = U

[
Λ 0r×(M−r)

0(N−r)×r 0(N−r)×(M−r)

]
︸ ︷︷ ︸

=
[

Σ 0N×(M−N)

]

V T (1.251)

as claimed by (1.108a). A similar argument establishes the SVD decomposition of A
when N > M .

REFERENCES

Aitken, A. C. (1939), Determinants and Matrices, 9th edition, Interscience Publishers,
NY.

Autonne, L. (1913), “Sur les matrices hypohermitiennes et les unitairs,” Comptes Ren-
dus de l’Academie Sciences, Paris, vol. 156, pp. 858–860.

Banachiewicz, T. (1937a), “Sur l’inverse d’un cracovien et une solution générale d’un
systeme d’équations linéaires,” Comptes Rendus Mensules des Séances de la Classe
des Sciences Mathématique et Naturelles de l’Académie Polonaise des Sciences et des
Lettres, no. 4, pp. 3–4.

Banachiewicz, T. (1937b), “Zur Berechungung der Determinanten, wie auch der In-
versen, und zur darauf basierten Auflosung der Systeme lineare Gleichungen,” Acta
Astronomica, Sér. C, vol. 3, pp. 41–67.



54 Matrix Theory

Bartlett, M. S. (1951), “An inverse matrix adjustment arising in discriminant analysis,”
Ann. Math. Statist., vol. 22, pp. 107–111.

Bellman, R. E. (1970), Introduction to Matrix Analysis, 2nd edition, McGraw Hill, NY.
Beltrami, E. (1873), “Sulle funzioni bilineari,” Giornale di Matematiche ad Uso degli
Studenti Delle Universita, vol. 11, pp. 98–110.

Berman, A. and R. J. Plemmons (1994), Nonnegative Matrices in the Mathematical
Sciences, SIAM, PA.

Bernstein, D. S. (2018), Scalar, Vector, and Matrix Mathematics: Theory, Facts, and
Formulas, revised edition, Princeton University Press, NJ.

Bertsekas, D. P. and J. N. Tsitsiklis (1997), Parallel and Distributed Computation:
Numerical Methods, Athena Scientific, Singapore.

Bhatia, R. (2001), “Linear algebra to quantum cohomology: The story of Alfred Horn’s
inequalities,” The American Mathematical Monthly, vol. 108, no. 4, pp. 289–318.

Bjorck, A. (1996), Numerical Methods for Least Squares Problems, SIAM, PA.
Bródy, F. and T. Vámos (1995), The Neumann Compendium, vol. 1, World Scientific,
Singapore.

Brualdi, R. A. and S. Mellendorf (1994), “Regions in the complex plane containing the
eigenvalues of a matrix,” Amer. Math. Monthly, vol. 101, pp. 975–985.

Calafiore, G. C. and L. El Ghaoui (2014), Optimization Models, Cambridge University
Press.

Candes, E. J., J. K. Romberg, and T. Tao (2006), “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,” IEEE Trans.
Information Theory, vol. 52, no. 2, pp. 489–509.

Candes, E. J. and T. Tao (2006), “Near-optimal signal recovery from random projec-
tions: Universal encoding strategies,” IEEE Trans. Information Theory, vol. 52, pp.
5406–5425.

Carrera, J. P. (1992), “The fundamental theorem of algebra before Carl Friedrich
Gauss,” Publ. Mat., vol. 36, pp. 879–911.

Cauchy, A.-L. (1829), “Sur l’équation a l’aide de laquelle on determine les inégalités
séculaires des mouvements des planetes,” Exer. de math., vol. 4, pp. 174–195.

Constantinescu, T. (1996), Schur Parameters, Factorization, and Dilation Problems,
Birkhaüser, Berlin.

Cottle, R. W. (1974), “Manifestations of the Schur complement,” Linear Algebra and
Its Appl., vol. 8, pp. 189–211.

Courant, R. (1943), “Variational methods for the solution of problems of equilibrium
and vibrations,” Bull. Amer. Math. Soc., vol. 49, pp. 1–23.

Demmel, J. (1997), Applied Numerical Linear Algebra, SIAM, PA.
Duncan, W. J. (1944), “Some of the solution of large sets of simultaneous linear equa-
tions (with an appendix on the reciprocation of partitioned matrices),” The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Seventh Se-
ries, vol. 35, pp. 660–670.

Eckart, C. and G. Young (1936), “The approximation of one matrix by another of lower
rank,” Psychometrika, vol. 1, no. 3, pp. 211–218.

Eckart, C. and G. Young (1939), “A principal axis transformation for non-Hermitian
matrices,” Bull. Amer. Math. Soc., vol. 45, pp. 118–121.

Elad, M. (2010), Sparse and Redundant Representations, Springer, NY.
Feingold, D. G. and R. S. Varga (1962), “Block diagonally dominant matrices and
generalizations of the Gerschgorin circle theorem,” Pacific J. Math., vol. 12, pp.
1241–1250.

Fine, B. and G. Rosenberger (1997), The Fundamental Theorem of Algebra, Springer-
Verlag, NY.

Frobenius, F. G. (1908), “Uber matrizen aus positiven elementen, 1” Sitzungsber. Konigl.
Preuss. Akad. Wiss., pp. 471–476.

Frobenius, G. (1909), “Uber matrizen aus positiven elementen, 2,” Sitzungsber. Konigl.
Preuss. Akad. Wiss., pp. 514–518.



1.B Constructive Proof of SVD 55

Frobenius, G. (1912), “Uber matrizen aus nicht negativen elementen,” Sitzungsber.
Konigl. Preuss. Akad. Wiss., pp. 456–477.

Gantmacher, F. R. (1959), The Theory of Matrices, Chelsea Publishing Company, NY.
Gelfand, I. M. (1989), Lectures on Linear Algebra, Dover Publications, NY.
Gerschgorin, S. (1931), “Über die abgrenzung der eigenwerte einer matrix,” Izv. Akad.
Nauk. USSR Otd. Fiz.-Mat. Nauk, vol. 7, pp. 749–754.

Golub, G. H. and W. Kahan (1965), “Calculating the singular values and pseudo-inverse
of a matrix,” J. Society Indust. Appl. Math.: Series B, Numerical Analysis, vol. 2,
no. 2, pp. 205–224.

Golub, G. H. and C. Reinsch (1970), “Singular value decomposition and least squares
solutions,” Numerische Mathematik, vol. 14, no. 5, pp. 403–420.

Golub, G. H. and H. A. van der Vost (2001), “Eigenvalue computation in the 20th
century,” in Numerical Analysis: Historical Developments in the 20th Century, C.
Brezinski and L. Wuytack, Eds., pp. 209–238, North-Holland, Elsevier.

Golub, G. H. and C. F. Van Loan (1996), Matrix Computations, 3rd edition, The John
Hopkins University Press, MD.

Gram, J. (1883), “Ueber die Entwickelung reeller Funtionen in Reihen mittelst der
Methode der kleinsten Quadrate,” J. Reine Angew. Math., vol. 94, pp. 41–73.

Guttman, L. (1946), “Enlargement methods for computing the inverse matrix,” Ann.
Math. Statist., vol. 17, pp. 336–343.

Hackbusch, W. (2012), Tensor Spaces and Numerical Tensor Calculus, Springer-Verlag.
Hager, W. W. (1989), “Updating the inverse of a matrix,” SIAM Review, vol. 31, no.

2, pp. 221–239.
Halmos, P. R. (1963), “What does the spectral theorem say?” The American Mathe-
matical Monthly, vol. 70, no. 3, pp. 241–247.

Halmos, P. R. (1974), Finite-Dimensional Vector Spaces, Springer, NY.
Halmos, P. R. (2013), Introduction to Hilbert Space and the Theory of Spectral Multi-
plicity, Martino Fine Books, CT, USA.

Hawkins, T. (1975), “Cauchy and the spectral theory of matrices,” Historia Mathemat-
ica, vol. 2, no. 1, pp. 1–29.

Haynsworth, E. V. (1968), “Determination of the inertia of a partitioned Hermitian
matrix,” Linear Algebra and its Applications, vol. 1, pp. 73–81.

Henderson, H. V., F. Pukelsheim, and S. R. Searle (1983), “On the history of the
Kronecker product,” Linear and Multilinear Algebra, vol. 14, pp. 113–120.

Henderson, H. V. and S. R. Searle (1981a), “On deriving the inverse of a sum of matri-
ces,” SIAM Review, vol. 23, pp. 53–60.

Henderson, H. V. and S. R. Searle (1981b), “The vec-permutation matrix, the vec
operator, and Kronecker products: A review,” Linear and Mulitilinear Algebra, vol.
9, pp. 271–288.

Hensel, K. (1891), “Uber die Darstellung der Determinante eines Systems, welches aus
zwei anderen componirt ist,” ACTA Mathematica, vol. 14, pp. 317–319.

Ho, Y. C. (1963), “On the stochastic approximation method and optimal filter theory,”
J. Math. Anal. Appl., vol. 6, pp. 152–154.

Hogben, L., Ed. (2014), Handbook of Linear Algebra, 2nd edition, CRC Press.
Horn, R. A. and C. R. Johnson (1990), Matrix Analysis, Cambridge University Press.
Hotelling, H. (1943a), “Some new methods in matrix calculation,” Ann. Math. Statist.,
vol. 14, pp. 1–34.

Hotelling, H. (1943b), “Further points on matrix calculation and simultaneous equa-
tions,” Ann. Math. Statist., vol. 14, pp. 440–441.

Householder, A. S. (1953), Principles of Numerical Analysis, McGraw-Hill, NY.
Householder, A. S. (1957), “A survey of closed methods for inverting matrices,” J. Soc.
Ind. Appl. Math., vol. 5, pp. 155–169.

Householder, A. S. (1964), The Theory of Matrices in Numerical Analysis, Blaisdell,
NY.

Jordan, C. (1874a), “Mémoire sur les formes bilinéaires,” J. Math. Pures Appl., Deux-
ieme Série, vol. 19, pp. 35–54.



56 Matrix Theory

Jordan, C. (1874b), “Sur la réduction des formes bilinéaires,” Comptes Rendus de
l’Academie Sciences, Paris, pp. 614–617.

Kailath, T. (1960), “Estimating filters for linear time-invariant channels,” Quarterly
Progress Report 58, MIT Research Laboratory of Electronics, Cambridge, MA, pp. 185–
197.

Kailath, T. (1986), “A theorem of I. Schur and its impact on modern signal processing,”
in Operator Theory: Advances and Applications, vol. 18, pp. 9–30, Birkhauser, Basel.

Kailath, T. and A. H. Sayed (1995), “Displacement structure: Theory and applications,”
SIAM Review, vol. 37, no. 3, pp. 297–386.

Koning, R. H., H. Neudecker, and T. Wansbeek (1991), “Block Kronecker products and
the vecb operator,” Linear Algebra Appl., vol. 149, pp. 165–184.

Laplace, P. S. (1812), Théorie Analytique des Probabilités, Paris.
Lax, P. (1997), Linear Algebra, Wiley, NY.
Lay, D. (1994), Linear Algebra and Its Applications, Addison-Wesley, Reading, MA.
Lay, D., S. Lay, and J. McDonald (2014), Linear Algebra and Its Applications, 5th
edition, Pearson.

Laub, A. J. (2004), Matrix Analysis for Scientists and Engineers, SIAM, PA.
Leissa, A. W. (2005), “The historical bases of the Rayleigh and Ritz methods,” J. Sound
and Vibration, vol. 287, pp. 961–978.

Lindsay, R. B. (1945), “Historical introduction,” in J. W. S. Rayleigh, The Theory of
Sound, vol. 1, Dover edition, NY.

Liu, S. (1999), “Matrix results on the Khatri-Rao and Tracy-Singh products,” Linear
Algebra and its Applications, vol. 289, no. 1–3, pp. 267–277.

MacDuffee, C. C. (1946), The Theory of Matrices, Chelsea, NY.
Meyer, C. D. (2001), Matrix Analysis and Applied Linear Algebra, SIAM, PA.
Minc, H. (1988), Nonnegative Matrices, Wiley, NY.
Nicholson, W. K. (2019), Linear Algebra with Applications, open edition, revision A.
Available online under the Creative Commons License on lyryx.com

Parlett, B. N. (1998), The Symmetric Eigenvalue Problem, SIAM, PA.
Perron, O. (1907), “Zur theorie der matrices,” Mathematische Annalen, vol. 64, no. 2,
pp. 248–263.

Pillai, S. U., T. Suel, and S. Cha (2005), “The Perron-Frobenius theorem: Some of its
applications,” IEEE Signal Process. Mag., vol. 22, no. 2, pp. 62–75.

Plackett, R. L. (1950), “Some theorems in least-squares,” Biometrika, vol. 37, no. 1–2,
pp. 149–157.

Puntanen, S. and G. P. H. Styan (2005), “Historical introduction: Issai Schur and the
early development of the Schur complement,” in The Schur Complement and Its
Applications, pp. 1–16, F. Zhang, Ed., Springer, NY.

Rayleigh, J. W. S. (1877), The Theory of Sound, vol. 1, The Macmillan Company.
Reprinted in 1945 by Dover Publications, NY.

Rayleigh, J. W. S. (1878), The Theory of Sound, vol. 2, The Macmillan Company.
Reprinted in 1945 by Dover Publications, NY.

Regalia, P. A. and S. Mitra (1989), “Kronecker products, unitary matrices, and signal
processing applications,” SIAM Review, vol. 31, pp. 586–613.

Ritz, W. (1908), “Uber eine neue methode zur Losung gewisser variationsprobleme der
mathematischen,” Physik, Journal fur Reine und Angewandte Mathematik, vol. 135,
pp. 1–61.

Ritz, W. (1909), “Theorie der transversalschwingungen einer quadratische platte mit
freien Randern,” Annalen der Physik, vol. 28, pp. 737–786.

Sayed, A. H. (2003), Fundamentals of Adaptive Filtering, Wiley, NJ.
Sayed, A. H. (2008), Adaptive Filters, Wiley, NJ.
Sayed, A. H. (2014a), Adaptation, Learning, and Optimization over Networks, Founda-
tions and Trends in Machine Learning, NOW Publishers, vol. 7, no. 4–5, pp. 311–801.

Sayed, A. H. (2014c), “Diffusion adaptation over networks,” in E-Reference Signal Pro-
cessing, R. Chellapa and S. Theodoridis, Eds., vol. 3, pp. 323–454, Academic Press,
NY.



1.B Constructive Proof of SVD 57

Schmidt, E. (1907), “Zur Theorie der linearen und nichtlinearen Integralgleichungen.
I. Teil. Entwicklung willkurlichen Funktionen nach System vorgeschriebener,” Math.
Ann., vol. 63, pp. 433–476.

Schmidt, E. (1908), “Uber die Auflosung linearen Gleichungen mit unendlich vielen
Unbekanten,” Rend. Circ. Mat. Palermo. Ser. 1, vol. 25, pp. 53–77.

Schur, I. (1917), “Über potenzreihen die inm inneren des einheitskreises beschränkt
sind,” Journal für die Reine und Angewandte Mathematik, vol. 147, pp. 205–232.
[English translation in Operator Theory: Advances and Applications, vol. 18, pp. 31–
88, edited by I. Gohberg, Birkhaüser, Boston, 1986.]

Seneta, E. (2007), Non-negative Matrices and Markov Chains, 2nd edition, Springer,
NY.

Sherman, J. andW. J. Morrison (1949), “Adjustment of an inverse matrix corresponding
to changes in the elements of a given column or a given row of the original matrix,”
Ann. Math. Statistics, vol. 20, p. 621.

Sherman, J. andW. J. Morrison (1950), “Adjustment of an inverse matrix corresponding
to a change in one element of a given matrix,” Ann. Math. Statist., vol. 21, pp. 124–
127.

Stewart, G. W. (1993), “On the early history of the singular value decomposition,”
SIAM Review, vol. 35, pp. 551-566.

Stewart, G. W. and J.-G. Sun (1990), Matrix Perturbation Theory, Academic Press,
Boston.

Strang, G. (1988), Linear Algebra and Its Applications, 3rd edition, Academic Press,
NY.

Strang, G. (2009), Introduction to Linear Algebra, 4th edition, Wellesley-Cambridge
Press, Wellesly, MA.

Sylvester, J. J. (1852), “A demonstration of the theorem that every homogeneous
quadratic polynomial is reducible by real orthogonal substitutions to the form of
a sum of positive and negative squares,” Phil. Mag., Ser. 4, vol. 4, no. 23, pp. 138–
142.

Sylvester, J. J. (1889a), “A new proof that a general quadratic may be reduced to its
canonical form (that is, a linear function of squares) by means of a real orthogonal
substitution,” Messenger of Mathematics, vol. 19, pp. 1–5.

Sylvester, J. J. (1889b), “On the reduction of a bilinear quantic of the n−th order to
the form of a sum of n products by a double orthogonal substitution,” Messenger of
Mathematics, vol. 19, pp. 42–46.

Takahashi, N. and I. Yamada (2008), “Parallel algorithms for variational inequalities
over the cartesian product of the intersections of the fixed point sets of nonexpansive
mappings,” J. Approx. Theory, vol. 153, no. 2, pp. 139–160.

Takahashi, N., I. Yamada, and A. H. Sayed (2010), “Diffusion least-mean-squares with
adaptive combiners: Formulation and performance analysis,” IEEE Trans. Signal
Process., vol. 58, no. 9, pp. 4795–4810.

Tracy, D. S. and R. P. Singh (1972), “A new matrix product and its applications in
matrix differentiation,” Statistica Neerlandica, vol. 26, no. 4, pp. 143–157.

Trefethen, L. N. and D. Bau (1997), Numerical Linear Algebra, SIAM, PA.
Van Huffel, S. and J. Vandewalle (1987), The Total Least Squares Problem: Computa-
tional Aspects and Analysis, SIAM, PA.

Van Loan, C. F. (2000), “The ubiquitous Kronecker product,” J. Comput. Applied
Math., vol. 123, no. 1–2, pp. 85–100.

Varga, R. S. (2004), Gersgorin and his Circles, Springer, NY.
von Neumann, J. (1929), “Zur algebra der funktionaloperatoren und theorie der nor-

malen operatoren,” Math. Ann., vol. 102, pp. 370–427.
von Neumann, J. (1937), “Some matrix-inequalities and metrization of matrix-space” ’
Tomsk Univ. Rev., vol. 1, pp. 286–300. Reprinted in Collected Works, Pergamon
Press, 1962, vol. IV, pp. 205–219.

von Neumann, J. (1932), The Mathematical Foundations of Quantum Mechanics, trans-
lation published in 1996 of original text, Princeton University Press, NJ.



58 Matrix Theory

Weyl, H. (1909), “Über beschrankte quadratiche formen, deren differenz vollsteig ist.,”
Rend. Circ. Mat. Palermo, vol. 27, pp. 373–392.

Weyl, H. (1912), “Das asymptotische Verteilungsgesetz der Eigenwerte linearer par-
tieller Differentialgleichungen,” Math. Ann., vol. 71, pp. 441–479.

Wilkinson, J. H. (1965), The Algebraic Eigenvalue Problem, Oxford University Press.
Wong, Y. K. (1935), “An application of orthogonalization process to the theory of least
squares,” Ann. Math. Statistics, vol. 6, pp. 53–75.

Woodbury, M. (1950), Inverting Modified Matrices, Mem. Rep. 42, Statistical Research
Group, Princeton University, NJ.

Zehfuss, G. (1858), “Ueber eine gewisse Determinante,” Zeitschrift für Mathematik und
Physik, vol. 3, pp. 298–301.

Zhang, F. (2005), The Schur Complement and Its Applications, Springer, NY.




