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51 REGULARIZATION

We discussed the least-squares problem in the last chapter, which uses a
collection of data points {z(n),y,} to determine an optimal parameter w* by
minimizing an empirical quadratic risk of the form:

welRM

w* = argmin {P(w) = ;fijz_:(x(n) - y,TLw)Q} (51.1a)

where each y, is M —dimensional and each x(n) is a scalar. The solution is
determined by solving the normal equations:

H"Hw* = H'd, (normal equations) (51.1b)

where the quantities d € RV and H € RV*M collect the data:

Yo (0)
yi (1)
H2 | v |, 4% (2) (51.1c)
y]val z(N —1)

The normal equations (51.1b) may have a unique solution or infinitely many
solutions. They may also be ill-conditioned meaning that slight perturbations to
the data {d, H} can lead to large changes in the solution w*; this usually occurs
when the matrix H is ill-conditioned. In this chapter, we will use the least-squares
formulation as a guiding example to illustrate three types of challenges that arise
in data-driven learning methods pertaining to (@) non-uniqueness of solutions,
(b) ill-conditioning, and (c) the undesirable possibility of over-fitting. We will
then explain that regularization is a useful tool to alleviate these challenges. We
will also explain how regularization enables the designer to promote preference
for certain solutions such as favoring solutions with small norms or sparse struc-
ture. We will motivate the main ideas by using the least-squares formulation
due to its mathematical tractability. Subsequently, we will extend the discussion
more general empirical risks, other than the least-squares case, which will arise
in later chapters when we deal with logistic regression, support vector machines,
kernel machines, neural networks, and other learning methods.
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THREE CHALLENGES

In learning problems, we make a distinction between training data and test data.
The data {z(n),y,} used to solve the least-squares problem (51.1a) are referred
to as training data. Once a solution w* is determined, the value of the risk
function at the solution is called the training error:

| N2 | N2
training error £ N nz_;)(a:(n) —ylw*)? = N nz:%(x(n) —2(n))?

(51.2)

where Z(n) = ylw* denotes the prediction for x(n). In this way, the training
error is measuring how well the least-squares solution performs on the training
data. In general, the training error will be small because the solution w* is
purposefully determined to minimize it.

In most learning applications, however, the main purpose for learning w* is to
employ it to perform prediction on future data that were not part of the train-
ing phase. For this reason, it is customary to assess performance on a separate
collection of T test data points denoted by {z(t),y:}, and which are assumed to
arise from the same underlying distribution fg (2, y) as the training data. The
corresponding testing error is defined by

T—1 T—1

testing error = ;;(a@(t) —ylw')? = o ;(x(t) —3(t)*  (51.3)
where Z(t) = y/w* denotes the prediction for x(¢). In general, the testing error
will be larger than the training error but we desire the gap between them to be
small. Learning algorithms that lead to small error gaps are said to generalize
well, namely, they are able to extend their good performance on training data
to the test data as well. We will discuss generalization and training and testing
errors in greater detail in future chapters, especially in the context of classifi-
cation problems. Here, we are using the least-squares problem to motivate the
concepts.

Difficulties

We already know that the normal equations (51.1b) are consistent, meaning that
a solution w* always exists. The solution is either unique when H has full column
rank, in which case it is given by

w* = (H"H)"'H"d, (H has full column rank) (51.4)

or there are infinitely many solutions differing by vectors in N(H). Some chal-
lenges arise in both scenarios, which lead to complications when solving inference
problems:

(a) (Non-uniqueness). When infinitely many solutions exist, the training error
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will not change regardless of which solution we pick. This is because all valid
solutions w* differ by vectors in the null space of H and, therefore, if wj and
w3 are two valid solutions then

wy = wj +p, for some p € N(H) (51.5)

In this case, the predictions Z(n) for the training signals will remain un-
changed under w} or wj since Hp = 0 and, hence, 3 p = 0 for any of the
observation vectors in the training set so that

Z(n) = yywjs = yjwi (51.6)

It follows that the training error remains invariant. However, the testing error
will be sensitive to which solution we select because the test observations {y; }
need not be orthogonal anymore to the nullspace of H. We explain in the
sequel that /5 —regularization forces a unique solution w* and removes this
ambiguity.

(Overfitting) Infinitely many solutions w* can exist even when N > M, i.e.,
even when we have more observations than unknown entries. This occurs
when the columns of H are linearly dependent and gives rise a second chal-
lenge. Recall that the least-squares problem is approximating d by d = Huw*.
When the columns of H are linearly dependent, some of its columns can be
removed to obtain a full-rank lower-dimensional matrix, H' € RV *M " with
M’ < M. This new matrix spans the same column space as H:

R(H') = R(H) (51.7)

We can then solve an equivalent least-squares problem involving {d, H'}
instead of {d, H} to obtain the same projection d by using a smaller-size
solution (w’)* of dimension M’. We thus see that the rank-deficiency of H
amounts to using a more complex model w (i.e., of higher dimensions) than
is necessary to approximate d. This issue is a manifestation of the problem
of overfitting, which we will discuss in greater detail in later chapters. Over-
fitting amounts to using more complex models than necessary and it also
degrades performance on test data.

Rank-deficiency of H also arises when N < M (i.e., when H has more
columns than rows). One way to deal with this problem is to collect more data
(i.e., to use a larger N). A second way is to perform dimensionality reduction
and reduce the size of the observation vectors. We will discuss techniques for
dimensionality reduction in later chapters, including the principal component
analysis (PCA) method and the Fisher discriminant analysis (FDA) method.
A third way is to employ regularization. For example, we will explain further
ahead that ¢; —regularization automatically selects a subset of the columns
of H to compute w*.

(Il-conditioning) Difficulties can arise even when the normal equations have
a unique solution w* but the data matrix H is ill-conditioned (i.e., has a large
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condition number). In this case, small changes in the data {d, H} can lead
to large changes in the solution w* and affect the inference conclusion and
testing error — see Prob. 51.2 for a numerical example. One leading cause
for ill-conditioning is when the entries within the observation vectors are
not normalized properly so that some entries are disproportionately larger
by some orders of magnitude than other entries. Such large discrepancies
can distort the operation of a learning algorithm, including the least-squares
solution, by giving more relevance or attention to larger entries in the ob-
servation vector over other entries. One way to deal with ill-conditioning is
therefore to scale the observation vectors so that their entries assume values
within some uniform range. The next example explains how scaling can be
performed. A second way is to employ regularization. In particular, we will
see that fo—regularization reduces the effect of ill-conditioning.

Example 51.1 (Normalization of observation vectors) It is common practice to center
the training data around their sample means, as was already suggested by the discussion
in Sec. 29.2. We can take this step further and normalize the entries of the observation
vectors to have unit-variance as well. Specifically, the first step is to compute the sample
mean vector:

Y

1>

L Nl

¥ > un (51.8a)
n=0

and to use it to center all observation vectors by replacing them by

A _
Yne = Yn — Y (518b)

where, for clarity, we are adding the subscript “c” to refer to centered variables. If
we denote the individual entries of {7, y.} by {g(m),y(m), m = 1,2,..., M}, then
centering amounts to replacing the individual entries by

A _

Yne(m) = yn(m) —g(m) (51.8¢c)

The second step in the normalization process is to evaluate the (unbiased) sample
variance for each of these centered entries, namely,

N-1

R 1

52, 2 T ST ylem), m=1,2,...,M (51.9a)
n=0

and to scale yn,.(m) by the corresponding standard deviation to get

A

Yn,p(Mm) Yn,e(M)/Om, m=1,2,.... M (51.9b)
where we are now using the subscript “p.” In this way, we start from an observation
vector y, and replace it by the normalized vector y, ,, where all entries of y, , are
centered with zero mean and unit variance:

remove normalize
sample mean variance
{yn} ——————— {yne} —————— {ynp} (51.10)
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A second method to normalize the observation vectors {yn} is as follows. We first
identify the smallest and largest entry values within the given dataset:

Ymin = min y,(m) (51.11a)
n,m

Ymax = max y,(m) (51.11b)

A = Ymax — Ymin (5111C)

and then scale all entries in the following manner, for each n and m:

A n (M) — Ymin
Yn,s(m) £ YL Ymin ( )A : (51.12)

In this way, each scaled entry yn s(m) will assume values within the range [0,1]. We
can subsequently center the means of these entries at zero by computing

N-1
A _ _ 1
Ynp = Yn,s — Yn,s, where Yp = N ZO Yn,s (51.13)

Here again, we start from a given observation vector y, and replace it by yn,,, where
all entries lie within the range [—1, 1]:

normalize remove
range sample mean
{yn} ———— {yns} ————— {ynp} (51.14)

Regardless of which normalization procedure is used, we will assume that the given
observation vectors {y,} have already gone through this process and will continue to
use the notation y, rather than switch to y,,, for simplicity.

£,—REGULARIZATION

One useful technique to avoid the challenges of non-uniqueness of solutions, over-
fitting, and ill-conditioning is to employ regularization (also called shrinkage in
the statistics literature). The technique penalizes some norm of the parameter w
in order to favor solutions with desirable properties based on some prior knowl-
edge (such as sparse solutions or solutions with small Euclidean norm). We say
that regularization incorporates a form of inductive bias in that it biases the
solution away from the unregularized case by incorporating some prior informa-
tion. This is attained by adding an explicit convex penalty term to the original
risk function such as

pllwl|?, (¢3—regularization)
0, —regularizati
o(w) = al|w||1, , (4 regulariza 10n). . (51.15)
allw||r + pl|lw||*, (elastic-net regularization)
Bllwllo, (¢o— regularization)

where («, 3, p) are nonnegative parameters, and where ||w]||o is a pseudo-norm
that counts the number of nonzero elements in w. We will focus on the first
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three choices due to their mathematical tractability. One can also consider other
vector norms, such as the p—th norm, ||w||, for p < 1 or p = co. Regularization
will generally have a limited effect on the t¢raining error of an algorithm, but
will improve the generalization ability of the algorithm by improving its perfor-
mance on test data for the reasons explained in the sequel. We consider first the
case of £o—regularization, also called ridge regression, where the penalty term is
quadratic in w.

Ridge Regression

In ridge regression, we replace the empirical risk (51.1a) by the regularized ver-
sion:

1N

-1
A . A 2
w:eg = argmin {Preg(w) = p||w||2 + ~ E (x(n)—ylw) } (51.16)
n=0

welRM

where p > 0 is the regularization factor; its value may or may not depend on N.
In general, the value of p is independent of N.

Observe that, for the purposes of this chapter, we are adding a subscript
“reg” to (Weg, Preg(w)) to distinguish them from the unregularized versions
(w*, P(w)). This is because we will be comparing both risks and their mini-
mizers throughout this chapter. In future chapters, however, where we will be
working almost exclusively with regularized risks, we will revert to the traditional
notation (w*, P(w)) without the “reg” subscript for simplicity. Before explaining
how ridge regression addresses the aforementioned challenges, we revisit Exam-
ple 50.1 and show how the regularized empirical risk (51.16) can be motivated
as the solution to a maximum a-posteriori (MAP) inference problem.

Example 51.2 (Interpretation in terms of a Gaussian prior on the model) Assume we
collect N independent and identically-distributed observations {@(n), yn}, for 0 < n <
N — 1. Assume also that these observations satisfy the same linear model (50.20),
namely,

x(n) = ypw+ v(n) (51.17)

for some unknown w € IR, and where v(n) is a white Gaussian noise process with
zero mean and variance o2. In the earlier Example 50.1, the model w was treated as
an unknown constant and a maximum-likelihood formulation was used to estimate it;
thus leading to the standard least-squares problem. Here, we will instead model w as
a realization for some random variable w that is Gaussian-distributed with zero mean
and covariance matrix R, = 021, i.e.,

1 1
fuw(w) = Wexp{—ﬁnww} (51.18)

Once w is selected from this distribution, then all observations {x(n)} are generated
by this same w from knowledge of {z(n),y.}. We are again interested in estimating w.
Using Bayes rule (3.39), we assess the conditional probability distribution of the model
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given the observations as follows:
Futa (w{(m), v })
% St (12(0), 40} [0) fuu(w)

n=0
N-1 1 )
o { 11 exp{fZU% (x(n) - yzw) }} X exp{ - 22|w|2}
N—1
1 , 1 N2
= exp{ “gpll -5 (20) = yiw) } (51.19)

where the first and third lines replace the equality sign by proportionality constants.
Consequently, we can now formulate a mazimum a-posteriori (MAP) estimation prob-
lem to recover w, which amounts to seeking the value of w that maximizes the above
conditional density function:

x A
Wreg = AIZMAX fuy|a,y (w|{x(n),yn}>

welRM
N—-1
= argmin ¢ ool + 5y 3 (#(m) —yiw)
= aiiﬁéﬁl {QU%IIwII + 52 2 z(n) — ypw
N-1
. N 2012} 2 1 T 2
gy 5 { Al 3 (0 - 1)
1 N—-1 2

= argmij\f{l {p||w|2+N Z(x(n)fy;l;w> } (51.20)

welR n=0

where we introduced p = 02 /No2. We therefore recover the regularized empirical risk
(51.16). This argument shows that ¢;—regularization helps ensure that the solution
Wreg 15 consistent with a prior Gaussian model on the distribution of w.

We now explain how ridge regression promotes solutions with smaller Euclidean
norm and alleviates the challenges of ill-conditioning, over-fitting, and non-
uniqueness of solutions.

Resolving non-uniqueness
Differentiating Peg(w) in (51.16) with respect to w, we find that the solution is
unique and given by

wl, = (pNIy+H'H)'H'd (51.21)

reg

where the matrix pNIy; + HTH is always invertible due to the positive term,
pNIpr > 0 and independent of whether H is rank-deficient or not.

Promoting smaller solutions

Tt is seen from the regularized risk (51.16) that larger values for p favor solutions

W With smaller Euclidean norm than would result when p = 0. This is because
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the objective is to minimize the aggregate risk, and the first term is influenced by
pl|w]|?. This property can be established more formally as follows (see Prob. 51.3
for an alternative argument). Using the unregularized risk P(w), and since wy,,
minimizes the regularized risk, we have

2 2
pllwregll” + Plwieg) < pllw™||” + P(w?)
:émm@W*PMNFSPWV*PW*)

reg

L pllwtegl® = pllw*| < 0 (51.22)

where step (@) is because w* minimizes the unregularized risk, P(w). It follows
that [[w}.||? < [[w*||*. Actually, strict inequality holds because P(w*) is strictly
smaller than P(w, ).
both (w*, w},,), it would mean that w},, must be a minimizer for P(w) as well.

In that case, both (w*,wy,,) must satisfy the same normal equations, namely,

H'Hw*=H'd, H'Huw},=H'"d (51.23)

Since, otherwise, for P(w) to assume the same value at

But since w},, satisfies (51.21), i.e., )pNIy + H'H)w},, = H'd, we conclude

reg reg

that w*_, = 0. But this is not possible unless H'd = 0. Absent this condition,

reg
we conclude that

wregl* < flw*? (51.24)

This proves that the norm of the regularized solution, w},,, shrinks in comparison

reg?
to the norm of the original solution, w*. This property is referred to as shrinkage.

We will encounter it in other regularization formulations as well.

Countering ill-conditioning

Regularization also counters the effect of ill-conditioning, i.e., the sensitivity of
the solution w* to small variations in the data {z(n), y, }. Note that the condition
number of the new coefficient matrix is given by

N + Anax (HTH) pN + o2, (H)

NIy +HTH) & P T fmax = max 51.25
in terms of the largest and smallest singular values of H. If the value of pN is
large enough in comparison to the singular-value spread of H, then the ratio
on the right-hand side approaches one and the matrix pNIy; + H'H becomes

(very) well conditioned.

mll’l (

Countering overfitting
By promoting solutions wy,, with smaller Euclidean norm, regularization helps
alleviate the danger of overfitting because it searches for the solution over a
reduced region in space. This can be shown more formally by verifying that
minimizing a regularized least-squares problem of the form (51.16) is equivalent

to solving a constrained optimization problem of the following form:

Wreg 2 argmin {N Z —ylw }, subject to pllw|* <7  (51.26)

welRM
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for some 7 > 0. The equivalence between problems (51.16) and (51.26) is estab-
lished algebraically in Appendix 51.A by using the Lagrange and KKT multiplier
arguments from Sec. 9.1. This equivalent characterization shows that regulariza-
tion reduces the search space for w to the spherical region ||w||? < 7/p instead of
searching over the entire space w € IR™. Some care is needed in selecting p (or
7): large values for p (or small 7) can have the opposite effect and constrain the
search region excessively, thus leading to the possibility of underfitting (i.e., to
the use of simpler models than is actually necessary to fit the data well). These
remarks show that there is a compromise in setting the value of p: small p does
not perform effective regularization and large p can cause underfitting.

Biased risk values

Although regularization is effective in countering ill-conditioning and overfitting,
there is a price to pay. This is because regularization biases the least attainable
risk (i.e., the training error), which becomes larger than in the unregularized case.
reg to the standard and reg-

ularized least-squares problems. Evaluating the risk functions at the respective
minimizers and subtracting them we get, after some algebra — see Prob. 51.4:

To see this, consider again the solutions w* and w

Preg(wyeg) — P(w*) =p (w*)Twr, >0 (51.27)

reg

from which we conclude that Preg(wye,) > P(w*), and that the bias increases

with p.

Example 51.3 (QR solution method) Determination of the ¢»—regularized solution
(51.21) requires that we compute the matrix product HTH and invert the matrix
pNIn + H"H. We explained earlier in Prob. 50.5 that squaring matrix entries through
the product H' H can lead to a loss in numerical precision for small entries; it can also
lead to overflow for large entries. A more stable numerical procedure for determining
Wreg can be motivated by using the QR decomposition. We construct the extended

quantities:
He 2 7 f size (N + M) x M (51.28)
= , of size X .
VPN Inm
a2 d of size (N + M) x 1 (51.29)
| Omxt |’ ’
and introduce the QR decomposition:
H=Q { Ig } (51.30)
where
R: MxM), Q: (N+M)x(N+M), QR =Q'Q=1 (51.31)

and R is upper triangular. We apply the orthogonal transformation Q' to d® and denote
the resulting entries by
d

Qd = { ; } , d: (Nx1) (51.32)
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where X refers to irrelevant entries. Then, note from (51.28) that

(H)'H® = pNIv + H'H (51.33)

while from (51.30)
(H)'H*=[ R" 0 ]QTQ[ ]g ] =R'R (51.34)
It then follows that
whe = (pNIny+H'H) 'H'd
-1
= ((He)THe> (H*)" [ g } (51.35)
_ R*l(RT)fl(HE)Tde
(51.30) Rfl(RT)—l [ RT 0 }QTde

= R (51.36)

We therefore arrive at the QR procedure listed in (51.37) for determining the £, —regularized
solution, which involves solving a triangular system of equations.

QR method for minimizing ¢;—regularized least-squares risk (51.16).

given p > 0 and data d = col{z(n)}, H = blkrow{y, };

H d
construct H¢ = [ ] and d° = { }
0 b
VNI M (51.37)
perform the QR decomposition H¢ = Q { ](? ] ;

apply QT to d° and find Q'd = { i };

solve the triangular system of equations Rw,., = d.

51.3 £,—REGULARIZATION

In ¢, —regularization, we replace the empirical risk (51.1a) by the regularized

version:
1 = 2
why = argmin {Preg(w) £ aflwly + Nn;) (x(n) — yyw) } (51.38)

in terms of the ¢ —norm of w (i.e., the sum of its absolute entries), and where
a > 0 is the regularization factor; its value may or may not depend on N.
In general, the value of « is independent of N. The variant with elastic-net
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regularization solves instead

N—
A . 1 2
We, = argmin {Preg(U)) = allwlly + pllw|* + i Z ) = ypw)

welRM
(51.39)
with both @ > 0 and p > 0. We will discover in this section that ¢; —regularization

leads to a sparse solution wZ,,, i.e., to a solution with a few nonzero entries. In

reg’
this way, for any observation vector y, the inner product calculation 7 = y" Wy

ends up using only a few select entries from y due to the sparsity of wy,,. This
means that ¢, —regularization performs a form of “dimensionality reduction.” In
particular, when some entries in y are correlated or redundant, the £; —solution
will rely on one of them and ignore the others. Elastic-net regularization, on
the other hand, inherits useful features from both ¢ and ¢; —regularization. For
example, it can handle situations involving more unknowns than measurements
(M > N), and it also performs entry selection albeit in a less dramatic fashion
than ¢, —regularization.

The following derivation extends Example 51.2 and provides a similar MAP

interpretation for the ¢; —regularized empirical risk function (51.38).

Example 51.4 (Interpretation in terms of a Laplacian prior on the model) We collect
N independent and identically-distributed observations {@(n), yn}, for 0 <n < N —1,
and assume that they satisfy the same linear model (51.17). The main difference is that
we now assume that w is a realization of a random vector w whose entries {w.,} are
independent of each other and arise from a Laplace distribution with zero mean and
variance aﬁ):

Jwm (W) = exp{ f|wm|/aw} (51.40)

\/7’111

We also assume that all observations {x(n)} are generated by the same realization
w. We are again interested in estimating w. Using Bayes rule (3.39), we assess the
conditional probability distribution of the model given the observations as follows:

Futo (wHz(n), y})
% foyt ({2, yu} [0) fulw)

= { Jﬁl fo (m(n) - ylw) } Jw(w)

o H exp{ 202( (n) — ylw)z} > ﬁ exp{—\/§|wm|/aw}
—exp{ — ;_/—wa S ( ) — yhw )2} (51.41)

where the first and third lines replace the equality sign by proportionality constants.
Consequently, we can now formulate a mazimum a-posteriori (MAP) estimation prob-



2148

Regularization

lem to recover w by maximizing the above conditional density function as follows:

A
Wreg = argmax fw|w7h(w|{x(n),yn}>
welRM
N—
. 2 2
— arganin {2+ 55 Z( ) - ylw)
welRM Ow "o
N- 2
= argmin —— 2\[0“ w1 + Z( )
wE]RM 20 n=0
| Nl )
= argmin < of|w|i + — (x(n) - yTw) (51.42)
oy ool 5 s

where we introduced o = 2v/2¢62/No,,. We therefore recover the regularized empirical
risk (51.38) with ¢(w) = a|w||1. This argument shows that ¢; —regularization helps en-
sure that the solution wy,, is consistent with a prior Laplacian model on the distribution
of w.

We now explain how ¢; —regularization (or its extension in terms of elastic-net
regularization) promotes solutions with smaller norm and alleviates the chal-
lenges of ill-conditioning, overfitting, and non-uniqueness of solutions.

Resolving non-uniqueness
The penalty term aljw]||; is only convex. The regularized risk function will have
reg if the unregularized risk P(w) happens to be strictly
or strongly convex. For the least-squares case, the unregularized risk is strongly
convex when H'H > 0. More generally, if this condition does not hold, then
elastic-net regularization can be used and it will ensure a unique minimizer w,

a unlque minimizer w

g
because the resulting regularized risk in that case will become strongly-convex

regardless of whether H is rank-deficient or not.

Promoting smaller solutions

It is seen from the regularized risk in (51.38)—(51.39) that larger values for « or p
favor solutions wy,, with smaller norms than would result when o = p = 0. This
is because the objective is to minimize the aggregate risk, and the regularization
factors are influenced by aljw||; and p||w]||?. This conclusion can be established
more formally. If we set g(w) = af|w||; for £; —regularization or ¢(w) = aljw||; +
pllw||? for elastic-net regularization, then it follows from the general result in

Appendix 51.A that the following shrinkage property holds:

q(wreg) < q(w”) (51.43)

The result in the appendix holds for more general convex risks, P(w), and is
not limited to least-squares risks. It also holds for general convex regularization
factors, ¢(w), than ¢; or elastic-net regularization. In other words, result (51.43)
extends (51.24) to general convex risks and penalty terms.
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Countering overfitting

Both ¢; and elastic-net regularization help alleviate the danger of overfitting
because they can also be shown to search for their solutions over reduced regions
in space. This can be established more formally by verifying that minimizing a
regularized least-squares problem of either forms (51.38)—-(51.39) is equivalent to
solving a constrained optimization problem of the following form:

N-1
Wyeg 2 argmin {Jif Z (x(n) — yTTLw)Q}, subject to g(w) <7  (51.44)
welRM n—0

for some 7 > 0 and using the appropriate regularization factor: ¢(w) = aljw||; for
{1 —regularization and q(w) = a|lwl|; + pl|wl||? for elastic-net regularization. The
equivalence between problems (51.38)—(51.39) and (51.44) is again established
algebraically in Appendix 51.A by using the KKT multiplier arguments from
Sec. 9.1.

Property (51.44) provides some intuition on how the choice of the penalty
factor g(w) defines the solution space. Figure 51.1 plots three contour curves in
2—dimensional space corresponding to the level sets:

lwli =1, Jwl*=1, [lwli+[w]|*=1 (51.45)

It is seen from the figure that for ¢5—regularization, the search space for w
is limited to a region delineated by a circular boundary. In comparison, the
search space for ¢;—regularization is delineated by a rotated square boundary
with sharp edges, while the search space for elastic-net regularization is midway
between these two options. All three regions are obviously convex.

flw]ly =1 [Jw]* =1 lwlls + [lwl* =1

1 1 1

0.5 0.5 0.5
g o g o g o
0.5 0.5 0.5

1 -1 1

1 0.5 0 0.5 1 -1 0.5 0 0.5 1 1 0.5 0 0.5 1
wy wy wy

Figure 51.1 The figure illustrates the boundary curves corresponding to conditions
(51.45) in 2—dimensional space. The search space for the parameter, w, is limited to
the inside of the regions delineated by these curves. Observe that in all three cases,
the search domain is convex.

The particular shape for the boundary of the ¢; —region helps promote sparsity,

*
reg

schematically in Fig. 51.2, which shows boundary curves corresponding to the
regions ||w||; < 7 and |Jw||* < 7, along with contour curves for the unregularized

risk function, P(w). The solution wy},, occurs at the location where the contour

i.e., it helps lead to solutions w,, with many zero entries. This is illustrated
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curves meet the boundary regions. It is seen, due to the corners that are present
in the region ||wl||; < 7, that the contour curves are more likely to touch this
region at a corner point where some of the coordinates are zero. We will establish
this conclusion more formally in the next section.

/ contour curves for \

unregularized risk, P(w)

— T~

lwl* < =
lwl <7

\ /

Figure 51.2 Boundary curves corresponding to the regions ||w|:1 < 7 and ||w|]® < T,
along with contour curves for the unregularized risk function, P(w).

v

SOFT THRESHOLDING

We are ready to examine the ability of ¢; —regularization to find sparse solution

*
reg*

sional data (i.e., when M is large). This is because, when each observation vector
reg 2SSigns zero weights to those entries of y; that
are deemed “irrelevant.” For this reason, we say that ¢; —regularization embodies
an automatic selection capability into the solution by picking only entries from
y¢ that are most significant to the task of inferring =(t).

For the benefit of the reader, we first review a useful result established earlier
in Sec. 11.1.2 and which relies on the soft-thresholding function @w = T (z). This
function operates on the individual entries of its vector argument z to generate
the corresponding entries of w. For each scalar x, the transformation T 8 (z), with

parameter 8 > 0, is defined as follows:

vectors, wr, .. A sparse solution helps avoid over-fitting especially for large dimen-

1; has many entries, a sparse w

x—% ifng
A
Ty(x) £ 0, if —S<ax<? (51.46)
x—i—g, ifxg—g
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LEMMA 51.1. (Soft-thresholding operation) Given z € RM | a constant 8 > 0,
and a scalar ¢, the solution to the optimization problem:
@ 2 argmin {Blulh + Jw-z|? + ¢} (51.47)
welRM
is unique and given by
w = Tgs(2) (51.48)
2

The soft-thresholding transformation Tg (2) helps promote sparse solutions w
(i.e., solutions with a few nonzero entries). This property is achieved in a mea-
sured manner since soft-thresholding sets to zero all entries of z whose magnitude
is below the threshold value /2, and reduces the size of the larger values by /2.
Figure 51.3 plots the function ']I‘g (2) defined by (51.46). In summary, using the
£1—penalty term in (51.47) results in a sparse solution @ that is “close” to the
vector z.

v

[S]eN

Figure 51.3 The soft-thresholding function, T s (z), reduces the value of x gradually.
2

Small values of « within the interval [fg, g] are set to zero, while values of x outside
this interval have their size reduced by an amount equal to 3/2. The dotted segment

represents the line y = x.



2152

51.4.1

Regularization

Orthogonal Data

Before studying the general case of arbitrary data matrices H, we consider first
the special case when the “squared matrix” H'"H happens to be “orthogonal”,
namely, when H satisfies

HTH = k*I);, for some k2 > 0 (51.49)

Using this normalization condition, and the compact vector and matrix notation
{d,H} defined in (51.1c), we rewrite the unregularized and regularized risks in
the form

P(w) E % Z_ (z(n) — y,TLw)2

n=0
= <lld— Hul?
_ Jb{lldIIQ —2dTHw+fi2||w||2} (51.50)
and
Preg(w) = allufly + ]t{d||2—2dTHw+ﬁ2|w||2} (5L51)

Note that both risks are strongly-convex since k2 > 0. Therefore, they each have
a unique global minimizer, denoted by w* and w,,.

LEMMA 51.2. (£;—regularized solution for orthogonal data) Consider the
l1—regularized problem (51.51) under the orthogonality condition (51.49). The

solution is unique and given by
* _ *
Wieg = Tay (w*) (51.52)

reg Eys

where w* = H%HTd is the minimizer for the unregularized risk (51.50).

Proof: We employ a completion-of-squares argument to write (51.51) as

2
K 2 1
Prsti) =l + 5 {l? = S Hu+ S 1 o (51.53)
2
K 1 2 1 1
—aloll + 5 {[w- Sad + Shar? - Liar)
Bl + w2l + (s1.54)

where  is the proportionality symbol, while the scalars {8, ¢} and the column vector
z € RM are defined by

A aN

B=-5>0 (51.552)
a 1 .

¢S SHd = (51.55b)
a 1 2 1 T 2

¢ = SldI” - ZlIlH d| (51.55¢)
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Observe that z agrees with the minimizer, w*, for the unregularized problem under
condition H'H = x?I. Minimization of the empirical risk (51.54) is now of the same
form as problem (51.47). Therefore, we deduce that the minimizer to (51.49) under the
orthogonality condition (51.49) is given by (51.52).

Observe how construction (51.52) applies soft-thresholding to w* with the thresh-
old defined by aN/2x?%; this value (and, hence, sparsity) increases with a.

LASSO or Basis Pursuit Denoising

More generally, for data matrices H that do not satisfy the orthogonality con-
dition (51.49), we can derive a similar expression for wy,,
thresholding operation, albeit one where w* is replaced by another vector defined
in terms of a dual variable — see expression (51.61) further ahead. We will derive

the result under both ¢; and elastic-net regularization.

involving a soft-

Thus, consider the regularized least-squares problem:

1

N—
W}, = argmin {Preg(w) 2 q(w) + % Z (z(n) — y,le)2} (51.56a)

welRM n=0

where the regularization factor has the form
g(w) = aflwls + pllwl*, a>0, p=0 (51.56b)

When p = 0 we have pure ¢; —regularization. Problem (51.56a)—(51.56b) is known

as LASSO, where the acronym stands for “least absolute shrinkage and selection

*
reg

up satisfying property (51.43). The selection feature is because the same solu-

operator.” The shrinkage feature is because the resulting solution w},, will end
tion will be sparse with generally few nonzero entries. Problem (51.56a) is also
known as the basis pursuit denoising problem; this is because it seeks a sparse
representation for the vector d in terms of the columns of H.

Unfortunately, when H is not orthogonal, a closed-form expression for the
solution wy,, is not possible any longer. For this reason, the LASSO problem
(51.56a) is usually solved iteratively by means of subgradient or proximal gradi-
ent iterations, with or without stochastic sampling of data, as was already shown
earlier in several instances including in Examples 14.1, 15.3, and 16.12; the latter
example describes a stochastic proximal gradient implementation that relies on
instantaneous gradient approximations and which we reproduce here illustration
purposes.
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Stochastic proximal gradient algorithm for LASSO problem (51.56a)

given dataset {z(m),ym }v_s;

start from an arbitrary initial condition, w_;.

repeat until convergence over n > 0 :
select at random a sample (x(n),y,,) at iteration n;
zp = (1= 2up)wn—1 + 2py, (z(n) — yjw,—1)
wp = Tpua(zn)

end

return w* < w,,.

(51.57)

Other implementations are of course possible. For instance, Example 15.3 de-
scribes a full-batch implementation leading to the iterated soft-thresholding al-
gorithm (ISTA):

Zn = (1 - 2/~Lp)wn71 +

=¥

N—-1
-
m=0
Wy = Tpa(2zn)
Numerical solutions of the LASSO optimization problem based on the use of
convex optimization packages are also possible. The derivation in this section is
meant to highlight some properties of the exact solution, such as showing that
it continues to have a soft-thresholding form. To do so, we will follow a duality
argument.

Expression for LASSO solution
Using the vector notation {d, H}, problem (51.56a) can be recast as

1
Wye, = argmin {q(w) + —|d— Hw||2} (51.59)

welRM N
or, equivalently, in terms of an auxiliary variable transformation that introduces
a constraint:

1
(wryoet) = anguin { gw) + ylla-+I}

w,z

(51.60)
subject to z = Hw

where we introduced z € IRY; it depends linearly on w. The risk function in state-
ment (51.60) is convex over w and z. We therefore have a convex optimization
problem with a linear equality constraint. This type of formulation is a special
case of problem (9.1), involving convex costs subject to convex inequality and
equality constraints, and which we studied in Sec. 9.1. The results from that sec-
tion show that strong duality holds for problem (51.60). This means that we can



51.4 Soft-Thresholding 2155

learn about the solution wy,, by using duality arguments to establish the next

theorem for both cases of p # 0 and p = 0; the proof appears in Appendix 51.B.

THEOREM 51.1. (Expression for LASSO solution) Consider the regularized
problem (51.56a)—(51.56b). The solution is unique and admits the following rep-

resentation:

* ]‘ o
Wy = %’H‘a (HTX°) (51.61)

where \° € RY is determined as follows:

(a) (elastic-net regularization, p # 0): A\° is the unique mazimum of the following
strongly-concave function:

N 1 2
A0 = Ad— —|AI? — = ||Ta (H™A 51.62
angmax { T = SN2 = - T ()] (51.62)
(b) (¢1—regularization, p = 0): \° is the unique projection of the vector %d onto
the set of vectors X\ satisfying |H" Ao < a:
2 12
A° = argmin H/\ - —d‘ , subject to [[H"\||eo < @ (51.63)
AeRN N

Comparing expression (51.61) with (51.52) for “orthogonal” data matrices, we
note that the argument of the soft-thresholding function is now defined in terms
of a dual variable A° and not in terms of the unregularized solution, w*. Moreover,
the threshold in T, (-) increases with « so that more sparse models are expected
for larger «. Clearly, solving the LASSO problem via (51.61) is not simpler
than solving the original optimization problem (51.56a) because we still need
to determine A° in (51.62) or (51.63). The usefulness of result (51.61) is that

it provides a representation for the solution in a manner similar to (51.52) and

*
reg*

and p define the degree of regularization: larger values tend to promote smaller

helps illustrate the sparsity properties of the resulting w,,. The parameters «

(in norm) and more sparse solutions. One useful way to select these parameters
is the cross validation technique described later in Sec. 61.3.

Example 51.5 (Comparing different regularized solutions) In this example we com-
pare numerically the behavior of /2, ¢1, and elastic-net regularization solutions. First,
however, we need to show how to approximate the regularized solution to (51.56a)—
(51.56b). We already know that we can employ a stochastic subgradient algorithm for
this purpose to arrive at good approximations for wy,,. Under elastic-net regulariza-
tion, the recursion would start from some random initial guess, denoted by w_1, and
then iterate as follows:

wy = (1 = 2pup)wn—1 — pasign(wp—1) + 2uyn(z(n) — yawn-1), n>0  (51.64)

where p is a small step-size parameter and the notation w, denotes the approximation
for the regularized solution at iteration n. The sign function, when applied to a vector
argument, returns a vector with entries equal to £1 depending on the signs of the
individual entries of w,_1: +1 for nonnegative entries and —1 for negative entries. The
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algorithm is run multiple times over the training data {z(n), y»}, with the data being

randomly reshuffled at the beginning of each epoch, namely,

(a) At the start of each epoch, the data {x(n), y»} is randomly reshuffled so that each
epoch runs over the same dataset albeit in a different random order.

(b) The initial condition for the epoch of index k is the iterate value that was obtained
at the end of the previous epoch.

The iterate that is obtained at the end of the last epoch is the one that is taken to be

the approximation for w;e,.

Iteration (51.64) applies to both cases of ¢;—regularization (by setting p = 0) and
elastic-net regularization when both « and p are positive. Although we already have a
closed-form solution for the ¢; —regularized solution via expression (51.21), or can even
arrive at it by means of the recursive least-squares (RLS) algorithm (50.123), the same
stochastic recursion (51.64) can be used to approximate the ¢>—regularized solution as
well by setting o = 0; the recursion leads to a computationally simpler algorithm than
RLS albeit at a slower convergence rate.

entries of true model w° and its /{s—regularized solution

1 — T T Ld L T
0.8 ly—regularized |
true modelﬂ 3 2 g"
solution using the
0.6 P L ©®  least-squares expression
E
= 0.4 -
=
021 -
0 J—I—l—k :
02 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20
weight index
1 T T T T T T T
comparing the ¢;—regularized solution found in two ways: from the
08 least-squares expression and from the stochastic gradient iteration T
0.6 -
E
= 0.4 —
S
0.2

RS DI RN :

-0.2 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

weight index

Figure 51.4 The top plot shows the true model w® with three nonzero entries at value
one while all other entries are at zero. The top plot also shows the ¢2—regularized
solution, wyeg, that is obtained by using the least-squares expression (51.21). The
bottom plot compares the solutions that are obtained from the least-squares
expression (51.21) and from the stochastic recursion (51.64) using 20 runs over the
data, @ = 0, and g = 0.0001. It is seen that recursion (51.64) is able to learn the
f2—regularized solution well.

We use the stochastic construction (51.64) to illustrate the behavior of the different
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regularization modes, by considering the following numerical example. We generate
N = 4000 random data points {z(n),y,, } related through the linear model:

x(n) =y w® + v(n) (51.65)

where v(n) is while Gaussian noise with variance o2 = 0.01, and each observation
vector has dimension M = 20. We generate a sparse true model w® consisting of
three randomly-chosen entries set to one, while all other entries of w® are set to zero.
Figures 51.4 and 51.5 illustrate the results that follow from using 20 runs over the data
with ¢ = 0.0001, « = 5, and p = 2. It is seen in the lower plot from the first figure
that the stochastic recursion (51.64) converges to a good approximation for the actual
least-squares solution from (51.21). The middle plot of the second figure illustrates the
sparsity property of the ¢1 —regularized solution.

1.2 T T
1 «— true model

{s—regularization

value

0.2 . .
0 2 4 6 8 10 12 14 16 18 20

weight index

12 T

T T
«— true model
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0.4
0.2
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| |
2 4 6 8 10 12 14 16 18 20
weight index

-0.2
0

12

T T
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elastic-net

4 regularization

0.8
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1 1 1
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-0.2
0

Figure 51.5 All three plots show the true model w’ with three nonzero entries at value
one while all other entries are at zero. In each case, the true model is compared
against the ¢2—regularized solution (top plot), the 1 —regularized solution using oo =5
(middle plot), and the elastic-net regularized solution using o = 5 and p = 2 (bottom
plot). All these regularized solutions are obtained by using the stochastic
(sub)gradient recursion (51.64) using 20 runs over the data and p = 0.0001. The
middle plot illustrates how ¢; —regularization leads to a sparse solution, while the
elastic-net regularized solution has slightly more non-zero entries.
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COMMENTARIES AND DISCUSSION

Tikhonov regularization. The regularized least-squares problem (51.16) and its solution
(51.21) were proposed by the Russian mathematician Andrey Tikhonov (1906—
1993) in the publication by Tikhonov (1963) on ill-posed problems — see also the text
by Tikhonov and Arsenin (1977). This form of regularization is nowadays very popu-
lar and is known as Tikhonov regularization. Tikhonov’s formulation was general and
applicable to infinite-dimensional operators and not only to finite-dimensional least-
squares problems. His work was aimed at solving integral equations of the first-kind,
also known as Fredholm integral equations, which deal with the problem of determining
a function solution z(t) to an integral equation of the following form:

/ ' A(s, )z (t)dt = b(s) (51.66)

for a given kernel function, A(s,t), and another function b(s). These integral equa-
tions can be ill-conditioned and can admit multiple solutions. The analogy with linear
systems of equations of the form Az = b becomes apparent if we employ the opera-
tor notation to rewrite the integral equation in the form Ax = b, in terms of some
infinite-dimensional operator A. It turns out that both Phillips (1962) and Tikhonov
(1963) proposed using ¢2—regularization to counter ill-conditioning for Fredholm in-
tegral equations, which is why this type of regularization is also referred to as the
Phillips—Tikhonov or Tikhonov—Phillips regularization. The same technique also ap-
peared in Hoerl (1962), albeit for finite-dimensional operators (i.e., for matrices) in the
context of least-squares problems. This latter work was motivated by the earlier contri-
bution on ridge analysis from Hoerl (1959) — see also Hoerl and Kennard (1970) and
the review by Hoerl (1985). It is for this reason that 2 —regularization is also known
as ridge regression in the statistics literature. Useful overviews on the role of Tikhonov
regularization in the solution of linear systems of equations and least-squares problems
appear in the survey article by Neumaier (1998) and in the texts by Golub and Van
Loan (1996), Bjorck (1996), and Hansen (1997). More information on regularization in
general can be found in the texts by Wahba (1990) and Engl, Hanke, and Neubauer
(1996).

LASSO and basis pursuit denoising. In Examples 51.2 and 51.4 we showed that regular-
ization in the least-squares case corresponds to associating a prior distribution with the
sought-after parameter, w (now treated as a random quantity). A Gaussian prior leads
to f2—regularization, while a Laplacian prior leads to ¢; —regularization as noted by
Tibshirani (1996b). We showed in the body of the chapter that ¢; —regularization leads
to sparse solutions. However, it has been observed in practice that it tends to retain
more nonzero entries than necessary in the solution vector and, moreover, if several
entries in the observation space are strongly correlated, the solution vector will tend
to keep one of them and discard the others — see Zou and Hastie (2005). Elastic-net
regularization, on the other hand, combines ¢; and ¢2—penalty terms and inherits some
of their advantages: it promotes sparsity without totally discarding highly correlated
observations. This form of regularization was proposed by Zou and Hastie (2005); ex-
amination of some of its properties appears in this reference as well as in the text by
Hastie, Tibshirani, and Friedman (2009) and in De Mol, De Vito, and Rosasco (2009).

Given data {z(n),y, € R™}, the pure £; —regularization formulation solves

welRM

N-1
* . 1 T 2
Wy = argmin {a|w|1 + 5 E_O: (x(n) fynw) } (51.67)

where a > 0 is the regularization parameter. We explained in the chapter that this
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problem is equivalent to solving

e, = argmin ||d — Hwl||?>, subject to afw|j; <7 (51.68)
welRM

for some 7 > 0. Problems of this type were first proposed by Santosa and Symes (1986)
and later by Tibshirani (1996b); the latter reference uses the acronym LASSO for such
problems. A similar problem was studied by Chen, Donoho, and Saunders (1998,2001)
under the name basis pursuit denoising. They examined instead the reverse formulation:

Wreg = argmin |lwl|j1, subject to ||d — Hu|* < e (51.69)
welRM

for some small € > 0. This formulation was motivated by the earlier work in Chen and
Donoho (1994) on standard basis pursuit. In this latter problem, the objective is to seek
a sparse representation for a signal vector d from an overcomplete basis H, namely, to
solve — see Prob. 51.7:

min ||w|l1, subject to d = Huw (51.70)
welRM

All three formulations (51.67), (51.68), and (51.69) are equivalent to each other for
suitable choices of the parameters {a,T,e} — see Prob. 51.7. The contributions by
Tibshirani (1996b) and Chen, Donoho, and Saunders (1998,2001) generated renewed
interest in ¢; —regularized problems in the statistics, machine learning, and signal pro-
cessing literature. These types of problems have an older history, especially in the field
of geophysics. For example, a problem of the same form as (51.67) was used in the
deconvolution of seismic signals by Santosa and Symes (1986). Their work was moti-
vated by the earlier contributions by Claerbout and Muir (1973) and Taylor, Banks,
and McCoy (1979). Using our notation, these last two references consider optimization
problems of the following form (compare with (51.67)):

N-1
Wreg = argmin { allwl + 1 Z |z(n) — ylw} (51.71)
welRM N n—0
where the sum of the absolute residuals (rightmost term) is used in place of the sum of
their squared values, as is the case in (51.67). Both formulations employ an ¢; —penalty
term. One of the earliest recognitions that ¢; —regularization promotes sparsity appears
in the article by Santosa and Symes (1986, p. 1308), where it is stated that the use of the
{1 —penalty term “has the effect of constructing a solution which has the least number of
nonzero components.” Arguments and derivations in support of the sparsity-promoting
property of the ¢1 —penalty appear in Levy and Fullagar (1981), Oldenburg, Scheuer,
and Levy (1983), and also in Santosa and Symes (1986, Sec. 2). In their formulation of
the deconvolution problem, Santosa and Symes (1986) proposed replacing (51.71) by
the same problem (51.67) using the sum of squared residuals — see their expressions
(1.16) and (5.1).

It is useful to note that design problems involving ¢; —measures of performance have
also been pursued in the control field, starting from the mid 1980s. The primary moti-
vation there for the use of the ¢; —norm has been to design control laws that minimize
the effect of persistent bounded disturbances on the output of the system. Among the
earliest references that promoted this approach are the works by Vidyasagar (1986) and
Dahleh and Pearson (1986,1987). A thorough treatment of the subject matter, along
with an extensive bibliography, appears in the text by Dahleh and Diaz-Bobillo (1995).

Robust least-squares designs. Given an N x M data matrix H, an N x 1 target vector
d, an N x N positive-definite weighting matrix R, and an M x M positive-definite
regularization matrix I, the solution to the following regularized weighted least-squares
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problem:
* é . T T
w” = argmin {w IMw + (d — Hw) R(d — Hw)} (51.72)
welRM
is unique and given by
w* =11+ H'RH) 'H'Rd (51.73)

When the data {d, H} are subject to uncertainties, the performance of this solution
can deteriorate appreciably. Assume that the actual data matrix that generated the
target signal d is H +JH and not H, for some small perturbation d H. Then, the above
solution w*, which is designed based on knowledge of the nominal value H, does not
take into account the presence of the perturbations in the data. One way to address
this problem is to formulate a robust version of the least-squares problem as follows:

w2 (51.74a)

. T T
Efegg}v? {(gl{&,?fi} {w IMw + ((d+ od) — (H + (5H)w) R((d+ dd) — (H + 5H)w)}

where {dd, dH} represent the unknown perturbations that are assumed to be modeled
as follows:

[ 6d 6H |=PA[ es En | (51.74b)

where A is an arbitrary contraction matrix satisfying ||A|| < 1 and {P,eq, Eu} are
known quantities of appropriate dimensions, e.g., e4 is a column vector. The matrix P
is meant to constrain the perturbations to its range space. Problem (51.74a) can be
interpreted as a constrained two-game problem, with the designer trying to select an
estimate w™P that minimizes the cost while the opponent {6d,§H} tries to maximize
the same cost. It turns out that the solution to (51.74a) has the form of a regularized
least-squares solution albeit one with modified {II, R} matrices, as indicated by the
following result.

Robust regularized least-squares (Sayed, Nascimento, and Cipparrone (2002)). Prob-
lem (51.74a)—(51.74b) has a unique solution given by

~ ~ =1l ~ ~
W = (H + HTRH) (HTRd + ﬂELed) (51.75a)
where {II, R} are obtained from {II, R} as follows:
=1+ BELEx (51.75b)
R=R+ RP(BIy — P'RP)'P'R (51.75¢)

where the notation T refers to the pseudo inverse of its matriz argument, and the
scalar B is determined by solving

B = argmin G(B) (51.75d)
B2IIPTRP|

where the function G(B) is defined as follows:

G(8) = llw(B)llfs) + lld — Hw(B)|as) + Bllea — Exw(B)|* (51.76)
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where the notation ||a||% stands for a" Xa and

R(B)= R+ RP(BI — P'TRP)'P'R (51.77a)
T(8) =1+ BEL En (51.77b)
w®) = (8 + HREH) " (HTR@)d+pERes)  (51770)

We denote the lower bound on 3 by 8¢ = ||PT RP||. Compared with the solution (51.73)

to the original regularized least-squares problem, we observe that the expression for
w™P is distinct in some important ways:

(a) First, the weighting matrices {II, R} are replaced by corrected versions {II, R}.
These corrections are defined in terms of a scalar 3, which is obtained by minimizing
G(B) over the semi-open interval [S;, 00).

(b) It was shown by Sayed and Chen (2002) and Sayed, Nascimento, and Cipparrone
(2002) that the function G(8) has a unique global minimum (and no local minima)

over the interval [3¢, 00). This means that the determination of E can be pursued by
standard search procedures without worrying about convergence to undesired local

minima. Extensive experiments suggest that setting B\ = AB¢ (a scaled multiple of
the lower bound for some positive A chosen by the designer) is generally sufficient.

(c) The right-hand side of (51.75a) contains an additional term BEJeq. The expression

for w™ can be viewed as the solution to the following extended problem
Blleal®>  —BeiEn
w™” = argmin [1 w' ] ﬂ | < { L } + deHwH%
welRM —ﬂEIIed 11 w

(51.78)

(d) For values B > (¢, the pseudo-inverse operation can be replaced by standard matrix
inversion and it holds that

R'=Rr1'-p'pPP" (51.79)

Other robust variations of least-squares are possible. For example, model (51.74b) for
the perturbations can be replaced by one of the form

[6H| <n, [6d]| < na (51.80)

where the uncertainties are instead assumed to lie within bounded regions determined
by the positive scalars {n,n4}. The solution has a similar structure and is described
in Chandrasekaran et al. (1997,1998) and Sayed, Nascimento, and Cipparrone (2002).
A convex optimization approach is described in El Ghaoui and Lebret (1997). Other
variations and geometric arguments are described in Sayed, Nascimento, and Chan-
drasekaran (1998) — see also Probs. 51.19-51.21.

PROBLEMS

51.1 Consider the least-squares problem (51.1a) with a rank deficient H:
1 2 +1

H=|1 2|, d=| +1

0 0 -1
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(a)  Verify that all solutions to the normal equations take the form w* = col{1—2b,b}
for any b € IR.

(b)  Verify that all vectors in the nullspace of H' H take the form p = col{—2b, b}.

(c) Verify that the following are two valid solutions:

o<[3]. w-[2]

(d) Consider the test vector y; = col{2,2}. Compute the Z(¢) that result from both
solutions. Remark. Observe that the predictions have opposite signs, which is
undesirable in applications where the sign of Z(¢) is used to perform classification.

51.2 Consider the least-squares problem (51.1a) with an ill-conditioned matrix H:

1 +1
H= —1 . od=| -1 (51.81)
Ve +1

where € > 0 is a small number, and the entries of d are binary variables of the type
z(n) = £1.

(a)  What is the condition number of H' H?

(b)  Determine the solution w* to the normal equations.

(¢) Consider the two observation vectors

y1 =col{10,10,107°}, yo =col { 10,10,-107° }

where their trailing entries have small size and differ in sign. Predict their target
signals (1) and Z(2). Remark. Observe how Z> can become negative for small
enough € while Z; is always positive. If the sign of T is used to classify the
observation vector y, then the vectors {y1,y2}, despite being very close to each
other in Euclidean space, will end up being assigned to different classes.

51.3 Let w” and wy., denote solutions to the unregularized and regularized least-

squares risks (51.1a) and (51.16), respectively.

(a) Show that wi, = (pNI+ H'H) 'H"Huw*.

(b)  Introduce the eigen-decomposition H"H = UAU", where U is M x M orthogonal
and A is diagonal with nonnegative entries {\(m)}. Let Wz = U wi, and
w = UTw* and denote their individual entries by {treg(m), @(m)}. Verify that

Wreg(Mm) = (%) w(m), m=1,2,....M

Conclude that [[wheg|* < [|[w*]]>.
51.4 Refer to the minimizers {w”*, wye,} for the unregularized and regularized least-
squares problems.
(a) Show that Preg(wres) — P(w™) = p(w )Twr*cg.
(b) Introduce the same transformations {w, } from Prob. 51.3 and conclude that

reg

M

Pustuic) = P%) = 3 (2500 ) ot

(c) Since generally at least one A(m) # 0 and w* # 0, conclude that Preg(Wreg) >
P(w*).

(d)  Verify that the function f(p) = pA/(pN + X) is non-decreasing in p. Conclude
that the bias increases with p.

51.5 We re-examine the result of Prob. 50.11 for the case of ¢s—regularized least-

squares (or ridge regression). Thus, refer again to the stochastic model (50.88) where v

has covariance matrix 021 but is not necessarily Gaussian. Introduce the mean-square

error risk, P(w) = E ||d— Hw||?, where the expectation is over the source of randomness
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in d. Verify that the ¢2—regularized least-squares solution wy,, given by (51.21) leads
to the following average excess risk expression:

EP(wieg) — P(w’) =
oNT 17T 1 T\ 2 o 2 T =177 2
(W) H (I+ N A ) Hw +auTr[(H(pNI+H H)y'H ) ]
Verify that the expression reduces to the result of Prob. 50.11 as p — 0.

51.6 The expression in Prob. 51.5 consists of two terms: the first one depends on 1/p
while the second one varies with p. Show that the average excess risk is bounded by

* o pN o2 12; T
_ < P o
E P(wyeg) — P(w®) < > [Jw?]]* + 2pNTr(H H)

Minimize the bound over p and conclude that E P(wye,) —P(w®) < oy ||w?|| /Tr(HTH).
For which value of p is this bound attained?

51.7 Consider the ¢; —regularized problem with a > 0:

1 N-1 2
argmin {a|w||1 + 2 2 (o) — yTw) }
n=0

welRM
Using the vector notation (51.1c), show that the problem is equivalent to solving:

argmin ||w||1, subject to ||d — Hw||®> < e
welRM

for some € > 0. Show that as a — 0, the formulation reduces to the so-called basis
pursuit problem (which involves an equality constraint):

argmin ||w||1, subject to Hw =d
welRM

51.8 Establish the validity of expression (51.102) for Sq(z).

51.9 In this problem, we follow the approach described in the earlier Example 14.10
to express the ¢, —regularized least-squares (LASSO) solution in an alternative form.
Consider the regularized problem:

N-1
* . 1 2
Weg = argmin {Preg(w)—allwll o 3 (an) — i) }
n=0

welRM

We denote the individual entries of w and y, by w = col{wm} and yn = col{yn,m},
respectively, for m = 1,2,..., M. We also use the notation w_,, and yn,—m to refer to
the vectors w and y, with their m—th entries excluded.

(a)  Verify that, as a function of w,,, the regularized risk can be written as:

m

2
Preg(w) = am{awm| + (wm - c—m) } + terms indep. of wmn,
am a
where
Yn,m (az(n) - yl,fmwfm)

(b) Conclude that the minimizer over wy,, is given by @Wm = Ta/2a,,(Em/am), for
m=1,2,..., M, and where ¢,, is given by the same expression as ¢, with w_,
replaced by W_,.
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51.10 Replace condition (51.49) by H'H = D? > 0, where D is diagonal. Use re-
sult (11.35) to show that expression (51.52) is replaced by

Wreg = sign(w®) © (\Dzw*\ — ﬂ)
2 /4
where the operations sign(x), |z|, and (a)+ are applied elementwise.
51.11 Consider the f>—regularized risk function Preg(w) = p||w||* + P(w), where
p > 0 and P(w) is some convex risk in w. Show that P.ce(w) is strongly convex and,
therefore, has a unique global minimum.
51.12 Refer to the equivalent problems (51.94).
(a) Assume g(w) = p|jw||?>. Show that 7 decreases as p increases.
(b)  Assume g(w) = aflw|1 + p|lw||?, where a > 0 and p > 0. Show that 7 decreases
as either a or p increases.
51.13 Consider the following ¢ —regularized stochastic risk:

wheg = argmin {plulls + E(@—y'w)’}
welRM

Show that wre, = Ry(pIn + R,)"'w®, where w®° is the minimizer of the unregularized
component, E (& —y'w)?.
51.14 Consider the following ¢; —regularized stochastic risk:

Wreg = argmin { aflw|i + E(x— yTw)2}
welRM

Assume Ry, = o, 1y. Show that wg., = ’H‘a/%g (w®), where w° is the minimizer of the

unregularized component, E (z — y"w)?.
51.15 Refer to the ¢;—regularized problem (51.38). Verify first that for any scalar

x € IR, it holds
12
|z = min =< — 4+ 2z
z2>0 2| z

Let wy, denote the individual entries of w € IRM. Conclude that problem (51.38) can
be transformed into

min {ng(w) « i % (wfn + Zm> + % Jg(x(n) - ylw)Q}
n=0

welRM {z,,>0} 1 Zm

1>

Remark. The idea of replacing the regularization factor by smoother forms has been ex-
ploited in several works, especially in the context of optimization and image processing
— see, for example, Geman Yang (1995), Bach et al. (2012), Chan and Liang (2014),
and Lanza et al. (2015).

51.16 Consider a vector w € IR™ with individual entries {wm}. For any p > 1 and
§ > 0, the bridge regression problem in statistics refers to

1= 2 M
min, N > (m(n) - ylw) , subject to Y |wm[7 <&
we n=0 o’

Show that this problem is equivalent to solving

M | Nl )
min wm|F + — (xn — Tw)
MERM{,}E D S CURY:

for some p > 0. That is, show that for any J > 0 there exists a p > 0 that makes both
problems equivalent to each other (i.e., have the same solution). Remark. See the works
by Frank and Friedman (1993) and Fu (1998) for a related discussion.
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51.17 Refer to the ¢;—regularized problem (51.38) and define the quantities {d, H}
shown in (51.1c), where H € RY*M . Let {u,} denote the individual columns of H for
m=1,2,..., M, where each u,, has size N x 1. Let w,, denote the individual entries
of w € RM. Show that w* is a solution of (51.38) if, and only if, for every entry w, it
holds that

[ur,(d — Hw*)| < Nay/2, when wy;, =0

N
um (d — Hw*) = TQSign(wfn), when wy;, # 0

Remark. See Bach et al. (2012) for a related discussion.

51.18 Derive expressions (51.117a)—(51.117b) for the conjugate functions.

51.19 Assume H is full rank and has dimensions N x M with N > M. Consider the
regularized least-squares problem:

*

w* £ argmin {p||’wH2 + ||dewH2}, p>0
welRM

and assume d ¢ R(H) and H'd # 0. Let d = d — Hw"* and introduce the scalar

n = p|lw*||/||d||. Verify that n < ||H'd||/||d||. Remark. See Sayed, Nascimento, and
Chandrasekaran (1998) for a related discussion.

51.20 The next two problems are extracted from Sayed (2003,2008). Consider an
N x M full rank matrix H with N > M, and an N X 1 vector d that does not belong
to the column span of H. Let n be a positive real number and consider the set of all
matrices §H whose 2—induced norms do not exceed 7, ||0H|| < n. Now consider the
following optimization problem whose solution we denote by w*:

w2 argmin{ max ||d—(H—|—(5H)w|}

weRM | I6HI<n

That is, we seek to minimize the maximum residual over the set {||0H|| < n}.

(a) Argue from the conditions of the problem that we must have N > M.

(b) Show that the uncertainty set {||0H| < n} contains a perturbation §H° such
that d is orthogonal to (H 4 §H?) if, and only if, n > ||[H " d||/||d||.

(¢) Show that the above optimization problem has a unique solution at w* = 0 if,
and only if, the condition on 7 in part (b) holds.

Remark. For more details on such robust formulations, see Chandrasekaran et al.

(1997,1998), Sayed, Nascimento, and Chandrasekaran (1998), and Sayed, Nascimento,

and Cipparrone (2002).

51.21 Consider an N x M full rank matrix H with N > M, and an N X 1 vector d

that does not belong to the column span of H.

(a) For any nonzero M X 1 column vector w, show that the following rank-one mod-
ification of H continues to have full rank for any positive real number 7:

d—Hw w'
|d — Huwl| ||lw]|

>

H(w) = H—n

(b)  Verify that ||d — H(w)w|| = ||y — Hwl|| + n||w||, and that the vectors d — H (w)w
and d— Hw are collinear and point in the same direction (that is, one is a positive
multiple of the other).

(c) Show that ||d — H(w)w|| = maxsmj<y ||d— (H + 0H)w||.

(d) Show that the optimization problem

min  max ||d— (H + 6H)w||
welRM [[§H[|<n

has a nonzero solution w* if, and only if, n < ||H d||/||d||.
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(e) Show that w” is a nonzero solution of the optimization problem in part (d) if,
and only, if H' (w*)(d — Hw*) = 0. That is, the residual vector d — Hw* should
be orthogonal to the perturbed matrix H(w*). Show further that this condition
is equivalent to H' (w*)(d — H(w*)w*) = 0.

(f) Assume two nonzero solutions wj and w3 exist that satisfy the orthogonality
condition of part (e). Argue that H' (w3)(d — H(w})w?) = 0, and conclude that
w] = w3 so that the solution is unique.

Remark. For further details, see Sayed, Nascimento, and Chandrasekaran (1998).

CONSTRAINED FORMULATIONS FOR REGULARIZATION

In this appendix, we first establish the equivalence between problems (51.16) and
(51.26) for f;—regularized least-squares, and between problems (51.38)—(51.39) and
(51.44) for ¢; and elastic-net regularized least-squares. Then we extend the conclusion
to other regularized convex risks, besides least-squares. Although it would have been
sufficient to treat the general case right away, we prefer to explain the equivalence in a
gradual manner for the benefit of the reader, starting with quadratic risks. To establish
the equivalence, we will appeal to the Lagrange and KKT multiplier arguments from
Sec. 9.1.

Quadratic Risks

We start with the f2—regularized least-squares risk.

£>—regularization
To begin with, we identify the smallest value for 7. We already know that the solution
to the £2—regularized problem (51.16) is given by

why = (pNIn +H H) "H'd (51.82)

Now, consider the constrained problem (51.26) for some 7 > 0. The unregularized risk
P(w) is quadratic in w and is therefore convex and continuously differentiable. The
constraint p|lw||> < 7 defines a convex set in IR™. We are therefore faced with the
problem of minimizing a convex function over a convex domain. It is straightforward to
verify that problems of this type can only have global minima — see the argument after
(9.10). For the solution wy., defined by (51.82) to be included in the search domain
pllw||* < 7, it is necessary for the value of 7 to satisfy 7 > p||w}.[|*. This argument
shows that the smallest value for 7 is

7 = pllwiel® = pll(pNIa + H H)  H"d|? (51.83)

Actually, the regularized solution, wy.., will lie on the boundary of the set lw]]® < 7/p.
At the same time, the constraint set will ezclude any of the solutions, w*, to the original
unregularized solution from (51.1b). This is because ||w*|| > ||wreg||, as already revealed
by (51.24).

Let w}ons denote a solution to the constrained problem (51.26) for the above value
of 7. We want to verify that this solution agrees with wy,,. We appeal to the KKT
conditions from Sec. 9.1. Note first that problem (51.26) does not involve any equality
constraints and has only one inequality constraint of the form

g(w) = pllw|®* =7 < 0 (51.84)
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We introduce the Lagrangian function
L(w,2) = P(w) + Apllwl* =), A=0 (51.85)

and let wyg(A) denote a minimizer for it. Strong duality holds because Slater condition
(9.58a) is satisfied, i.e., there exists a w such that g(@w) < 0 (e.g., w = 0). The KKT
conditions (9.28a)—(9.28¢) then state that wy.g () agrees with w,,s if, and only if, the
following conditions hold for some scalar A and wyeg(N):

p||w;‘eg(/\)|\2 —7<0, (feasibility of primal problem)  (51.86a)
A >0, (feasibility of dual problem) (51.86b)
A (p||wfeg()\)\|2 -7) =0, (complementary condition) (51.86¢)
2 {A(pnw”? )+ P(w)} ey =0 (51.86d)

reg

If we select A = 1, then wyeg(X) = wye, and the KKT conditions are satisfied at these
values for 7 = p||wr*eg||2. It follows that wions = Wreg-

£, and elastic-net regularization

We can extend the argument for other regularization factors, such as q(w) = «aflwl
or g(w) = aljw|j1 + p||w|]>. Let w}, denote the minimizer for either regularized risk
(51.38) or (51.39); the argument applies to both cases. It follows that the smallest value
for 7 should be:

7 = q(wieg) (51.87)
Let wions denote a solution to the constrained problem (51.44) for the above value of
7. We want to verify that this solution agrees with wy.,. We again appeal to the KKT

conditions from Sec. 9.1. Note first that either problem (51.38) or (51.39) does not
involve any equality constraints and has only one inequality constraint of the form

g(w) = g(w) -7 < 0 (51.88)
We introduce the Lagrangian function
L(w,A) = P(w)+ Xg(w) —7), A>0 (51.89)

and let wye, (X) denote a minimizer for it. Strong duality holds because Slater condition
(9.58a) is satisfied, i.e., there exists a @ such that g(w) < 0 (e.g., w = 0). The KKT
conditions (9.28a)—(9.28¢) then state that wye, () agrees with wg,, if, and only if, the
following conditions hold for some scalar X and wyeg(A):

*

q(Wreg (X)) — 7 L0, (feasibility of primal problem) (51.90a)
A >0, (feasibility of dual problem) (51.90b)
A (q(wieg(N) — 7) =0, (complementary condition) (51.90c)
0e a{q(w) + P(w)} (51.90d)

w=wk,, ()

reg

If we select A = 1, then w;e,(\) = wyee and the KKT conditions are satisfied at these
values for 7 = q(wyeg). It follows that wio,s = Wyeg-

Other Convex Risks

The discussion in the body of the chapter reveals that regularization has several ben-
efits: it resolves ambiguities by ensuring unique solutions and counters ill-conditioning
and overfitting. Naturally, these favorable conditions come at the expense of introduc-
ing bias: the achievable minimum risk (or training error) is higher under regularization
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than it would be in the absence of regularization. These various properties have been
established so far for the case of least-squares risks. We argue now that regularization
ensures similar properties for other convex risk functions besides quadratic risks. Thus,
more generally, we let P(w) denote any convex risk function, differentiable or not, and
introduce its regularized version:

Preg(w) 2 g(w) + P(w) (51.91)

where the penalty term, g(w), is also assumed to be convex in w such as the choices
introduced earlier in (51.15). In the chapter, we considered one choice for P(w), namely,
the quadratic risk (51.92a). Later, when we study learning algorithms, other convex
empirical risks will arise (such as logistic risks, exponential risks, hinge risks and others),
in which case the results of the current appendix will be applicable; some of the risks
will also be non-differentiable. Examples include empirical risks of the form:

P(w) = % S (m(n) - ylw)2 , (quadratic risk) (51.92a)
n=0

P(w) = % S (1 + e—“")yli‘f) , (logistic risk) (51.92b)
n=0

P(w) = % i max {(), —x(n)ylw} , (Perceptron risk) (51.92¢)
n=0

P(w) = %N_l X {O, 1— :c(n)y:;w} , (hinge risk) (51.92d)
n=0

Uniqueness of solution. We focus on general optimization problems of the form (51.91),
where P(w) is convex in w (but need not be differentiable) and g(w) is one of the convex
penalty terms considered before in (51.15).

The first property to note is that whenever P(w) is convex in w, the 2 —regularized
version (i.e., when q(w) = p|lw]||?), will be strongly convex for any p > 0 and, therefore,
Prog(w) will have a unique global minimum, wye,. The strong convexity of Preg(w) in
this case follows from the fact that p|lw||? is itself strongly-convex — see Prob. 51.11.
Therefore, ridge regression ensures a unique global minimizer; a similar conclusion can
be established when elastic-net regularization is applied for any convex empirical risk
P(w). For {1 —regularization, a unique global minimizer will be guaranteed when P(w)
happens to be strictly or strongly convex; in this case, convexity of P(w) alone is not
sufficient because the penalty a||wl||; is convex but not strictly convex. In the sequel,
we assume that the regularized risk Preg(w) has a unique global minimizer.

Promoting smaller solutions. Let w* denote a global minimizer for the unregularized
convex risk, P(w). This minimizer need not be unique since P(w) is only assumed to
be convex but not necessarily strongly convex. Let wy,, denote the global minimizer
for the regularized risk, Preg(w). This minimizer is unique. Now, since wy,, minimizes
Preg(w), we have

q(Wreg) + P(wreg) < q(w™) + P(w”)
— q(wrcg) q(w S P( ) P(w:cg)
0

)
L G(wheg) — a(w®) <
= q(wreg) < q(w") (51.93)

where step (a) is because w* minimizes the unregularized risk, P(w).

Constrained formulation. We assume the regularized risk has a unique global minimizer.
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We also assume that the Slater condition (9.58a) holds, i.e., there exists a @ such that
g(w) < 0, which is equivalent to q(w) < 7 where T = g(wyeg). This can be satisfied, for
example, at @ = 0 for the penalty terms considered before in (51.15). Then, the same
KKT argument used earlier in this appendix under ¢; and elastic-net regularization
shows that the following two problems are equivalent (meaning they have the same
solution vectors):

w* = argmin {q(w) + P(w)} =

reg
welRM (51.94)
Weons = argmin  P(w) subject to g(w) < q(wyeg)
wE]RM

EXPRESSION FOR LASSO SOLUTION

In this appendix, we establish Theorem 51.1 for the solution of the LASSO problem
under ¢; and elastic-net regularization using a duality argument patterned after the
derivation in Chen, Towfic, and Sayed (2015); other related arguments appear in Mota
et al. (2012,2013).

We assume first that p # 0. We start by introducing the Lagrangian function:

L(w,z,0) 2 %Hd—zHQ + q(w) + \T(z - Huw) (51.95)

where A € IR is the dual variable (or Lagrange multiplier). The dual function is
defined by minimizing £(w, z, A) over {w, z}:

D(A) £ min L(w,z,)), (dual function)

w,z

min {]1[|d —z|* + )\Tz} + min {q(w) — )\THw} (51.96)

where we are grouping separately the terms that depend on z and w. Once this dual
function is determined, as shown by future expression (51.107), maximizing it leads to
the optimal value for A — see Eq. (51.62):

A? = argmax D(A) (51.97)
AeIRN

Strong duality will then imply that we can determine the optimal solutions for {w, z}
for problem (51.60) by using this value for A\°, namely, by solving:

2° £ argmin {in— 2| + ()\O)Tz} = 2’=d- E)\o (51.98a)
zeIRN N 2
Wreg = argmin {q -\ Hw} (51.98b)
e]:RZ\/I

Expression (51.98a) shows how z° is determined from A°. We still need to show how
to solve (51.98b) and determine the regularized solution in terms of A°. We can pursue
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this task by appealing to result (51.47). Indeed, note that

Wyog = argmin {q(w) -7 Hw}
welRM
= argmin {afjuwll + pllw]* - (X*)" Hw}
welRM

. a 1,
— argmin {fuwul et -t )THw}
welRM p p

1 2
= argmin { —|jw|l, + Hw — —H")°
p 2p

1 H Tyo
— ——||H A
weRM (2p)?

2} (51.99)

Using result (51.47) we conclude that (51.61) holds.

Determining the dual variable A°. To complete the argument, we still need to determine
A°, which is the maximizer for the dual function D(X) defined by (51.96). We first
determine D(A). From (51.96) we observe that we need to minimize two separate terms,
one over z and one over w.

We already know from the above argument that for any A:

argmin {q(w) - )\THw} = w) = 271p To(H'A) (51.100)

welRM

where we are denoting the minimizer for a generic A by the notation w}. Consequently,
the minimum value for this first minimization is given by

q(wi) = A" Hwl = allwi|h + pllwi[* = ATHw (51.101)
(51.100) i

1
o5 (STl + JIT NI = AT HT (7))

To simplify the notation, we let for any vector x:
1
Sa@) 2 ~alTa@)l — 3 ITa@* + 2" Ta(z) (51.102)
Then, it is verified in Prob. 51.8 that
1
Sa(z) = 5“?1'&(;18)”2 (51.103)
In this way, we can rewrite the minimum value (51.101) more compactly as
(w}) = \THwS = — S (HTA) = — | T (H™ )| (51.104)
2p 4p
For illustration purposes, Figure 51.6 plots the soft-thresholding functions T4 (x) and

Sa(z) for @« = 1 and a scalar argument, x.
Let us now consider the first minimization in (51.96) for any A:

. 1 2 | \T ~ _ N
Zrén{;{nN {N||d—z| +A z} = zA—d—E)\ (51.105)

where we are denoting the minimizer for a generic A by the notation z). Consequently,
the minimum value for this minimization is given by

%Hd—auﬂﬂa — ATd- %H)\HQ (51.106)
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To(z)
Sa(z)

Figure 51.6 Plots of the soft-thresholding functions T (z) and S (z) for o = 1.

Adding this result to (51.104) we find that the dual function is given by

D) = ATd— %HAHQ - i ‘ T, (HT)\) H2 (51.107)

It can be verified that this function is strongly-concave and, therefore, has a unique
maximum (see next example). The desired dual variable, \°, is therefore given by
(51.62).

The proof technique used so far requires p > 0. This condition was used to com-
plete the squares in step (51.99). We now explain how to handle the situation p = 0,
which corresponds to pure ¢; —regularization. The solution will continue to be given
by expression (51.61), except that A° will be found by solving the projection problem
(51.112). The details are as follows.

We revisit step (51.99) when p = 0 and note that it reduces to solving a problem of
the form:

min {a||w||1 - )\THw} (51.108)
welRM

Let € denote the convex set of vectors satisfying ||z|lcc < 1. We established earlier in
Table 8.4 and Prob. 8.55 the following conjugate pair:

r(w) =|lwi = 7"(z) =1l (51.109)
where the notation I¢ o [z] represents the indicator function relative to set C: it assumes

the value zero if z € € and +oo otherwise. In light of definition (51.114) for the
conjugate function, we find that the minimum value of problem (51.108) is given by

min {a||w||1 - /\THw} = —Ic.eo[H A0l (51.110)
welRM
Adding this value to (51.106) we find that the dual function is now given by
DO = A= TINE ~ Tow HTA/o] (51.111)

Maximizing D(A) over A results in A°. To do so, we complete the squares over A to find
that the maximization of D(A) is equivalent to solving:

2
A° = argmin H/\ - de , subject to ||[H "\l < a (51.112)
AeRN N
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The minimizer \° is obtained by projecting %d onto the set of all vectors \ satisfying
|HTAl|oo < . Using z = Hw and 2° = d— 5 \°, we conclude that the optimal solution
Wreg also satisfies the equation

. N ., 2 /2 o
Huly =d— 5X° = ~ (ﬁd— A ) (51.113)
residual

in terms of the residual resulting from projecting 2d onto the set ||[H A|jos < a.

Example 51.6 (Duality and conjugate functions) There is an alternative way to arrive
at the same expression (51.62) by calling upon the concept of conjugate functions, also
called Fenchel conjugate functions. This alternative argument is useful for situations
(other than least-squares) when explicit expressions for the individual minimum values
(51.104) and (51.106) may not be directly available but can be expressed in terms of
conjugate functions.

We first recall the definition of conjugate functions from (8.83). Consider an arbitrary
function r(w) : R — IR with domain dom(r); the function r(w) need not be convex.
Its conjugate function is denoted by r*(\) : R™ — R and is defined as:

r(\) £ sup {)\Tw —r(w)}, rey (51.114)
welRM
where Y denotes the set of all A where the supremum operation is finite. It can be
verified that r*()) is convex regardless of whether r(w) is convex or not. Likewise, the
set Y is a convex set — recall Prob. 8.47 and Table 8.4. If r(w) happens to be strongly-
convex, then Y = RM (i.e., the sup is finite for all \).

Now, consider the quadratic function f(w) = |Jw||* and observe that the dual function
D(A) in (51.96) can be written as:
T 1 2 T
D(A\) = — sup (f/\ z— —|d—z| ) — sup (/\ Hw — q(w))
zeRV N welRM
1 *
= — sup ()\T(d—z)——Hd—zHQ—)\Td) — ¢"(H™))
zcIRV N
_ T 12 7 w T A
=—sup (As—=|s]|"=Ad) — ¢gH N, s =d—z
seRN N
1
= — sup ()\Ts— —||s\|2> + Nd — ¢*(H™))
selRY N
S sup (N/\Ts— ||5H2) + Xd — ¢"(H™))
N N
selR
_ 1 . T * T
=~ /NN +ATd — ¢ (HTY) (51.115)
where f*(A) and ¢* () denote the conjugate functions of
Fw) =lwll?,  g(w) = allw]s + pllw]® (51.116)

Both functions, f(w) and g(w), are strongly-convex and, therefore, the domains of
their conjugate functions are the entire space, IR™. Moreover, since f(w) and g(w) are
strongly-convex and differentiable, it follows from the properties of conjugate functions
that f*(A) and ¢*(\) are themselves strongly-convex and differentiable — recall Ta-
ble 8.4. This implies that D(\) is strongly-concave (i.e., its negative is strongly-convex),
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differentiable, and has a unique maximizer, \°.

It can be verified that the conjugate functions for f(w) and g(w) are given by — see
Prob. 51.18:

Fw) =l = 70 = I (s51.117)
q(w) = allwls + pllwl* = ¢ (V) = inﬂra(/\)u2 (51.117b)

Substituting into (51.115), we find that the dual function is given by (51.107).
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