
50 Least-Squares Problems

We studied in Chapters 29 and 30 the mean-square error criterion in some
detail, and applied it to the problem of inferring an unknown (or hidden) vari-
able x from the observation of another variable y when {x,y} are related by
means of a linear regression model or a state-space model. In the latter case,
we derived several algorithms for the solution of the inference problem such as
the Kalman filter, its measurement and time-update forms, and its approximate
nonlinear forms. We revisit the linear least-mean-square error formulation in
this chapter and use it to motivate an alternative least-squares method that is
purely data-driven. This second method will not require knowledge of statistical
moments of the variables involved because it will operate directly on data mea-
surements to learn the hidden variable. This data-driven approach to inference
will be prevalent in all chapters in this volume where we describe many other
learning algorithms for the solution of general inference problems that rely on
other choices for the loss function, other than the quadratic loss.

We start our analysis of data-driven methods by focusing on the least-squares
problem because it is mathematically tractable and sheds useful insights on many
challenges that will hold more generally. We will explain how some of these chal-
lenges are addressed in least-squares formulations (e.g., by using regularization)
and subsequently apply similar ideas to other inference problems, especially in
the classification context when x assumes discrete values.

50.1 MOTIVATION

The mean-square-error (MSE) problem of estimating a scalar random variable
x ∈ IR from observations of a vector random variable y ∈ IRM seeks a mapping
c(y) that solves

x̂ = argmin
c(y)

E (x− c(y))2 (50.1)

We showed in (27.18) that the optimal estimate is given by the conditional
mean x̂ = E (x|y = y). For example, for continuous random variables, the MSE
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estimate involves an integral computation of the form:

x̂ =

ˆ
x∈X

xfx|y(x|y)dx (50.2)

over the domain of the realizations x ∈ X. Evaluation of this solution requires
knowledge of the conditional distribution, fx|y(x|y). Even if fx|y(x|y) were avail-
able, computation of the integral expression is generally not possible in closed-
form. In Chapter 29, we limited c(y) to the class of affine functions of y and
considered instead the problem:

(wo, θo) = argmin
w,θ

E (x− x̂)2

subject to x̂ = yTw − θ
(50.3)

for some vector parameter w ∈ IRM and offset θ ∈ IR. The minus sign in front
of θ is for convenience. Let {x̄, ȳ} denote the first-order moments of the random
variables x and y, i.e., their means:

x̄ = Ex, ȳ = Ey (50.4a)

and let {σ2
x, Ry, rxy} denote their second-order moments, i.e., their (co)-variances

and cross-covariance vector:

σ2
x = E (x− x̄)2 (50.4b)

Ry = E (y − ȳ)(y − ȳ)T (50.4c)

rxy = E (x− x̄)(y − ȳ)T = rTyx (50.4d)

Theorem 29.1 showed that the linear least-mean-square error (l.l.m.s.e.) estima-
tor and the resulting minimum mean-square error (m.m.s.e.) are given by

x̂LLMSE − x̄ = rxyR
−1
y (y − ȳ) (50.5a)

m.m.s.e. = σ2
x − rxyR−1

y ryx (50.5b)

In other words, the optimal parameters are given by

wo = R−1
y ryx, θo = ȳTwo − x̄ (50.6)

Note in particular that the offset parameter is unnecessary if the variables have
zero mean since in that case θo = 0. More importantly, observe that the estimator
x̂LLMSE requires knowledge of the first and second-order moments of the random
variables {x,y}. When this information is not available, we need to follow a
different route to solve the inference problem. To do so, we will replace the
stochastic risk that appears in (50.3) by an empirical risk as follows:

(w?, θ?) = argmin
w,θ

{
P (w, θ)

∆
=

1

N

N−1∑

n=0

(
x(n)− (yTnw − θ)

)2
}

(50.7)

which is written in terms of a collection of N independent realizations {x(n), yn};
these measurements are assumed to arise from the underlying joint distribution
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for the variables {x,y} and they are referred to as the training data because
they will be used to determine the solution (w?, θ?). Once (w?, θ?) are learned,
they can then be used to predict the x−value corresponding to some future
observation y by using

x̂ = yTw? − θ? (50.8)

Obviously, under ergodicity, the empirical risk in (50.7) converges to the stochas-
tic risk in (50.3) as N → ∞. However, even if ergodicity does not hold, we can
still pose the empirical risk minimization problem (50.7) independently and seek
its solution. Note that we are denoting the empirical risk by the letter P (·); in
this case, it depends on two parameters: w and θ. We are also denoting the opti-
mal parameter values by (w?, θ?) to distinguish them from (wo, θo). As explained
earlier in the text, we use the ? superscript to refer to minimizers of empirical
risks, and the o superscript to refer to minimizers of stochastic risks.

50.1.1 Stochastic Optimization

At this stage, one can consider learning the (w?, θ?) by applying any of the
stochastic optimization algorithms studied in earlier chapters, such as applying
a stochastic gradient algorithm or a mini-batch version of it, say,





select a sample {x(n),yn} at random at iteration n
let x̂(n) = yT

nwn−1 − θ(n− 1)

update wn = wn−1 + 2µyn(x(n)− x̂(n))

update θ(n) = θ(n− 1)− 2µ(x(n)− x̂(n))

(50.9)

This construction is based on using an instantaneous gradient approximation at
iteration n. The recursions can be grouped together as follows:

x̂(n) =
[

1 yT
n

] [ −θ(n− 1)

wn−1

]
(50.10a)

[ −θ(n)

wn

]
=

[ −θ(n− 1)

wn−1

]
+ 2µ

(
x(n)− x̂(n)

)[ 1

yn

]
(50.10b)

which are expressed in terms of the extended variables of dimension M + 1 each:

y′
∆
=

[
1

y

]
, w′ =

[ −θ
w

]
(50.11)

Using the extended notation we can write down the equivalent representation:

x̂(n) = (y′n)Tw′n (50.12a)

w′n = w′n−1 + 2µy′n(x(n)− x̂(n)) (50.12b)

After sufficient iterations, the estimators (wn,θ(n)) approach (w?, θ?). These
values can then be used to predict the hidden variable x(t) for any new obser-
vation yt as follows:

x̂(t) = yTt w
? − θ? (50.13)
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It turns out, however, that problem (50.7) has a special structure that can be ex-
ploited to motivate a second exact (rather than approximate) recursive solution,
for updating wn−1 to wn, known as the recursive least-squares (RLS) algorithm.

50.1.2 Least-Squares Risk

Using the extended notation, we rewrite the empirical risk problem (50.7) in the
form

(w′)? = argmin
w′∈IRM+1

{
P (w′)

∆
=

1

N

N−1∑

n=0

(
x(n)− (y′n)Tw′

)2
}

(50.14)

without an offset parameter. For simplicity of notation, we will assume hence-
forth that the vectors (w, yn) have been extended according to (50.11) and will
continue to use the same notation (w, yn), without the prime subscript, for the
extended quantities:

y ←
[

1

y

]
, w ←

[ −θ
w

]
(50.15)

We will also continue to denote their dimension generically by M (rather than
M + 1). Thus, our problem becomes one of solving

w? = argmin
w

{
P (w)

∆
=

1

N

N−1∑

n=0

(
x(n)− yTnw

)2
}

(50.16)

from knowledge of N data pairs {x(n), yn}. We can rewrite this problem in a
more familiar least-squares form by collecting the data into convenient vector
and matrix quantities. For this purpose, we introduce the N ×M and N × 1

variables

H
∆
=




yT0
yT1
yT2
...

yTN−1



, d

∆
=




x(0)

x(1)

x(2)
...

x(N − 1)




(50.17)

The matrix H contains all observation vectors {yn} transposed as rows, while
the vector d contains all target signals {x(n)}. Then, the risk function takes the
form

P (w) =
1

N
‖d−Hw‖2 (50.18)

in terms of the squared Euclidean norm of the error vector d−Hw. The scaling
by 1/N does not affect the location of the minimizer w? and, therefore, it can
be ignored. In this way, formulation (50.16) becomes the standard least-squares
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problem:

w?
∆
= argmin

w∈IRM
‖d−Hw‖2 (standard least-squares) (50.19)

We motivated (50.19) by linking it to the mean-square error formulation (50.3)
and replacing the stochastic risk by an empirical risk. Of course, the least-squares
problem is of independent interest in its own right. Given a collection of data
points {x(n), yn}, with scalars x(n) and column vectors yn, we can formulate
problem (50.19) directly in terms of these quantities and seek the vector w that
matches Hw to d in the least-squares sense.

Example 50.1 (Maximum-likelihood interpretation) There is another way to motivate
the least-squares problem as the solution to a maximum-likelihood estimation problem
in the presence of Gaussian noise. Assume we collect N independent and identically-
distributed observations {x(n),yn}, for 0 ≤ n ≤ N − 1. Assume further that these
observations happen to satisfy a linear regression model of the form:

x(n) = yT
nw + v(n) (50.20)

for some unknown vector w ∈ IRM , and where v(n) is white Gaussian noise with zero
mean and variance σ2

v, i.e., v ∼ Nv(0, σ2
v). It is straightforward to conclude that the

likelihood function of the joint observations {x(n),yn} given the model w is

fx,y (y0, . . . , yN−1, x(0), . . . , x(N − 1);w)

= fv(v(0), . . . , v(N − 1);w)

=

N−1∏
n=0

1√
2πσ2

v

exp

{
−
(
x(n)− yTnw

)2
2σ2

v

}

=
1

(2πσ2
v)N/2

exp

{
− 1

2σ2
v

N−1∑
n=0

(
x(n)− yTnw

)2
}

(50.21)

so that the log-likelihood function is given by

` ({x(n), yn}; w) = −N
2

ln(2πσ2
v) − 1

2σ2
v

N−1∑
n=0

(
x(n)− yTnw

)2

(50.22)

The maximization of the log-likelihood function over w leads to the equivalent problem

w? = argmin
w∈IRM

{
N−1∑
n=0

(
x(n)− yTnw

)2
}

(50.23)

which is the same least-squares problem (50.16). In Prob. 50.6 we consider a variation
of this argument in which the noise process v(n) is not white, which will then lead to
the solution of a weighted least-squares problem.



2086 Least-Squares Problems

50.2 NORMAL EQUATIONS

Problem (50.19) can be solved in closed-form using either algebraic or geometric
arguments. We expand the least-squares risk:

‖d−Hw‖2 = ‖d‖2 − 2dTHw + wTHTHw (50.24)

and differentiate with respect to w to find that the minimizer w? should satisfy
the normal equations:

HTHw? = HTd (normal equations) (50.25)

Alternatively, we can pursue a geometric argument to arrive at this same conclu-
sion. Note that, for any w, the vectorHw lies in the column span (or range space)
of H, written as Hw ∈ R(H). Therefore, the least-squares criterion (50.19) is in
effect seeking a column vector in the range space of H that is closest to d in the
Euclidean norm sense. We know from Euclidean geometry that the closest vector
to d within R(H) can be obtained by projecting d onto R(H), as illustrated in
Fig. 50.1. This means that the residual vector, d −Hw?, should be orthogonal
to all vectors in R(H)

d−Hw? ⊥ Hp, for any p (50.26)

which is equivalent to
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d�Hw?

Figure 50.1 A least-squares solution is obtained when d−Hw? is orthogonal to R(H).

pTHT(d−Hw?) = 0, for any p (50.27)

Clearly, the only vector that is orthogonal to any p is the zero vector, so that

HT(d−Hw?) = 0 (50.28)

and we arrive again at the normal equations (50.25).
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50.2.1 Consistent Equations

We explained earlier in Sec. 1.51 that equations of the form (50.25) are always
consistent (i.e., they always have a solution). This is because the matrices HT

and HTH have the same range spaces so that, for any d and H:

HTd ∈ R(HTH) (50.29)

Moreover, the normal equations will either have a unique solution or infinitely
many solutions. The solution will be unique when HTH is invertible, which
happens when H has full column rank. This condition requires N ≥ M , which
means that there should be at least as many observations as the number of
unknowns in w. The full rank condition implies that the columns of H are not
redundant. In this case, we obtain

w? = (HTH)−1HTd (50.30)

In all other cases, the matrix product HTH will be rank-deficient. For instance,
this situation arises when N < M , which corresponds to the case in which we
have insufficient data (less measurements than the number of unknowns). This
situation is not that uncommon in practice. For example, it arises in streaming
data implementations when we have not collected enough data to surpass M .
When HTH is singular, the normal equations (50.25) will have infinitely many
solutions, all of them differing from each other by vectors in the nullspace of H
— recall (1.56). That is, for any two solutions {w?1 , w?2} to (50.25), it will hold
that

w?2 = w?1 + p, for some p ∈ N(H) (50.31)

Although unnecessary for the remainder of the discussions in this chapter, we
explain in Appendix 50.A that when infinitely many solutions w? exist to the
least-squares problem (50.19), we can determine the solution with the small-
est Euclidean norm among these by employing the pseudo-inverse of H — see
expression (50.179). Specifically, the solution to the following problem

min
w∈IRM

‖w‖2, subject to HTHw = HTd (50.32)

is given by

w? = H†d (50.33)

where H† denotes the pseudo-inverse matrix.

50.2.2 Minimum Risk

For any solution w? of (50.25), we denote the resulting closest vector to d by
d̂ = Hw? and refer to it as the projection of d onto R(H):

d̂ = Hw?
∆
= projection of d onto R(H) (50.34)
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It is straightforward to verify that even when the normal equations have a mul-
titude of solutions, w?, all of them will lead to the same value for d̂. This obser-
vation can be justified both algebraically and geometrically. From a geometric
point of view, projecting d onto R(H) results in a unique projection d̂. From
an algebraic point of view, if w?1 and w?2 are two arbitrary solutions, then from
(50.31) we find that

d̂2
∆
= Hw?2 = H(w?1 + p) = Hw?1 = d̂1 (50.35)

What the different solutions w? amount to, when they exist, are equivalent rep-
resentations for the unique d̂ in terms of the columns of H.

We denote the residual vector resulting from the projection by

d̃
∆
= d−Hw? (50.36)

so that the orthogonality condition (50.28) can be rewritten as

HTd̃ = 0 (orthogonality condition) (50.37)

We express this orthogonality condition more succinctly by writing d̃ ⊥ R(H),
where the ⊥ notation is used to mean that d̃ is orthogonal to any vector in the
range space (column span) of H. In particular, since, by construction, d̂ ∈ R(H),
it also holds that

d̃ ⊥ d̂ or (d̂)Td̃ = 0 (50.38)

Let ξ denote the minimum risk value, i.e., the minimum value of (50.19). This
is sometimes referred to as the training error because it is the minimum value
evaluated on the training data {x(n), yn}. It can be evaluated as follows:

ξ = ‖d−Hw?‖2

= (d−Hw?)T(d−Hw?)
= (d−Hw?)T(d− d̂)

= dT(d−Hw?), since (d−Hw?) ⊥ d̂ by (50.38)

= dTd− dTHw?

= dTd− (w?)THTHw?, since dTH = (w?)THTH by (50.25)

= dTd− (d̂)Td̂ (50.39)

That is, we obtain the following two equivalent representations for the minimum
risk:

ξ = ‖d‖2 − ‖d̂‖2 = dTd̃ (minimum risk) (50.40)

50.2.3 Projections

When H has full column rank (and, hence, N ≥ M), the coefficient matrix
HTH becomes invertible and the least-squares problem (50.19) will have a unique
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solution given by

w? = (HTH)−1HTd (50.41)

with the corresponding projection vector

d̂ = Hw? = H(HTH)−1HTd (50.42)

The matrix multiplying d in the above expression is called the projection matrix
onto R(H) and we denote it by

PH
∆
= H(HTH)−1HT, when H has full column rank (50.43)

The designation projection matrix stems from the fact that multiplying d by
PH projects it onto the column span of H and results in d̂. Such projection
matrices play a prominent role in least-squares theory and they have many useful
properties. For example, projection matrices are symmetric and also idempotent,
i.e., they satisfy

PT
H = PH , P2

H = PH (50.44)

Note further that the residual vector, d̃ = d−Hw? is given by

d̃ = d− PHd = (I − PH)d = P⊥Hd (50.45)

so that the matrix

P⊥H
∆
= I − PH (50.46)

is called the projection matrix onto the orthogonal complement space of H. It
is easy to see that the minimum risk value can be expressed in terms of P⊥H as
follows:

ξ = dTd− (d̂)Td̂

= dTd− dTPT
HPHd

= dTd− dTPHd, since PT
HPH = P2

H = PH (50.47)

That is,

ξ = dTP⊥Hd (50.48)

In summary, we arrive at the following statement for the solution of the standard
least-squares problem.
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Theorem 50.1. (Solution of least-squares problem) Consider the standard
least-squares problem (50.19) where H ∈ IRN×M :

(a) When H has full column rank, which necessitates N ≥M , the least-squares
problem will have a unique solution given by w? = (HTH)−1HTd.

(b) Otherwise, the least-squares problem will have infinitely many solutions w?

satisfying HTHw? = HTd. Moreover, any two solutions will differ by vectors
in N(H) and the solution with the smallest Euclidean norm is given by w? =

H†d.

In either case, the projection of d onto R(H) is unique and given by d̂ = Hw?.
Moreover, the minimum risk value is ξ = dTd̃, where d̃ = d− d̂.

50.2.4 Weighted and Regularized Variations

There are several extensions and variations of the least-squares formulation,
which we will encounter at different locations in our treatment. For example,
one may consider a weighted least-squares problem of the form

w?
∆
= argmin

w∈IRM

{
(d−Hw)TR(d−Hw)

}
, (weighted least-squares)

(50.49)

where R ∈ IRN×N is a symmetric positive-definite weighting matrix. Assume,
for illustration purposes, that R is diagonal with entries {r(n)}. Then, the above
problem reduces to (we prefer to restore the 1/N factor when using the original
data):

w?
∆
= argmin

w∈IRM

{
1

N

N−1∑

n=0

r(n)
(
x(n)− yTnw

)2
}

(50.50)

where the individual squared errors appear scaled by r(n). In this way, errors
originating from some measurements will be scaled more or less heavily than
errors originating from other measurements. In other words, incorporating a
weighting matrix R into the least-squares formulation, allows the designer to
control the relative importance of the errors contributing to the risk value.

One can also consider penalizing the size of the parameter w by modifying the
weighted risk function in the following manner:

(`2−regularized weighted least-squares)

w?
∆
= argmin

w∈IRM

{
ρ‖w‖2 + (d−Hw)TR(d−Hw)

}
(50.51)

where ρ > 0 is called an `2−regularization parameter (since it penalizes the
`2−norm of w). We will discuss regularization in greater detail in the next chap-
ter. Here, we comment briefly on its role. Observe, for instance, that if ρ is large,
then the term ρ‖w‖2 will have a nontrivial effect on the value of the risk function.
As such, when ρ is large, the solution w? should have smaller Euclidean norm
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since the objective is to minimize the overall risk. In this way, the parameter
ρ provides the designer with the flexibility to limit the norm of w to small val-
ues. Additionally, it is straightforward to verify by differentiating the above risk
function that the solution w? satisfies the equations:

(ρIM +HTRH)w? = HTRd (50.52)

Observe, in particular, that even when the product HTRH happens to be sin-
gular, the coefficient matrix ρIM + HTRH will be positive-definite and, hence,
invertible, due to the addition of the positive term ρIM . This ensures that the
solution will always be unique and given by

w? = (ρIM +HTRH)−1HTRd (50.53)

Example 50.2 (Sea level change) We apply the least-squares formalism to the prob-
lem of fitting a regression line through measurements related to the change in sea level
(measured in mm) relative to the start of year 1993. There are N = 952 data points
consisting of fractional year values and the corresponding sea level change. We de-
note the fractional year value by y(n) and the sea level change by x(n) for every entry
n = 1, 2, . . . , 952. For example, the second entry (n = 2) in the data corresponds to year
1993.0386920, which represents a measurement performed about 14 days into year 1993.

Using the least-squares formalism, we already know how to fit a regression line through
these data points by solving a problem of the form:

(α?, θ?)
∆
= argmin

α,θ

{
1

N

N−1∑
n=0

(
x(n)− (αy(n)− θ)

)2
}

(50.54)

where (α, θ) are scalar parameters in this case. For convenience, we employ the vector
notation as follows. We collect the measurements {x(n), y(n)} into the N × 1 vector
and N × 2 matrix quantities:

d =


x(0)
x(1)
...

x(N − 1)

 ∈ IRN , H =


1 y(0)
1 y(1)
...
1 y(N − 1)

 ∈ IRN×2 (50.55)

and introduce the parameter vector:

w
∆
=

[
−θ
α

]
∈ IR2 (50.56)

Then, problem (50.54) is equivalent to

w?
∆
= argmin

w∈IR2

‖d−Hw‖2 (50.57)

whose solution is given by

w? = (HTH)−1HTd
∆
=

[
−θ?
α?

]
(50.58)

We find that

w? ≈
[
−5961.9

2.9911

]
=

[
−θ?
α?

]
(50.59)
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Figure 50.2 (Top) Result of fitting a linear regression line onto measurements showing
the change in sea level (measured in mm) relative to the start of year 1993. (Bottom)
Result of fitting a smoother curve to the same data by using the LOWESS procedure
described in Example 50.3. The source of the satellite sea level data used in this
simulation is from the NASA Goddard Space Flight Center at
https://climate.nasa.gov/vital-signs/sea-level/.

This construction fits an affine relation (or a line) to the data and allows us to estimate
x(n) from an observation y(n) by using (50.60):

x̂(n) = α?y(n)− θ? (50.60)

The top plot in Fig. 50.2 shows the resulting regression line x̂(n) along with the mea-
surements x(n) (vertical axis) as a function of the year stamp y(n) (horizontal axis).
The bottom plot shows a smoother fitted curve using the LOWESS procedure, which
is described next.

Example 50.3 (LOWESS and LOESS smoothing) Consider N−scalar data pairs de-
noted by {x(n), y(n)}, where n = 0, 1, . . . , N−1. In many cases of interest, a regression
line is not the most appropriate curve to fit onto the data. We now describe two other
popular (but similar) schemes that can be used to fit smoother curves. These schemes
are known by the acronyms LOWESS, which stands for “ locally weighted scatter-plot
smoothing” and LOESS, which stands for “ locally estimated scatter-plot smoothing.”
Both schemes rely on the use of localized least-squares problems. We describe the
LOWESS procedure first.

https://climate.nasa.gov/vital-signs/sea-level/
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LOWESS slides a window of width L over the N−data points, say, one position at a
time. Typical values are L = N/20, L = N/10, or L = N/4 but other values are possible
leading to less (smaller L) or more (larger L) smoothing in the fitted curve. The fraction
of samples used within the window is called the smoothing factor, q. Thus, the choice
L = N/10 corresponds to using q = 10%, while the choice L = N/20 corresponds to
using q = 5%. The data in each window are used to estimate one particular point in
the window, which is normally (but not always) the middle point. For example, assume
we wish to estimate the sample x(10) corresponding to n = 10, and assume that the
window size is L = 5. In this case, the data samples that belong to the window will be{

(x(8), y(8)), (x(9), y(9)), (x(10), y(10)) , (x(11), y(11)), (x(12), y(12))

}
(50.61)

with the desired sample (x(10), y(10)) appearing at the center of the interval. Clearly,
it is not always possible to have the desired sample appear in the middle of the interval.
This happens, for example, for the first data point (x(1), y(1)). In this case, the other
points in the window will lie to its right:{

(x(1), y(1)) , (x(2), y(2)), (x(3), y(3)), (x(4), y(4)), (x(5), y(5))

}
(50.62)

The same situation happens for the last data point (x(N − 1), y(N − 1)). In this case,
the four points in the corresponding window will lie to its left. Regardless, for the
data pair (x(no), y(no)) of interest, where we are denoting the index of interest by
no, we construct a window with L data samples around this point to estimate its
x−component. For convenience of notation, we collect the indexes of the samples within
the window into a set Ino . For example, for the cases represented in (50.61)–(50.62),
we have

no = 10, I10 = {8, 9, 10, 11, 12} (50.63)
no = 1, I1 = {1, 2, 3, 4, 5} (50.64)

Let ∆no denote the width of the window defined as follows for the above two cases:

∆10 = |y(12)− y(8)|, ∆1 = |y(5)− y(1)| (50.65)

Next, using the data in each window Ino , we fit a regression line by solving a weighted
least-squares problem of the following form:

(α?no , θ
?
no)

∆
= argmin

α,θ

 ∑
n∈Ino

D(n)
(
x(n)− (αnoy(n)− θno)

)2

 (50.66)

where D(n) is a nonnegative scalar weight constructed as follows:

D(n) =

(
1−

∣∣∣∣y(n)− y(no)

∆no

∣∣∣∣3
)3

, n ∈ Ino (50.67)

Other choices forD(n) are possible, but they need to satisfy certain desirable properties.
Observe, for example, that the above choice for the weights varies between 0 and 1, with
the weight being equal to 1 at n = no. Moreover, data samples that are farther away
from y(no) receive smaller weighting than samples that are closer to it. To solve (50.66),
we can again employ the vector notation as follows. We first collect the data from within
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the window, namely, {x(n), y(n)}n∈Ino , into the vector and matrix quantities:

dno = col
{
x(n)

}
n∈Ino

(50.68a)

Hno = blkcol
{

[1 y(n)]
}
n∈Ino

(50.68b)

Dno = diag
{
D(n)

}
n∈Ino

(50.68c)

where Dno is a diagonal matrix. For example, for the case represented by (50.61) we
have

d10 =


x(8)
x(9)
x(10)
x(11)
x(12)

 , H10 =


1 y(8)
1 y(9)
1 y(10)
1 y(11)
1 y(12)

 (50.69)

and

D10 =


D(8)

D(9)
D(10)

D(11)
D(12)

 (50.70)

where, for instance,

D(11) =

(
1−

∣∣∣∣y(11)− y(10)

y(12)− y(8)

∣∣∣∣3
)3

(50.71)

We also introduce the parameter vector

wno =

[
−θno
αno

]
(50.72)

Then, problem (50.66) is equivalent to

w?no
∆
= argmin

w∈IR2

(dno −Hnowno)TDno(dno −Hnowno) (50.73)

whose solution is given by

w?no = (HT
noDnoHno)−1HT

noDnodno
∆
=

[
−θ?no
α?no

]
(50.74)

This construction now allows us to estimate the sample x(no) by using

x̂(no) = α?no y(no)− θ?no (50.75)

Next, we slide the window by one position to the right, collect L data points around
(x(no + 1), y(no + 1)) and use them to estimate x(no + 1) in a similar fashion,

x̂(no + 1) = α?no+1 y(no + 1)− θ?no+1 (50.76)

and continue in this fashion.

The difference between the LOWESS and LOESS procedures is that the latter fits
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a second-order curve to the data within each interval Ino . That is, LOESS replaces
(50.66) by

(α?no , β
?
no , θ

?
no) = argmin

α,β,θ

 ∑
n∈Ino

D(n)
(
x(n)− (αnoy(n) + βnoy

2(n)− θno)
)2


(50.77)

and uses the resulting coefficients (α?no , β
?
no , θ

?
no) to estimate x(no) by using

x̂(no) = α?no y(no) + β?noy
2(no)− θ?no (50.78)

We continue to slide the L−long window over the data to estimate the subsequent
samples y(n).

There is one final step that is normally employed to reduce the effect of outliers that may
exist in the data. This step redefines the weights D(n) and repeats the calculation of
the first or second-order local curves. Specifically, the following procedure is carried out.
Given the target signals {x(n)} and the corresponding estimates {x̂(n)} that resulted
from the above LOWESS or LOESS construction, we introduce the error sequence

e(n)
∆
= x(n)− x̂(n), n = 0, 1, 2 . . . , N − 1 (50.79)

and list the {|e(n)|} in increasing order. We then let δ denote the median of this
sequence (i.e., the value with as many samples below and above it):

δ
∆
= median{|e(n)|} (50.80)

Using these error quantities, the LOWESS and LOESS implementations introduce the
following weighting scalars for n = 0, 1, . . . , N − 1:

A(n) =


(

1−
∣∣∣∣e(n)

6δ

∣∣∣∣2
)2

, if |e(n)| < 6δ

0, otherwise
(50.81)

and use them to update D(n) by

D(n)← D(n)A(n), n ∈ Ino (50.82)

We then repeat the design of the local least-squares estimators using these new weights.
The construction leads to new estimates {x̂(n)}. We can repeat this construction a few
times before the process is terminated, leading to the smoothed curve {x̂(n)}.

Figure 50.3 shows the LOWESS and LOESS smoothing curves that result from applying
the above construction to data measurements representing the change in the global
surface temperature (measured in oC) relative to the average over the period 1951–
1980. The data consists of N = 139 temperature measurements between the years
1880 and 2018. The top figure shows the curve that results from LOWESS smoothing
with a smoothing factor of q = 5% (corresponding to windows with L = 6 samples),
while the bottom figure shows the curve that results from LOESS smoothing with a
smoothing factor of q = 10% (corresponding to windows with L = 13 samples). Three
repeated runs of the form (50.82) are applied.

Example 50.4 (Confidence levels and interpretability) One useful feature of least squares
solutions is that, under reasonable conditions, we can interpret the results and com-
ment on their confidence level. Consider again the standard least-squares problem
(50.19) where we denote the entries of d by {x(n)} and the rows of H by {hT

n}, e.g.,
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Figure 50.3 LOWESS (top) and LOESS (bottom) smoothing curves that result from
applying the smoothing construction of this example to data measurements
representing the change in the global surface temperature (measured in oC) relative
to the average over the period 1951-1980. Three repeated runs of the form (50.82) are
applied. The source of the data is the NASA Goddard Institute for Space Studies
(GISS) at https://climate.nasa.gov/vital-signs/global-temperature/.

hn = col{1, yn} when augmentation is used. When H is full rank, we know that the
least-squares solution is given by

w? = (HTH)−1HTd (50.83)

This vector allows us to predict measurements x(n) using the linear regression model

x̂(n) = hT
nw

? (50.84)

There are many ways to assess the quality of the solution in the statistical sciences.
We summarize some of the main measures. Using the data {x(n)} we define the sample

https://climate.nasa.gov/vital-signs/global-temperature/.
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mean and variances:

x̄
∆
=

1

N

N−1∑
n=0

x(n) (50.85a)

σ2
x

∆
=

1

N

N−1∑
n=0

(x(n)− x̄)2 (50.85b)

σ2
x̂

∆
=

1

N

N−1∑
n=0

(x̂(n)− x̄)2 (50.85c)

σ2
x̃

∆
=

1

N

N−1∑
n=0

(x(n)− x̂(n))2 (50.85d)

The variance σ2
x measures the squared variation of the samples x(n) around their

mean, while the variance σ2
x̂ measures the squared variation of the predictions around

the same mean. The variance σ2
x̃ measures the squared error between the x(n) and

their predictions. It is straightforward to verify that the variance of the target signal
decouples into the sum (this is related to the earlier expression (50.40)):

σ2
x = σ2

x̂ + σ2
x̃ (50.86)

The so-called coefficient of determination is defined as the ratio:

r2 ∆
=

σ2
x̂

σ2
x

= 1− σ2
x̃

σ2
x

∈ [0, 1] (50.87)

This scalar measures the proportion of the variations in {x(n)} that is predictable from
(or explained by) the observations {hn}. For example, if r = 0.5, then this means that
25% of the variations in {x(n)} can be explained by the variations in {hn}. This also
means that variations around the regression hyperplane account for 75% of the total
variations in the {x(n)}.

We can assess the quality of the estimated least-squares model w? as follows. Assume
that the data {d,H} satisfy a linear model of the form

d = Hwo + v (50.88)

for some unknown wo ∈ IRM . The least-squares solution w? given by (50.83) is estimat-
ing this model. Assume further that v is Gaussian-distributed with v ∼ Nv(0, σ2

vIN ).
Then, it is easily seen that w? is an unbiased estimator since

w? = (HTH)−1HTd

= (HTH)−1HT(Hwo + v)

= wo + (HTH)−1HT v (50.89)

and, consequently, Ew? = wo. Using the fact that v is Gaussian, we conclude that w?

is Gaussian-distributed. Its covariance matrix is given by

E (w? − wo)(w? − wo)T = (HTH)−1HT (EvvT)H(HTH)−1

= σ2
v(HTH)−1 (50.90)

In summary, we find that

w? ∼ Nw?

(
wo, σ2

v(HTH)−1
)

(50.91)

which means that the individual entries of w? are Gaussian-distributed with variances
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given by scaled multiples of the diagonal entries of (HTH)−1. That is, for the j−th
entry:

w?(j) ∼ Nw?(j)

(
wo(j), σ2

v

[
(HTH)−1

]
jj

)
(50.92)

in terms of the j−th diagonal entry of (HTH)−1. Using this information, we can now
determine a 95% confidence interval for each entry wo(j) as follows.

First, we need to introduce the t−distribution, also called the Student t−distribution.
It is symmetric with a similar shape to the Gaussian distribution but has heavier tails.
This means that a generic random variable x that is t−distributed will have a higher
likelihood of assuming extreme values than under a Gaussian distribution. Figure 50.4
compares two Gaussian and t−distributions with zero mean and unit variance.
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Figure 50.4 Comparing Gaussian and t−distributions with zero mean and unit
variance. Observe how the t−distribution has higher tails.

The t−distribution can be motivated as follows. Consider a collection of N scalar in-
dependent and identically-distributed realizations arising from a Gaussian distribution
with true mean µ and variance σ2, i.e., x(n) ∼ Nx(µ, σ2). Introduce the sample mean
and (unbiased) variance quantities

x̄
∆
=

1

N

N∑
n=1

x(n), s2
x =

1

N − 1

N∑
n=1

(x(n)− x̄)2 (50.93)

The quantities {x̄, s2
x} should be viewed as random variables, written in boldface no-

tation {x̄, s2
x}, because their values vary with the randomness in selecting the {x(n)}.

Next, we define the t−score variable, which measures how far the sample mean is from
the true mean (scaled by the sample standard deviation and

√
N):

t
∆
=

x̄− µ
sx/
√
N

(50.94)

The pdf of the t variable is called the t−distribution with d = N−1 degrees of freedom.
It has zero mean and unit variance and is formally defined by the expression:

ft(t; d) =
Γ((d+ 1)/2)

Γ(d/2)

1√
dπ

1

(1 + t2/d)(d+1)/2
, (t−distribution) (50.95)
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where Γ(x) refers to the Gamma function encountered earlier in Prob. 4.3. The def-
inition (50.94) explains why the t−distribution is useful in constructing confidence
intervals. That is because it assesses how the sample mean is distributed around the
true mean. Due to its relevance, the t−distribution appears tabulated in many texts
on statistics and these tables are used in the following manner.

Let α = 5% (this value is known as the desired significance level in statistics). We use
a table of t−distributions to determine the critical value denoted by tN−Mα/2 ; this is the
value in a t−distribution with N −M degrees of freedom beyond which the area under
the pdf curve will be 2.5% (this calculation amounts to performing what is known as a
one-tailed test) — see Fig. 50.5. An example of this tabular form is shown in Table 50.1.
One enters the value of α/2 along the vertical direction and the degree N −M along
the horizontal direction and reads out the entry corresponding to tN−Mα/2 . For example,
using N −M = 15 degrees of freedom and α/2 = 2.5%, one reads the value marked in
bold face t15

2.5% = 2.131.

Table 50.1 Critical values of tdα/2 in one-tailed t-tests with d degrees of freedom. The
values in the last row can be used for large degrees of freedom.

degree d 5% 2.5% 1% 0.5% 0.1%

1 6.314 12.706 31.821 63.657 318.309
2 2.920 4.303 6.965 9.925 22.327
3 2.353 3.182 4.541 5.841 10.215
4 2.132 2.776 3.747 4.604 7.173
5 2.015 2.571 3.365 4.032 5.893
6 1.943 2.447 3.143 3.707 5.208
7 1.894 2.365 2.998 3.499 4.785
8 1.860 2.306 2.896 3.355 4.501
9 1.833 2.262 2.821 3.250 4.297
10 1.812 2.228 2.764 3.169 4.144
11 1.796 2.201 2.718 3.106 4.025
12 1.782 2.179 2.681 3.055 3.930
13 1.771 2.160 2.650 3.012 3.852
14 1.761 2.145 2.624 2.977 3.787
15 1.753 2.131 2.602 2.947 3.733
16 1.746 2.120 2.583 2.921 3.686
17 1.740 2.110 2.567 2.898 3.646
18 1.734 2.101 2.552 2.878 3.610
19 1.729 2.093 2.539 2.861 3.579
20 1.725 2.086 2.528 2.845 3.552
∞ 1.645 1.960 2.326 2.576 3.090

Once tN−Mα/2 is determined, the confidence interval for each entry of wo would be given
by

w?(j) ± tN−Mα/2 σv
√

[(HTH)−1]jj (50.96)

This means that there is 95% chance that the true value wo(j) lies within the interval.

Likewise, given an observation hn, we can derive a confidence interval for the unper-
turbed component hT

nw
o, which happens to be the mean of x(n) in model (50.88). That
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Figure 50.5 The critical value tN−Mα/2 is the point to the right of which the area under
a t−distribution with degree N −M is equal to α/2.

is, we can derive a confidence interval for the expected value of the target signal x(n)
that would result from hn. To see this, consider the prediction x̂(n) = hT

nw
?. This

prediction is again Gaussian-distributed since w? is Gaussian. Its mean and variance
are found as follows. First note that

x̂(n) = hT
nw

?

= hT
n

{
wo + (HTH)−1HT v

}
= hT

nw
o + hT

n(HTH)−1HTv (50.97)

We conclude that E x̂(n) = hT
nw

o, so that the mean of the prediction agrees with the
actual mean, Ex(n) = hT

nw
o. Moreover, the prediction variance is given by

E (x̂(n)− hT
nw

o)2 = hT
n(HTH)−1HT (EvvT)H(HTH)−1hn

= σ2
vh

T
n(HTH)−1hn (50.98)

so that

x̂(n) ∼ Nx̂(n)

(
hT
nw

o, σ2
vh

T
n(HTH)−1hn

)
(50.99)

which shows that the predictions will be Gaussian-distributed around the actual mean,
hT
nw

o. We can then determine a 95% confidence interval for the mean value hT
nw

o by
using

x̂(n) ± tN−Mα/2 σv
√
hT
n(HTH)−1hn (50.100)

Given an observation hn, this means that there is 95% chance that the mean value
hT
nw

o will lie within the above interval around x̂(n).

In a similar vein, given a feature hn, we can derive a confidence interval for the target
x(n) itself (rather than its mean, as was done above). To see this, we note that the
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difference x̂(n)− x(n) is again Gaussian distributed, albeit with mean zero since

x̂(n)− x(n) =
(
hT
nw

o + hT
n(HTH)−1HTv

)
− (hT

nw
o + v(n))

= hT
n(HTH)−1HTv − v(n) (50.101)

Moreover, the variance is given by

E ( x̂(n)− x(n))2 = σ2
v(1− hT

n(HTH)−1hn) (50.102)

so that

x̂(n) ∼ Nx̂(n)

(
x(n), σ2

v(1− hT
n(HTH)−1hn)

)
(50.103)

This result shows that the predictions will be Gaussian-distributed around the actual
value x(n). We can then determine a 95% confidence interval for x(n) by using

x̂(n) ± tN−Mα/2 σv
√

1− hT
n(HTH)−1hn (50.104)

The expressions so far assume knowledge of σ2
v. If this information is not available, it can

be estimated by noting that v(n) = x(n)− hT
nw

o and using the sample approximation:

σ̂2
v ≈

1

N − 1

N−1∑
n=0

(
x(n)− hT

nw
?
)2

(50.105)
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Figure 50.6 The fitted regression line is shown in solid red color, while the lines that
correspond to the upper and lower limits of the confidence interval (50.104) appear in
dotted format.

The analysis in this example is meant to illustrate that, for least-squares problems and
under some reasonable conditions, we are able to assess the confidence levels we have
in the results. This is a useful property for learning algorithms to have so that their
results become amenable to a more judicious interpretation. It also enables the algo-
rithms to detect outliers and malicious data. For example, if some data pair (x(m), hm)
is received, one may compute x̂(m) = hT

mw
? and verify whether x(m) lies within the

corresponding confidence interval (constructed according to (50.104) with n replaced
by m). If not, then one can flag this data point as being an outlier.

We apply construction (50.104)–(50.105) to Example 50.2, which involved fitting a
regression line to sea levels over multiple years. We use N = 952 and M = 2 (due to
the augmentation of the feature data by the unit entry) so that the number of degrees
of freedom is 950. Using the data from the last row of Table 50.1 we have t950

2.5% ≈ 1.960.
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The regression lines that result from using the lower and upper limits in (50.104) appear
in dotted format in Fig. 50.6.

Example 50.5 (Sketching) In big data applications, the amount of available data can
be massive, giving rise to situations where N �M , i.e., the number of observations far
exceeds the number of unknowns in the least-squares problem (50.19). In these cases,
the solution of the normal equations (50.25) becomes prohibitively expensive since
computing the products HTH and HTd require O(NM2) and O(NM) additions and
multiplications, respectively. One technique to reduce the computational complexity is
to employ randomized algorithms that rely on the concept of sketching. The purpose of
these algorithms is to seek approximate solutions, denoted by ws, with the following
useful property: with high probability 1− δ, the solution ws should lead to a risk value
that is ε−close to the optimal risk value, namely, it should hold that:

P
(
‖d−Hws‖2 ≤ (1 + ε)‖d−Hw?‖2

)
= 1− δ (50.106)

where δ > 0 is a small positive number. Sketching procedures operate as follows. They
first select some random matrix S of size R × N , with R � N . Subsequently, they
compute the products Sd and SH and determine ws by solving the altered least-squares
problem:

ws
∆
= argmin

w∈IRM
‖Sd− SHw‖2 (50.107)

Observe that this is a smaller-size problem because SH is now R ×M . Since there is
some nonzero probability of failure in (50.106), it is customary to repeat the sketching
construction several times (by choosing different sketching matrices S each time), and
then keep the best solution ws from among the repeated experiments (i.e., the one with
the smallest risk value).

The three main challenges that arise in sketching solutions relate to: (a) selecting
sketching matrices S that guarantee (50.106), (b) selecting suitable values for the di-
mension R, and, more importantly, (c) choosing sketching matrices S for which the
products Sd and SH can be computed efficiently. For this last condition, it is desirable
to seek sparse choices for S.

One option is to employGaussian sketching. We select a dimensionR = O((M logM)/ε)
and let the entries of S be independent and identically distributed Gaussian random
variables with zero mean and variance equal to 1/R. This construction can be shown to
answer points (a) and (b) above, but is costly to implement since it generally leads to
dense matrices S for which point (c) is expensive. Computing SH in this case requires
O(NM2 logM) computations.

A second option that also answers points (a) and (b) above is to employ a random
subsampling strategy as follows. We introduce the singular value decomposition of H
(this is of course a costly step and that is the reason why this option will not be viable
in general):

H = UHΣHV
T
H (50.108)

where UH is N ×N orthonormal; its rows have N entries each. We let uT
n denote the

restriction of the n−th row to its M leading entries. That is, each uT
n consists of the

first M entries in the n−th row of UH . The so-called leverage scores of H are defined
as the squared norms of these restricted vectors:

`n = ‖un‖2, n = 1, 2, . . . , N (50.109)

It is straightforward to verify that the leverage scores correspond to the diagonal entries
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of the projection matrix onto R(H), namely,

`n =
[
PH
]
nn
, n = 1, 2, . . . , N (50.110)

We normalize the leverage scores by dividing by their sum to define a probability
distribution over the integer indexes 1 ≤ r ≤ N :

pn
∆
= P(r = n) = `n

/ N∑
m=1

`m (50.111)

The scalar pn defines the probability of selecting at random the index value n. Next,
for each row r = 1, 2, . . . , R of the sketching matrix S:
(a) We select an index n at random from the interval {1, 2, . . . , N} with probability

equal to pn.
(b) We set the r−th row of S to the basis vector eTn scaled by 1/

√
Rpn, where en ∈ IRN

has a unit entry at the n−th location and zeros elsewhere.
Observe that, under this construction, each row of S will contain a single unit entry. In
this way, the multiplication of this row by H ends up selecting a row from H. For this
reason, we refer to S as performing random subsampling. The main inconvenience of
this construction is that it requires computation of the leverage scores, which in turn
require knowledge of the SVD factor UH . It would be useful to seek sketching matrices
that are data-independent.

The third construction achieves this goal and is based on selecting a random sub-
sampling Hadamard matrix. Assume N = 2n (i.e., N is a power of 2) and select
R = O((M log3 N)/ε). Introduce the N ×N orthonormal Hadamard matrix computed
as the Kronecker product of 2× 2 orthonormal Hadamard matrices:

H =

(
1√
2

[
1 1
1 −1

])
⊗
(

1√
2

[
1 1
1 −1

])
⊗ . . .⊗

(
1√
2

[
1 1
1 −1

])
︸ ︷︷ ︸

n times

(50.112)

Apart from scaling by 1/(
√

2)n = 1/
√
N , the entries of H will be ±1. Next, we

(a) Select uniformly at random R rows from H, and denote the resulting R×N matrix
by HR;

(b) Construct an N ×N random sign matrix in the form of a diagonal matrix D with
random ±1 entries on its diagonal, with each entry selected with probability 1/2;

(c) And then set S =
√
N/RHRD.

It can be verified that under this third construction, the complexity of determining ws
is O(NM log(N/ε) + (M3 log3 N)/ε). The purpose of this example is to introduce the
reader to the concept of sketching in the context of least-squares problems. Additional
comments are provided at the end of the chapter.

50.3 RECURSIVE LEAST-SQUARES

One key advantage of the least-squares empirical risk (50.16) is that it enables
an exact recursive computation of the minimizer. The recursive solution is par-
ticularly useful for situations involving streaming data arriving successively over
time.

In this section we derive the recursive least-squares (RLS) algorithm but first
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introduce two modifications into the empirical risk function for two main reasons:
(a) to enable an exact derivation of the recursive solution, and (b) to incorporate
a useful tracking mechanism into the algorithm.

50.3.1 Exponential Weighting

We modify the least-squares empirical risk (50.16) to the following exponentially
weighted form with `2−regularization:

min
w∈IRM

{
1

N
ρ′λN‖w‖2 +

1

N

N−1∑

n=0

λN−1−n (x(n)− yTnw
)2
}

(50.113)

There are three modifications in this formulation, which we motivate as follows:

(a) (Exponential weighting). The scalar 0 � λ < 1 is called the forgetting
factor and is a number close to one. Its purpose is to scale down data from
the past more heavily than recent data. For example, in the above risk, data
from time n = 0 is scaled by λN−1 while data at n = N − 1 is scaled by
one. In this way, the algorithm is endowed with a memory mechanism that
“forgets” older data and emphasizes recent data. This is a useful property
to enable the algorithm to track drifts in the statistical properties of the
data, especially when the subscript n has a time connotation and is used to
index streaming data. The special case λ = 1 is known as growing memory.
Exponential weighting is one form of data windowing where the effective
length of the window is approximately 1/(1− λ) samples.

(b) (Decaying `2−regularization). The scalar ρ′ > 0 is an `2−regularization
parameter. Observe though that the penalty term ρ′‖w‖2 in (50.113) is scaled
by λN as well; this factor dies out with time at an exponential rate and helps
eliminate regularization after sufficient data have been processed. In other
words, regularization will be more pronounced during the initial stages of
the recursive algorithm and less pronounced later. One advantage of the
regularization factor is that it helps ensure that the coefficient matrix that
is inverted in future expression (50.121b) is nonsingular.

(c) (Sample averaging). In addition, both terms in (50.113) are scaled by 1/N ,
which is independent of w. For this reason, we can ignore the 1/N factor
and solve instead:

wN−1
∆
= argmin

w∈IRM

{
ρ′λN‖w‖2 +

N−1∑

n=0

λN−1−n (x(n)− yTnw
)2
}

(50.114)

where we are now denoting the unique solution by wN−1 rather than w?.
The subscript N −1 is meant to indicate that the solution wN−1 is based on
data up to time N −1. We attach the time subscript to the solution because
we will be deriving a recursive construction that allows us to compute wN
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from wN−1 where wN is minimizes the enlarged risk:

wN
∆
= argmin

w∈IRM

{
ρ′λN+1‖w‖2 +

N∑

n=0

λN−n
(
x(n)− yTnw

)2
}

(50.115)

where a new pair of data, {x(N), yN}, has been added to the risk. The
adjustments introduced through steps (b) and (c) enable the derivation of
an exact recursive algorithm, as the argument will show.

In a manner similar to (50.17), we introduce the data quantities:

HN
∆
=




yT0
yT1
yT2
...
yTN



, dN

∆
=




x(0)

x(1)

x(2)
...

x(N)




(50.116)

where we are now attaching a time subscript to {Hn, dN} to indicate that they
involve data up to time N . Thus, note that we can partition them in the form:

HN =

[
HN−1

yTN

]
, dN =

[
dN−1

x(N)

]
(50.117)

so that {HN−1, HN} differ by one row and {dN−1, dN} differ by one entry. We
also introduce the diagonal weighting matrix:

ΛN
∆
= diag

{
λN , λN−1, . . . , 1

}
(50.118)

and note that

ΛN =

[
λΛN−1

1

]
(50.119)

Using {Hn, dN ,ΛN}, problems (50.114) and (50.115) can be rewritten in matrix
form as follows:

wN−1
∆
= argmin

w∈IRM

{
ρ′λN‖w‖2 + (dN−1 −HN−1w)TΛN−1(dN−1 −HN−1w)

}

(50.120a)

wN
∆
= argmin

w∈IRM

{
ρ′λN+1‖w‖2 + (dN −HNw)TΛN (dN −HNw)

}

(50.120b)

Differentiating the above risks relative to w, we find that the unique solutions
wN and wN−1 are given by the expressions:

wN−1 =
(
ρ′λNIM +HT

N−1ΛN−1HN−1

)−1
HT
N−1ΛN−1dN−1 (50.121a)

wN =
(
ρ′λN+1IM +HT

NΛNHN

)−1
HT
NΛNdN (50.121b)
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These equations allow us to evaluate the solutions {wN−1, wN} directly from the
data matrices. However, a more efficient construction is possible by going from
wN−1 to wN more directly as we explain next. This step will be referred to as
the time-update step.

50.3.2 Exponentially-Weighted RLS

To derive the recursive algorithm, we introduce the following three quantities:

PN
∆
=
(
ρ′λN+1IM +HT

NΛNHN

)−1
(50.122a)

t(N)
∆
= 1/(1 + λ−1yTNPN−1yN ) (50.122b)

gN
∆
= λ−1PN−1yN t(N) (50.122c)

where PN isM×M , gN is anM×1 gain vector, and t(N) is a scalar factor. The
derivation below establishes the following result. Given ρ′ > 0 and a forgetting
factor 0 � λ ≤ 1, the solution wN of the exponentially-weighted regularized
least-squares problem (50.115), and the corresponding minimum risk denoted by
ξ(N), can be computed recursively as shown in listing (50.123) — see Prob. 50.7
for a derivation of the recursion for the minimum cost.

Recursive least-squares (RLS) for solving (50.115)

given N data pairs {x(n) ∈ IR, yn ∈ IRM}, n = 0, 1, . . . , N − 1;
start with P−1 = 1

ρ′ IM , ξ(−1) = 0, w−1 = 0M ;

repeat for n = 0, 1, 2, . . . , N − 1 :

t(n) = 1/(1 + λ−1yTnPn−1yn)

gn = λ−1Pn−1ynt(n)

x̂(n) = yTnwn−1

e(n) = x(n)− x̂(n)

wn = wn−1 + gne(n)

Pn = λ−1Pn−1 − gngTn/t(n)

ξ(n) = λξ(n− 1) + t(n)e2(n)

end

(50.123)

Derivation of (50.123) We first rewrite (50.121a)–(50.121b) more compactly using the
matrices {PN−1, PN} as:

wN−1 = PN−1H
T
N−1ΛN−1dN−1 (50.124a)

wN = PNH
T
NΛNdN (50.124b)

Next, we exploit the relations between {HN , dN ,ΛN} and {HN−1, dN−1,ΛN−1} from
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(50.117) and (50.119) in order to relate wN−1 to wN directly. To begin with, note that

P−1
N = ρ′λN+1IM + HT

NΛNHN
(50.119)

= ρ′λλNIM + λHT
N−1ΛN−1HN−1 + yNy

T
N

= λP−1
N−1 + yNy

T
N (50.125)

Then, by using the matrix inversion identity (29.89) with the identifications

A← λP−1
N−1, B ← yN , C ← 1, D ← yTN (50.126)

we obtain a recursive formula for updating PN directly rather than its inverse,

PN = λ−1PN−1 − λ−1PN−1yNy
T
NPN−1λ

−1

1 + λ−1yTNPN−1yN
, P−1 =

1

ρ′
IM (50.127)

This recursion for PN also gives one for updating the regularized solution wN itself.
Using expression (50.124b) for wN , and substituting the above recursion for PN , we
find

wN = PN
(
λHT

N−1ΛN−1dN−1 + yNx(n)
)

(50.127)
=

(
λ−1PN−1 − λ−1PN−1yNy

T
NPN−1λ

−1

1 + λ−1yTNPN−1yN

)(
λHT

N−1ΛN−1dN−1 + yNx(n)
)

= PN−1H
T
N−1ΛN−1dN−1︸ ︷︷ ︸
=wN−1

− λ−1PN−1yN
1 + λ−1yTNPN−1yN

yTN PN−1H
T
N−1ΛN−1dN−1︸ ︷︷ ︸
=wN−1

+ λ−1PN−1yN

(
1− λ−1yTNPN−1yN

1 + λ−1yTNPN−1yN

)
x(n) (50.128)

That is,

wN = wN−1 +
λ−1PN−1yN

1 + λ−1yTNPN−1yN
(x(n)− yTNwN−1), w−1 = 0 (50.129)

�

The RLS implementation (50.123) updates the weight iterate from wn−1 to wn
for each data pair {x(n), yn}. Such implementations are useful for situations
involving streaming data where one data pair arrives at each time instant n and
the algorithm responds to it by updating wn−1 to wn in real-time. If desired, we
can extend the algorithm to deal with blocks of data as explained in Prob. 50.30.

50.3.3 Useful Relations

The scalar t(n) in algorithm is called the “conversion factor.” This is because
it transforms a-priori errors into a-posteriori errors, as established in Prob. 50.17.
Some straightforward algebra, using recursion (50.127) for Pn, shows that {gn, t(n)}
can also be expressed in terms of Pn, namely,

gn = Pnyn (50.130a)

t(n) = 1− yTngn (50.130b)
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To justify (50.130a)–(50.130b), we simply note the following. Multiplying recur-
sion (50.127) for Pn by yn from the right we get

Pnyn = λ−1Pn−1yn −
λ−1Pn−1yny

T
nPn−1ynλ

−1

1 + λ−1yTnPn−1yn

=
λ−1Pn−1yn

1 + λ−1yTnPn−1yn
= gn (50.131)

By further multiplying the above identity by yTn from the left we get

yTnPnyn =
λ−1yTnPn−1yn

1 + λ−1yTnPn−1yn
(50.132)

so that, by subtracting 1 from both sides, we obtain (50.130b).
Furthermore, we note that at each iteration n, the variable Pn in the algorithm

is equal to the following quantity:

Pn =
(
ρ′λn+1IM +HT

nΛnHn

)−1
(50.133)

and the iterate wn is the solution to the regularized least-squares problem that
uses only the data data up to time n:

wn
∆
= argmin

w∈IRM

{
ρ′λn+1‖w‖2 +

n∑

m=0

λn−m
(
x(m)− yTmw

)2
}

(50.134)

The minimum cost for this problem, with w replaced by wn, is equal to ξ(n).

Example 50.6 (Recommender systems) We revisit the recommender system studied
earlier in Example 16.7. There we introduced a collaborative filtering approach based
on matrix factorization to predict ratings by users. We denoted the weight vector by
user u by wu ∈ IRM and the latent feature vector for item i by hi ∈ IRM . Subsequently,
we formulated the regularized least-squares optimization problem:{

ŵu, ĥi, θ̂u, α̂i
}

= argmin
{wu,hi,θu,αi}

{
U∑
u=1

ρ‖wu‖2 +

I∑
i=1

ρ‖hi‖2 + (50.135)

∑
(u,i)∈R

(
rui − hT

i wu + θu + αi
)2
}

where the last sum is over the valid indexes (i, u) ∈ R, i.e., over the indexes for which
valid ratings exist. All entries with missing ratings are therefore excluded. We approx-
imated the minimizer of the above (non-convex) problem by applying the stochastic
gradient solution (16.58). In this example, we pursue instead an alternating least-squares
solution.

Note that if we fix any three of the parameters, then the risk function is quadratic over
the remaining parameter. For example, if we fix (hi, θu, αi), then the risk is quadratic
over wu. For any index u, let the notation Ru represent the set of valid indexes i for
which (u, i) has a rating. Note that u is fixed within Ru. Likewise, for any index i, let
the notation Ri represent the set of valid indexes u for which (u, i) has a rating. Note
that i is fixed within Ri.
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For any specific u, setting the gradient relative to wu to zero leads to the expression:

ŵu =

(∑
i∈Ru

(ρIM + hih
T
i )

)−1(∑
i∈Ru

hi(rui + θu + αi)

)
(50.136)

We can obtain similar expressions for ĥi, θ̂u and α̂i, leading to listing (50.137). In the
listing, the term wu,m represents the estimate for wu at iteration m; likewise for hi,m,
θu(m), and αi(m).

Alternating least-squares algorithm for problem (50.135)

given ratings ru,i for (u, i) ∈ R;
start with arbitrary {wu,−1,hi,−1,θu(−1),αi(−1)};
repeat until convergence over m = 0, 1, . . .:

repeat for u = 1, . . . , U :

Au =
∑
i∈Ru

(ρIM + hi,m−1h
T
i,m−1)

wu,m = A−1
u

(∑
i∈Ru

hi,m−1(rui + θu(m− 1) + αi(m− 1))

)
θu(m) = − 1

|Ru|
∑
i∈Ru

(
rui − hT

i,m−1wu,m−1 + αi(m− 1)
)

end
repeat for i = 1, . . . , I :

Bi =
∑
u∈Ri

(ρIM + wu,mw
T
u,m)

hi,m = B−1
i

∑
u∈Ri

wu,m(rui + θu(m) + αi(m− 1))


αi(m) = − 1

|Ri|
∑
u∈Ri

(
rui − hT

i,m−1wu,m + θu(m)
)

end
end
return {w?u, h?i , θ?u, α?i }

(50.137)

We simulate recursions (50.137) for the same situation discussed earlier in Exam-
ple 16.7. We consider the same ranking matrix for U = 10 users and I = 10 items
with integer scores in the range 1 ≤ r ≤ 5; unavailable scores are marked by the
symbol ?:

R =



5 3 2 2 ? 3 4 ? 3 3
5 4 1 3 1 4 4 ? 3 ?
3 5 ? 2 1 5 4 1 4 1
? 2 3 4 4 5 2 5 1 1
2 1 2 2 1 5 1 4 1 ?
? 2 1 3 ? ? 5 3 3 5
3 4 ? 2 5 5 3 2 ? 4
4 5 3 4 2 2 1 ? 5 5
2 4 2 5 ? 1 1 3 1 4
? 1 4 4 3 ? 5 2 4 3


(50.138)

We set M = 5 (feature vectors hi of size 5) and generate uniform random initial
conditions for the variables {wu,−1,hi,−1,θu(−1),αi(−1)} in the open interval (0, 1).
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We set ρ = 0.001. We normalize the entries of R to lie in the range [0, 1] by replacing
each numerical entry r by the value

r ← (r − 1)/4 (50.139)

where the denominator is the score range (highest value minus smallest value) and
the numerator is subtracted from the smallest rating value (which is one). We repeat
recursions (50.137) for 500 runs. At the end of the simulation, we use the parameters
{w?u, h?i , θ?u, α?i } to estimate each entry of R using

r̂ui = (h?i )
Tw?u − θ?u − α?i (50.140)

We undo the normalization by replacing each of these predicted values by

r̂ui ← 4 r̂ui + 1 (50.141)

and rounding r̂ui to the closest integer; scores above 5 are saturated at 5 and scores
below 1 are fixed at 1. The result is the matrix R̂ shown below where we indicate the
scores predicted for the unknown entries in red:

R̂ =



4 3 3 3 3 4 3 3 3 3
4 4 3 3 3 4 2 3 3 3
3 3 3 3 3 3 2 3 3 3
4 4 3 3 3 4 2 3 3 3
3 3 2 2 2 3 1 2 2 2
2 2 3 3 3 2 4 3 3 3
4 4 3 3 3 4 3 4 3 3
4 4 3 3 3 4 3 4 3 3
3 3 3 3 3 3 3 3 3 3
1 1 4 4 3 1 5 2 4 3


(50.142)

Compared with the earlier result (16.61) obtained by applying a stochastic gradient
procedure, we observe that the current simulation based on the alternating least-squares
implementation is not able to recover several of the entries in the original matrix R. It is
useful to recall that the risk function in (50.135) is not convex over the parameters and
local minima are therefore possible. Figure 50.7 provides a color-coded representation of
the entries of the original matrix R with the locations of the missing entries highlighted
in red, and the recovered matrix R̂ on the right.
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Figure 50.7 Color coded representation of the entries of the original matrix R with
missing entries (left) and the recovered matrix R̂ (right).
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We further denote the risk value at the start of each epoch of index k by

P (k)
∆
=

U∑
u=1

ρ‖wu‖2 +

I∑
i=1

ρ‖hi‖2 +
∑

(u,i)∈R

(
rui − hT

i wu + θu + αi
)2

(50.143)

where the parameters on the right-hand side are set to the values at the start of epoch
k. Figure 50.8 plots the evolution of the risk curve (normalized by its maximum value
so that its peak value is set to one).

5 10 15 20 25 30 35 40 45 50 55 60
10 -2

10 -1

100
normalized risk values at start of epochs

Figure 50.8 Evolution of the risk curve (50.143) with its peak value normalized to one.

50.4 IMPLICIT BIAS

We return to the standard least-squares problem (50.19), repeated here for ease
of reference:

w?
∆
= argmin

w∈IRM
‖d−Hw‖2 (50.144)

and examine the case in which there are infinitely many solutions. In particular,
we will assume N < M so that H is a “fat” matrix with more columns than rows.
This also means that there are fewer measurements than the size of w. We refer
to this situation as the under-determined or over-parameterized least-squares
problem.

It turns out that if we apply the traditional gradient-descent recursion to the
solution of (50.144), namely,

wn = wn−1 − µ∇wT ‖d−Hw‖2
∣∣∣
w=wn−1

= wn−1 + 2µHT(d−Hwn−1), n ≥ 0 (50.145)

where µ is a small step-size parameter, then the iterate wn will converge to the
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minimum-norm solution, w? = H†d:

lim
n→∞

wn = H†d (50.146)

Proof of (50.146): Assume H has full row rank and introduce its singular value de-
composition

H = U
[

Σ 0
]
V T, UUT = IN , V V T = IM (50.147)

where Σ is N ×N diagonal with positive singular values {σ2
` > 0} for ` = 1, 2, . . . , N .

We partition V into

V =
[
V1 V2

]
, V1 ∈ IRM×N (50.148)

and note from the orthogonality of the M ×M matrix V that

V TV = IM ⇐⇒
[
V T

1

V T
2

] [
V1 V2

]
=

[
IN 0
0 IM−N

]
(50.149)

Now, we know from result (50.179) that the minimum norm solution of the least-squares
problem for the case under study is given by (recall (1.114)):

w? = H†d = V

[
Σ−1

0

]
UTd (50.150)

We select the initial condition for the gradient-descent recursion (50.145) to lie in the
range space of HT, i.e.,

w−1 ∈ R(HT)⇐⇒ w−1 = HTc, for some c ∈ IRN (50.151)

In this case, it is easy to see by iterating (50.145) that the successive wn will remain
in the range space of HT:

wn ∈ R(HT), n ≥ 0 (50.152)

Moreover, we can characterize the limit point of this sequence. For this purpose, we
introduce a convenient change of variables in the form of the M × 1 vector:

zn
∆
= V Twn =

[
V T

1 wn
V T

2 wn

]
(50.153)

Multiplying recursion (50.145) by V T from both sides leads to

zn = zn−1 + 2µ

[
Σ
0

](
UTd−

[
Σ 0

]
zn−1

)
(50.154)

We partition zn into zn = col{an, bn} where the leading component an is N×N . Then,
the above relation gives:[

an
bn

]
=

[
an−1

bn−1

]
+ 2µ

[
Σ
0

]
(UTd− Σan−1) (50.155)

from which we conclude that

an = (IN − 2µΣ2)an−1 + 2µΣUTd (50.156a)
bn = bn−1 (50.156b)

Observe that component bn does not evolve with time and stays fixed at its initial
value, denoted by

bn
∆
= b?2 = V T

2 w−1 = V T
2 H

Tc
(50.149)

= 0 (50.157)
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On the other hand, the recursion for an has a diagonal coefficient matrix, IN − 2µΣ2.
We can select µ to ensure this matrix is stable, namely, to guarantee

|1− 2µσ2
` | < 1, ∀ ` ⇐⇒ µ < 1/σ2

max (50.158)

in terms of the largest singular value of H. Under this condition, the recursion for an
converges to the steady-state value

lim
n→∞

an
∆
= a? = Σ−1UTd (50.159)

We therefore conclude that

lim
n→∞

zn =

[
Σ−1UTd

0

]
(50.160)

and, hence,

lim
n→∞

wn = V

[
Σ−1UTd

0

]
= V

[
Σ−1

0

]
UTd = H†d

(50.150)
= w? (50.161)

as claimed.
�

We therefore find that, in the under-determined case, when the amount of data
available is smaller than the size of the parameter vector, the gradient-descent
algorithm shows an implicit bias towards the minimum-norm solution. In other
words, among all possible minimizers (and there are infinitely many in this case),
the gradient-descent iteration converges to the minimum-norm solution. Other
algorithms need not behave in the same manner and, therefore, the choice of the
algorithm influences which parameter vector is ultimately learned.

50.5 COMMENTARIES AND DISCUSSION

Least-squares, Gauss, and RLS. The standard least-squares problem (50.19) has had
an interesting and controversial history since its inception in the late 1700s, as already
indicated in the texts by Kailath, Sayed, and Hassibi (2000) and Sayed (2003,2008).
The criterion was formulated by the German mathematician Carl Friedrich Gauss
(1777–1855) in 1795 at the age of 18 — see Gauss (1809). At that time, there was in-
terest in a claim by the German philosopher Georg Hegel (1770–1831) who claimed
that he has concluded using deductive logic that only seven planets existed. Then, on
Jan. 1st, 1801, an astronomer noticed a moving object in the constellation of Aries, and
the location of this celestial body was observed for 41 days before suddenly dropping
out of sight. Gauss’ contemporaries sought his help in predicting the future location
of the heavenly body so that they could ascertain whether it was a planet or a comet
(see Hall (1970), Plackett (1972), and Stigler (1981) for accounts of this story). With
measurements available from the earlier sightings, Gauss formulated and solved a least-
squares problem that could predict the location of the body (which turned out to be the
planetoid Ceres). For some reason, Gauss did not bother to publish his least-squares
solution, and controversy erupted in 1805 when the French mathematician Adrien
Legendre (1752–1833) published a book where he independently invented the least-
squares method — see Legendre (1805,1810). Since then, the controversy has been
settled and credit is nowadays given to Gauss as the inventor of the method of least-
squares. Interestingly, the method was also published around the same time by the
Irish-American mathematician Robert Adrain (1775–1843) in the work by Adrain
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(1808). Here is how Gauss himself motivated the least-squares problem:

“... if several quantities depending on the same unknown have been determined by
inexact observations, we can recover the unknown either from one of the observations
or from any of an infinite number of combinations of the observations. Although the
value of an unknown determined in this way is always subject to error, there will be
less error in some combinations than in others.... One of the most important problems
in the application of mathematics to the natural sciences is to choose the best of these
many combinations, i.e., the combination that yields values of the unknowns that are
least subject to the errors.”

Extracted from Stewart (1995, pp. 31,33).

Gauss’ choice of the “best” combination was the one that minimizes the least-squares
criterion. Actually, Gauss went further and formulated in his work on celestial bod-
ies (ca. 1795) the unweighted (λ = 1) recursive-least-squares (RLS) solution, which
we described in modern notation in (50.123). This step helped him save the trouble
of having to solve a least-squares problem afresh every time a new measurement be-
came available. Of course, Gauss’ notation and derivation were reminiscent of the late
18th century mathematics and, therefore, they do not bear much resemblance with the
linear algebraic and matrix arguments used in our derivation — see, e.g., the useful
translation of Gauss’ original work that appears in Stewart (1995). In modern times,
the RLS algorithm is credited to Plackett (1950,1972). There is also an insightful and
strong connection between RLS and Kalman filtering techniques, as detailed in Sayed
and Kailath (1994) and in the textbooks by Sayed (2003,2008) — see Appendix 50.C
further ahead.

Reliable numerical methods. There is a huge literature on least-squares problems and
on reliable numerical methods for their solution — see, e.g., Higham (1996), Lawson
and Hanson (1995), and Bjorck (1996). Among the most reliable methods for solving
least-squares problems is the QR method, which is described in Prob. 50.5. The ori-
gin of the QR method goes back to Householder (1953, pp. 72–73), followed by Golub
(1965), and Businger and Golub (1965). Since then, there has been an explosion of
interest on solution methods for least-squares and recursive least-squares problems —
see, for example, the treatment on array methods in Sayed (2003,2008).

LOWESS and LOESS smoothing. We described in Example 50.3 how localized least-
squares formulations can be used to fit smooth curves onto data samples by means of
the LOWESS and LOESS procedures, which were originally developed by Cleveland
(1979) and Cleveland and Devlin (1988). These are simple but effective non-parametric
techniques that slide a window over the data and fit locally either a regression line
(LOWESS) or a quadratic curve (LOESS). The methods employ weighting to give more
weight to data closer to the point that is being estimated and less weight to points that
are farther away. We exhibited one choice for the weighting factor in (50.67) but other
choices are possible, as explained in Cleveland (1979) where certain desirable properties
on the weight factor are listed. These methods control the effect of outliers by re-scaling
the weights and repeating the construction a few times.

Confidence intervals. We examined confidence intervals for least-squares problems in
Example 50.4. In the derivation, we used (50.91) to conclude that the individual entries
of the estimator w? are Gaussian and derived confidence intervals for them. If desired,
we may alternatively work with the entire estimator w? (rather than its individual
entries) and use expression (50.91) to describe an ellipsoidal region around w? where
the true model is likely to lie with high confidence. It can be shown that for a significance
level α (say, α = 5%), the true model wo lies with (1−α)% probability within the region
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ellipsoid ∆
=

{
w
∣∣∣ (w − w?)THTH(w − w?) ≤Mσ2

v F
(M,N−M)
α

}
(50.162)

where the notation F (a,b)
α refers to the point to the right of which the area under an

F−distribution with parameters (a, b) is equal to α. This area is also called the critical
value at which the significance level α is attained. For more discussion on confidence
intervals and basic statistical concepts, the reader may refer to Draper and Smith
(1998), Mendenhall, Beaver, and Beaver (2012), Witte and Witte (2013), and McClave
and Sincich (2016).

Iterative reweighted least-squares. It is explained in Sayed (2003,2008) that the least-
squares solution can also be useful in solving non-quadratic optimization problems of
the form:

min
w∈IRM

{
1

N

N−1∑
n=0

|x(n)− yTnw|p
}

(50.163)

for some positive exponent p (usually 1 ≤ p ≤ 2). This can be seen by reformulating the
above criterion as a weighted least-squares problem in the following manner. Introduce
the scalars (assumed nonzero):

r(n)
∆
= |x(n)− yTnw|p−2, n = 0, 1, . . . , N − 1 (50.164a)

and the diagonal weighting matrix

R = diag
{
r(0), r(1), . . . , r(N − 1)

}
(50.164b)

Then, the above optimization problem can be rewritten in the form

min
w∈IRM

(d−Hw)TR(d−Hw) (50.165)

where the vector d and the matrix H are defined as in (50.17). Of course, this re-
formulation is not truly a weighted least-squares problem because R is dependent on
the unknown vector, w. Still, this rewriting of the risk function suggests the following
iterative technique for seeking its minimizer. Given an estimate wk−1 at iteration k−1
we do the following:

compute rk(n) = |x(n)− yTnwk−1|p−2, n = 0, 1, . . . , N − 1

set Rk = diag
{
rk(0), rk(1), . . . , rk(N − 1)

}
(50.166)

update the estimate to wk = (HTRkH)−1HTRkd

and repeat until convergence

This implementation assumes that the successive Rk are invertible. The algorithm
is known as iterative reweighted least-squares (IRLS). It has several variations with
improved stability and convergence properties (see, e.g., Osborne (1985) and Bjorck
(1996). See also Fletcher, Grant, and Hebden (1971) and Kahng (1972)). One such
variation is to evaluate wk not directly as above but as a convex combination using the
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prior iterate wk−1 for some 0 < β ≤ 1 as follows:

compute rk(n) = |x(n)− yTnwk−1|p−2, n = 0, 1, . . . , N − 1

set Rk = diag
{
rk(0), rk(1), . . . , rk(N − 1)

}
set wk = (HTRkH)−1HTRkd (50.167)
set wk = βwk + (1− β)wk−1

and repeat until convergence

Matrix factorization. We described an alternating least-squares algorithm for the so-
lution of the matrix factorization (or collaborative filtering) problem (50.135) in Ex-
ample 50.6. We explained in the commentaries at the end of Chapter 16 that matrix
factorization problems of this type arise in the design of recommender systems and were
largely driven by the Netflix prize challenge, which ran during the period 2006-2009.
Solution (50.137) is motivated by the works of Bell and Koren (2007a), Hu, Koren, and
Volinsky (2008), Zhou et al. (2008), and Pilaszy, Zibriczky, and Tikk (2010). For more
details on alternating methods, see also the treatment by Udell et al. (2016).

We recall that we encountered another instance of matrix factorization problems in
the concluding remarks of Chapter 1 when we discussed the Eckart-Young theorem
right after (1.222). The theorem dealt with the following scenario. Consider a U × I
matrix R and assume we wish to determine a low-rank approximation for it in the
form of the product R ≈ WH, where W is U ×M , H is M × I, and M is the desired
rank approximation. The Eckart-Young theorem determines a collection of M column
vectors {xm, ym}, where each xm is U × 1 and each ym is I × 1, in order to solve:

R̂
∆
= argmin
{xm,ym}

∥∥∥R− M∑
m=1

xmy
T
m

∥∥∥2

F
(50.168)

Once the {xm, ym} are determined, they are used to construct W and H as follows:

W =
[
x1 x2 . . . xM

]
, H =


yT1
yT2
...
yTM

 (50.169)

The solution of (50.168) requires all entries of R to be known (which obviously cannot
be applied in the context of recommender systems where many entries are normally
missing). The approximation R̂ is found as follows. We first introduce the SVD of R,
say,

R =

r∑
n=1

σnunv
T
n (50.170)

where r > M denotes the rank of R and the singular values {σn} are ordered in
decreasing order, i.e., σ1 ≥ σ2 ≥ . . . ≥ σr > 0. Then, the solution to (50.168) is given
by — recall Prob. 1.56:

R̂ =

M∑
m=1

σmumv
T
m (50.171)

in terms of the singular vectors {um, vm} associated with theM largest singular values.

Sketching and randomized algorithms. We described in Example 50.5 some useful re-
sults on randomized algorithms and sketching applied to least-squares problems. These
methods help to deal with situations involving massive amounts of data, while delivering
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some important performance guarantees. The basic idea, which involves projecting the
data onto lower-dimensional spaces, is motivated by an important result from Johnson
and Lindenstrauss (1984). In one of its simpler forms for Euclidean spaces, the result
can be stated as follows.

Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss (1984)).Consider a col-
lection of M column vectors {xm} of dimension N × 1 each. For any 0 < ε < 1/2,
select a dimension R = O((logM)/ε2). Then, there exists a matrix S ∈ IRR×N such
that for all m 6= m′:

1− ε ≤ ‖Sxm − Sxm′‖‖xm − xm′‖
≤ 1 + ε (50.172)

In the context of the least-squares problem studied in Example 50.5, the vectors xm
correspond to the columns of H or d. The above lemma essentially states that one
can map a collection of vectors {xn} from an Euclidean space of high dimension N to
another collection of vectors {Sxm} of much smaller dimension R such that the rela-
tive distance between any two points changes only by 1± ε. This result has motivated
a flurry of investigations on sketching methods. One notable advance was given by
Sarlós (2006), who showed how to construct a sketching matrix S using fast Johnson-
Lindenstrauss transforms leading to an ultimate complexity of O(NM logM) for the
solution of least-squares problems. The Gaussian construction for a sketching matrix
given in Example 50.5 is from Indyk and Motwani (1998), while the leverage-scores-
based construction is from Drineas, Mahoney, and Muthukrishnan (2006b), and the
Hadamard construction is from Ailon and Liberty (2013). Extensions to other con-
vex problems appear in Pilanci and Wainwright (2015). Excellent surveys on random-
ized algorithms and sketching are given by Mahoney (2011) and Woodruff (2014) with
derivations and justifications for several of the results and properties mentioned in the
body of the chapter.

Implicit bias or regularization. We illustrated in Sec. 50.4 one instance of implicit
bias (also called implicit regularization). We considered an over-parameterized least-
squares problem where there are fewer data points than the size of the parameter
vector, w ∈ IRM . The analysis showed that the gradient-descent solution has an im-
plicit bias towards the minimum-norm solution of the least-squares problem. Similar
behavior occurs for other risk functions and is not limited to the least-squares case —
see, e.g., Prob. 50.31 dealing with matrix factorization, the earlier Prob. 16.8 dealing
with the Kaczmarz method, and future Prob. 61.7 dealing with logistic regression and
support vector machines. Other algorithms need not behave in the same manner and
may converge to other minimizers. Therefore, the choice of which algorithm to use
has an influence on which model is learned in cases when a multiplicity of solutions
exist. And some models are “better” than others because they may generalize better
in the following sense. Once a solution w? is found, the intent is to use it to predict
target values x for future observations y that were not part of the original training
data {d,H} by using, for example, x̂t = yTt w

?. The concept of “generalization” relates
to how well a learned model w? performs on new observations, i.e., how well it predicts.
We will discuss generalization in the context of classification problems in greater detail
in future Chapter 64. For more discussion on the topic of implicit bias in the machine
learning literature, the reader may refer to Gower and Richtárik (2015), Neyshabur,
Tomioka, and Srebro (2015), Gunasekar et al. (2017,2018), Soudry et al. (2018), Jin
and Montúfar (2020), and the references therein.

Recursive least-squares and Kalman filtering. Following Sayed and Kailath (1994)
and Sayed (2003,2008), Appendix 50.B describes a useful equivalence result between
stochastic and deterministic estimation problems with quadratic risks. The equivalence
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is then used in Appendix 50.C, based on arguments from Kailath, Sayed, and Has-
sibi (2000) and Sayed (2003,2008), to clarify the fundamental connection that exists
between recursive least-squares and Kalman filtering, so much so that solving a prob-
lem in one domain is equivalent to solving a problem in the other domain. One of
the earliest mentions of a relation between least-squares and Kalman filtering appears
to be Ho (1963); however, this reference considers only a special estimation problem
where the successive observation vectors are identical. Later references are Sorenson
(1966) and Aström and Wittenmark (1971); these works focus only on the standard
(i.e., unregularized) least-squares problem, in which case an exact relationship between
least-squares and Kalman filtering does not actually exist, especially during the initial
stages of adaptation when the least-squares problem is under-determined. Soon after-
wards, in work on channel equalization, Godard (1974) rephrased the growing-memory
(i.e., λ = 1) RLS problem in a stochastic state-space framework, with the unknown
state corresponding to the unknown weight vector in a manner similar to what we
encountered in Example 30.4. Similar constructions also appeared in Willsky (1979),
Anderson and Moore (1979), Ljung (1987), Strobach (1990), and Söderström (1994).
In the works by Anderson and Moore (1979), Ljung (1987), and Söderström (1994),
the underlying models went a step further and incorporated the case of exponentially
decaying memory (i.e., λ < 1) by formulating state-space models with a time-variant
noise variance. Nevertheless, annoying discrepancies persisted that precluded a direct
correspondence between the exponentially-weighted RLS (λ < 1) and the Kalman
variables. Some of these discrepancies were overcome essentially by fiat (see, e.g., the
treatment by Haykin (1991)). This lack of a direct correspondence may have inhibited
application of the extensive body of Kalman filter results to the adaptive least-squares
problem until a resolution was given in the work by Sayed and Kailath (1994). In ret-
rospect, by a simple device, the latter reference was able to obtain a perfectly matched
state-space model for the case of exponentially decaying memory (λ < 1), with a direct
correspondence between the variables in the exponentially weighted RLS problem and
the variables in the state-space estimation problem.

Sea-level and global temperature changes. Figure 50.2 illustrates the result of fit-
ting a linear regression model onto measurements of sea level changes. The source
of the data is the NASA Goddard Space Flight Center at https://climate.nasa.
gov/vital-signs/sea-level/. For more information on how the data was generated,
the reader may consult Beckley et al. (2017) and the report GSFC (2017). Similarly,
Fig. 50.3 illustrates the fitting of LOWESS and LOESS smoothing curves onto mea-
surements of changes in the global surface temperature. The source of the data is the
NASA Goddard Institute for Space Studies (GISS) at https://climate.nasa.gov/
vital-signs/global-temperature/.

PROBLEMS1

50.1 Consider an N ×M full-rank matrix H with N ≥M , and two column vectors d
and z of dimensions N × 1 each. Let d̃ = P⊥Hd and z̃ = P⊥Hz. Are the residual vectors d̃
and z̃ collinear in general? If your answer is positive, justify it. If the answer is negative,
can you give conditions on N and M under which d̃ and z̃ will be collinear?
50.2 Let H be N ×M with full-column rank. Show that any vector in the column
span of P⊥H is orthogonal to any vector in the column span of H. That is, show that
HTP⊥H = 0.
50.3 Consider the standard least-squares problem (50.19). Comment on the solution
w? in the following three cases: (a) d ∈ N(H), (b) d ∈ R(H), and (c) d ∈ N(HT).

1 Several problems in this section are adapted exercises from Sayed (2003,2008).

https://climate.nasa.gov/vital-signs/sea-level/
https://climate.nasa.gov/vital-signs/sea-level/
https://climate.nasa.gov/vital-signs/global-temperature/
https://climate.nasa.gov/vital-signs/global-temperature/
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50.4 Solving the normal equations HTHw? = HTd by forming the matrix HTH (i.e.,
by squaring the data) is a bad idea in general. Consider the full-rank matrix

H =

 1 1
0 ε
1 1


where ε is a very small positive number that is of the same order of magnitude as
machine precision. Assuming 2 + ε2 = 2 in finite precision, what is the rank of HTH?
50.5 A numerically-reliable method for solving the normal equations HTHw? = HTd
is the QR method. It avoids forming the product HTH, which is problematic for ill-
conditioned matrices. The QR method works directly with H and uses its QR decom-
position — defined earlier in Sec. 1.6:

H = Q

[
R
0

]
where Q is N ×N orthogonal and R is M ×M upper-triangular with positive diagonal
entries. Let col{z1, z2} = QTd, where z1 is M × 1. Verify that

‖d−Hw‖2 = ‖z1 −Rw‖2 + ‖z2‖2

Refer to the standard least-squares problem (50.19) and verify that the least-squares
solution w? can be obtained by solving the triangular linear system of equations Rw? =
z1. Conclude that the minimum risk is ‖z2‖2.
50.6 Refer to Example 50.1 but assume now that the zero-mean Gaussian noise pro-
cess is colored. Collect the noise terms into the column vector

v
∆
= col

{
v(0),v(1), . . . ,v(N − 1)

}
and denote its covariance matrix by Rv = EvvT > 0. Use the data and vector notation
(50.17) to verify that the maximum-likelihood estimate for w is the solution to the
weighted least-squares problem:

min
w∈IRM

‖d−Hw‖2
R−1
v

=⇒ w? = (HTR−1
v H)−1HTR−1

v d

where the notation ‖a‖2R stands for aTRa.
50.7 Let ξ(n) denote the minimum risk value of (50.134) with w replaced by wn.
(a) Show that ξ(n) = dTnΛn(dn −Hnwn).
(b) Derive the time-update relation ξ(n) = λξ(n− 1) + t(n)e2(n), ξ(−1) = 0.
50.8 Consider an `2−regularized least-squares problem of the form:

argmin
w∈IRM ,θ∈IR

{
ρ‖w‖2 +

1

N

N−1∑
n=0

(
x(n)− yTnw + θ

)2
}

Observe that regularization is applied to w only and not to θ. Introduce the sample
averages:

x̄ =
1

N

N−1∑
n=0

x(n), ȳ =
1

N

N−1∑
n=0

yn

(a) Fix w and show that optimizing over θ leads to the expression θ = ȳTw − x̄.
(b) Center the data and define x′(n) = x(n) − x̄ and y′n = yn − ȳ. Conclude that

the above least-squares problem is equivalent to solving a traditional regularized
problem without offset, namely,

argmin
w∈IRM

{
ρ‖w‖2 +

1

N

N−1∑
n=0

(
x′(n)− (y′n)Tw

)2
}
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50.9 Let w? and w?reg denote the solutions to the following problems:

w?
∆
= argmin

w∈IRM
‖d−Hw‖2

w?reg
∆
= argmin

w∈IRM

{
ρ‖w‖2 + ‖d−Hw‖2

}
, ρ > 0

Let Q = HTH, assumed invertible. Show that w?reg = (IM + ρQ)−1w?.
50.10 Consider the weighted least-squares problem (50.49). Verify that the orthogo-
nality condition in this case is given by

HTR(d−Hw?) = 0 ⇐⇒ HTRd̃ = 0

where d̃ = d − d̂ and d̂ = Hw?. Show further that the minimum risk is given by
ξ = dTRd̃.
50.11 Refer to the stochastic model (50.88) where v has covariance matrix σ2

vIN
but is not necessarily Gaussian. Relation (50.89) will continue to hold, linking the
true model wo to the least-squares model w?. Introduce the mean-square error risk,
P (w) = E ‖d−Hw‖2, where the expectation is over the source of randomness in d.
(a) Let w̃ = wo − w. Verify that P (w) = w̃THTHw̃ + Nσ2

v. Conclude that the
minimum value is attained at w = wo and is equal to P (wo) = Nσ2

v.
(b) Using expression (50.89) verify that the least-squares solution w?, which is now

random since it depends on d, leads to an average excess risk value of EP (w?)−
P (wo) = σ2

vM , which is dependent on the problem dimension, M .
50.12 We continue with the stochastic model (50.88), but assume now that the rows
of H are Gaussian distributed with zero mean and unit covariance matrix, i.e., each
yn ∼ Nyn(0, IM ). We continue to assume that v has zero mean and covariance matrix
σ2
vIN and is independent of H. In this problem we consider both situations in which
N ≥ M (overdetermined least-squares, with more data than unknowns) and N <
M (under-determined or over-parameterized least-squares). Introduce the weight-error
vector w̃ = wo − w?, where w? is a least-squares solution.
(a) Assume first that N ≥M and show that

E ‖w̃‖2 = σ2
v E
{
Tr(HTH)

}
=

σ2
vM

N −M − 1
, for N ≥M + 2

where we are denoting H in boldface since its entries are now random.
(b) Assume next that N < M and let w? refer to the minimum-norm least-squares

solution. Show that

E ‖w̃‖2 = E ‖(IM −HT(HHT)−1H)wo‖2 + σ2
v E
{
Tr(HHT)

}
=
M −N
M

‖wo‖2 +
σ2
vN

M −N − 1
, forM ≥ N + 2

(c) Compare both situations as M varies.
Remark. The result of this problem, and especially the result in part (c) showing how the
mean-square error behaves as a function of increasing complexity M , is related to the
phenomena of double descent and bias-variance tradeoff in learning — see, e.g., Belkin,
Sa, and Mandal (2018), Belkin, Rakhlin, and Tsybakov (2019), Hastie et al. (2019),
and Mei and Montanari (2020). To solve the problem, the reader needs to rely on
some properties of the Wishart distribution. Consider a collection of M−dimensional
vectors {an}, each arising from a zero-mean Gaussian distribution with covariance
matrix Σ > 0, i.e., a ∼ Na(0,Σ). Let X =

∑N
n=1 ana

T
n, which is M ×M . Then, for

N ≥M , it is known thatX is invertible almost surely and it follows a so-called Wishart
distribution with mean zero, N degrees of freedom, and scale parameter Σ, written as
X ∼ W(N,Σ). Its mean is EX = NΣ. The inverse matrix X−1 follows an inverse
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Wishart distribution with mean zero, N degrees of freedom, and scalar parameter Σ−1,
written as X−1 ∼W−1(N,Σ−1). The respective pdfs are proportional to

fX(X) ∝
(

detX
)(N−M−1)/2

× exp
{
−1

2
Tr(Σ−1X)

}
, N ≥M

fX−1(X−1) ∝
(

detX−1
)−(N+M+1)/2

× exp
{
−1

2
Tr(Σ−1X−1)

}
, N ≥M

For more information on the Wishart distribution, the reader may refer to Eaton (1983),
Gupta and Nagar (2000), and Anderson (2003).
50.13 Refer to the stochastic model (50.88) where v has covariance matrix σ2

vIN .
Show that

E ‖H(w? − wo)‖2 ≤ 4σ2
v rank(H)

Remark. See Rigollet and Huetter (2017) for a related discussion.
50.14 Consider a symmetric positive-definite weighting matrix, R, and a symmet-
ric positive-definite regularization matrix, Π. Verify that the “normal equations” that
describe all solutions to the regularized and weighted least-squares problem:

min
w∈IRM

{
wTΠw + (d−Hw)TR(d−Hw)

}
are given by (Π+HTRH)w? = HTRd. Verify that the “orthogonality condition” in this
case amounts to requiring:

HTR(d−Hw?) = Πw? ⇐⇒ HTRd̃ = Πw?

where d̃ = d− d̂ and d̂ = Hw?. Show further that the minimum cost is given by either
expression:

ξ = dTRd̃ = dT(R−1 +HΠ−1HT)−1d

50.15 In constrained least-squares problems we seek to minimize ‖d − Hw‖2 over
w ∈ IRM subject to the linear constraint Aw = b, where the data matrices H and A
have dimensions N ×M (N ≥ M) and P ×M (P ≤ M), respectively. Both matrices
{H,A} are assumed to have full rank. Note that H is “tall” while A is “fat.” Show that
the solution is given by

w?c = w? − (HTH)−1AT
(
A(HTH)−1AT

)−1

(Aw? − b)

where w? is the standard least-squares solution, w? = (HTH)−1HTd.
50.16 Consider a data matrix H and partition it as H = [d H̄ z], with d and z de-
noting its leading and trailing columns, respectively. Let d̂ and ẑ denote the regularized
least-squares estimates of d and z given H̄, namely, d̂ = H̄w?y , ẑ = H̄w?z , d̃ = d − d̂,
and z̃ = z − ẑ, where w?y and w?z are the solutions of

min
wy

{
wT
yΠwy + ‖d− H̄wy‖2

}
and min

wz

{
wT
zΠwz + ‖z − H̄wz‖2

}
for some positive-definite matrix Π. Show that (d̃)Tz = dTz̃. Define κ ∆

= (d̃)Tz̃/(‖d̃‖ ‖z̃‖).
Show that |κ| ≤ 1.
50.17 Refer to the recursive least-squares (RLS) algorithm in Sec. 50.3. Introduce
the a-priori and a-posteriori errors e(n) = x(n) − yTnwn−1 and r(n) = x(n) − yTnwn.
Observe that one error depends on wn−1 while the other error depends on the updated
iterate, wn. The conversion factor allows us to transform e(n) into r(n) without the
need to update wn−1 to wn. Show that r(n) = t(n)e(n). Conclude that |r(n)| ≤ |e(n)|.



2122 Least-Squares Problems

50.18 Refer to the derivation of the exponentially-weighted least-squares algorithm
in Sec. 50.3 but assume now that dN evolves in time in the following manner:

dN =

[
adN−1

x(N)

]
for some scalar a. The choice a = 1 reduces to the situation studied in the body of the
chapter. Show that the solution wN , and the corresponding minimum cost, ξ(N), can
be computed recursively as follows. Start with w−1 = 0, P−1 = (1/ρ′)I, and ξ(−1) = 0,
and iterate for n ≥ 0:

t(n) = 1/(1 + λ−1yTnPn−1yn)

gn = λ−1Pn−1ynt(n)

e(n) = x(n)− ayTnwn−1

wn = awn−1 + gne(n)

Pn = λ−1Pn−1 − gngTn/t(n)

ξ(n) = λa2ξ(n− 1) + t(n)e2(n)

In particular, observe that the scalar a appears in the expressions for {wn, e(n), ξ(n)}.
Show further that r(n) = t(n)e(n) where r(n) = x(n)− yTnwn.
50.19 All variables are scalars. Consider N noisy measurements of an unknown x,
say, d(n) = x+ v(n), and formulate the following two optimization problems:

x̂mean
∆
= argmin

x

1

N

N∑
n=1

(d(n)− x)2, x̂median
∆
= argmin

x

1

N

N∑
n=1

|d(n)− x|

(a) Show that x̂mean is the sample mean, i.e., x̂mean = 1
N

∑N
n=1 d(n).

(b) Show that x̂median is the median of the observations, where the median is such
that an equal number of observations exists to its left and to its right.

50.20 At each time n ≥ 0, M noisy measurements of a scalar unknown variable
x are collected from M spatially-distributed sensors, say, dm(n) = x + vm(n),m =
0, 1, . . . ,M − 1. The unknown x is estimated by solving a least-squares problem of the
form:

x̂N
∆
= argmin

x

{
N∑
n=0

λN−n
(
M−1∑
m=0

αm(n) |dm(n)− x|2
)}

where 0� λ ≤ 1 is an exponential forgetting factor and the {αk(n)} are some nonneg-
ative weighting coefficients. Show that x̂N can be computed recursively as follows:

φ(n) = λφ(n− 1) +

M−1∑
m=0

αm(n), φ(−1) = 0

s(n) = λs(n− 1) +

M−1∑
m=0

αm(n)dm(n), s(−1) = 0

x̂n = s(n)/φ(n)

50.21 Two least-squares estimators are out of sync. At any time N , estimator #1
computes the estimate w1,0:N−1 that corresponds to the solution of

w1,0:N−1
∆
= argmin

w∈IRM

{
ρ′λN‖w‖2 +

N−1∑
n=0

λN−1−n(x(n)− yTnw)2

}

where ρ′ > 0 and λ is the forgetting factor. Note that w1,0:N−1 is an estimate that
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is based on measurements between times n = 0 and n = N − 1. On the other hand,
estimator #2 computes the estimate w2,1:N that corresponds to the solution of

w2,1:N
∆
= argmin

w∈IRM

{
ρ′λN‖w‖2 +

N∑
n=1

λN−n(x(n)− yTnw)2

}

Here, w2,1:N is an estimate that is based on measurements between times n = 1 and
n = N . Can you use the available estimates {w1,0:N−1, w2,1:N , N ≥ 0} to construct the
recursive solution of

wN
∆
= argmin

w∈IRM

{
ρ′λN+1‖w‖2 +

N∑
n=0

λN−n(x(n)− yTnw)2

}

where wN is an estimate that is based on all data up to time N? If so, explain the
construction. If not, explain why not.
50.22 Node #1 observes even-indexed data {x(2n), y2n} for n ≥ 0 and computes the
recursive least-squares solution of

w2n
∆
= argmin

w∈IRM

{
ρ′ λ2n+1 ‖w‖2 +

n∑
j=0

λ2n−2j(x(2j)− yT2jw)2

}

where ρ′ > 0 is a regularization factor and λ is the forgetting factor. Note that w2n is
an estimate that is based solely on the even-indexed data. Likewise, node #2 observes
odd-indexed data {x(2n+1), y2n+1} for n ≥ 0 and computes the recursive least-squares
solution of

w2n+1
∆
= argmin

w∈IRM

{
ρ′ λ2n+2 ‖w‖2 +

n∑
j=0

λ2n−2j(x(2j + 1)− yT2j+1w)2

}

Here, w2n+1 is an estimate that is based solely on the odd-indexed data. Can you use
the available estimates {w2n, w2n+1, n ≥ 0} to construct the recursive solution of

wN
∆
= argmin

w∈IRM

{
ρ′ λN+1 ‖w‖2 +

N∑
j=0

λN−j(x(j)− yTj w)2

}

where wN is an estimate that is based on all data (both even and odd-indexed) up to
time N? If so, explain the construction. If not, explain why not.
50.23 Consider the optimization problem

wN
∆
= argmin

w∈IRM

{
ρ′λN+1‖w‖2 + E

(
N∑
n=0

λN−n(x(n)−α yTnw)2

)}

where the data {x(n), yn} are deterministic measurements with x(n) a scalar and yn
a column vector of size M × 1. The random variable α is Bernoulli and assumes the
value α = 1 with probability p and the value α = 0 with probability 1 − p; it is used
to model a faulty sensor – when the sensor fails, no data is measured. Let wN denote
the solution. Can you determine a recursion to go from wN−1 to wN?
50.24 Consider an unknown M × 1 vector w = col{w1, w2}, where w1 is L × 1.
Introduce the least-squares problem:

min
w∈IRM

{
wT

1 Πw1 + ‖zN −HNw‖2 + ‖dN −GNw1‖2
}
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where Π > 0,

zN =


z(0)
z(1)
...

z(N)

 , dN =


x(0)
x(1)
...

x(N)

 , HN =


yT0
yT1
...
yTN

 , GN =


sT0
sT1
...
sTN


Let wN denote the solution and let ξ(N) be the resulting minimum cost.
(a) Relate wN to wN−1.
(b) Relate ξ(N) to ξ(N − 1).
50.25 Let w? denote the solution to the following regularized least-squares problem

min
w∈IRM

{
wTΠw + (d−Hw)TR(d−Hw)

}
where R > 0 and Π > 0. Let d̂ = Hw? denote the resulting estimate of d and let ξ
denote the corresponding minimum cost. Now consider the extended problem

min
wz∈IRM+1

{
wT
zΠzwz +

∥∥∥∥[ d
γ

]
−
[
ha H hb
αa hT αb

]
wz

∥∥∥∥2

Rz

}

where {h, ha, hb} are column vectors, {γ, αa, αb, a, b} are scalars, and

Πz =

 a
Π

b

 , Rz =

[
R

1

]

Let

d̂z =

[
ha H hb
αa hT αb

]
w?z

and let ξz denote the corresponding minimum risk of the extended problem. Relate
{w?z , d̂z, ξz} to {w?, d̂, ξ}.
50.26 Consider an M ×m full-rank matrix A (M > m) and let w be any vector in
its range space, i.e., w ∈ R(A). Let wN denote the solution to the following regularized
least-squares problem:

min
w∈R(A)

{
λN+1wTΠw +

N∑
n=0

λN−n(x(n)− yTnw)2

}

where Π > 0 and yn is M × 1. Find a recursion relating wN to wN−1.
50.27 Consider a least-squares problem of the form

min
w∈IRM

{
ρ‖w‖2 +

N∑
n=0

λN−n|x(n)− yTnw|2
}

where ρ > 0 is a regularization parameter, yn is an M × 1 regression vector, and
0� λ ≤ 1 is a forgetting factor defined as follows:

λ =

{
λe, for n even
λo, for n odd

Let wN denote the solution to the above least-squares problem. Derive a recursive
solution that updates wN to wN+1?
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50.28 Consider a regularized least-squares problem of the form

min
w∈IRM

{
(w − w̄)TΠ(w − w̄) + (zB−1 −HB−1w)TRB−1(zB−1 −HB−1w)

}
where Π > 0, RB−1 > 0 is a weighting matrix, and w̄ is some known initial condition.
We partition the entries of {zB−1,HB−1} into block vectors and block matrices:

zB−1 =


d0

d1

...
dB−1

 , HB−1 =


U0

U1

...
UB−1


where each db has dimensions p × 1 and each Ub has dimensions p ×M . We further
assume that the positive-definite weighting matrix RB−1 has a block diagonal structure,
with p×p positive-definite diagonal blocks, say RB−1 = blkdiag{R−1

0 , R−1
1 , . . . , R−1

B−1}.
Let wB−1 denote the solution of the above least-squares problem and let PB−1 =
(Π + HT

B−1RB−1HB−1)−1.
(a) Show that PB = PB−1 − PB−1U

T
BTBUBPB−1, with initial condition P−1 = Π−1

and where TB = (RB + UBPB−1U
T
B)−1.

(b) Show that wB = wB−1 + PB−1U
T
BTB(dB − UBwB−1).

(c) Conclude that wB can be computed recursively by means of the following block
RLS algorithm. Start with w−1 = w̄ and P−1 = Π−1 and repeat for b ≥ 0:

Tb = (Rb + UbPb−1U
T
b )−1

Gb = Pb−1U
T
b Tb

wb = wb−1 +Gb(db − Ubwb−1)
Pb = Pb−1 −GbT−1

b GT
b

(d) Establish the equalities GB = PBU
T
BR
−1
B and TB = R−1

B −R−1
B UBPBU

T
BR
−1
B .

(e) Let {rB , eB} denote the a-posteriori and a-priori error vectors, rB = dB −UBwB
and eB = dB − UBwB−1. Show that R−1

B rB = TBeB .
(f) Let ξ(B − 1) denote the minimum cost associated with the solution wB−1. Show

that it satisfies the time-update relations:

ξ(B) = ξ(B − 1) + rTBR
−1
B eB = ξ(B − 1) + eTBTBeB , ξ(−1) = 0

Conclude that ξ(B) =
∑B
b=0 e

T
bTbeb.

50.29 Consider the same formulation of Prob. 50.28 but assume the weighting matrix
RB is related to RB−1 as follows

RB =

[
DB−1RB−1

R−1
B

]
where DB−1 = diag{Ip, . . . , Ip, βIp, Ip, . . . , Ip}, and β > 1 is a positive scalar. The
scalar β appears at the location corresponding to the k−th block R−1

k . Find a recursion
relating wB to wB−1.
50.30 Consider a regularized block least-squares problem of the form

min
w∈IRM

{
λB+1(w − w̄)TΠ(w − w̄) +

B∑
b=0

λB−b(db − Ubw)TR−1
b (yb − Ubw)

}

where each db has size p× 1, each Ub has size p×M , and each Rb is p× p and positive-
definite. Moreover, 0� λ ≤ 1 is an exponential forgetting factor and Π > 0. Let ξ(B)
denote the value of the minimum risk associated with the optimal solution wB . Repeat
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the arguments of Prob. 50.28 to show that the solution wB can be time-updated by the
following block RLS algorithm:

Tb = (Rb + λ−1UbPb−1U
T
b )−1

Gb = λ−1Pb−1U
T
b Tb

eb = db − Ubwb−1

wb = wb−1 +Gb(db − Ubwb−1), w−1 = w̄
Pb = λ−1Pb−1 −GbT−1

b GT
b , P−1 = Π−1

rb = db − Ubwb
ξ(b) = λξ(b− 1) + eTbTbeb, ξ(−1) = 0

= λξ(b− 1) + rTbR
−1
b eb

Verify also that the quantities {Gb, Tb} admit the alternative expressionsGb = PbU
T
b R
−1
b

and Tb = R−1
b −R−1

b UbPbU
T
b R
−1
b .

50.31 Consider a collection of N ×N symmetric matrices {Am} for m = 1, 2, . . . ,M ,
an N × N full-rank matrix U , and an M × 1 vector b. It is assumed that M � N2

so that the amount of data represented by the size of b is significantly smaller than
the number of entries in U . Define the M × 1 vector A(U) = col{Tr(UTAmU)} and
consider the optimization problem:

min
U∈IRN×N

‖A(U)− b‖2

Under M � N2, there are many solutions U that satisfy A(U) = b.
(a) Write down the gradient-descent recursion for seeking a minimizer for the above

problem.
(b) Assume the matrices {Am} commute so that AmAn = AnAm for any n and m.

Argue that for a sufficiently small step-size, and for an initial condition close
to zero, the gradient-descent algorithm converges towards the solution with the
smallest nuclear norm, i.e., towards the solution U that solves

min
U
‖UUT‖?, subject to A(U) = b

Remark. The result of this problem provides another manifestation of the implicit
bias/regularization problem discussed in the comments at the end of the Chapter.
There are many solutions U for the over-parameterized problem; yet gradient
descent converges to the solution with the smallest nuclear norm. See Gunasekar
et al. (2017) for more discussion.

50.A MINIMUM-NORM SOLUTION

Let
W = {w such that ‖d−Hw‖2 is minimum} (50.173)

denote the set of all solutions to the standard least-squares problem (50.19). We argue
below, motivated by the presentation from Sayed (2003,2008), that the solution to

min
w∈W

‖w‖ (50.174)

is given by

w? = H†d (50.175)

in terms of the pseudo-inverse of H.
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Proof: We establish (50.175) for the over-determined case (i.e., when N ≥ M) by
introducing the singular-value decomposition (SVD) of H from Sec. 1.7. A similar
argument applies to the under-determined case (when N < M). Thus, let r ≤ M
denote the rank of H and introduce its SVD:

H = U

[
Σ
0

]
V T (50.176)

where Σ = diag
{
σ1, . . . , σr, 0, . . . , 0

}
. Then, it holds that

‖d−Hw‖2 = ‖UTd− UTHV V Tw‖2 =

∥∥∥∥f − [ Σ
0

]
z

∥∥∥∥2

(50.177)

where we introduced the vectors z = V Tw and f = UTd. Note that z and w have
the same Euclidean norm. Therefore, the problem of minimizing ‖d − Hw‖2 over w
is equivalent to the problem of minimizing the rightmost term in (50.177) over z. Let
{z(i), f(i)} denote the individual entries of {z, f}. Then∥∥∥∥f − [ Σ

0

]
z

∥∥∥∥2

=

r∑
i=1

(f(i)− σiz(i))2 +

N∑
i=r+1

f2(i) (50.178)

The second term is independent of z. Hence, any solution z has to satisfy z(i) = f(i)/σi
for i = 1 to r and z(i) arbitrary for i = r+1 to i = M . The solution z with the smallest
Euclidean norm requires that these latter values be set to zero. In this case, the solution
becomes

w? = V col
{
f(1)/σ1, . . . , f(r)/σr, 0, . . . , 0

}
= V

[
Σ† 0

]
UTd

(1.115)
= H†d (50.179)

as claimed.

�

50.B EQUIVALENCE IN LINEAR ESTIMATION

There is a close relation between regularized least-squares problems and linear least-
mean-squares estimation problems. Although the former class of problems deals with
deterministic variables and the latter deals with random variables, both classes turn
out to be equivalent in the sense that solving a problem from one class also solves a
problem from the other class and vice-versa. We follow the presentation from Sayed
and Kailath (1994), Kailath, Sayed, and Hassibi (2000), and Sayed (2003,2008).

Stochastic problem
Let x and y be two zero-mean vector random variables that are related via a linear
model of the form:

y = Hx+ v (50.180a)

for some known matrix H and where v denotes a zero-mean random noise vector with
known covariance matrix, Rv = EvvT. The covariance matrix of x is also known and
denoted by ExxT = Rx. Both {x,v} are uncorrelated, i.e., ExvT = 0, and we further
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assume that Rx > 0 and Rv > 0. We established in (29.95b) that the linear least-mean-
squares estimator of x given y is

x̂ =
(
R−1
x +HTR−1

v H
)−1

HTR−1
v y (50.180b)

and that the resulting minimum mean-square error matrix is

m.m.s.e. =
(
R−1
x +HTR−1

v H
)−1

(50.180c)

Deterministic problem
Now consider instead deterministic vector variables {x, y} and a data matrix H relating
them via

y = Hx+ v (50.181a)

where v denotes measurement noise. Assume further that we pose the problem of
estimating x by solving the weighted regularized least-squares problem:

min
x

{
xTΠx + (y −Hx)TW (y −Hx)

}
(50.181b)

where Π > 0 is a regularization matrix and W > 0 is a weighting matrix. It is straight-
forward to verify by differentiation that the solution x̂ is given by

x̂ =
(

Π +HTWH
)−1

HTWy (50.181c)

and that the resulting minimum cost is

ξ = yT
(
W−1 +HΠ−1HT

)−1

y (50.181d)

Equivalence
Expression (50.180b) provides the linear least-mean-squares estimator of x in a stochas-
tic framework, while expression (50.181c) provides the least-squares estimate of x in
a deterministic setting. It is clear that if we replace the quantities in (50.180b) by
Rx ←− Π−1 and Rv ←− W−1, then the stochastic solution (50.180b) would coincide
with the deterministic solution (50.181c). We therefore say that both problems are
equivalent. Such equivalences play an important role in estimation and inference the-
ories since they allow us to move back and forth between deterministic and stochastic
formulations, and to determine the solution for one context from the solution to the
other. Table 50.2 summarizes the relations between the variables in both domains. We
consider one application of these equivalence results in the next appendix in the context
of Kalman and smoothing filters.

50.C EXTENDED LEAST-SQUARES

If we refer to the derivation in Example 30.4 and examine the Kalman recursions in
that context, we will find that they agree with the recursive least-squares recursions.
In other words, the example shows that the growing memory (λ = 1) RLS algorithm is
equivalent to a Kalman filter implementation for estimating an unknown model x0 = w
from the observations.

Now model (30.102) is special and, therefore, the RLS filter is equivalent not to a
full-blown Kalman filter but only to a special case of it — see Haykin et al. (1997)
for another special case. In this appendix, following the equivalence approach of Sayed
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Table 50.2 Equivalence of the stochastic and deterministic frameworks.
Stochastic setting Deterministic setting

random variables {x,y} deterministic variables {x, y}

model y = Hx+ v model y = Hx+ v

covariance matrix, Rx inverse regularization matrix, Π−1

noise covariance, Rv inverse weighting matrix W−1

x̂ x̂

min
K

E (x−Ky)(x−Ky)T min
x

{
xTΠx+ ‖y −Hx‖2W

}
x̂ =

(
R−1
x +HTR−1

v H
)−1

HTR−1
v y x̂ =

(
Π +HTWH

)−1

HTWy

m.m.s.e. =
(
R−1
x +HTR−1

v H
)−1

min. cost = yT
(
W−1 +HΠ−1HT

)−1

y

and Kailath (1994) from the previous appendix, and adapting the presentation from
Kailath, Sayed, and Hassibi (2000), we describe the general deterministic least-squares
formulation that is equivalent to a full-blown Kalman filter. In so doing, we will arrive
at the extended RLS algorithm (50.211), which is better suited for tracking the state of
linear state-space models, as opposed to tracking the state of the special model (30.102),
as is further illustrated in Sayed (2003,2008) by means of several special cases.

Deterministic estimation
Consider a collection of (N + 1) measurements {yn}, possibly column vectors, that
satisfy

yn = Hnxn + vn (50.182)

where the {xn ∈ IRM} evolve in time according to the state recursion

xn+1 = Fnxn +Gnun, n ≥ 0 (50.183)

Here, the {Fn, Gn, Hn} are known matrices and the {un, vn} denote disturbances or
noises. Let further Π0 be a positive-definite regularization matrix, and let {Qn, Rn} be
positive-definite weighting matrices. Given the {yn}, we pose the problem of estimating
the initial state vector x0 and the signals {u0, u1, . . . , uN} in a regularized least-squares
manner by solving

min
{x0,u0,...,uN}

{
xT0 Π−1

0 x0 +

N∑
n=0

(yn −Hnxn)TR−1
n (yn −Hnxn) +

N∑
n=0

uT
nQ
−1
n un

}
(50.184)

subject to the constraint (50.183). We denote the solution by {x̂0|N , ûn|N , 0 ≤ n ≤ N},
and we refer to them as smoothed estimates since they are based on observations beyond
the times of occurrence of the respective variables {x0, un}.

In principle, we could solve (50.184) by using optimization arguments, e.g., based on
the use of Lagrange multipliers. Instead, we will solve it by appealing to the equivalence
result of Table 50.2. In other words, we will first determine the equivalent stochastic
problem and then solve this latter problem to arrive at the solution of (50.184). This
method of solving (50.184) not only serves as an illustration of the convenience of
equivalence results in estimation theory, but it also shows that sometimes it is easier
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to solve a deterministic problem in the stochastic domain (or vice-versa). In our case,
the problem at hand is more conveniently solved in the stochastic domain.

Introduce the column vectors

z
∆
=


x0

u0

u1

...
uN

 , d
∆
=


y0

y1

...
yN

 (50.185)

as well as the block-diagonal matrices

W
−1 ∆

= blkdiag
{
R0, R1, . . . , RN

}
, Π−1 ∆

= blkdiag
{

Π0, Q0, . . . , QN
}
(50.186)

Then, it holds that

xT0 Π−1
0 x0 +

N∑
n=0

uT
nQ
−1
n un = zTΠz (50.187)

Moreover, by using the state equation (50.183) to express each term Hnxn in terms of
combinations of the entries of z, we can verify that

N∑
n=0

(yn −Hnxn)TR−1
n (yn −Hnxn) = (d−Hz)TW(d−Hz) = ‖d−Hz‖2W

(50.188)

where the matrix H is block lower-triangular and given by

H
∆
=



H0

H1Φ(1, 0) H1G0

H2Φ(2, 0) H2Φ(2, 1)G0 H2G1

...
...

...
. . .

HNΦ(N, 0) HNΦ(N, 1)G0 HNΦ(N, 2)G1 . . . HNGN−1 0


(50.189)

and the matrices Φ(n,m) are defined by

Φ(n,m)
∆
=

{
Fn−1Fn−2 . . . Fm, n > m

IM , n = m
(50.190)

In other words, we find that we can rewrite the original cost function (50.184) as the
regularized least-squares problem:

min
z

{
zTΠz + (d−Hz)TW(d−Hz)

}
(50.191)

Let ẑN denote the solution to (50.191), i.e., ẑN is a column vector that contains the
desired solutions:

ẑN = col
{
x̂0|N , û0|N , û1|N , . . . , ûN|N

}
(50.192)

Now, in view of the equivalence result from Table 50.2, we know that ẑN can be obtained
by solving an equivalent stochastic estimation problem that is determined as follows.
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Stochastic estimation
We introduce zero-mean random vectors {z,d}, with the same dimensions and parti-
tioning as the above {z, d}, and assume that they are related via a linear model of the
form:

d = Hz + v (50.193)

where H is the same matrix as in (50.189), and where v denotes a zero-mean additive
noise vector, uncorrelated with z, and partitioned as v = col{v0,v1, . . . ,vN}. The
dimensions of the {vn} are compatible with those of {yn}. We denote the covariance
matrices of {z,v} by

Rz = EzzT, Rv = EvvT (50.194)

and we choose them as Rz = Π−1 and Rv = W−1, where {Π,W} are given by (50.186).
Let ẑN denote the linear least-mean-square error (l.l.m.s.e.) estimator of z given

{y0,y1, . . . ,yN} in d. We partition z as

z = col{x0,u0,u1, . . . ,uN} (50.195)

Then the equivalence result of Table 50.2 states that the expression for ẑ|N in terms
of d in the stochastic setting (50.193) is identical to the expression for ẑ|N in terms of
d in the deterministic problem (50.191).

In order to determine ẑN or, equivalently, {x̂0|N , ûn|N}, we start by noting that the
linear model (50.193), coupled with the definitions of {Rz, Rv,H} in (50.186), (50.189),
and (50.194), show that the stochastic variables {yn,vn,x0,un} so defined satisfy the
following state-space model:

xn+1 = Fnxn +Gnun
yn = Hnxn + vn

(50.196)

with

E

 un
vn
x0

1


 um
vm
x0

T

=

 Qnδnm 0 0
0 Rnδnm 0
0 0 Π0

0 0 0

 (50.197)

We now use this model to derive recursions for estimating z (i.e., for estimating the
variables {x0,u1, . . . ,uN}).

Solving the stochastic problem
Let ẑn denote the l.l.m.s.e. estimator of z given the top entries {y0, . . . ,yn} in d. To
determine ẑn, and ultimately ẑN , we proceed recursively by employing the innovations
{en} of the observations {yn}. Using the basic recursive estimation formula (30.23) we
have

ẑn = ẑn−1 + (EzeTn) R−1
e,n en

= ẑn−1 +
(
Ezx̃T

n|n−1

)
HT
nR
−1
e,n en, ẑ−1 = 0 (50.198)

where we used in the second equality the innovations equation (cf. (30.51)):

en = yn −Hnx̂n|n−1 = Hnx̃n|n−1 + vn (50.199)

and the fact that Ex0v
T
m = 0 and EunvT

m = 0 for all m. Clearly, the entries of ẑn have
the interpretation

ẑn = col
{
x̂0|n, û0|n, û1|n, . . . , ûn−1|n, 0, 0, . . . , 0

}
(50.200)

where the trailing entries of ẑn are zero since ûm|n = 0 for m ≥ n.
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Let Kz,n = Ezx̃T
n|n−1. The above recursive construction would be complete, and

hence provide the desired quantity ẑN , once we show how to evaluate the gain matrix
Kz,n. For this purpose, we first subtract the equations (from the Kalman filter (30.69)):

xn+1 = Fnxn +Gnun (50.201)
x̂n+1|n = Fnx̂n|n−1 +Kp,n(Hnx̃n|n−1 + vn) (50.202)

to obtain

x̃n+1|n = Fp,nx̃n|n−1 +Gnun −Kp,nvn (50.203)

where Fp,n = Fn−Kp,nHn. Using this recursion, it is easy to verify that Kz,n satisfies
the recursion:

Kz,n+1
∆
= Ezx̃T

n+1|n = Kz,nF
T
p,n +

 0
0
I
0

QnGT
n, Kz,0 =

[
Π0

0

]
(50.204)

The identity matrix that appears in the second term of the recursion for Kz,n+1 occurs
at the position that corresponds to the entry un in the vector z, e.g.,

Kz,1 =

 Π0F
T
p,0

Q0G
T
0

0

 , Kz,2 =


Π0F

T
p,0F

T
p,1

Q0G
T
0F

T
p,1

Q1G
T
1

0

 , . . . (50.205)

Substituting (50.204) into (50.198) we find that the following recursions hold: x̂0|n = x̂0|n−1 + Π0ΦT
p(n, 0)HT

nR
−1
e,nen, x̂0|−1 = 0

ûm|n = ûm|n−1 +QmG
T
mΦT

p(n,m+ 1)HT
nR
−1
e,nen, m < n

ûm|n = 0, m ≥ n
(50.206)

where the matrix Φp(n,m) is defined by

Φp(n,m)
∆
=

{
Fp,n−1Fp,n−2 . . . Fp,m, n > m

I, m = n
(50.207)

If we introduce the auxiliary variable

λn|N
∆
=

N∑
m=n

ΦT
p(m,n)HT

mR
−1
e,mem (50.208)

then it is easy to verify that recursions (50.206) lead to
x̂0|N = Π0λ0|N
x̂m+1|m = Fp,mx̂m|m−1 +Kp,mym, x̂0|−1 = 0
em = ym −Hmx̂m|m−1

ûm|N = QmG
T
mλm+1|N

λm|N = FT
p,mλm+1|N +HT

mR
−1
e,mem, λN+1|N = 0

(50.209)

These equations are the Bryson-Frazier smoothing recursions (30.194) — refer also to
Prob. 30.13; the recursions (30.194) evaluate the estimators {x̂0|n, ûm|n} for successive
values of n, and not only for n = N as in (50.209). Just like {x̂0|N , ûn|N}, the estimators
{x̂0|n, ûm|n} can also be related to the solution of a least-squares problem. Indeed,
by equivalence, the expressions that provide the solutions {x̂0|n, ûm|n} in (50.206)
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should coincide with those that provide the solutions {x̂0|n, ûm|n} for the following
deterministic problem, with data up to time n (rather than N as in (50.184)):

min
x0,u0,...,un

{
xT0 Π−1

0 x0 +

n∑
m=0

(ym −Hmxm)TR−1
m (ym −Hmxm) +

n∑
m=0

uT
mQ
−1
m um

}
(50.210)

We know by equivalence that the mapping from {ym} to {x̂0|N , ûm|N} in the stochas-
tic problem (50.193) coincides with the mapping from {ym} to {x̂0|N , ûm|N} in the
deterministic problem (50.191). We are therefore led to listing (50.211).

Extended recursive least-squares algorithm to solve (50.184)

given observations {yn} that satisfy xn+1 = Fnxn +Gnun
and yn = Hnxn + vn;

objective: estimate {x0, u0, u1, . . . , un} by solving (50.184).
start from x̂0|−1 = 0, P0|−1 = Π0, λN+1|N = 0.

(forward pass)
repeat for n = 0, 1, 2, . . .:

en = yn −Hnx̂n|n−1

Re,n = Rn +HnPn|n−1H
T
n

Kp,n = FnPn|n−1H
T
nR
−1
e,n

x̂n+1|n = Fnx̂n|n−1 +Kp,nen
Pn+1|n = FnPn|n−1F

T
n +GnQnG

T
n −Kp,nRe,nK

T
p,n

end
(backward pass)
repeat for n = N,N − 1, . . . , 1, 0:

Fp,n = Fn −Kp,nHn
λn|N = FT

p,nλn+1|N + HT
nR
−1
e,nen

end
(output)
set x̂0|N = Π0λ0|N

set ûn|N = QnG
T
nλn+1|N , 0 ≤ n ≤ N

(50.211)
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