
52 NEAREST-NEIGHBOR RULE

We encountered one instance of Bayesian inference in Chapter 50 based on
the quadratic loss in the context of mean-square-error estimation. We explained
there that the optimal solution, for inferring a hidden zero-mean random vari-
able x from observations of another zero-mean random variable y, is given by
the conditional estimator, E (x|y), whose computation requires knowledge of the
conditional distribution, fx|y(x|y). Even when the estimator x̂ = c(y) is re-
stricted to affine functions of y, the solution continues to require knowledge of
some statistical moments of {x,y} in the form of their variances or covariances,
{σ2

x, rxy, Ry}. We addressed this challenge in the last two chapters by using a
collection of training data measurements {x(n), yn} arising from the joint dis-
tribution fx,y(x, y) to replace the stochastic risk, E (x− yTw)2, by an empirical
least-squares risk, with and without regularization such as:

w?
∆
= argmin

w∈IRM

{
α‖w‖1 + ρ‖w‖2 +

1

N

N−1∑

n=0

(
x(n)− yTnw

)2
}

(52.1)

where α and ρ are nonnegative regularization factors.
Moving forward, we will consider more general Bayesian inference problems

involving other types of loss functions Q(x, x̂), besides the quadratic loss:

x̂Q
∆
= argmin

x̂=c(y)

{
EQ(x, x̂)

}
(52.2)

We already know from result (28.5) that here too the optimal solution x̂Q re-
quires knowledge of the conditional pdf, fx|y(x|y), since

x̂Q
∆
= argmin

x̂=c(y)

{
Ex|y

(
Q(x, x̂|y = y)

)}
(52.3)

where the expectation of the loss function is evaluated relative to fx|y(x|y). We
will follow two paths. One path is similar to what we did in the previous two
chapters for mean-square-error estimation. We will replace the stochastic risk in
(52.2) by an empirical risk, add regularization, use an affine model for c(y), and
then apply some stochastic approximation algorithm to learn the solution. This
construction would amount to solving problems of the form:

w?
∆
= argmin

w∈IRM

{
q(w) +

1

N

N−1∑

n=0

Q(x(n), x̂(n))

}
, x̂(n) = yTnw (52.4)
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where q(w) denotes the regularization factor. This first approach will be studied
at great length in later chapters in the context of the Perceptron algorithm,
support vector machines, kernel methods, neural networks, and other related
methods. The main difference between these methods will be the choice of the
loss function Q(·, ·) and the way by which the predictor x̂ is constructed from y.
While most methods will employ affine constructions, kernel methods and the
neural network structure will allow for some nonlinear mappings from y to x.

In the current and next few chapters, however, we will follow a second more
direct path to solving (52.2). We will introduce data-based methods that infer
either the conditional pdf fx|y(x|y) or the joint pdf fx,y(x, y) directly from the
data, rather than minimize an empirical risk. In these investigations, we will
focus on the important case of predicting the label of a random variable x from
observations y. Specifically, we will focus on the classification problem where x
is discrete and assumes one of two binary values, +1 or −1. We will also consider
multi-class problems where x can assume one of a multitude of discrete levels.

NOTATION: Regression vs. Classification
Before proceeding, we motivate a change in notation. Form this point onwards in
our presentation, we will be dealing mainly with classification problems where the
unknown x assumes discrete values. The variable x can be either binary-valued
such as x ∈ {−1,+1} or x ∈ {0, 1}, or multi-valued such as assuming integer
values x ∈ {1, 2, . . . , R}. In order to emphasize the fact that the hidden variable
is discrete, we will henceforth use the Greek symbol γ to refer to a binary discrete
variable and the normal symbol r to refer to a multi-level discrete variable:

(notation for discrete hidden variables)

γ ∈ {−1, 1} or γ ∈ {0, 1}, (binary values) (52.5a)

r ∈ {1, 2, 3, . . . , R}, (integer values) (52.5b)

Both γ and r are random variables, just like the notation x. By introducing
these symbols, it becomes easier for the reader to recognize whether a statement
is dealing with discrete or continuous variables, a classification or regression
problem, and whether the discrete variable itself is binary or multi-level. We will
refer to {γ, r} as the class or label variable. For similar reasons, we will replace
the observation variable y by the letter h and refer to it as the feature vector.
In this way, regression problems deal with variables (x,y) while classification
problems deal with variables (γ,h) or (r,h):

{
notation (x,y) reserved for regression/estimation problems
notation (γ,h) or (r,h) reserved for classification problems

(52.6)

In the context of classification, each entry of h is called an attribute. These entries
will generally assume numerical values, but they can also be categorical, such as
when an attribute refers to the color of an object (say, red, blue, or yellow) or
its size (say, small, medium, or large). It is customary to transform categorical
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entries into numerical values, as explained in a later chapter when we discuss
decision trees, so that it is sufficient for our purposes to treat h as a vector with
numerical entries..

52.1 BAYES CLASSIFIER

We review briefly the Bayes classifier solution from Sec. 28.3 in view of the new
notation for classification problems. Given a feature vector h ∈ IRM , we are
interested in deducing its label r ∈ {1, 2, . . . , R} by seeking a mapping c(h) :

IRM → {1, 2, . . . , R} that minimizes the probability of error, namely,

r̂bayes = argmin
c(h)

P (c(h) 6= r) (52.7)

We know from (28.67) that the optimal solution is given by the MAP estimator:

r̂bayes = argmax
r∈{1,2,...,R}

P(r = r|h = h) (52.8)

We denote the optimal mapping that corresponds to this construction by c•(h)

using the bullet superscript:

r̂bayes = c•(h), (Bayes classifier) (52.9)

In our notation, the • superscript will refer to the ideal solution that we are aim-
ing to achieve. As seen from (52.8), this solution requires knowledge of the con-
ditional probability distribution P(r = r|h = h), which is generally unavailable.
The ? superscript, such as writing c?(h), will refer to approximations obtained
by solving more tractable formulations:

r̂ = c?(h), (approximate classifier) (52.10)

In this and the next few chapters, we will describe data-based methods that in-
fer either the conditional pdf P(r = r|h = h) or the joint probability distribution
fr,h(r, h) from the data and lead to approximate classifiers c?(h). Among these
methods we list the nearest-neighbor (NN) rule of this chapter, the naïve Bayes
classifier, the linear and Fisher discriminant analysis methods (LDA, FDA), and
the logistic regression method. Methods that approximate the conditional prob-
abilities P(r = r|h = h) are referred to as discriminative, whereas methods that
approximate the joint pdf fr,h(r, h), or its components P(r = r) and the reverse
conditional fh|r(h|r), are referred to as generative. This is because discriminative
techniques allow us to discriminate between the classes, while generative tech-
niques allow us to generate additional data {r, h} that mimic the distribution of
the training data.

Before explaining the steps involved in the nearest-neighbor construction, it
is useful to comment on how performance is assessed in general for classification
algorithms that rely on training data. These comments are valid for all learning
methods described here and in future chapters.
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Classification errors
In classification problems, we make a distinction between training data and test
data. The data {r(n), hn} used to train the classifier are referred to as training
data. Once a classifier r̂ = c?(h) is learned, we can evaluate its performance
on the training data by counting the number of erroneous decisions that would
result if the classifier were applied to that data. This measure results in the
training error, also called the empirical error rate and is evaluated as follows:

Remp(c?)
∆
=

1

N

N−1∑

n=0

I [c?(hn) 6= r(n)] , (empirical error on training data)

(52.11)
where the notation I[x] denotes the indicator function defined by:

I[x]
∆
=

{
1, when argument x is true
0, otherwise

(52.12)

The argument of the indicator function in (52.11) is comparing the predicted
label r̂(n) = c?(hn) to the true label r(n) for the sample of index n. Note that
Remp(c?) is a number in the range [0, 1] and it measures the empirical probability
of error on the training data for the classifier c?(h). In general, the empirical error
will be small because c?(h) will be determined with the aim of minimizing it.

In most classification applications, however, the main purpose for learning
c?(h) is to employ it to perform inference on future data that were not part of
the training phase. For this reason, it is customary to assess performance on a
separate collection of T test data points denoted by {r(t), ht}, and which were
not part of the training phase but are assumed to arise from the same underlying
distribution fh,r(h, r) as the training data. The empirical error rate on the test
data is given by

Remp(c?)
∆
=

1

T

T−1∑

t=0

I [c?(ht) 6= r(t)] , (empirical error on test data) (52.13)

where r̂(t) = c?(ht) denotes the prediction for each test label r(t). We use the
same symbol Remp(·) to refer to empirical errors (whether measured on training
or test data); it will be clear from the context whether we are referring to one
case or the other. In general, the above empirical error on test data will be
larger than the empirical error on training data but we desire the gap to be
small. Learning algorithms that lead to small error gaps are said to generalize
well, namely, they are able to extend their good performance on training data
to arbitrary test data as well. It is important to emphasize that the ultimate
objective of a learning algorithm is not to attain a small empirical error on a
particular test data. More critically, classifiers should be able to generalize, i.e.,
they should be able to classify well arbitrary future feature vectors from the same
data distribution that were not part of the original training and test datasets.
This is the crux of the learning problem. In future Chapter 64, we will develop
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conditions under which classifiers that perform well on a sufficient amount of
test data can be expected to generalize well for other data.

We formally measure the generalization ability of a classifier c?(h) by defining
its generalization error as the following expected value (which we also denote by
Pe since, as explained by (52.15), it amounts to the probability of error by the
classifier):

R(c?)
∆
= E I [c?(h) 6= r] , (generalization error) (52.14)

where the expectation is over the joint probability distribution of the random
data {r,h}. This risk can be expressed in an equivalent form involving the prob-
ability of erroneous decisions since

R(c?) = 1× P (c?(h) 6= r) + 0× P (c?(h) = r)

= P(c?(h) 6= r)
∆
= Pe (52.15)

That is,

probability of error = generalization error (52.16)

We will establish in future Chapter 64 that, under some reasonable conditions
on the structure of a classifier (namely, not too simple and not too complex)
and on the amount of training data available (which needs to be large enough),
the empirical error on a test dataset provides a good approximation for the
generalization error, i.e., Remp(c?) ≈ R(c?). This means that classifiers that
perform well on test data are expected to perform well more broadly on the
entire population.

Example 52.1 (The need to generalize) Consider a collection of N−feature vectors
{hn ∈ IRM} and the corresponding labels r(n) ∈ {1, 2, . . . , R}, for n = 0, 1, . . . , N − 1.
We can construct a classifier that memorizes the behavior of the training samples
perfectly as follows:

c(h) =

{
r(h), if h ∈ {h0, h1, . . . , hN−1}
r, selected randomly from {1, 2, . . . , R} for any other h (52.17)

That is, the classifier assigns the label r(n) to each vector h coinciding with one hn from
the training set, and assigns a random label r to any other feature vector. Then, the
empirical error on the training data for this classifier will be zero (i.e., the smallest it
can be), while its empirical error on arbitrary test data can be unacceptably large. We
therefore have an example of a classifier that performs exceedingly well on the training
data but delivers poor performance on test data. This is an example of overfitting.
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52.2 K-NN CLASSIFIER

We consider first binary classification problems with label γ ∈ {±1}. Assume we
have access to N pairs of data points {γ(n), hn} where hn ∈ IRM is the n−th
feature vector and γ(n) the corresponding label. This collection plays the role of
the training dataset. Now, given a new feature h, the objective is to determine
its most likely label. The nearest neighbor rule predicts γ as follows.

Neighborhoods
The vectors {h, hn} are points in M−dimensional space. We define a neighbor-
hood around h consisting of the k−nearest feature vectors from the training set
to h, where closeness is measured in terms of the Euclidean distance (or some
other distance metric, if desired). Let the notation Nk(h) refer to the indices of
the k−closest neighbors to h from within the training set {hn}:

Nk(h)
∆
=

{
index set of k−closest neighbors to h from training set {hn}

}

(52.18)
If we envision a hypersphere centered at location h and engulfing the neighbor-

hood of h, then the radius of the sphere should be large enough to include only k
neighboring points within Nk(h). Figure 52.1 illustrates this construction in the
plane forM = 2 and k = 5. In the figure, training features from class γ = +1 are
represented by circles, while training features from class γ = −1 are represented
by squares. The location of h is represented by a triangle. The figure draws a
circle around h that encompasses its 5 closest neighbors from the training set.
The class of h is then declared to be the one corresponding to the majority class
among its neighbors. In this case, the feature h is declared to belong to class +1

since four of its neighbors belong to this class. In the case of a tie, one can select
the class randomly between +1 and −1 or set it, by convention, to +1.

The k−nearest neighbor decision rule can be expressed analytically as follows.
We first use the neighborhood around h to count the number of neighbors of h
that belong to class +1:

p(h)
∆
=

1

k

∑

n∈Nk(h)

I[γ(n) = +1] (52.19)

where I[x] is the indicator function: its value is one when its argument is true and
zero otherwise. The division by k transforms p(h) into a measure of the fraction
of +1 neighbors that exist within Nk(h). The majority vote then translates into
applying the following rule to determine the label of h:

γ?(h) =

{
+1, if p(h) ≥ 1/2

−1, otherwise
(52.20)

We refer to this mapping from h to its predicted label γ?(h) by writing c?(h).
Note that in effect p(h) is approximating the conditional probability P(γ =
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Figure 52.1 The set of 5−nearest neighbors around the feature vector h (represented
by the triangle) consists of four circular features (belonging to class +1) and one
square feature (belonging to class −1). Accordingly, based on a majority vote, the
feature h is declared to belong to class +1.

+1|h = h) that is needed in the implementation of the Bayes classifier:

p(h) = P̂(γ = +1|h = h) (52.21)

In other words, the k−nearest neighbor rule uses the training data and the k−size
neighborhoods to estimate the conditional probabilities P(γ = +1|h = h) locally
in order to carry out the classification task.

Example 52.2 (Weighted k−NN) The traditional k−NN rule assigns equal weights
to all neighbors of a feature vector h before deciding on its label. It is sometimes natural
to expect that neighbors that are closer to h are more likely to belong to the same class
as h, than neighbors that are farther away from it. In weighted k−NN, each neighbor
` ∈ Nh is assigned a nonnegative weight w`; for convenience, we normalize the weights
to add up to one. For example, one (but not the only) way to compute the weights is
to determine the distances between h and each of its neighbors in Nh and to normalize
the distances by their sum:

d`
∆
= ‖h− h`‖, h` ∈ Nh (52.22a)

w` =
d`∑

`′∈Nh
d`′

(52.22b)



52.2 k−NN Classifier 2183

The resulting decision rule is expressed analytically as follows. We count the weighted
number of neighbors of h that belong to class +1:

p(h)
∆
=

∑
`∈Nk(h)

w` I[γ(`) = +1] (52.23)

and use a majority vote to decide on the label for h:

γ?(h) =

{
+1, if p(h) ≥ 1/2
−1, otherwise (52.24)

Multiclass classification
The nearest neighbor rule can be extended to multiclass classification problems
with R classes. In this case, we declare h to belong to the class r that receives
the majority of votes within its neighborhood.

Figure 52.2 The separation regions generated by applying a 5−NN rule over 150
randomly generated feature vectors hn ∈ IR2 arising from 3 classes: green (class
r = 1), red (class r = 2), and yellow (class r = 3).

Figure 52.2 illustrates the separating regions in the plane that would result
for k = 5 neighbors and R = 3 classes. The training data are represented by the
colored circles (green for r = 1, red for r = 2, and yellow for r = 3). The colored
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regions represent the class that would be assigned to any feature vector falling
into the region. For example, if a location in the plane is colored in red, the color
indicates that the majority of the 5 neighbors to this location will belong to class
r = 2. Therefore, any feature h falling into the red region will be assigned to class
r = 2, and similarly for the two other colored regions. This figure was generated
using a total of N = 150 random training points within the region [0, 1]× [0, 1].

The nearest-neighbor (NN) rule is a discriminative method that approximates
P(r = r|h = h) directly from the training data, and does not make any assump-
tion about the form of these probabilities. It is an example of a nonparametric
learning method, which does not involve learning the parameters of separating
surfaces as will happen with other learning methods discussed in future chapters
such as the Perceptron, support vector machines, and neural networks. The NN
rule operates directly on the available data and does not even involve a training
phase. While the NN construction is straightforward, we will find that it suffers
from several important challenges.

Voronoi diagrams
When k = 1 (i.e., when classification is decided by considering only the label of
the closest neighbor), we can partition the feature space into a Voronoi diagram
consisting of cells. Each cell n is characterized by a seed point hn, which is one
of the points from the training set. The boundaries of each cell n define a region
in space consisting of all M−dimensional vectors, h, that are closest to hn, than
to any other seed. These boundaries can be determined as follows. If we draw
line segments connecting any particular seed point, hn, to its neighboring seeds,
then the boundaries of cell n would be determined from the bisecting lines that
cut these segments in half. Figure 52.3 illustrates this construction for M = 2. A
total of N = 100 random feature vectors are generated in the region [0, 1]× [0, 1]

and the resulting Voronoi diagram is shown. The lines specify the equidistant
boundaries between adjacent feature points; points from class +1 are denoted in
green while points from class −1 are denoted in red. Once the Voronoi diagram
is generated, classification by means of the 1−NN rule is achieved automatically
as follows. Given a new feature vector, h, we determine the cell that it falls into.
Then, the class of h is selected to match the class of the seed for that cell.

52.3 PERFORMANCE GUARANTEE

There is a fundamental and reassuring result on the performance of the nearest-
neighbor classifier. It is sufficient to describe the result for the 1−NN rule; a
similar conclusion applies to k−NN and is described in the comments at the end
of the chapter. Let c•(h) denote the optimal Bayes classifier (52.8). This classifier
minimizes the probability of misclassification and delivers the label r•(h). We
denote the smallest probability of error that is attained by the classifier by P bayes

e .
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Figure 52.3 Voronoi diagram for 100 randomly generated feature vectors hn ∈ IR2.
Points in green belong to class +1 while points in red belong to class −1.

Let c?(h) denote the 1−NN classifier that results from the training data
{r(n), hn} of size N . This is the classifier that is defined by the Voronoi diagram
corresponding to this data. The generalization error (or probability of misclas-
sification) for this classifier over the entire distribution of the data is given by
expression (52.15), which we denote by:

Pe
∆
= P(c?(h) 6= r) = R(c?) (52.25)

The following classical result now holds; its proof appears in Appendix 52.A —
see Prob. 52.1 for an alternative argument.

Theorem 52.1. (Generalization error of 1−NN classifiers) Consider a multi-
class classification problem with R labels, r ∈ {1, 2, . . . , R}. Let P bayes

e denote the
smallest probability of error attained by the Bayes classifier (52.8). Let Pe denote
the probability of error attained by the 1−NN classifier (i.e., its generalization
error). Then, for independent realizations {r(n), hn} and for large sample sizes
N →∞, it holds that

P bayes
e ≤ Pe ≤ P bayes

e

(
2− R

R− 1
P bayes
e

)
≤ 2P bayes

e (52.26)

Result (52.26) means that the probability of error of the 1−NN classifier is at
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most twice as bad as the best possible performance given by the optimal Bayes
classifier. The result also means that any other classifier structure can at most
reduce the probability of error of 1−NN by one half.

Challenges
While the k−NN rule is appealing, it faces some important challenges that limit
its performance. The classifier is sensitive to noise and outliers, and requires that
the training data be stored and processed continuously. Moreover, the following
properties are evident:

(C1) The classifier treats equally all entries (i.e., attributes) of the feature vector.
If, for example, some attributes are more relevant to the classification task
than the remaining attributes, this aspect is ignored by the k−NN imple-
mentation because all entries in the feature vector contribute similarly to the
calculation of Euclidean distances and the determination of neighborhoods.

(C2) The k−NN classifier does not perform well in high-dimensional feature spaces
when M is large for at least two reasons:
(a) First, for each new feature h, the classifier needs to perform a search

over the entire training set to determine the neighborhood of h. This
step is demanding for large M and N .

(b) Second, and more importantly, in high-dimensional spaces, the training
samples {hn} only provide a sparse representation for the behavior of
the data distribution fr,h,(r, h). The available training examples need
not be enough for effective learning.

We comment on these issues in the sequel, and in the next chapter, and explain
how clustering helps ameliorate some of these difficulties.

52.4 K-MEANS ALGORITHM

One way to address challenge (C2a) and reduce the complexity of the search step
is to cluster the training data into a small number of clusters, and to base the
classification decision on comparisons against the clusters rather than against
the entirety of the training dataset. Clustering is a procedure that partitions
the N feature vectors {hn ∈ IRM} into a small collection of K groups (called
clusters), with the expectation that vectors within the same group share similar
properties. One popular method to perform clustering is Lyold algorithm, also
known as the k−means algorithm, which operates as follows.

Algorithm
We select the desired number of clusters, K, and assign to each cluster k an
initial mean vector denoted by µk ∈ IRM . There are several ways by which these
initial vectors can be chosen (and their choice influences the performance of
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the clustering algorithm) — we describe three methods further ahead. Once the
initial vectors have been chosen, then the k−means algorithm applies repeatedly
the operations shown in listing (52.29) and continually updates the mean vectors
{µk} as follows:

(1) Each feature vector hn in the training set is assigned to the cluster whose
mean µk is the closest to hn (if there are multiple possible clusters, we select
one of them at random):

cluster for hn
∆
= argmin

1≤k≤K
‖hn − µk‖ (52.27)

Let the notation Ck represent a generic cluster k (i.e., the collection of the
indexes of all feature vectors in it).

(2) Following the assignments of the {hn} to clusters, the mean vector µk for
each cluster is updated by averaging the feature vectors that ended up within
that cluster:

µk =
1

|C|k
∑

n∈Ck
h(n) (52.28)

where |Ck| denotes the cardinality of the set (the number of its elements).

Observe that this algorithm performs clustering in an unsupervised manner; it
acts directly on the feature vectors and does not require any class information.
The performance of the algorithm is, however, sensitive to the choice of K, the
presence of outliers, and the selection of the initial mean vectors.

k−means algorithm (also known as Lyold algorithm)

given N feature vectors {hn}, of size M × 1 each;

given the number of clusters, K;

select K initial mean vectors {µk}, one for each cluster.
repeat until convergence :

assign each hn to the cluster with the closest mean µk;
for each cluster k, replace µk by the average of all vectors in it;

end
return clusters {Ck} and their means {µk}

(52.29)

Interpretation and derivation
We explain in the comments at the end of the chapter that the k−means clus-
tering algorithm is related to the expectation-maximization (EM) algorithm de-
scribed earlier in Chapter 32 for Gaussian mixture models. Both algorithms per-
form clustering and the main difference is that the k−means method performs
hard assignments of samples hn by assigning them to the cluster of the closest
mean vector, whereas the EM method performs soft assignments by computing
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likelihood values and assigning a feature hn to the most likely cluster — see
listings (52.38) and (52.37).

One way to motivate the k−means algorithm is pursued in Prob. 52.7 and
is based on the following argument. Consider a collection of N feature vectors
{hn} that we wish to distribute among K non-overlapping clusters denoted by
{C1,C2, . . . ,CK}. Each cluster Ck is characterized by a mean vector µk corre-
sponding to the average of all features within it, as shown by (52.28). We can
seek an optimal assignment of feature vectors by formulating the following opti-
mization problem:

min
C1,C2,...,CK

{
K∑

k=1

∑

n∈Ck
‖hn − µk(Ck)‖2

}
(52.30)

where the means {µk} are dependent on {Ck}. The unknowns are the clusters
{Ck}, i.e., their constituent feature vectors. This is generally a hard non-convex
problem to solve. An approximate solution can be pursued by employing an al-
ternating minimization approach. For each cluster k and feature hn, we introduce
the scalar

ank =

{
1, if hn ∈ Ck

0, otherwise
(52.31)

which reveals whether hn lies in Ck. There are NK such scalars since the integer
subscripts n and k run over 0 ≤ n ≤ N − 1 and 1 ≤ k ≤ K. Using the binary-
valued scalars {ank}, we can rewrite the optimization problem (52.30) in the
equivalent form:

min
{ank}

{
K∑

k=1

N−1∑

n=0

ank‖hn − µk(Ck)‖2
}

(52.32)

If we now alternate between minimizing over the {ank} for a fixed set of means
{µk}, and minimizing over the {µk} for a fixed set of assignments {ank}, we
arrive at the k−means algorithm:

{
a

(`)
nk

}
= argmin
{ank}

K∑

k=1

N−1∑

n=0

ank

∥∥∥hn − µ(`−1)
k

∥∥∥
2

(52.33a)

{
µ

(`)
k

}
= argmin

{µk}

K∑

k=1

N−1∑

n=0

a
(`)
nk ‖hn − µk‖

2 (52.33b)

where ` is an iteration index. The reader is asked to carry out this derivation in
Prob. 52.7.

Selection of initial means
Three popular methods for selecting the initial mean vectors {µk} are the fol-
lowing:

(1) (Forgy initialization) selects theK mean vectors by sampling randomly with-
out replacement from the N training vectors {hn}.
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(2) (Random partitioning) assigns the N feature vectors {hn} at random to K
clusters and then computes the means of these clusters and uses them as the
initial mean vectors.

(3) (k−means++ initialization) spreads out the selection of the mean vectors
as follows. It starts by selecting one mean vector uniformly at random from
the N training feature vectors {hn}. We denote this first selection by µ1.
Subsequently, the squared distances from µ1 to all feature vectors are com-
puted and denoted by

d(n)
∆
= ‖µ1 − hn‖2, n = 0, 1, . . . , N − 1 (52.34)

These squared distances are normalized to add up to one and used to define
a probability measure:

p(n)
∆
=

d(n)
∑N−1
n=0 d(n)

, n = 0, 1, . . . , N − 1 (52.35)

In this way, feature vectors that are farthest away from µ1 receive higher
probability values. The method subsequently selects a second mean vector,
µ2, randomly from the data according to this probability distribution. By
construction, feature vectors {hn} that are father away from µ1 will have
a higher likelihood of being selected. We end up with two mean vectors
{µ1, µ2}. The process continues as follows:
(a) For each feature vector, hn, compute the squared distance, d(n), from

hn to the closest mean vector.
(b) Normalize the distances, d(n), according to (52.35) and use the normal-

ized values as probability measures.
(c) Select randomly a new mean vector from the {hn} according to this

probability distribution and add it to the collection of previously selected
means. Repeat steps (a)-(c) until all K means have been selected.

Use for clustering
The two plots in the first row of Fig. 52.4 show N = 250 random feature vectors
hn ∈ IR2 belonging to five different classes; the classes are colored in the plot
on the left in order to identify them to the reader. The k−means algorithm is
blind to the class information and operates on the unlabeled data in the plot
on the right. The three plots in the bottom row show the result of applying
the k−means algorithm for each of the three initialization procedures (Forgy,
random, and k−means++). The location of the mean vector for each cluster is
marked by a large × symbol. It is seen in this simulation that the location of
the mean vectors is largely unaffected by the type of the initialization. The plots
in the bottom also show the Voronoi diagrams (separation regions) that result
from using the mean vectors. Figure 52.5 illustrates a second situation where the
Voronoi regions are sensitive to the initialization procedure. The figure shows the
result of applying the same k−means clustering algorithm to a second collection
of N = 250 randomly generated feature vectors in the square region [0, 1]× [0, 1].
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Figure 52.4 The plots in the top row show N = 250 feature vectors hn ∈ IR2 belonging
to five different classes; in the plot on the left, the classes are colored. The plots in the
bottom row show the result of applying k−means clustering to the data using the
three initialization methods Forgy, random, and k−means++. In this case, all
methods perform similarly. The × marks show the location of the mean vectors for
the clusters.

Use for classification
We can exploit the result of the clustering operation to perform classification.
We first associate a class r(k) with each cluster k. The class value is determined
by considering a majority vote among the members of the cluster. For example,
if the majority of the members in the cluster belong to class r = 1, then the
cluster will be assigned this label. In this way, we end up associating a label r(k)

with each cluster mean µk. During classification, when a new feature vector h
arrives, we determine the closest mean vector to it and declare the class of h to
be that of this mean vector. In other words, we carry out a 1−NN classification
scheme by relying solely on the K cluster means. Since K � N , we end up
with a computationally more efficient implementation than the traditional 1−NN
solution that relies on comparing against the entire dataset.

Another useful feature of the k−means algorithm is that it can also be used
to perform classification in a semi-supervised setting when we have available
labels for only a subset of the feature vectors {hn} but not for all of them. In
this case, we start by clustering the N feature vectors {hn} using the k−means
construction; this amounts to an unsupervised step since labels are not necessary
to carry out this step. We then label the clusters by using the limited labels
that are available. We only consider those feature vectors within each cluster
for which the label information is known, and associate the majority label to
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Figure 52.5 The leftmost top plot shows N = 250 feature vectors hn ∈ IR2 randomly
generated in the square region [0, 1]× [0, 1]. The other three plots show the result of
applying k−means clustering on this data using the three initialization methods
Forgy, random, and k−means++. In this case, the clustering results differ. The ×
symbol marks show the location of the mean vectors for the clusters.

the cluster; this amounts to a semi-supervised step. Subsequently, when a new
feature vector h arrives, we determine the closest cluster mean to it and declare
the class of h to be of that cluster.

Example 52.3 (Clustering MNIST dataset) We apply the k−means clustering algo-
rithm to the MNIST dataset. The classification results obtained here will not be as
reliable as the ones we will obtain by using other more elaborate classification schemes
in future chapters. The example here is only meant to illustrate the operation of the
clustering algorithm.

The MNIST dataset is useful for classifying handwritten digits. It contains 60,000 la-
beled training examples and 10,000 labeled test examples. Each entry in the dataset is
a 28×28 grayscale image, which we transform into an M = 784−long feature vector,
hn. Each pixel in the image and, therefore, each entry in hn, assumes integer values in
the range [0, 255]. Every feature vector (or image) is assigned an integer label in the
range 0 to 9 depending on which digit the image corresponds to. Figure 52.6 shows
randomly selected images from the training dataset.
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Figure 52.6 Randomly selected images from the MNIST dataset for handwritten
digits. Each image is 28× 28 grayscale with pixels assuming integer values in the range
[0, 255]. The dataset can be downloaded from http://yann.lecun.com/exdb/mnist/
or https://github.com/daniel-e/mnist_octave.

We pre-process the images {hn} by scaling their entries by 255 (so that they assume
values in the range [0, 1]). We subsequently compute the mean feature vectors for the
training and test sets. We center the scaled feature vectors around their respective
means in both sets. Figure 52.7 shows randomly selected images for the digits 0 and 1
before and after processing.

original images

processed images

Figure 52.7 Randomly selected images for the digits 0 and 1 from the MNIST dataset
for handwritten digits. The top row shows original images and the bottom row shows
the processed images, whose pixels are scaled down to the interval [0, 1] and centered
around the mean feature vectors for training and testing.

http://yann.lecun.com/exdb/mnist/
https://github.com/daniel-e/mnist_octave
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Figure 52.8 The mean image for each cluster, obtained by averaging the images
assigned to the cluster. The images are shown using a color scale for emphasis. On
top of each image, we assign a class label to the cluster. This label is obtained by a
majority vote, namely, by determining the digit that is most repeated within the
images in the cluster.

We apply the k−means++ algorithm to identify K = 10 clusters in the normalized
training samples. We run the algorithm for 1000 iterations. At the end of these itera-
tions, we obtain the mean vectors (centroids) for each of the clusters and plot them in
Fig. 52.8. The figure shows K = 10 clusters labeled k = 1 through k = 10; note that
the number we are assigning to refer to each cluster is different from the actual digit
numbering from 0 to 9. We further assign a class label to each cluster using a majority
vote. The digit that is most repeated within a cluster determines its label. Table 52.1
lists some statistics about the clusters: it shows the number of images that end up in
each cluster, and the number of times that the most frequent digit appeared within
the cluster. For example, a total of 9420 training images are assigned to cluster 1 and
6593 of these images happen to correspond to digit 1. This class label is assigned to the
first cluster and it is written on top of the mean image corresponding to the cluster.
Likewise, among the 8891 images in cluster 2, the most represented digit is 4 and it
occurs 3180 times. We therefore assign the label 4 to cluster 2, and so forth. In the
table, the first column lists the cluster number and the second column lists the class
label that is assigned to the cluster. The last column shows the relative frequency of
the most represented digit within each cluster.

Table 52.1 The table lists the clusters, their assigned labels, the total number of
images in each cluster, the number of occurrences of the most frequent digit in the
cluster, and its relative frequency within that cluster.

cluster cluster total occurrences of
number label images most frequent digit percentage

1 1 9420 6593 70.0%
2 4 8891 3180 35.8%
3 2 4455 4105 92.1%
4 3 5076 2117 41.7%
5 0 4540 4289 94.5%
6 7 8488 3840 45.2%
7 6 5329 1737 32.6%
8 6 4291 3766 87.8%
9 3 4832 2833 58.6%
10 8 4678 3373 72.1%
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Observe from Fig. 52.8 and also from the data in Table 52.1 that clusters 7 and 8 are
labeled as corresponding to the same digit 6. There is no label corresponding to digit 5
in the figure and table. We can examine more closely the frequency of digit occurrences
within each cluster, as shown in the following listing:



0 1 2 3 4 5 6 7 8 9

1 5 6593 676 301 220 282 173 442 508 220
2 31 16 167 171 3180 356 53 1831 149 2937

3 6 30 4105 125 33 4 56 45 33 18

4 233 4 243 2117 6 1314 29 8 1058 64
5 4289 0 44 22 8 44 55 19 20 39

6 7 10 65 38 1776 145 3 3840 126 2478
7 888 10 253 154 455 1479 1737 22 260 71

8 147 7 116 27 136 53 3766 4 26 9

9 295 14 117 2833 1 1178 37 1 298 58
10 22 58 172 343 27 566 9 53 3373 55



The top row contains the digits 0 through 9. The first column contains the cluster
numbers 1 through 10. Each row in the listing relates to one cluster. The numbers in
the row show how many images corresponding to each digit appear within the cluster.
We place a box around the most repeated digit. For example, for cluster 7, the most
repeated digit is 6 with 1737 images; the second repeated digit is 5 with 1479 images.
Compare these frequencies with the occurrences of digits 5 and 6 within cluster 8: there
are 3766 images for digit 6 and only 53 images for digit 5. These results suggest that,
if desired, we may label cluster 7 as corresponding to digit 5. Actually, during the test-
ing/classification phase discussed next, we will find out that the algorithm will end up
assigning images for digit 5 to cluster 7.

Table 52.2 Number of occurrences for each digit in the test data, along with the
cluster it is assigned to and the number of images for that digit that were assigned to
this cluster.

occurrences assignments to assigned to
digit in test data same cluster percentage cluster

0 980 718 73.3% 5
1 1135 1105 97.4% 1
2 1032 700 67.8% 3
3 1010 523 51.8% 9
4 982 556 56.6% 2
5 892 233 26.2% 7
6 958 656 68.5% 8
7 1028 629 61.2% 6
8 974 555 60.0% 10
9 1009 538 53.3% 2

TOTAL 10,000 6213 62.1%

Once clustering is completed, and a label is assigned to each cluster, we can now use the
cluster structure to perform classification. For this purpose, we assign each of the 10, 000
testing samples to the cluster with the closest centroid to it, and set the label for this
test sample to that of its closest cluster. We assess performance as follows. Table 52.2
lists the number of occurrences of each digit in the test data. For example, there are
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980 images corresponding to digit 0, 1135 images corresponding to digit 1, and so forth.
During testing, we find that 718 of the images corresponding to digit 0 are found to be
closest to the centroid of cluster 5, whose label is “digit 0.” We therefore say that 718
test images corresponding to digit 0 are correctly classified, which amounts to a 73.3%
success rate for digit 0. These numbers are listed in the columns of Table 52.2. We also
place on top of cluster 1 in Fig. 52.9 the label “digit 0” to indicate that, during test-
ing, this cluster accounts for the largest proportion of classifications in favor of “digit 0.”

Consider next digit 5. There are 892 occurrences of test images corresponding to digit
5 in the test data. Of these, 233 of them are assigned to cluster 7; this is the highest
number of images for digit 5 that are assigned to a single cluster (the numbers in
the third column of the table show the largest number of same-cluster assignments
for each digit). We therefore find that the success rate for digit 5 is 26.2% under this
construction. We place on top of cluster 7 in Fig. 52.9 the label “digit 5” to indicate
that, during testing, this cluster accounts for the largest proportion of classifications
in favor of “digit 5.” It follows from the numbers in the table that the misclassification
rate over the MNIST test data is close to 38%. We will be able to attain significantly
better performance in later chapters by using other classification methods.
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Figure 52.9 The label on top of each cluster shows the digit label from the testing set
that is most often assigned to that cluster. The images are shown using a color scale
for emphasis.

52.5 COMMENTARIES AND DISCUSSION

Nearest-neighbor rule. The earliest formulation of the nearest-neighbor (NN) rule ap-
pears to be the work by Fix and Hodges (1951) in an unpublished report from the 1951
USAF School of Aviation Medicine. Some of the earliest applications in the context
of pattern classification appear in the publications by Johns (1961), Sebestyen (1962),
Kanal (1962), Kanal et al. (1962), Harley et al. (1963), and Nilsson (1965). One fun-
damental and surprising result on the performance of the 1−NN classifier is expression
(52.26), due to Cover and Hart (1967). The result states that for large sample sizes,
the probability of error of the classifier is at most twice as bad as the best possible
performance by the optimal Bayes classifier. The result also means, as stated in the
aforementioned reference, that “any other decision rule based on the infinite data set
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can cut the probability of error by at most one half.” An extension to the k−NN rule
was given by Devroye (1981) in the following form for binary classifiers (R = 2):

Pe ≤ (1 + a)P bayes
e (52.36a)

a
∆
=

α
√
k

k − 3.25

(
1 +

β√
k − 3

)
, k odd, k ≥ 5 (52.36b)

α ≈ 0.3340, β ≈ 0.9750 (52.36c)

Note that the factor a converges to zero at the rate O(1/
√
k). While these statements

are reassuring, unfortunately, the conclusion only holds in the limit of large data sizes
with N → ∞. Since the seminal result by Cover and Hart (1967), there have been
many other studies on nearest-neighbor rules and variations. Representative examples
of these efforts include the works by Cover (1968), Peterson (1970), Hellman (1970),
Wilson (1972), Fukunaga and Hostetler (1975), Dudani (1976), and Altman (1992) —
see also the texts by Tukey (1977), Devroye, Gyorfi, and Lugosi (1996), Duda, Hart, and
Stork (2000), Chávez et al. (2001), Shakhnarovich, Darrell, and Indyk (2006), Chaud-
huri and Dasgupta (2014), Biau and Devroye (2015), and Chen and Shah (2018).

Voronoi diagrams. We illustrated in Fig. 52.3 the use of Voronoi diagrams in the context
of nearest-neighbor rules. These diagrams divide the plane into a collection of convex
regions consisting of one seed point each, along with all points that are closest to the
seed. The diagrams are also referred to as tessellations since they tessellate the space
and divide it into polygons without gaps. Such diagrams have found applications in
many other areas including in the arts, geometry, geography, sciences, and engineer-
ing. One early notable application of Voronoi diagrams was by the English physician
John Snow (1813-1858) who used them to locate the source of the 1854 cholera
outbreak in the Soho area in central London. He concluded that most of the individ-
uals infected by the disease lived closer to the Broad Street public water pump than
any other water pump in the area. His investigation was reported in the publication by
Snow (1854); today, he is considered the father of modern epidemiology. Although the
designation “Voronoi diagram” is after the Russian mathematician Georgy Voronoi
(1868-1908), who formally defined the concept in Voronoi (1908), there have been in-
formal instances of such diagrams as far back as three centuries earlier by the German
astronomer Johannes Kepler (1571–1630) and the French mathematician René
Descartes (1596–1650); Kepler used tessellations in his studies of snowflakes and
the sphere packing problem in Kepler (1611) while Descartes used them to identify
clusters of stars in Descartes (1644) — see the accounts by Aurenhammer and Klein
(2000), Okabe, Boots, and Sugihara (2000), and Liebling and Purnin (2012). Prior to
Voronoi (1908), the diagrams were also used by Snow in 1854 and more formally by
the German mathematician Gustav Dirichlet (1805-1859) in the work by Dirichlet
(1850) on quadratic forms. Useful overviews on Voronoi diagrams appear in the article
by Aurenhammer and Klein (2000) and the text by Okabe, Boots, and Sugihara (2000).

k−means clustering. There are several variations of the clustering problem in statis-
tical analysis, i.e., the problem of partitioning data into clusters. Some of the earliest
formulations appear in the works by Dalenius (1950), Dalenius and Gurney (1951),
Marschak (1954), Cox (1957), Fisher (1958), and Ward (1963). For example, Fisher
(1958) motivates the article by posing the following question in the abstract: “Given
a set of arbitrary numbers, what is a practical procedure for grouping them so that
the variance within groups is minimized?” Fisher focused on the one-dimensional case,
M = 1. Since solving the clustering formulation (52.30) in its generality is an NP-hard
problem, it is necessary to resort to approximate solutions. One of the most popular
algorithms is the k−means procedure described in the body of the chapter. The orig-
inal idea for the k−means algorithm appears to be the works by Steinhaus (1957),
Lloyd (1957), and Sebestyen (1962), although Lyold published his work only 25 years
later in 1982. The designation “k−means” was proposed by MacQueen (1965,1967);
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for example, the author states in the abstract of MacQueen (1967) that the objective
is “to describe a process for partitioning an N−dimensional population into k sets on
the basis of a sample. The process, which is called “k-means,” appears to give parti-
tions which are reasonably efficient in the sense of within–class variance.” The same
algorithm was independently developed by Forgy (1965). The k−means++ variant for
selecting the initial mean (seed) vectors is more recent and was proposed independently
by Ostrovsky et al. (2006) and Arthur and Vassilvitskii (2007); the latter reference con-
tains several results on the behavior of the k−means++ procedure. Useful studies on
the convergence properties of the k−means algorithm (also called Lloyd algorithm) ap-
pear in Abaya and Wise (1984), Sabin and Gray (1986), Har-Peled and Sadri (2005),
Arthur and Vassilvitskii (2006,2007), and Du, Emelianenko, and Ju (2006). Accessible
overviews on clustering algorithms in classification and data quantization/compression
are given by Hartigan (1975), Gray and Neuhoff (1998), Du, Faber, and Gunzburger
(1999), MacKay (2003), Tan, Steinbach, and Kumar (2005), and Witten, Frank, and
Hall (2011). To facilitate comparison with the EM algorithm described next, we list
the k−means clustering method in the form shown in (52.37).

k−means clustering algorithm

given feature vectors {hn ∈ IRM}, for n = 0, 1, . . . , N − 1;
given number of clusters, K;

given initial mean vectors conditions : π
(0)
k , k = 1, 2, . . . ,K;

repeat until convergence over m ≥ 1 :
(determine clusters): for each n = 0, 1, . . . , N − 1 and k = 1, . . . ,K :

r(m)(k, hn) =

{
1, if hn is closest to µ(m−1)

k
0, otherwise

N
(m)
k =

N−1∑
n=0

r(m)(k, hn)

(update means): for each k = 1, . . . ,K

µ
(m)
k =

1

N
(m)
k

N−1∑
n=0

r(m)(k, hn)hn

end

return {µ̂k} ← {µ(m)
k }

(52.37)

Connection to the EM algorithm. There is a useful connection between the k−means
clustering algorithm (52.29) and the expectation-maximization algorithm (32.67) for
Gaussian mixture models studied in an earlier chapter. If we assume the covariance
matrices of the Gaussian components are preset to the identity matrix (i.e., if we
assume spherical clusters), and focus exclusively on estimating the mean vectors, then
the EM algorithm (32.67) reduces to listing (52.38), where m denotes the iteration
index and hn denotes the n−th feature. For comparison purposes, we have rewritten
the k−means clustering algorithm in the form shown in (52.37). Observe that there
is a hard assignment of the sample hn to one of the clusters (the one determined
by the closest mean vector to hn). In contrast, the EM implementation performs a
soft assignment of hn based on the responsibility factor r(m)(k, hn): it measures the
likelihood that sample hn belongs to cluster k. The k−means algorithm sets these
factors to one or zero, depending on whether hn is closest to µk or not.
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Special case of the EM algorithm (32.67) for K clusters

given feature vectors {hn ∈ IRM}, for n = 0, 1, . . . , N − 1;
assumed K Gaussian mixture components;
given initial conditions : π

(0)
k , µ

(0)
k , k = 1, 2, . . . ,K;

repeat until convergence over m ≥ 1 :

(E-step): for each n = 0, 1, . . . , N − 1 and k = 1, . . . ,K :

r(m)(k, hn) =

π
(m−1)
k exp

{
−1

2

∥∥∥hn − µ(m−1)
k

∥∥∥2
}

∑K
j=1 π

(m−1)
j exp

{
−1

2

∥∥∥hn − µ(m−1)
j

∥∥∥2
}

N
(m)
k =

N−1∑
n=0

r(m)(k, hn)

(M-step): for each k = 1, . . . ,K

µ
(m)
k =

1

N
(m)
k

N−1∑
n=0

r(m)(k, hn)hn

π
(m)
k = N

(m)
k /N

end

return {π̂k, µ̂k} ← {π(m)
k , µ

(m)
k }

(52.38)

MNIST dataset. Example 52.3 applies the k−means clustering algorithm to the MNIST
dataset. It contains 60,000 labeled training examples and 10,000 labeled test examples.
This popular dataset was used by LeCun et al. (1998) to perform classification of
handwritten digits. It can be downloaded from http://yann.lecun.com/exdb/mnist/
and also https://github.com/daniel-e/mnist_octave.

PROBLEMS

52.1 Consider the 1-NN decision rule applied to a binary classification problem and
introduce the random variable t(h) = P(γ = +1|h). Assume N →∞, where N denotes
the sample size. Let P∞e denote the asymptotic misclassification error as N → ∞ for
the 1−NN classifier.
(a) Show that P∞e = E

{
2t(h)(1− t(h)

}
.

(b) Conclude the validity of property (52.26) for the 1−NN classification rule, namely,
that the asymptotic probability of error is bounded by twice the probability of
error by the Bayes classifier regardless of the underlying distribution.

52.2 Refer to the bias-variance relation of Prob. 27.16. We use the result here to
examine the bias-variance tradeoff for the k−NN strategy. Consider scalar and real-
valued variables {γ,h,v} satisfying a model of the form γ = f(h) +v, for some known
function f(·). The variable v is zero-mean noise with variance σ2

v and is independent of
h. Consider a collection of independent data realizations {γ(n), hn}. Upon the arrival
of a new feature h, we estimate the corresponding γ as follows:

γ̂ =
1

k

∑
`∈Nh

γ(`)

where the average is computed over the k−nearest neighbors to h, denoted by the set

http://yann.lecun.com/exdb/mnist/
https://github.com/daniel-e/mnist_octave
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Nh. Show that, conditioned on the feature data {hn}:

E
(

(γ − γ̂)2|h = h
)

= σ2
v +

σ2
v

k
+
(
f(h)− 1

k

∑
`∈Nh

f(h`)
)2

where the second term on the right-hand side denotes the variance factor (it decays
with k), and the last term denotes the squared bias factor.
52.3 We continue with Prob. 52.2. Let γ• denote the optimal mean-square-error
estimator for γ given h. Show that γ• = f(h) with estimation error variance equal to
E (γ̃•)2 = σ2

v. Let γ̃ = γ − γ̂ for the k−NN estimator from Prob. 52.2. Use the result
of that problem to conclude that

E γ̃2 − E (γ̃•)2 =
σ2
v

k
+ E

(
f(h)− 1

k

∑
`∈Nh

γ(`)
)2

52.4 Consider two distinct points a, b ∈ IRM . Show that the bisector of the segment
joining them is a hyperplane in IRM .
52.5 Consider the collection of m−dimensional points F = {h1, h2, . . . , hN}. For any
ha from this set, we define its Voronoi cell as the set of all points h that satisfy

Voronoi(ha) =
{
h ∈ IRM

∣∣∣ ‖h− ha‖ ≤ ‖h− hn‖2, ∀ hn ∈ F
}

Show that the Voronoi cell is a convex set.
52.6 Consider a Voronoi diagram similar to the one shown in Fig. 52.3. Let N be the
number of seed points {hn}. Let Ne denote the total number of edges in the diagram,
and let Nv denote the total number of vertices. Verify that Nv −Ne +N = 1.
52.7 Explain that the k−means algorithm solves problem (52.32) by alternating be-
tween minimizing over the {ank} for a fixed set of means {µk}, and minimizing over
the {µk} for a fixed set of assignments {ank}.
52.8 Consider a cluster C consisting of a collection ofM−dimensional feature vectors,
denoted generically by h ∈ C. Let µ denote the mean of the cluster, i.e., the mean of
the vectors in C. For any vector x ∈ IRM , show that∑

h∈C

‖h− x‖2 =
∑
h∈C

‖h− µ‖2 + |C| ‖µ− x‖2

where |C| denotes the cardinality of C.
52.9 Argue that problem (52.30) is equivalent to solving:

min
C1,C2,...,CK

K∑
k=1

{
1

|Ck|
∑

n,m∈Ck

‖hn − hm‖2
}

52.10 We assumed in (52.42) that Pε > 0 for any ε. That is, we assumed that all
features h are well-behaved in the sense that if we encircle each one of them by a small
sphere of radius ε, then there is a positive probability that other feature vectors will be
present inside the sphere. Let us assume, to the contrary, that there exist some subset
of feature vectors, denoted by h̄ ∈ H̄, that is not well-behaved, meaning for any h̄ in
this set, there will exist some ε̄ > 0 such that Pε = 0 for any ε < ε̄. In other words, no
feature vectors will exist in spheres surrounding h̄ of radius smaller than ε̄. Prove that
this is an impossibility, i.e., that H̄ is a set of probability zero.
52.11 Let {h1, . . . ,hN} denote independent and identically distributed random vari-
ables selected according to a distribution h ∼ fh(h) with compact support H in IRM .
For each hn, let h′n denote its nearest neighbor from among the remaining vectors and
define the expected squared `∞−distance:

d2 ∆
=

1

N

N∑
n=1

‖hn − h′n‖2∞
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Let D denote the diameter of the set H, meaning that the `∞−distance between any
two points in H cannot exceed D. Show that

d2 ≤
{

16D2/N2/M , M ≥ 2
4D2/N, M = 1

Remark. See the book by Biau and Devroye (2015, Ch. 2) for a related discussion.

52.A PERFORMANCE OF THE NN-CLASSIFIER

In this appendix we establish Theorem 52.1 on the generalization error of the 1−NN
classifier. The proof follows arguments similar to Cover and Hart (1967). The lower
bound in (52.26) is obvious since the Bayes classifier minimizes the probability of error
by construction. Let us focus on the upper bound.

Let h denote an arbitrary feature vector arising from the probability distribution
fh(h). We denote its actual class by r(h). Let xh,N denote the nearest neighbor to h
from among the N given feature vectors {hn}:

xh,N = argmin
x∈{hn}N−1

n=0

‖h− x‖2 (52.39)

We denote the class of xh,N by r(x). Note that the location of xh,N depends on both
h and the data size N . For simplicity, we will drop the subscripts h and N from xh,N
and refer to the variable by x. Let fx|h(x|h) denote the conditional pdf of the closest
neighbor variable x given h = h. This pdf is also dependent on N since x is dependent
on N . It is reasonable to assume that, as the sample size increases to N →∞, the pdf
fx|h(x|h) tends to a Dirac impulse function concentrated at h, i.e.,

lim
N→∞

fx|h(x|h) = δ(x− h) (52.40)

which means that the pdf becomes concentrated at location h; recall that such impulse
functions satisfy the sifting propertyˆ

x∈X
g(x)δ(x− h)dx = g(h) (52.41)

for any function g(x) defined at location h, and where the integration is over the domain
of x. Assumption (52.40) can be motivated as follows. Choose an arbitrary ε > 0 and
let S(ε) denote a sphere of radius ε > 0 centered at h. The probability that some feature
vector h′ falls within the sphere is given by — see Prob. 52.10:

Pε =

ˆ
h∈S(ε)

fh(h)dh > 0 (52.42)

The probability that the N feature vectors, which are assumed to be chosen indepen-
dently of each other, fall outside the sphere is given by

P
(
N features outside S(ε)

)
= (1− Pε)N

N→∞−→ 0 (52.43)

This result holds regardless of the radius of the sphere. Therefore, by shrinking the size
of the sphere around h, and as the sample size N tends to infinity, we find that the
nearest neighbor to h converges to h with probability one and assumption (52.40) is
justified.

Now given a feature vector h, whose closest neighbor is x, the 1−NN classifier assigns
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to h the same label as x. Therefore, the probability of error by this classifier is given
by

P(error|h, x) = P
(
r(x) 6= r(h)|h, x

)
= 1− P

(
r(x) = r(h)|h, x

)
(a)
= 1−

R∑
r=1

P
(
r = r(h)|h

)
P
(
r = r(x)|x

)
(52.44)

where the rightmost term in (a) is a sum over the probabilities of the classes for
h and x being the same; this is because there are R possibilities for r(x) given by
r ∈ {1, 2, . . . , R}. If we integrate the above error over the conditional pdf of x given h,
and let N →∞, we obtain the average probability of error for a given h:

P(error|h) =

ˆ
x∈H

P(error|h, x) fx|h(x|h)dx

(52.40)
=

ˆ
x∈H

{
1−

R∑
r=1

P
(
r = r(h)|h

)
P
(
r = r(x)|x

)}
δ(x− h)dx, N →∞

= 1−
R∑

r=1

P2
(
r = r(h)|h = h

)
(52.45)

If we further integrate over the pdf of h, we obtain the probability of error for the
1−NN classifier:

Pe =

ˆ
h∈H

{
1−

R∑
r=1

P2
(
r = r(h)|h = h

)}
fh(h)dh (52.46)

We want to compare this expression to P bayes
e , which we know from (28.69) is given by

P bayes
e =

ˆ
h∈H

{
1− P

(
r•(h) = r(h)|h = h

)}
fh(h)dh (52.47)

Let us examine the sum that appears inside (52.46). We split it into two terms:

R∑
r=1

P2
(
r = r(h)|h = h

)
= P2

(
r•(h) = r(h)|h = h

)
+

R∑
r 6=r•(h)

P2
(
r = r(h)|h = h

)
︸ ︷︷ ︸

∆
= A

(28.68)
=

(
1− P bayes(error|h)

)2

+ A (52.48)

where the first term depends on the probability of error of the Bayes classifier at h,
and the second term is a sum we are denoting by the letter A. If we minimize A over
its terms we can determine a lower bound for the sum of squared probabilities on the
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left. Hence, we formulate the optimization problem:

min

R∑
r 6=r•(h)

P2
(
r = r(h)|h

)
subject to P

(
r = r(h)|h

)
≥ 0

and
R∑

r 6=r•(h)

P
(
r = r(h)|h

)
= P bayes(error|h)

(52.49)

where the minimization is over the individual terms P2(r = r(h)|h). We are therefore
minimizing a sum of nonnegative terms subject to a constraint on what their sum
should be. A straightforward Lagrange multiplier argument will show that the solution
is obtained when all probabilities are equal to each other, i.e., when

P
(
r = r(h)|h = h

)
=

P bayes(error|h)

R− 1
, for any r 6= r• (52.50)

Substituting into (52.48) we determine a lower bound as follows:

R∑
r=1

P2
(
r = r(h)|h

)
=
(

1− P bayes(error|h)
)2

+

R∑
r 6=r•(h)

P2
(
r = r(h)|h = h

)
≥ 1− 2P bayes(error|h) +

(
P bayes(error|h)

)2

+
R− 1

(R− 1)2

(
P bayes(error|h)

)2

≥ 1− 2P bayes(error|h) +
(
P bayes(error|h)

)2

+
1

R− 1

(
P bayes(error|h)

)2

≥ 1− 2P bayes(error|h) +
R

R− 1

(
P bayes(error|h)

)2

(52.51)

which implies that

1−
R∑

r=1

P2
(
r = r(h))|h = h

)
≤ 2P bayes(error|h)− R

R− 1

(
P bayes(error|h)

)2

(52.52)

Substituting this bound into (52.46) and integrating over the distribution of h we obtain

Pe ≤
ˆ
h∈H

{
2P bayes(error|h)− R

R− 1

(
P bayes(error|h)

)2
}
fh(h)dh

= 2P bayes
e − R

R− 1

{ˆ
h∈H

(
P (error|h)

)2

fh(h)dh

}
≤ 2P bayes

e − R

R− 1

(
P bayes
e

)2

(52.53)

where in the last step we used the fact that for any scalar random variable x, it holds
that (Ex)2 ≤ Ex2 and, hence,(

P bayes
e

)2 ∆
=
(
EP bayes(error|h)

)2

≤ E
(
P bayes(error|h)

)2

=

ˆ
h∈H

(
P bayes(error|h)

)2

fh(h)dh (52.54)
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