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31.1

Maximum Likelihood

The maximum-likelihood (ML) formulation is one of the most formidable tools
for the solution of inference problems in modern statistical analysis. It allows the
estimation of unknown parameters in order to fit probability density functions
onto data measurements. We introduce the ML approach in this chapter and limit
our discussions to properties that will be relevant for the future developments in
the text. The presentation is not meant to be exhaustive but targets key concepts
that will be revisited in later chapters. We also avoid anomalous situations and
focus on the main features of ML inference that are generally valid under some
reasonable regularity conditions.

The ML approach is one notable example of the non-Bayesian viewpoint to
inference whereby the unknown quantity to be estimated is modeled as a deter-
ministic unknown but fixed parameter, rather than as a random variable. This
viewpoint is very relevant when we attempt to fit probability density models onto
data. We will comment at the end of the chapter, as well as in later chapters, on
the relation to the Bayesian approach to inference problems. In this latter case,
both the unknown and observations are treated as random variables.

PROBLEM FORMULATION

Consider a random variable y with probability density function denoted by fy (v).
In statistical inference, this pdf is also called the evidence of y. We assume that
fy(y) is dependent on some parameters that are denoted generically by the letter
6. For emphasis, we will write fy(y;6) instead of fy,(y). For example, the pdf
fy(y) could be a Gaussian distribution, in which case 6 would refer to its mean
or variance or both. In this case, we write fy (y; £, 05).

Given an observation y, the maximum-likelihood formulation deals with the
problem of estimating 6 by maximizing the likelihood function:

0 = argmax fy(y; 6) (31.1)
0

That is, it selects the value of § that maximizes the likelihood of the observation.
The pdf, fy(y;0), is called the likelihood function and its logarithm is called the
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log-likelihood function:
A
((y;0) = In fy(y;0) (31.2)

Since the logarithm function is monotonically increasing, the maximum-likelihood
estimate can also be determined by solving instead:

§ = argmax ((y;6) (31.3)
0

Usually, in the context of maximum-likelihood estimation, we observe N inde-
pendent and identically distributed realizations, {y, }, and use them to estimate 6
by maximizing the likelihood function corresponding to these joint observations:

N
6 = argmax Ly1,y2,-.-,yn;0) = argmax In (H foy(Un; 9)) (31.4)
0 0

n=1

so that

N
Oy, = arg;nax { Z In fy (yn; 9)} (31.5)

n=1

where we are adding the ML subscript for clarity. Clearly, the ML estimate
need not exist; it also need not be unique. We will sometimes write §N, with
a subscript IV, to indicate that the computation of the estimate is based on NV
measurements.

It is important to realize that the estimate §ML is dependent on the obser-
vations {y,}. A different collection of N observations arising from the same
underling true distribution fy(y) will generally lead to a different value for the
estimate §ML. For this reason, we treat the ML solution as a random variable
and introduce the ML estimator, @ML, which we denote in boldface notation.
From this perspective, every estimate GAML corresponds to a realization for the
random variable @ML. We introduce the estimation error

O 20— O (31.6)

where 6 represents the true unknown parameter. We associate three measures
of quality with the ML estimator, namely, its bias, variance, and mean-square
error defined by

bias : bias(/O\ML) é G—E/éML = EéML (317&)
variance : var(fy) £ E (Oyr, — EOy)? (31.7b)

1>

mean-square-error : MSE(@ML) E(@ML —0)? = ]Eéi,[L (31.7¢)

where the expectation is relative to the true distribution, fy(y;60). When the
estimator is unbiased, the mean-square error coincides with its variance. The
bias measures how far the estimator is on average from the true parameter, 6.
The variance measures how well concentrated the distribution of the estimator is
around its mean, whereas the mean-square error measures how well concentrated
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the same distribution is around the true parameter, 6. Ideally, we would like the
error to have zero mean, in which case we say that the ML estimator is unbiased.
We would also like the estimator to have a small mean-square error (or variance).
We will explain in the sequel that the ML estimator has two useful properties
for large measurement sizes, N. Specifically, it will be asymptotically unbiased,
ie.,

lim {EEN} —9 (31.8)
N—oc0
as well as asymptotically efficient, meaning that it will attain the smallest vari-
ance (and mean-square error) possible:

lim {Var(aML)} = smallest value it can be (31.9)

N —oc0

We will quantify the value of this smallest mean-square error by means of the
Cramer-Rao bound.

Example 31.1 (Bias-variance relation) It is not always the case that unbiased estima-
tors are preferred. Consider an unknown parameter # whose estimator is @ with mean
denoted by 8 = E 6. The mean-square error of the estimator is given by

MSE £ E (0 —0)?
=E@B-0+0-0)*
= (60— ’)2+E(é_§)2+2(9_é)M0
= (-6 +E(@-0)°
= bias?(8) + var(8) (31.10)

In other words, the MSE is the sum of two components: the squared bias and the
variance of the estimator. This means that one may still employ a biased estimator as
long as the sum of both components remains small. We commented on the bias-variance
relation earlier in Sec. 27.4.

Example 31.2 (Comparing ML and the Bayesian MAP approach) The ML formula-
tion treats the parameter 6 as some unknown constant, and parameterizes the pdf of
the observation y in terms of @ by writing fy(y;#). This same pdf can be rewritten
in the suggestive conditional form fylg(y|0) to emphasize that we are referring to the
distribution of y given that the parameter 0 is fixed at the value @ = 0. The value of 0
is then estimated by maximizing the likelihood function:

N argmax f,0(l0) (31.11)

It is instructive to compare this formulation with the Bayesian MAP approach where
both 0 and y are treated as random variables. Returning to (28.11), and using Bayes
rule (3.39), we find that the MAP estimator (28.11) corresponds to solving:

Oniap = argznax {fg(&)fy‘g(y\e)} (31.12)

where we are ignoring the marginal pdf, fy(y), because it does not depend on the
unknown . Observe from the term on the right-hand side of (31.12) that, in contrast
to (31.11), the MAP formulation incorporates information about the prior distribution
for @ into the problem statement.
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Example 31.3 (Comparing ML and minimum-variance unbiased estimation) We dis-
cussed the Gauss-Markov theorem in Sec. 29.6, where we considered observation vectors
y generated by a linear model of the form y = H6 + v. The parameter § € IRM is
unknown and the perturbation v has zero-mean and covariance matrix R, > 0. The
minimum-variance unbiased estimator for 6, i.e., the unbiased estimator with the small-
est mean square error was found to be

Omvue = (H R, 'H)'H' Ry 'y (31.13)

In this example, we wish to explain the relation to maximum likelihood estimation.
Although we are dealing now with vector quantities {6, y}, the same ML construction
applies: we form the log-likelihood function and maximize it over 6.

For the ML derivation, however, we will assume additionally that v is Gaussian dis-
tributed. It follows from the model y = HO + v that y is Gaussian distributed with
mean vector § = HO and covariance matrix

R, 2 E(y-9)(y—79 =Evv' =R, (31.14)
In other words, the probability density function of y is given by

Fo(u:6) L - HOTR (- H0>} (31.15)

1 1
~ V@~ ViR, {3

The corresponding log-likelihood function is
1
Uy 0) = —5(y - HO) R, (y — HO) + cte (31.16)

where terms independent of 6 are grouped into the constant factor. Maximizing ¢(y; 0)
over  amounts to minimizing the weighted least-squares cost:

6 = argmin {(nyG)TR,jl(nyG)} (31.17)
oclRM

Differentiating with respect to 6 we find that the minimizer occurs at
Our = (H'R,'H) H' R,y (31.18)

which has the same form as (31.13). The main difference though is that the ML deriva-
tion assumes the noise component to be Gaussian-distributed and seeks to maximize
the log-likelihood function, while the Gauss-Markov theorem is independent of the
distribution of the noise and minimizes the mean-square-error.

GAUSSIAN DISTRIBUTION

We illustrate the ML construction by considering the problem of estimating the
mean and variance of a Gaussian distribution. Thus, consider a collection of
N independent and identically distributed Gaussian observations, {y,}, with
unknown mean p and variance 05. The joint pdf (or likelihood function) of the
observations is given by
1 — 5z (yn—p)?
e Y

N
fyl,...,yN (yla s 7yN§M70'§) = H

1.1

n=1
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so that
N 1 O
g(yh S YN Uz) = _? 1n(27r0§) 5 92 § (yn - 1“’)2 (3120)

Differentiating this log-likelihood function relative to p and 05 and setting the
derivatives to zero, we obtain two equations in the unknowns (f1,5):

N
1 A
5 > yn—1) =0 (31.21a)
n=1
N
~NG2 + > (yn—1)* =0 (31.21b)
n=1

Solving these equations leads to the ML estimates:

~ 1
v = ; Yn (31.22a)
| X
Ai ML = Z(yn — fin)? (31.22b)
n=1

as well as to similar expressions for the ML estimators, where all variables are
treated as random variables and expressed in boldface notation:

N
=N 1
125Y i N Z Yn (3123&)

y,ML =N Z HML (31.23b)

It is straightforward to verify from these expressions that one of the estimators
is unbiased while the other is biased; see Prob. 31.1 where it is shown that

N -1

~ 2 2

II'?‘II/ML = M, EUy,ML = (N) Oy (3124)
Although the variance estimator is biased, it nevertheless becomes asymptoti-
cally unbiased as N — oo. This does not mean that we cannot construct an
unbiased estimator for oz for finite N. Actually, the rightmost expression in

(31.24) suggests the following construction:

N
2 1 ~
0y unbiased = N _1 Z(yn - y‘ML)2 (31.25)

n=1

where the scaling by 1/N in (31.23b) is replaced by 1/(N — 1) so that
an unbiased — 02 (31'26)

This second construction, however, is not an ML estimator.
What about the mean-square error performance? In this case, we can construct
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yet another estimator for 05 with a smaller mean-square error than Gi’ML. To
see this, assume we pose the problem of searching for an estimator for Uz of the
following form:

N

~2 A ~

Gy MsE = @ Y (Y, — Ha)’ (31.27)
n=1

for some scalar o > 0 chosen to minimize the resulting mean-square error:

a’ = argmin E (05 - a’i,MSEV (31.28)
We show in Prob. 31.2 that «® = 1/(IN + 1) so that the third estimator is:
;N
2 —~
TyMSE = N1 Z(yn —n)? (31.29)
n=1

Obviously, this estimator is biased. It agrees with neither the ML estimator
(31.23b), which is scaled by 1/N, nor the unbiased estimator (31.25), which is
scaled by 1/(N —1).

Example 31.4 | (Fitting Gaussian and Beta distributions) The top row in Figure 31.1
shows on the left a histogram distribution for the serum cholesterol level measured in
mg/dl for N = 297 patients. The vertical axis measures absolute frequencies. The plot
uses 15 bins of width 30mg/dl each, and shows how many patients fall within each
bin. The same plot is normalized on the right by dividing each bin value by N = 297
measurements and by the bin width — recall the explanation given in Remark 6.1.
By doing so, the result is an approximate probability density function. A Gaussian
pdf is fitted on top of the normalized data. The mean and variance of the Gaussian
distribution are determined by using expressions (31.23a) and (31.23b). If we denote
the cholesterol level by the random variable y, then the sample mean and variance
values are found to be

N
~ 1
Mcholesterol = N ; Yn ~ 247.35 (3130&)
1 N
~2 —\2
= n — ~ 2703. 1.
O cholesterol N—1 T;I(y y) 703.7 (3 30b)

where y,, refers to the n—th cholesterol measurement.

The bottom row in Figure 31.1 repeats the same construction for the maximal heart
rate of a patient measured in beats per minute (bpm) from the same dataset. If we
denote the heart rate by the random variable z, then the sample mean and variance
values are found to be

N
~ 1
Hheartrate = N Z::l zn ~ 149.60 (31313)
1 N
~2 =\2
=~ n — ~ 526.32 1.31
Oheartrate N _1 ngl(z Z) 526.3 (3 3 b)

where z, refers to the n—th heart beat measurement. By examining the rightmost
lower plot in Figure 31.1, it appears that the histogram distribution is skewed to the
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right. This observation motivates us to consider fitting a different distribution onto the
data in order to better capture the skewness in the histogram; this is not possible if we
persist with the Gaussian distribution due to its symmetry.

cholesterol cholesterol
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Figure 31.1 (Top) Histogram distribution of the serum cholesterol level measured in
mg/dl on the left using 15 bins of width 30mg/dl each, and its normalized version on
the right where each bin value is divided N = 297 measurements and by the bin
width. By doing so, the result is an approximate probability density function. A
Gaussian pdf is fitted on top of the normalized data. (Bottom) Similar construction
for the maximum heart rate of a patient measured in beats per minute (bpm). A
Gaussian pdf is fitted on top of the normalized data. The data is derived from the
processed Cleveland dataset from the site
https://archive.ics.uci.edu/ml/datasets/heart+Disease.

First, we normalize the heart rate variable so that it is confined to the interval [0,1). We
do so by dividing z by (a slightly larger number than) the maximum heart rate in the
data, which is 202. We denote this normalized variable by t. We have access to N = 297
measurements {t,}, obtained by normalizing the heart rates z, by € + maxz, (for a
small ¢; this ensures that all values of ¢,, are strictly less than one so that logarithms
of 1 —t,, will be well-defined further ahead in (31.34)). Next, we consider fitting a Beta
distribution onto the data {t,}. The pdf of a Beta distribution has the form:

I'(a+b) a1
fe(t;a,0) =  T(a)T'(b)

0, otherwise

1-01 o<t<1
(=87 0<t< (31.32)
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where I'(x) denotes the Gamma function defined earlier in Prob. 4.3. Different choices
for (a,b) result in different behavior for the distribution f¢(¢). We need to estimate the
shape parameters (a, b).

We have a collection of N independent measurements {¢, }. The likelihood function of
these observations is given by

St oty (1, .. tN;a,b) = (%) gtz_l(l )t (31.33)

so that, in the log domain,

L(t1,...,tn;a,0) = NInT'(a+b) — NInI'(a) — N1In I'(b) +
(@a—1)) Ity + (b—1)) In(l —tn) (31.34)

Differentiating with respect to a and b gives

, N
r (a)> n Z Int, (31.35)

a+b)
+0b)  I(a)
aﬁ(tl,...,tN;a,b)/()b:N( (( i )) r/((zf))> Zln (1—t.)  (31.36)

where T”(z) denotes the derivative of the I'—function. Two complications arise here.
First, we need to know how to compute ratios of the form (z) = I''(z)/T'(x) for the
Gamma function; this ratio is known as the digamma function and it is equal to the
derivative of InT'(z). The computation of the digamma function is not straightforward.
As was mentioned earlier in (5.62), and based on properties of the Gamma function, it
is known that

A(t1,...,tn;a,b)/0a = N( ((

a I'(z)

- 1 1
~ —0.577215665 —_— = 31.37
+ mZ:o (1 +m  x+ m) ( )
The expression on the right-hand side can be used to approximate I (x)/T'(z) by re-
placing the infinite series by a finite sum. Second, even then, if we set the derivatives
(31.35)—(31.36) to zero, the resulting equations will not admit a closed-from solution
for the parameters (a,b).

Another way to seek values (@, b) that maximize the likelihood function is to employ a
gradient-ascent recursion of the following form for n > 0 (along the lines discussed in
Chapter 12 on gradient-descent algorithms):

(-1 4 bao1) (an-1) | 1
n = Qp— — — g Int, 1.
¢ n—1 —&—,u{ F(an—1+bn_1) I'(an—1) * N —~ nt (31.38)
(an-1+bao1) T(baor) |, 1 o
bp, = bp— — — In(1 —t, 31.39
; +M{ vyt s D ILICRR) S CEY

where p is a small step-size parameter. These recursions need to be initialized from a
good starting point. In this example, we repeat the iterations for a total of 10,000 times
using @ = 0.001. We use the construction explained next to determine good initial con-
ditions (a—1,b—1). Actually, the construction provides yet another method to fit a Beta
distribution onto the data, albeit one that does not need to run the gradient-ascent
recursion altogether.
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Figure 31.2 (7op) Normalized histogram for the scaled heart rate variables {¢,}, along
with three probability density functions: a Gaussian fit, a Beta distribution fit
obtained from the moment matching method, and a Beta distribution fit obtained
from a gradient-ascent iteration for maximum-likelihood. (Bottom) The same
probability distributions with the horizontal axis returned to the original heart rate
scale (obtained by multiplying the horizontal axis of the top figure by the maximum
heart rate, as well as scaling the vertical axis down by the same value to ensure that
the area under each of the probability distributions stays normalized to one.)

Indeed, the mean and variance of a Beta distribution with shape parameters a and b
are given by

a 2 ab

PEary T T @ n)latrbr )

(31.40)

We can solve these equations in terms of a¢ and b and find that
_(t(1 -1t
a=1i <M - 1> (31.41)
Ot

b=(1-1) (“107‘2” - 1) (31.42)

t

These expressions suggest another method (called a moment matching method) to fit
the Beta distribution to data measurements. We estimate the mean and variance of the
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distribution from the data, say, as
T Z ~2 Z T\2
t= Nn:1tn, Oy = N—ln (tn—t) (31.43)

=1

and then use these values in (31.41)—(31.42) to estimate a and b. Using this construction
we obtain

@ =10.2900, b= 3.6043, (moment matching) (31.44)
This is of course not a maximum likelihood solution. Using these values as initial

conditions for the gradient-ascent iterations (31.38)—(31.39) we arrive at a second set
of estimates for a and b:

@ =10.2552, b=3.0719, (ML method) (31.45)

The resulting Beta distributions are shown in Figure 31.2 along with the Gaussian
distribution from the earlier figure for comparison purposes.

Example 31.5 (Fitting the empirical data distribution — discrete case) Let us return
to the ML formulation (31.5) and provide two useful interpretations for it in terms
of what is known as the empirical data distribution. The interpretations are easier to
describe for discrete random variables, y. For convenience, we will continue to denote
the probability mass function (pmf) for y by the notation fy(y;6) so that

fy(y;0) stands for P(y = y;0) (31.46)

In this notation, the pmf is dependent on the parameter 6. The observations for y arise
from a discrete set Y representing the support of its pmf, i.e.,

yeY 2 {o01,02,...,0} (31.47)
where we are denoting the individual elements of Y by {o¢}.
We consider a collection of N independent realizations {y» }. The maximum-likelihood

problem for estimating 6 does not change if we scale the likelihood function by 1/N so
that:

N
n 1 N
Ovr = argrgnax { N n2:1 In fy (yn; 0)} (|0g-|lkellh00d) (3148)

If we now examine the observations {y»}, some of them may assume repeated values.
Let p; denote the relative frequency for realization o, in the observed set (this is a
measure of how often o; appears within the observation set). In particular, if o, appears
a¢ times within the IV observations, then

pe 2 a¢/N, (relative frequency for o) (31.49)

In this way, we end up constructing an empirical distribution (or histogram) with the
observed data defined by

J?y(y =0¢) =pe (31.50)

Figure 31.3 compares the parameterized pmf fy(y;6) and the empirical distribution

}/‘\y(y), which corresponds to a normalized histogram with all relative frequencies {p,}
adding up to one.
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Figure 31.3 Parameterized pmf fy(y;6) on the left versus the empirical distribution,
fu(y), on the right, which amounts to a normalized histogram with the relative
frequencies {p¢} adding up to one.

Now, using expression (6.43), the KL divergence between the empirical and actual pmfs
is given by

Dxw(fullfs) 2 Ez Infy(y) — Ej In fy(y;6)

L L
= > pelnpe — > peln fy(y = os;0)
=1 =1

L 1 L
;m lnpe — % ;ae In fy(y = 0s;0)

L N
1
1 - = 1 n; 1.51
ZEZIW npe Nn; n fy(yn; 0) (31.51)

where the expectations are computed relative to the empirical distribution. It follows
that the ML solution, which maximizes the rightmost term in the above equation, is

effectively minimizing the KL divergence between the empirical pmf fy(y) and the
fitted model fy(y;6):

Onir. = argmin DKL(]‘; Il fy) (KL divergence) (31.52)
0

Another useful interpretation for the maximum-likelihood solution follows if we appeal
to the conclusion from Example 6.10, which relates the cross-entropy between two
distributions to their KL divergence. The cross-entropy between the empirical pmf
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)?y(y) and the fitted model fy(y;0) is defined by

H(fy, fs) & ~Ej In fy(y;0)

L
—> peln fy(y = 0r;0)

=1
L&
= - > " In fy(yn; 0) (31.53)
n=1
and, hence, it also holds that
Onir = argmin H(fy7 fy) (cross-entropy) (31.54)
0

In summary, the following interpretations hold:

gML maximizes the log-likelihood function (31.48)
Onr, minimizes the KL divergence (31.52) (31.55)
Onr minimizes the cross-entropy (31.54)

Example 31.6 (Fitting the data distribution — continuous case) We extend the con-
clusions of the previous example to continuous random variables y as follows. We
assume the realizations for y arise from a true pdf denoted by fy(y; 0°) and parameter-
ized by some unknown parameter §°. We again consider a collection of N independent
realizations {y»} arising from this distribution. The maximum-likelihood formulation
fits a model fy(y;0) by seeking a value for § that solves:

N
~ 1
oL = arggnax {N nglln Sy (yn; 9)} (31.56)

Under ergodicity, and for large enough N — oo, the above problem can be replaced by

fur = argmax E go (1n Fuly; 9)) (log-likelihood) (31.57)
6

where the expectation is over the true distribution, y ~ fy(y;60°). We are highlighting
this fact by writing E go, with a subscript 6°.

Now note from expression (6.43) that the KL divergence between the true and fitted
pdfs is given by

D (£330 11 fy(:6)) = Eoo (nfy(556%) — Eoo(Infy(y:0)) (31.58)

where the first term is independent of 6. Since the ML solution maximizes the rightmost
term in the above equation, we conclude that it is also minimizing the KL divergence
between the true and fitted models, namely, for large enough N:

G = argmin Dkt ( Fus0°) || £ (y; 9)) (KL divergence) (31.59)
7}

We encountered one application for this result earlier in Example 28.7 while motivating
the logistic risk. Another interpretation for the maximum-likelihood solution can be
obtained if we refer to the conclusion of Example 6.10, which relates the cross-entropy
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between two distributions to their KL divergence. The cross-entropy between the true
and fitted models is defined by

H(f4(w:0°), f4(0:0)) 2 ~Eoo (In £,(5:0)) (31.60)

and, hence, it also holds that for N large enough:

Orir, = argmin H(fy (y;0°), fy(y; 9)) (cross-entropy) (31.61)
o

In summary, the following interpretations hold:

§ML maximizes the log-likelihood function (31.57)
6y minimizes the KL divergence (31.59) (31.62)
Onr minimizes the cross-entropy (31.61)

MULTINOMIAL DISTRIBUTION

We continue to illustrate the ML construction by considering next the problem
of estimating the parameters defining a multinomial distribution, which is a
generalization of the binomial distribution. Recall that the binomial distribution
is useful to model the outcome of an experiment involving the tossing of a coin N
times. Each experiment consists of only two possible outcomes: “heads” or “tails”.
The binomial distribution then allows us to assess the likelihood of observing y
heads in N tosses by means of the following expression defined in terms of the
factorial operation:

N
P(y heads in N tosses) = (y)py(l —p)Ny

N!

= mpy(l - p)N v (31.63)
where p € [0, 1] denotes the probability of observing a “head” in any given toss
of the coin. The multinomial distribution generalizes this setting and allows
each experiment to involve more than two outcomes, say, L > 2 of them. This
situation arises, for example, if we toss a dice with L faces with each face ¢ having
a probability py of being observed with the probabilities satisfying the obvious
normalization:

> ope=1 (31.64)

The multinomial distribution then allows us to assess the likelihood of observing
y1 times the first face, y» times the second face, and so on, in a total of N tosses,
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by means of the following expression:

N!
P(y1,y2,...,yrin N tosses) = ——————p¥1p¥2 .. pY*
(y1,y Y ) vilyal . yr) 1 P2 L

L
- v ([
i1 V!

fyl,yg,..‘,yL(ylayQM">yL) (3165)

1>

where the last line introduces a compact notation for the probability expres-
sion. It is clear that the multinomial distribution is parameterized by the scalars
{p1,p2,.-.,pr} In the next two examples, we consider special cases and delay
the general case to Sec. 31.4 where we study the exponential family of distribu-
tions.

Example 31.7 (Elephants, horses, and cars) Consider a multinomial distribution with
L = 3 outcomes with probabilities {p1, p2, ps }. The same arguments and derivation that
follow can be extended to an arbitrary number L of outcomes. Thus, assume we are
dealing with an experiment involving a box with L = 3 types of images in it: type
#1 are images of horses, type #2 are images of elephants, and type #3 are images
of cars. The probability of selecting any given type ¢ is p¢; this situation is illustrated
schematically in Fig. 31.4, where we are assuming for this example that the probabilities
{p1,p2,ps} are parameterized in terms of some unknown scalar parameter 6 as follows:

1 1 1
_ — L 1.
pr=7 p2=;+0, ps=5-0 (31.66)

Assume we repeat the experiment a total of N independent times, and write down the
number of times, {y1,y2,ys}, that images of types #1,#2, and #3 are observed. In
view of the multinomial distribution (31.65), the probability of observing each type ¢
a number y, times is given by

N! )
fy11y27y3 (y1,¥2,y3) = mpﬁ“qupgs (31.67)
where the y, assume integer values and satisfy:
yee{0,1,...,N},  ymi+tytys=N (31.68)

Expression (31.67) allows us to assess the likelihood of observing an “elephant” y; times,
a “horse” y2 times, and a “car” y3 times.

Now, using the observations {y1,y2,ys}, we are interested in determining the maxi-
mum likelihood estimate for the parameter 6 (and, consequently, for the probabilities

{p1,p2,ps3}). This can be done by maximizing directly the log-likelihood function, which
in this case is given by

N N! 1\ (1 vz 1 vs
Uy1,y2,y3:0) = ln{m (1) (Z +9) 5~ (31.69)
N! 1 1 1
=In|—— In (- In(-= In(=—
n(y1!y2ly3!> +u n<4> + Y2 n(4 +9> +y3 n<2 9>
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~

»=1i (elephants)
p2 =71 +0, (horses)
p3 = % —0, (cars)

J

Figure 31.4 The box contains L = 3 types of images (elephants, horses, and cars).
The probability of picking with replacement an image of type ¢ is p¢; these
probabilities are parameterized by the scalar 6 in (31.66). The source of the individual
images is www.pixabay.com, where images are free to use.

Differentiating with respect to 6 and setting the derivative to zero at 0 = 0 gives

- Ly —Lys
=0=10 =24 31.70
i"' 0 %_ 0 s ly1,92,y3 v2 + ys3 ( )

Y2 Ys

where the subscript added to @ is meant to indicate that this estimate is based on the
measurements i, y2, and ys.

Example 31.8 (Partial information) The solution in the previous example assumes
that we have access to the number of outcomes {y1,y2,ys}. Let us now consider a
scenario where we only have access to partial information. Assume that all we know is
the number of times that an “animal” image has been observed and the number of times
that a “car” image has been observed. That is, we only know the quantities y1 + y2 and
ys3. We are still interested in estimating 6 from this information. This particular problem
can still be solved directly using the maximum-likelihood (ML) formulation. To do so,
we need to determine the likelihood function for the random variables {y; + y,, Y3},
which can be found from the following calculation (note that the variables (s, y3) below
satisfy s +y3 = N):

fowsWr+y2=5,330) = > furnws (Y1 =m, y2 = s —m, y3;6)
m=0

- X s (1) () G)

m=0

N! /1 vs O s 1\™ /1 smm
T slys! <§ _0> mZ:Om!(s—m)! (Z) (Z +0

N! /1 vs G s 1\™ /1 smm
- (G0) 2 (0)G) G+)
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We now call upon the binomial theorem, which states that, for any integer s and real
numbers a and b:

(a+b)° = i <;> a™b ™ (31.72)
m=0
and use it to simplify (31.71) as
Jows (Y1 +y2 = s, y3;0) = S{\y:' <% B 0)1/3 (% +0>S
N-s s
s CRONNCED

_ (J;’) (% +0>S (% - 0>N_S (31.73)

where step (a) follows from the fact that the value of ys is fixed at y3 = N — s. Note
that expression (31.73) shows that the sum variable s = y; + y, follows a binomial
distribution with success rate equal to % + 6. It follows that the log-likelihood function
is given by:

N 1 1
In fsy,(y1 +y2 =5, ys;60) = In <s> + sln (5 +0) + y3ln (5 —0)
(31.74)

Differentiating with respect to 6 and setting the derivative to zero at 0 = 0 leads to:

l( _1

~ Y1+ Y2 Y3

= 0 = | Oyrty2,ys = . N : (31.75)
6=0

S Y3

14+0 1-90

where the subscript added to 0 is meant to indicate that this estimate is based on the
measurements yi + y2 and Y3.

EXPONENTIAL FAMILY OF DISTRIBUTIONS

We illustrate next the application of the ML formulation to the exponential fam-
ily of probability distributions. We showed in Chapter 5 that this family includes
many other distributions as special cases, such as the Gaussian distribution, the
binomial distribution, the multinomial distribution, the Dirichlet distribution,
the Gamma distribution, and others.

Thus, consider a vector random variable y € R that follows the exponential
distribution described by (5.2) in its natural or canonical form, namely,

Fy(y:0) = h(y)e” T@=al®) (31.76)
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where the pdf is parameterized by 6 € IR™, and the functions {A(y), T(y), a(6)}
satisfy

h(y) >0: R - R, T():RY—=RM, a@):R¥Y R (31.77)

Note that we are allowing the parameter 6 to be vector-valued, as well as the
observation y. We refer to h(y) as the base function, to a() as the log-partition
function, and to T(y) as the sufficient statistic. We showed in Table 5.1 how
different distributions can be obtained as special cases of (31.76) through the
selection of {h(y),T(y),a(f)}. We continue with the general description (31.76)
and derive the maximum-likelihood estimator for 6.

Assume we have a collection of N independent and identically distributed
realizations {yy, }, arising from the exponential distribution (31.76) with unknown
parameter vector, 6. The joint pdf (or likelihood function) of the observations is
given by

h(yy)e? (o) =a(®) (31.78)

=

fy17"'7yN (yla . 7yN79) =

3
Il
A

=

g

so that the log-likelihood function is

N
h(yn)> e N exp {Z 9TT(yn)}
1 n=1

N N
Uyy,- - yni0) = > Inh(y,) — Na(0) + Y 0'T(yn)) (3L.79)

It was argued after (5.87) that this function is concave in the parameter 6.
Computing the gradient vector relative to § and setting it to zero at 6 = 0 gives

N
~ NVgra(®) + > T(y,) =0 (31.80)

and, hence, the ML estimate 9 is found by solving the equation:

N
Vor a(f) = % Z T(yn) (31.81)

This is an important conclusion. It shows that in order to estimate the parameter
0, it is sufficient to know the average of the values of {T'(y,)}; the individual
measurements {y, } are not needed. We say that the function T'(y) plays the role
of a sufficient statistic for y, or that the sample average of the values {T'(y,)}
is sufficient knowledge for the problem of estimating § — recall the comments
on the concept of a sufficient statistics at the end of Chapter 5. We comment
further on this concept in Example 31.10.
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Example 31.9 (Gaussian distribution) Let us illustrate how construction (31.81) re-
duces to known results by considering the first row of Table 5.1, which corresponds to
the Gaussian distribution. In this case we have

_[_#/ay _[w IR SRVRPPR
9*{%5‘]’ T(y),{zﬁ], al6) =~ In(-26) — 1 (31.82)
so that
01 )
_ | 0a(0)/001 | _ 20, _ 1
Vor a(0) = |:8a(9)/892 ] - _L_:ﬁ T | o4t (3183)
20, ' 403

It follows from (31.81) that

~ ~2
Oy ML T UML

1
n N
[ , ML } = n=1 (31.84)
1
N

These expressions agree with the earlier result (31.23b) since they lead to the estimates:

N N
N 1 =R 1 R
pML = szlym Uz,ML = NZ;?/Z - M12\/1L (3185)

Example 31.10 (Sufficient statistic) The function 7'(y) that appears in (31.81) plays
the important role of a sufficient statistic. Generally, any function of an observation,
T(y), is a statistic. However, this concept is most relevant when the statistic happens
to be sufficient. The statistic is said to be sufficient for estimating a parameter 6 from
a measurement y if the conditional distribution of y given T'(y) does not depend on 6:

fyirw)(W|T(y)) does not depend on 6
= T'(y) is a sufficient statistic (31.86)
A key factorization theorem in statistics states that T'(y) is a sufficient statistic for 6

if, and only if, the pdf fy(y;6) can be factored in the form — recall expression (5.138)
and Prob. 5.11:

fu(y;0) = h(y) g(T(y);0) (31.87)

That is, the pdf can be factored as the product of two nonnegative functions, h(-) and
g(+;0), such that h(y) depends solely on y and g(T'(y);#), which depends on 6, de-
pends on the observation only through T'(y). If we examine the form of the exponential
distribution (31.76) we observe that it can be written in this form with

9(T(y); 0) = ¢’ TW=a® (31.88)

More commonly, one often discusses sufficiency in the context of estimating 6 from a
collection of independent and identically distributed observations {y, } arising from the
distribution fy(y). If we consider N such observations then their joint pdf is given by

N
T
fylvyz vvvvv YN (y17 Y2,.. - YN; 0) = h(y”)eg Flyn)=a(®) (3189)

n=

= < h(yn)> exp{HT (Z T(yn)> - Na(9)}
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which is seen to be of the desired factored form (31.87) with

g (Z T (Yn); 0) = exp {HT (Z T(yn)) — Na(@)} (31.90)

n=1

Therefore, the maximum likelihood estimate for 8 from a collection of independent and
identically distributed observations {yi,...,y~} can be determined by relying solely
on knowledge of the sufficient statistic given by the sum

N
sufficient statistic = ZT(yn) (31.91)
n=1

rather than on the individual observations. We already observe this feature in expression
(31.81).

CRAMER-RAO LOWER BOUND

The derivation in Sec. 31.2 provides examples of ML estimators that can be
biased or unbiased. It also shows examples of estimators that differ in their mean-
square error. Ideally, we would like our estimators to be unbiased and to have
the smallest mean-square error (or variance) possible. The Cramer-Rao bound is
a useful result in that regard. It provides a lower bound on the variance for any
estimator (whether of ML-type or not). Estimators that meet the Cramer-Rao
bound are said to be efficient since no other estimator will be able to deliver a
smaller variance or mean-square error. Efficient estimators that are also unbiased
belong to the class of minimum-variance unbiased estimators (MVUE) because
they are both unbiased and attain the smallest variance. It turns out that, under
certain regularity conditions, the ML estimators are asymptotically unbiased and
efficient as the number of observations grows, i.e., as N — oco.

Thus, consider the problem of estimating an unknown constant parameter 6,
which may be scalar or vector-valued, from an observation vector y. For gen-
erality, we describe the Cramer-Rao bound for the case of vector parameters,
0 € RM. We denote the individual entries of # by {f,,} and denote the corre-
sponding estimation error by

O — O (31.92)

where the estimators {gm} are all assumed to be unbiased, i.e., ]Eam =460,,. The
error covariance matrix is denoted by

R; = E(0—8)(0-0)" = E60 (31.93)

where 6 = col{am} and 6 =6 — 6.
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Fisher Information Matrix

We associate with the inference problem an M x M Fisher information matriz,
whose entries are constructed as follows. The (n, m)—th entry is defined in terms
of the (negative) expectation of the second-order partial derivative of the log-
likelihood function relative to the parameter entries:

2 .
[FO),., = -E (W) nom=1,2,...,M (31.94)

or, in matrix form and using the Hessian matrix notation:

F(9) 2

~EV3 In fy(y; 0) (31.95)
The derivatives in these expressions are evaluated at the true value for the pa-
rameter . The Fisher information matrix helps reflect how much information
the distribution of y conveys about 6. The above expressions define the Fisher
information matrix relative to a single observation y.

Score Function

Expression (31.94) assumes that the log-likelihood function is twice-differentiable
with respect to 6. Under a regularity condition that integration and differentia-
tion operations are exchangeable (recall the discussion in Appendix 16.A), there
is an equivalent form for the Fisher matrix as the covariance matrix of the so-
called score function, namely,

F(0) = ES(0)8'(6) (31.96)

where the score function is defined in terms of the gradient vector with respect
to 6) (i.e.,only first-order derivatives are involved ):

8(6) £ Vyrln f,(y; 0) (31.97)

Proof of (31.96): Note first that

Vi In fy(y;0) = Vgr (Vo In fy (3 0))
_ Vo fy(?/; ‘9)
=Vor (Sl )
_ Fy:0) V3 fy(y30) — Vgt fy (y:0) Vo fy (y:6)
f5(y;0)
_ Vilyi0) g gneT
= gLy —808T0) (31.98)
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Consequently, if we denote the domain of y by y € Y,

T o (3L98) o _ Vﬁfy(y;ﬂ))
E8(0)8'(9) "= —-EVj lnfy(y,9)+E(7fy(y;9)
= —EVjInfy(y;0) + Vi fy(y; 0)dy
yeY
(a) 2 2
Y B3 In fy(4:0) + V3 ( / fy<y;e>dy)
yeY
\—,—/
= —EV;Infy(y;0) (31.99)

where step (a) assumes that the operations of integration and differentiation can be
exchanged.

It is explained in Appendix 31.A that under two regularity conditions stated
in (31.229)-(31.230), the log-likelihood function satisfies for any 6:

1 .
g (Omfu@ON o 1 (31.100)
30,
which implies that the score function exists, is bounded, and has zero mean
ES(9) =EVoln fy(y;6) =0 (31.101)

It follows that the Fisher information matrix defined by (31.96) is the actual
covariance matrix of the score function. We obtain from (31.96) that we also
have:

[FO),,. =E (8111;;2@;9) alngg(y;9)>’ nom=1,2... M (31.102)

This expression again defines the Fisher information matrix relative to a single
observation.

Example 31.11 (Diagonal covariance matrix) Consider a vector Gaussian distribution
with mean p € IR” and diagonal covariance matrix

By = diag{a%,a; . ,a‘;’)} (31.103)
We denote the individual entries of the mean vector by

/L:col{ul,,ug,...,up} (31.104)

We can write the pdf in the form:

fy(y)

! ! ﬁ { L )2 (31.105)

- exp{ ok~ o)} .
VemP TP o3 pei 207

We wish to evaluate the Fisher information matrix of this distribution relative to its

mean and variance parameters. First, note that the likelihood function is given by

r len, 5 w— 1 )
Infy(y) = =5 @2m) - 5 > nop =Y —5(yp — ) (31.106)
p=1

202
p=1""P
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so that
1
O fy(y)/Onp = —5 (yp = 110 (31.107)
p
Oln fy(y) /0oy = Ly L( — 1) (31.108)
y\Y p = 2012) 20; Yp — Hp .

The Fisher information matrix in this case has dimensions 2P x 2P. Let us order the
parameters in 6 with the {4} coming first followed by the {03}, for p=1,2,..., P:

0= {ul,..‘,up,af,...,g?g} (31.109)

Then, the diagonal entries of the Fisher information matrix are given by

[F (1, 5)]pp = E (% Ju(y) Oln fy(y)>

Opp Opp
1 2
= %E (Y, — kp)
=1/op (31.110)
and
Oln fy(y) 0ln fy(y)
F(u,> =K Y v
[ (1 )]p+P,p+P < aag 3012,
B 1 1 2\ 2
- ( 20_% + 20_;4; (yp .U‘P) )
1 1 .1 ,
=— 4+ = - —E
4o} + 408 (yp tp) 208 (yp tp)
_ 1 305 o
dof 40§ 20§
1
= 31.111
o1 (31.111)

where we used the fact that, for a Gaussian random variable & with mean Z and variance
o2, it holds that E(z — Z)* = 302%. On the other hand, for p # p’ = 1,2,..., P, the
off-diagonal entries of the Fisher information matrix are given by

dIn fy(y) dln fy(y)>

[F(Mv E)]p,p’ =E < a/lp 8[14;)

=0 (31.112)
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since {y,,y,/} are uncorrelated (actually independent) random variables due to the
diagonal covariance structure. Likewise, for p # p':

9ln f,(y) alnfy(w)

do3 802,

[F (ks D)lp+pp+p =E (

1 1 ) 1 1 )
=K —_—— —_— —_ — —_— ;) — ’
< 202 ¥ 207 (Y — k) ) ( 202 + 207 (Y — 1) )

_ 1 _ 0'12)/ . O'g 0'130'12)/
- 40%05, 40%02, 40;}05, 40;}0;;,
111
N 4012,05, 4012,05, 40%05, 4012,05,
=0 (31.113)
while
Oln fy(y) 9ln fy(y)
F(u,> / ES)
[ (:uv )]P,P +P ( 6#? 80’2,
1 1 1 )
- E _ = R
ppe) {(yp ) ( o2, T 207, (U = Hpr) )}
=0 (31.114)
and

[Pty Dl pr = E <51na OR Z:Z/(y)>

1 1 1 )
= E ) [(— =y —
0_12710_% {(yp y“p ) ( 0_127 =+ 20_% (yp :U‘P) ) }

=0 (31.115)

We conclude that the Fisher information matrix in this case is diagonal and given by

1 1 1 1 1 1
F(M,E):diag{—m—??...,— — —4,...,—} (31.116)
2

209 1)
o]’ 05 0% 207 20

Cramer-Rao Bound

We list the Cramer-Rao bound for the two situations of unbiased and biased
estimators, and also show the correction that needs to be made to the Fisher
information matrix when a multitude of observations are used to determine the
ML estimator rather than a single observation.

Unbiased estimators
The Cramer-Rao lower bound for unbiased estimators amounts to the statement
that — see Appendix 31.A for one derivation:

E6., > [F~1(0)] (31.117)

m,m
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in terms of the m—the diagonal entry of the inverse of the Fisher matrix. The
result can also be rewritten in terms of the variance of the individual entries as
follows:

~

var(0,,) > [F~H0)]m.m (31.118)

s

or in terms of the aggregate covariance matrix of the estimator

R; > F~1(0) (unbiased vector estimators) (31.119)

where the notation A > B for two nonnegative-definite matrices means that
A — B > 0. In the special case in which § happens to be a scalar, the Cramer-
Rao lower bound (31.117) can be rewritten equivalently in the forms:

2 9% In fyy(y:0)\
> el l A SRS .

EO > (IE o ) (31.120a)

o £, :0)\*\

0 Jy\Y;
=(E | —2X2X 1.120b
( (Pt ) (31.1200)
or, more compactly,

var(6,,) > 1/F(6) (unbiased scalar estimators) (31.121)

Biased estimators

When the estimator is biased, with mean denoted by g(#) = E 8 for some function
of 6, statement (31.120a) for the Cramer-Rao bound for scalar parameters is
modified as follows — see Appendix 31.A:

E(g(0) - 0)* > - (E W}l (398(900>2 (31.122)

or, equivalently, in terms of the variance of the estimator:

5 < (09(0)/00)

var(6) > F0) (biased scalar estimators) (31.123)

The special case g(f) = 6 reduces this expression to (31.120a). For vector pa-
rameters 6, the corresponding relation becomes

E (g(0) — 0)(9(0) — 8)T > (Vgrg(60)) F~1(6) Vo g(0) (31.124)

or, equivalently, in terms of the covariance matrix of the estimator:

Ry > (VQT g(9)) F~10) (Ve g(é‘)) (biased vector estimators)

(31.125)
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Multiple observations

The Cramer-Rao bounds listed so far are expressed in terms of the Fisher in-
formation matrix for a single observation. If a collection of N independent and
identically distributed realizations {y,} are used to determine the estimator 57
as is usually the case, then F'(#) will need to be scaled by N. This is because the
Fisher information matrix that is associated with N observations will be

N
~EVj <1n 11 fy(yn;9)>

n=1

N
“EVE (L fy(w:0))

n=1

N
= -) E <Velnfy (Yn; ))
n=1

— _NE (ve In fy(yn;H)) (31.126)

where in the last step we used the fact that the observations are identically
distributed. It follows that

1>

Fn(0)

Fy(0) = NF(9) (when N observations are used ) (31.127)

Efficiency and Consistency

The maximum likelihood estimator exhibits several important properties, which
have been studied at great length in the literature. We list three classical prop-
erties here without proof; derivations can be found in the references listed at
the end of the chapter. It can be shown, again under some reasonable regularity
conditions, that the ML estimator satisfies the following three conclusions:

(a) (Consistency). An estimator O, based on N observations, for some un-
known 6 is said to be consistent if 8 converges to € in probability, meaning
that for any € > 0:

A}im P(|§ — Ox| > €) =0, (convergence in probability) (31.128)
—00

Maximum-likelihood estimators satisfy this property and are therefore con-
sistent.

(b) (Asymptotic normality). The random variable v/N 8y converges in distri-
bution to a Gaussian pdf with mean zero and covariance matrix F~1(9),
written as:

VN - 0x) 5 Ny (0, F7(0)), as N — o0 (31.129)

where 6 is the true unknown parameter. It follows that the ML estimator is
asymptotically unbiased as well.
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(c) (Efficiency). Maximum-likelihood estimators are asymptotically efficient, mean-
ing that their covariance matrix Ry attains the Cramer-Rao bound (31.119)
in the limit as N — oo. There are also situations in which maximum-
likelihood estimators attain the bound even for finite sample sizes, N —
see the next example. The property of asymptotic efficiency follows from
asymptotic normality since the latter implies that

= d _
by 5 Np (0, FNl(a)) (31.130)

where F(0) = NF(6).

Example 31.12 (Estimating a DC level) Consider a collection of N independent and
identically distributed random measurements:

Y, =0+ v, (31.131)

where v, is Gaussian noise with zero mean and variance o2, while 6 is an unknown
constant parameter (which amounts to the mean of y, ). The likelihood function is

given by
| 1
Sfurrun (y1,...,yn;0) = E mexp{— 502 (yn — 9)2} (31.132)
so that the log-likelihood function is
N 2 1 & 2
yr, - oyn;0) = —7 In(2moy) — 707 ;(yn - 0) (31.133)

We conclude from setting the derivative to zero that the maximum-likelihood estimate
for 0 is given by

N
N 1
L = Nzlyn (31.134)

which is clearly unbiased with error variance given by

2
E(0—0uL)? =E (9 yn>

=F (9— (9+vn)>

N
1
=z > Ev, = o}/N (31.135)
n=1

2|

M= 11+

=2l

1

It can be verified that the two regularity conditions (31.229)—(31.230) hold in this case
— see Prob. 31.18. We compute next the Cramer-Rao lower bound. For this purpose,
we first evaluate

2 .
W = —N/o? (31.136)
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so that the lower bound is given by

821nf(y17~-~73/N§9) - _ 2
- (E S ) = 02/N (31.137)

which agrees with the error variance found in (31.135). Therefore, the maximum-
likelihood estimator in this case is efficient.

Observe from (31.135) that the error variance in this example decays at the rate of
1/N, in inverse proportion to the sample size. There are situations, where the error
variance can decay exponentially fast. One such example is given in the commentaries
at the end of the chapter in (31.206); that example deals with the same problem of
recovering 0 from noisy measurements under Gaussian noise, except that the unknown
0 is constrained to being an integer.

Example 31.13 (Bias, efficiency, and consistency) Let § be an unknown scalar pa-

rameter that we wish to estimate. Let @5 be an estimator for 6 that is based on N

observations. We encountered in our presentation of ML estimators three important

properties related to the notions of bias, efficiency, and consistency. These properties
apply to other types of estimators as well. We describe them together in this example

for ease of comparison: R

(a) An estimator @ is said to be unbiased if EOn = 6. It is said to be asymptotically
unbiased if this equality holds in the limit as N — oco. Thus, the notion of bias re-
lates to a property about the mean (or the first-order moment) of the distribution
of the random variable § — .

(b) An estimator Oy is said to be efficient if its variance attains the Cramer-Rao
bound (31.123). The estimator is said to be asymptotically efficient if it attains
the Cramer-Rao bound in the limit as N — oo. Thus, the notion of efficiency
relates to a property/\about the second-order moment of the distribution of the
random variable 6 — O . N

(c) An estimator Oy is said to be consistent if @5 converges to 6 in probability,
meaning that for any € > 0:

Nlim P(|0 — x| > €) =0, (convergence in probability) (31.138)
— 00

Thus, the notion of consistency relates to a property about the limiting distribu-
tion of the random variable § — @, which tends to concentrate around 6.

MODEL SELECTION

Once a family of density distributions fy(y; ) is selected, parameterized by some
0, the ML formulation allows us to estimate 6 from observations {y,}. This
construction presumes that the designer has already selected what family of
distributions to use.

In many situations of interest, the designer will be faced with the additional
task of selecting the family of distributions from among a collection of possible
choices. Each family k will be parameterized by its own 6. In these cases, the
designer will need to (a) select the best family of distributions from among the
available choices and, moreover, (b) estimate the optimal parameter 6 for the
selected family.
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There are several criteria that can be used to solve this problem, with the log-
likelihood function and the ML estimate playing a prominent role in the solution.
In this section, we describe the Bayesian Information Criterion (BIC), the Akaike
Information Criterion (AIC), and the minimum description length (MDL) crite-
rion for selecting among density models. They all serve as “goodness-of-fit” tests
and guide the selection of the best model. In Sec. 31.6.5 we describe another
method for choosing among models that is based on the cross-validation tech-
nique; this technique has found widespread application in learning and inference
problems and leads to good performance, often under weaker conditions than
needed for the BIC, AIC, and MDL methods of this section.

Motivation and Overfitting

Consider a collection of N data measurements {y1,y2,...,yn} and a collection
of K probability density models with parameters {61, 0s,...,0x}. Each model
(or class or family) 6 amounts to assuming a probability density function pa-
rameterized by 6 for the observation y, say, according to

fy(y;0%),  (k—th pdf model with parameter 6) (31.139)

For each k, the size of 6}, is denoted by M} and it can vary over k. For example,
0, could be representing a Gaussian distribution with unknown mean pq but
known variance o7, in which case

fy(y;01) ~ Ny(p1,07), 010 = {m} (31.140)

This corresponds to a problem where the number of parameters to be selected
is M7 = 1. The second model 65 could be representing a second Gaussian distri-
bution with both unknown mean and variance:

fu(y02) ~ Ny(uz,03), 02 = {p2, 03} (31.141)

In this case, we would need to learn two parameters with My = 2. Likewise, 03
could correspond to a third model where we are trying to fit the sum of two
Gaussian distributions, say,

Fu(y303) ~ Ny (pa, 02) + (1 = m)Ny (1, 07) (31.142a)
03 = {ta, i, 02, 07, T} (31.142b)

where 7 € ()0,1). In this case, we would need to learn five parameters with
M; = 5.

Overfitting

Generally, the more complex the model 6y, is, the more parameters it will involve
(i.e., the larger the value of M} will be). While complex models can be expected
to fit the data better because of the degree of freedom that results from using
a larger number of parameters, they are nevertheless less desirable in practice.
We are going to learn later in this text that complex models lead to overfitting;
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a property that we should avoid. Overfitting essentially amounts to using more
complex models to fit the data than is necessary. This can be illustrated by
means of an example. Assume each ¥, is a scalar measurement that arises from
small perturbations to a quadratic function of the form:

y = az® + bz + ¢ + small noise, (true model) (31.143)

where x is given and y is the response. For each given z,,, we measure the corre-
sponding noisy v, according to this model. We could then use the N data points
{Zn,yn} to fit a quadratic model to the data. This can be done by estimating the
parameter vector 6 = {a, b, c} of size M = 3 by solving a least-squares problem
of the form:

N
{a,/b\, ¢} = argmin { Z(yn —ax?® — bx, — 0)2} (31.144)

{a,b,c} n=1

Each term in the above cost function penalizes the squared error between the
noisy measurement y,, and its quadratic fit. It is straightforward to differentiate
the above cost relative to {a,b,c} and determine expressions for their estimates
— see Prob. 31.23. The expressions are not relevant for the discussion here but
once they are determined, they can be used, for example, to compute predictions
for future values x,, by using the fitted model:

Um = az? +3:pm +7¢, (prediction) (31.145)

If the model parameters have been learned well, one would expect ¥,,, to provide
a good prediction for the noiseless value of y,, that would have been observed
under the true model (a, b, ¢), namely,

Ym =z, + by + C (31.146)

This situation is illustrated in the left plot of Fig. 31.5. The red curve shows
N = 21 noisy measurements resulting from the parameters

{a,b,c} = {—0.2883,0.3501, —1.8359}, o2

v

=3 (31.147)

The location of the measurements are indicated on the red line by the filled
circles; the horizontal axis shows the values of z with the range = € [—5,5] in
increments of one. The blue curve with squares shows the same measurements
without the noise component. The black line shows the fitted curve (31.145)
resulting from the following estimated parameters for this particular simulation:

{a,b,¢} = {—0.2115,0.0803, —2.3376} (31.148)

The quality of these estimated parameters would be better and their values
would be closer to the true (a,b,c) if we use larger N and have less noise. We
continue with the values (31.148) to illustrate the main idea and to facilitate
the visualization of the resulting effects. Using the fitted curve (31.145) we can



1198

Maximum Likelihood

predict values for the non-noisy curve for any given x. For example, for x = —1.3,
we get
ar?® + bxr + ¢ ~ —2.7781 (non-noisy measurement)
r=-13 =4 . . 5 % ~ ..
y=azx’+bx+c~—27993 (prediction)
(31.149)
fitting a second-order model o fitting a model of order 20

fitted curve

~_ non-noisy f fitted curve

-10 measurements noisy
L
2 measurements
1 | | | | | ] I h | | | | | | | | |
5 -4 -3 -2 -1 0 1 2 3 4 5 5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 31.5 The plot on the left shows the result of fitting a second-order model onto
the measurements, while the plot on the right shows the result of fitting a model of
order 20.

Now, given the same N data points {z,, y, }, we could consider fitting a higher-
order model; one that weaves more closely through the {z,, y,} points in the 2D
plane. For instance, we could consider fitting a fifth-order model with parameters
0 ={a,b,c,d, e, f} instead of the second-order model, such as:

Um =aa0, +bat + 023 +da? +exm+ [ (31.150)
Doing so would amount to overfitting (fitting a more complex model than neces-
sary since the data originates from a second-order model to begin with). While
the fifth-order model may fit the given data points {x,,y,} better than the
second-order model, the higher-order model will perform poorly on predicting
future samples ¥,,. Poor performance means that if we were to substitute z,,
into the higher-order model, the predicted value %,, will generally be far from
the value y,,, that would result from the true model. This situation is illustrated
in the right plot in Fig. 31.5. The black curve shows the same N = 20 noisy
measurements from before, while the blue curve shows the same non-noisy mea-
surements. We now fit a model of order 20 even though the data was generated
from a second-order model. We observe in this case that the fitted curve lies on
top of the black curve. In other words, the fitting now is so good that the fitted
curve weaves through the measurement points and even accommodates the pres-
ence of noise in the measurements. This property is undesirable because it will
generally lead to bad prediction performance. For instance, for the same point
x = —1.3, the new fitted curve now predicts:

r=-13 = j~ —04718 (31.151)
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which is further away from the true value at approximately —2.7781.

Akaike Information Criterion

The AIC formulation discourages overfitting (i.e., it discourages overly complex
models) by penalizing the number of parameters in the model. From a collection
of candidate models, it selects the optimal model as follows:

(k*,0%) = argmin{QMk - 2€(y1,y2,...,y1\/;0k)} (31.152)
K00

where £(+) is the log-likelihood function of the observations, assumed independent
of each other:

N
(Y1, 92, -, yn; 0) = In ( H fy(yn;Hk)> (31.153)
n—1

In other words, the AIC formulation selects the model as follows:

N
(k*,6%) = argmin{2Mk - QZlnfy(yn;Ok)} (AIC) (31.154)
k.05

n=1

The first factor 2M}, penalizes the complexity of the model, while the second term
(also known as the “goodness-of-fit” measure) quantities how well the model 6y,
fits the data by calculating its log-likelihood value. We can of course remove
the factor 2 from both terms; it is kept for “historical” reasons to match the
original formulation. We provide one motivation for the cost function (31.154)
in Appendix. 31.B. Since only the second term depends on 6, we find that the
AIC solution can be determined as follows:

(a) For each model class 6, we determine its maximum-likelihood (ML) estimate
by solving

N

0, = argmax{ Z In fy (Yn; Gk)}, k=1,2,....K (31.155)
O n=1

(b) We assign an AIC score to each model k:

N
AIC(k) 2 2M; — 2" 1n fy (yn; 61) (31.156)
n=1
(c) We select the model class with the smallest AIC score:
k* = argmin AIC(k) = 6* = Oy (31.157)
1<k<K
It is explained in Appendix 31.B that the AIC formulation seeks the model

that minimizes the KL divergence between the true model and the ML models
{01,...,0k}. Since the true model is unknown, AIC ignores the entropy of the
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true distribution in expression (31.238) in the appendix. For this reason, the AIC
score is a relative measure of the “distance” from the true model. The lower the
AIC score is, the closer the selected model will be to the true model. For this
reason, in practice, these scores are handled as follows:

(a’) We determine the model with the lowest AIC score and denote it by 6*, as
already explained above.

(b’) We associate with each model k a (non-negative) delta score computed as
follows:

(k) 2 AIC(k) — AIC(K*) (31.158)

which measures how far model & is from the optimal model k*.

(c’) We associate a probability distribution with the models conditioned on the
observations (also known as a softmaz mapping) as follows:

o=k /2

A4 _ ¢ "
Zﬁzl e—0(k")/2’

7(klyi, - yn) k=1,2,....K (31.159)
where the division by 2 removes the “unnecessary” scaling that appears in the
AIC score expression. The ratios w(k|y1,...,yn) lie in the interval [0, 1] and
they add up to one. Therefore, they can be interpreted as probability values.
In this way, for an arbitrary model k, the value 7(k|y1,...,yn) indicates
how likely it is for model k£ to be the best model based on the observed
measurements.

Bayesian Information Criterion

The BIC formulation is closely related to AIC. The main difference between both
criteria is the manner by which they penalize the complexity of the model; AIC
penalizes the model selection less strongly than BIC, which selects the model as
follows:

N
(k*,0*) = argmin {M;,C InN -2 Z In fy (yn; Hk)} (BIC) (31.160)

k0 n=1

with an additional factor In N multiplying M. We motivate this cost function
in Appendix 31.C. Since only the second term depends on 6, we find that the
BIC solution can be determined as follows:

(a) For each model class 6j, we determine its maximum-likelihood estimate by
solving;:

N
0 = argmax{ Zlnfy(yn;ﬁk)}, k=1,2,....K (31.161)
O

n=1
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(b) We assign a BIC score to each model k:

N
BIC(k) 2 MiInN —2 " In fy (ya; 0r) (31.162)

n=1

(c) We select the model class with the smallest BIC score:

k* = argmin BIC(k) = 0* = 0. (31.163)

1<k<K
It is explained in Appendix 31.C that the BIC formulation maximizes the a
posteriori probability of the model selection given the observations. Thus, the
lower the BIC score is, the more likely the selected model is a good approximation
for the true model. Specifically, from expression (31.279) in the appendix we
deduce that the likelihood of selecting model k given the observations satisfies:

eBIC(k)/Q

m(klyi,ye, - YN) = = , (31.164)
Zk’:l eBIC(k") /2

Example 31.14 (lllustrating BIC and AIC procedures) We illustrate the BIC and AIC
procedures by considering the problem of fitting a Gaussian distribution into a collec-
tion of N data points {y,}. We wish to select the best fit among two models for the
data. The first model is a Gaussian distribution with known variance o but unknown
mean pi. That is, 61 = {p1} and M7 = 1:

model 6, :
01 ={p} (31.165a)
Fy(y;01) ~ Ny (61,0°) = \/2;76*2%2(1!*91)2 (31.165b)

The log-likelihood function in this case is

06,) 2 In < 11 fy(yn;el)) = —% In(2ro”) = > %(yn —01)? (31.166)

Differentiating relative to 61 and setting the derivative to zero leads to the ML estimate:

N
I 1 ) Iy
0, = w E Yn, with “goodness-to-fit” measure £(6:) (31.167)

n=1

The second model is also a Gaussian distribution albeit with unknown variance and
mean. That is, 02 = {u2,03} and Mo = 2:

model 6 :

02 = {p2, 03} (31.168a)

Fu(y; 01) ~ Ny(02,03) = 2202 e~ 3(vmn2)® (31.168b)
2

The log-likelihood function in this case is

0(62) = —% In(2703) = Y 5= (yn — p2)? (31.169)
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Differentiating relative to (u2, a%) and setting the derivative to zero leads to the same
ML estimates we encountered before in (31.23a)—(31.23b):

N N
1 ~2 1 ~\2 N~ A2
N ;ynv 02 = N Z(y’ﬂ - I’L2) ’ 92 - {M2702} (31170)

with “goodness-to-fit” measure 4(52). The BIC and AIC scores for the two models are
given by

BIC(1) = In N — 2¢(6;) (31.171a)
BIC(2) = 2In N — 2/(65) (31.171b)
AIC(1) = 2 — 20(6y) (31.171c)
AIC(2) = 4 — 20(65) (31.171d)

Example 31.15 (Moving average model) We studied regression problems in Chap-
ter 29. Here we consider a motivating example. Assume we collect N independent and
identically-distributed scalar observations {~(n), h(n)}. We wish to model v(n) by a
linear model of the form:

~(n) = hpw + v(n) (31.172)

where w € IR is a parameter vector to be determined, and h., is an observation vector
consisting of M delayed samples h(n), namely,

h, & col{h(n), h(n—1), ..., h(n—M+1)} (31.173)

Moreover, the term v(n) represents some small zero-mean discrepancy assumed to be
Gaussian-distributed:

L ez
T (31.174)

In this way, expression (31.172) is attempting to fit a linear regression model into the
data by representing ~(n) as a combination of current and delayed samples {h(m)}.
The order of the model is M because it uses M samples {h(n),...,h(n—M+1)}. The
parameter w plays the role of the model 8, and M is its size. We wish to determine the
optimal size M.

f'v(v) =

It is straightforward to see that the log-likelihood function of the observations {v(n), hn}
for a particular model w is

w) & I fy, oy (B b, 1 (1), (V)i w)
=1n fo,,...on(©Q),...,v(N);w)

> (v(n) = hw)? (31.175)

It follows that the maximum of the log-likelihood function over w is obtained by solving
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the least-squares problem:

welRM n=1

N
wj; = argmin { Z(y(n) — hlw)z}7 with “goodness-of-fit” measure £(wj;)

(31.176)

Differentiating relative to w and setting the gradient to zero we find the following
expressions for the minimizer and the corresponding minimum cost — see Prob. 31.26:

N -1 N

wh = (mel) > A(n)hn (31.177a)
n=1 n=1
N

ex 23" () — W)’

n=1

= () = hpwiy)  (3L177b)

oy * n=1
w=wj,

so that

1
ol (31.178)

C(why) = —% In(2r0?) —
The BIC and AIC scores for models of order M are then given by

BIC(M) = MIn N — 20(w};) (31.179a)
AIC(M) = 2M — 26(wy) (31.179b)

Either of these scores can now be minimized over M to select the best model order.

Minimum Description Length

The minimum description length (MDL) criterion is based on the principle that
the best model fit is one that compresses the data the most, i.e., a solution where
the representation of both the model and the data requires the smallest number
of bits. This is based on the intuition that the more we are able to compress the
data (i.e., the easier it is for us to describe it), the more we would have learned
about its inherent structure.

Let B(0) represent the number of bits that are needed to represent a generic
model 6. For example, if the model 6 corresponds to choosing the means of two
Gaussian distributions in a mixture model of the form 2Ny (14, 1) + 3Ny (1, 1),
and if the means are known to be one of only four possibilities:

(1as bip) € {(Mah#bl), (Ha2, t62), (Ha3, Hb3), (Ma4,ub4)} (31.180)

then, for this example, B(f) = 2 bits. In a second example, assume 6 has M
dimensions and lies within a bounded region. We can discretize every dimension
into v/N small segments (where N is the number of data points); this choice is
motivated by the fact that the size of the error in estimating each entry of 6 is
on the order of 1/v/N as suggested by (31.129). Then, we would need roughly
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log, ' N bits to represent the value of 6 along each of its dimensions so that B(6)
can be approximated by

B(6) x %MlnN (31.181)

which is similar to the term that appears in the BIC objective function in
(31.160).

In other situations, it is justified to treat 6 as a realization for some random
variable € and to assign a distribution for @ (also called its prior), say, fg(0).
For instance, if 6 corresponds to the mean of a Gaussian distribution fy(y;6) ~
Ny (1,0?), then one could assume that the unknown mean p is a realization
that arises from some exponential distribution & ~ Ae~*?. When the model
parameters are treated in this manner as random variables with priors assigned
to them, we can appeal to our earlier discussion on information and entropy from
Chapter 6 to deduce that the number of bits that are needed to code 6 is on the
order of (recall expression (6.1)):

B(6) = —In f(6) (31.182)

The MDL approach exploits this connection between code lengths and pdfs to
great effect. Since we are using the natural logarithm in (31.182), the units should
be listed as nats instead of bits.

Let B(y1,y2,- -, Yn;0) represent the number of bits that are needed to repre-
sent the N data points under model . The MDL criterion then selects the model
as follows:

(k*,0*) = argmin {B(Gk) + B(y1, Y2, - - s Yn; Qk)} (31.183)
k.00

Again, motivated by (31.182) we can select

N
B(y1,y2,--,Yn; 0) = —111{ H fy(yn;G)} (31.184)
n=1

in terms of the natural logarithm of the likelihood function and rewrite the MDL
formulation as

k.0

N
(k*,6*) = argmin {B(t‘)k)szy(yn;@k)} (MDL) (31.185)

n=1

One useful interpretation for the MDL objective arises when the choice (31.182)
is used, i.e., when

N
(k*,0%) = argmax { In fg(0r) + Z In fo (yn; Hk)} (31.186)
n=1

k.00

where we replaced argmin by argmax and removed the negative signs. In this
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case, MDL can be shown to correspond to choosing among a collection of mazx-
imum a-posteriori (MAP) estimators. This can be seen as follows. When 6 is
treated as random, each term fy(yn;0x) in (31.185) has the interpretation of the
conditional distribution of y given the realization for y:

fy(niOc) = fy 0, (nlOr) (31.187)

Then, using (31.182), we can rewrite the cost that is being optimized in (31.186)
in the form:

N
In fp(0h) + 3~ In fy (43 00) (31.188)

n=1

=In

N
for) 11 1,0, (yn|9k)}

.....
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i, 0 W1 Y25 YN, Ok)
- 1n{fy1,...,yN(y1, ey Yn) X fa,cm___,yN(Hklyh...,yN)}
= ln{faklyl . Okly1s- -, yN)} + term independent of 6

It follows that the MDL criterion (31.186) is the best fit from among a collection
of MAP estimators {6} }:

(12,6%) = argmaxBigl{, fg,y, yN(ek\yl,...,yN)} (31.189)

This construction involves the following steps:

(a) For each model class 0, we determine its maximum a-posteriori (MAP)
estimate by solving:

O, = arger]?ax {feklylv---vyN Okly1,- -, yN)}, kE=1,2,...,K (31.190)

(b) We assign an MDL score to each class k:

A N
MDL(K) 2 fp . (@ilyr.....yn) (31.191)
(c) We select the model class with the largest MDL score:
k* = argmax MDL(k) => 60* = 0. (31.192)
1<k<K

Example 31.16 (MDL with model prior) Consider a collection of N independent and
identically distributed realizations {y,}. We wish to select the best fit among two
models for the data. The first model is a Gaussian distribution with known variance
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of and unknown mean p1. That is, 61 = {u1}. We model 01 as a random variable and
assume it is Gaussian distributed with zero mean and unit variance, i.e.,

model 0, :

1 2
fo, (q) ~ Ny, (0,1) = 5= u/2 (31.193a)
6, =p, (31.193b)

1 —ﬁ(y—ﬂl)z
e Y
V2mwo?

If we denote the cost that is maximized in the MDL formulation (31.186) by J(6k),
then it is given by the following expression for model 61 = pq:

Jy(y;01) ~ Ny(91a02) =

(31.193c)

N
Z(yn —m)® + cte (31.194)

n=1

1 5 1
J() = —=p — —
(/’Ll) 2)“‘1 20_%
where constant terms that are independent of 1 = p; are separated.

The second model is also Gaussian albeit with unknown variance and mean. That is,
02 = {u2,03}. We assume the two components of 8> are independent of each other,
with g being Gaussian-distributed with zero mean and unit variance and o2 being
exponentially-distributed with parameter A = 1, i.e.,

model 65 :
1 .2
fl"z (,u,z) ~ N/-‘fz (O, 1) = me (31.195&)
fo3(03) = e % (31.195b)
1 —u?/2 —o2
fg,(0:) = ——=e /P x e (31.195¢)
Var
2 1 — 5k (y—n2)?
fy(y; 02) ~ Ny (p2,02) = N it (31.195d)
2
The cost in (31.186) that corresponds to this model is given by
1 1 &
J(p2,08) = =53 = 05 — 55 > (un = p2)” + cte (31.196)
2 n=1

where again constant terms that are independent of 62 = {u2, U%} are separated. This
example is pursued further in Probs. 31.24 and 31.25.

Cross Validation Method

We describe next an alternative method for choosing among models that is based
on a popular technique known as cross wvalidation; the method leads to good
performance often under weaker conditions than needed for the other (AIC,
BIC, MDL) methods described before.

Consider again a collection of NV independent and identically-distributed data
measurements {y1, ¥z, ...,yn} arising from an underlying unknown pdf, f,(y).
Introduce K models with parameters {61,062, ...,0k}, where each 0} defines a
probability density function for the observations. Cross validation splits the NV
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data points {y,} into L segments of size N/L each. At each iteration of the
construction described below, we use L — 1 segments for estimation purposes
and the last segment for a supporting role — see Fig. 31.6. To simplify the
notation, we let £ = (L — 1)N/L denote the total number of samples used for
estimation from the L — 1 segments and 7' = N/L denote the number of samples
used for the support role from the remaining segment, so that N = F +T. The
objective is to select the “best fit” model from among the {61,...,0x}.

4 N

support segment

estimation segments

y

—
A
i 4

E samples T samples

\_ /

Figure 31.6 The data is divided into L segments, with L. — 1 of them used for
estimation purposes for a total of F samples and the remaining segment with T’
samples used for a supporting role.

The first step is to use the E data points to estimate 6, by maximizing the
corresponding log-likelihood function:

E
0, = argmax { Zlnfy(yewk)}, k=1,2,....K (31.197)
0

e=1

where the subscript e is used to index the samples from the E collection. This
step generates K estimated models {é\k} Next, we need to select a “best fit”
model from among these models. One way to achieve this task is to minimize the
KL divergence between the true (unknown) pdf and its approximations, namely,

k= argmin {Dice (£,0) |y 00)) } = 0" = O (31.198)
1<k<K

where

Dict.(£4) | £ (:01))
- m@mn@wr—/ o) fy By (31.199)

yeY yeY

The first term on the right-hand side is independent of k. Therefore, problem
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(31.198) for selecting the optimal model & reduces to

kX = argmax{ fy(y)In fy(y;é\k)dy} = argmax {]Ey In fy(y;é\k)}
1<k<K yeY 1<k<K

(31.200)

The quantity that is being maximized is the mean of In fy(y;gk), where the
expectation is computed relative to the true distribution, fy(y). The expectation
cannot be computed since fy(y) is unknown. One approximation is derived in
Appendix 31.B in the form of expression (31.240) and used to motivate the AIC
method. Here, we pursue a different approach based on cross validation.

In the cross validation approach, the quantity E,, f(y; 54) is estimated by us-
ing the T samples from the support segment, which were not involved in the
estimation of the {@\k} That is, we use

T
~ 1 ~
By In fy(y:60) ~ = > fy (s On) (31.201)
t=1

where the samples {y;} in this expression arise from the T collection and are
independent from the samples {y.} used to estimate é\k Therefore, the sample
average estimator on the right-hand side of (31.201) is an unbiased estimator for
the quantity of interest, namely,

T
1 ~ .
]E{ T ;mfy(yt?@k) } = Ey In fy(y; k) (31.202)
- —é X,_/k
2%,

To simplify the notation, we denote the variable that we wish to approximate
by X and its sample approximation by )A(k; we use the subscript £ to indicate
that these values relate to model k.
So far we have computed the estimate X, by considering a single pass over the
L data segments. More generally, cross validation performs L passes over these
segments. During each pass, one segment is chosen for support and the remaining
L — 1 segments for estimation. Each pass ¢ generates an estimate X k,c as above
by computing the ensemble average over the samples of the support segment for
that pass. Subsequently, the final estimate for X} is obtained by averaging these
multiple pass estimates as follows:
U R -
X I Z Xk e, (cross validation score) (31.203)
=1

Cross validation generates a score X . in this manner for each model 6 and then
selects the model with the highest score in view of (31.200):

k* = argmax {)?k} — 0" =0 (31.204)
1<k<K
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We explain in Prob. 31.29 that, under certain conditions, the cross validation
construction is able to discover the best model with high likelihood. We will dis-
cuss cross validation further in Chapter 59 and provide comments on its history
and application in the context of inference and learning methods.

COMMENTARIES AND DISCUSSION

Maximume-likelihood. The maximume-likelihood approach was developed by the English

statistician Ronald Fisher (1890-1962) in the works by Fisher (1912,1922,1925) —
see the presentations by Pratt (1976), Savage (1976), and Aldrich (1997). The approach
does not assume any prior distribution for the parameter 6 and estimates it from ob-
servations of the random variable y by maximizing the likelihood function defined by
(31.1). Since its inception, the maximum likelihood technique has grown to become
one of the most formidable tools in modern statistical analysis, motivated largely by
the foundational works of Fisher (1922,1956) and also by the efficiency of this class of
estimators. As already noted by (31.129), maximum-likelihood estimators are asymp-
totically efficient in that their mean-square errors approach the Cramer-Rao bound as
the number of observations grows. For additional information on ML estimators, and
for more details on the Carmer-Rao bound, its ramifications, and the asymptotic effi-
ciency and normality of ML solutions, readers may refer to the texts by Zacks (1971),
Box and Tiao (1973), Scharf (1991), Kay (1993,1998), Lehmann (1998), Cassella and
Berger (2002), Cox (2006), Hogg and McKean (2012), and Van Trees (2013).

Cramer-Rao bound. This important bound, which is due to Rao (1945) and Cramer
(1946), provides a lower limit on the achievable mean-square error for any unbiased (and
also biased) estimator of unknown constant parameters. The lower bound is determined
by the inverse of the Fisher information matrix which, although named after Fisher
(1922,1956), was actually advanced in the works by Edgeworth (1908a,b,c) — see the
expositions by Savage (1976) and Pratt (1976). The entries of the Fisher matrix reflect
the amount of information that the observations convey about the unknown parameter
— see Frieden (2004). In Appendix 31.A we provide one derivation for the Cramer-Rao
bound for the case of scalar parameters by following an argument similar to Cassella
and Berger (2002), Frieden (2004), and Van Trees (1968,2013).

Expression (31.129), and the result in Example 31.12; suggest that the mean-square
error decays at the rate of 1/N, in inverse proportion to the sample size. There are situ-
ations, however, where the rate of decay of the mean-square error can be exponentially
fast in N. These situations arise, for example, when estimating unknown parameters 6
that are restricted in certain ways as discussed by Hammersley (1950). To illustrate this
possibility, let us reconsider Example 31.12 where we are still interested in determining
the maximum likelihood estimate for 6, except that 6 is now constrained to being an
integer. It is shown in Hammersley (1950) that, in this case — see Prob. 31.20:

N
~ 1
Oy, = round <N 2::1 yn> (31.205)

where the function round(z) denotes the integer value that is closest to x. The corre-
sponding mean-square error behaves asymptotically as

~2 82 1/2 2
Ebw, = < ]\?) x e V87 as N = oo (31.206)
s

which decays exponentially with V.
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Sufficient statistics. We commented on sufficient statistics at the end of Chapter 5. Let
{y1,y2,...,y~n} denote realizations for a random variable y whose pdf is parameterized
by some 6 (scalar or vector), written as fy(y;0). Let the short-hand notation S(y)
denote any function of these realizations i.e.,

S(y) £ Sy, yn) (31.207)

We refer to S(y) as a statistic. The statistic is said to be sufficient for € if the conditional
distribution of {y,,¥ys,...,yx} given S(y) does not depend on . This concept plays a
key role in maximum-likelihood estimation theory and was introduced by Fisher (1922)
in his development of theoretical statistics. In a way, the sufficient statistic, when it
exists, contains all the information that is embedded in the observations about 6 so
that the observations can be discarded and replaced by S(y) for estimation purposes.
This step amounts to compressing the observations down to S(y). Let us consider the
following classical example.

Let y denote the outcome of a Bernoulli experiment with success rate p, i.e., y = 1
with probability p and y = 0 with probability 1 — p. The variable p plays the role
of the parameter 0. Assume we perform N experiments and observe the outcomes
{y1,...,yn}. Define the function

N
A
S) = > un (31.208)
n=1
which counts the number of successes. The conditional pdf of {y;,ys,..., Yy} given

S(y) can be shown to be independent of p. Indeed, it is left as an exercise for Prob. 31.16
to show that:

N
SN =)t .
—a o s
n=1

N
0, if Y yn #s
n=1

which shows that the conditional distribution is independent of the parameter p. There-
fore, the statistic S(y) defined by (31.208) is sufficient for p.

The following result explains how, starting from some initial crude estimator for a
parameter f that is not necessarily optimal, we can construct better estimators for it
by conditioning on a sufficient statistic for § — see Prob. 31.17 and also Caines (1988),
Scharf (1991), and Kay (1993,1998). Observe how the conditional mean plays a useful
role in constructing estimators.

lP’(y1:yl,.--,yN:yN\S(y)ZS) = (31.209)

(Rao-Blackwell theorem) (Rao (1945) and Blackwell (1947)): Let 8, denote an un-
biased estimator for a parameter 6 given observations of a variable y and assume

IE@? < 00. Let S(y) denote a sufficient statistic for 6 and construct the estimator:
) (51 | S(y)) (31.210)

Then, 02 is also an unbiased estimator for 0 with at most the same mean-square
error (or variance), namely,

E (0 —05)° <E(6—6,)> (31.211)

The inequality holds strictly, except when the estimator 9, is a function of S(y).



31.7 Commentaries and Discussion 1211

Gamma function. We encountered the Gamma function in Example 31.4 while fitting a
Beta distribution onto measured data. The function is defined by the integral expression

F(z):/ s e ds, >0 (31.212)
0

and has several useful properties such as I'(1/2) = /m, I'(z + 1) = 2I'(2) for any
z > 0, and I'(n + 1) = n! for any integer n > 0. This last property shows that the
Gamma function can be viewed as an extension of the factorial operation to real (and
even complex) numbers. In the example, we needed to evaluate the digamma function
¥(z) = I'(2)/T'(z), which arises often in applications, involving the derivative of the
Gamma function. This ratio is sometimes referred to as the polygamma function of
order zero and is known to satisfy the relation:

I(z) - 1 1
T(2) ~ cﬂ;@ (m z+m) (31.213)
where
c 2 - lim T'(2) & 0.577215665 (31.214)
z—

is Euler’s constant (often denoted instead by the letter v); it appears in many other
problems in mathematical analysis. For more information on the Gamma function and
its properties, the reader may consult the works by Davis (1959), Abramowitz and
Stegun (1965), Lebedev (1972), Temme (1996), and Artin (2015).

Method of moments. We discussed in Example 31.4 two methods to fit a Beta distri-
bution onto data measurements. One method was based on the maximum-likelihood
formulation and required an iterative procedure to learn the shape parameters (a,b),
while the second method estimated these parameters by matching the first and second-
order moments (mean and variance) of the resulting Beta distribution to the sample
mean and sample variance computed from the data. It is a historical curiosity that the
maximum-likelihood approach to fitting a Beta distribution was favored by the English
statistician Ronald Fisher (1890-1962), while the moment matching approach was
favored by the English statistician Karl Pearson (1857—1936) — see Pearson (1936)
and the account by Bowman and Shenton (2007). Both Fisher and Pearson were gi-
ants in their field and are credited with establishing the modern field of mathematical
statistics.

Akaike and Bayesian information criteria. The Akaike information criterion (AIC) is
due to the Japanese statistician Hirotugu Akaike (1927—2009) and appeared in
the work by Akaike (1974). Since its inception, it has flourished to become one of
the main tools in statistical analysis. The criterion is based on information-theoretic
concepts and seeks the “best fit” that minimizes the KL divergence relative to the true
(unknown) distribution of the data. We explain in Appendix 31.B that AIC achieves
this goal by constructing an “wunbiased’ estimate for the mean log-likelihood function
defined in (31.243) as follows:

L) = /Eyf(y) In f(y;0)dy = E, In f(y;0) (31.215)

The expectation is relative to the true distribution of y. Since L(#) is unavailable, AIC
approximates it from data measurements by using (31.240), namely,

Ey Inf(y;00) ~ > I fyn;06) — —- (31.216)

where the correction by My /N is necessary to remove the bias from the first term.
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It is explained in the survey article by Cavanaugh and Neath (2019) that the AIC
formulation is efficient. This means that the selected model 6* will generate predictions
g for y that have the lowest mean-square-error, E (y — %)2. In other words, AIC favors
model selections that are good predictors. The approximation (31.216) is known to
perform well for large N but its performance degrades for small or moderate-size data
sets as explained in Linhart and Zucchini (1986) and McQuarrie and Tsai (1998). To
address this difficulty, Hurvich and Tsai (1989) suggested one correction to the AIC
score based on replacing the original expression (31.156) by the following corrected
score for sample sizes satisfying N < 40Mj:

N
AIC(k) £ 2M, + %ﬁf) —2> " In fy(yn;0x), (corrected AIC) (31.217)
n=1

The text by Burnham and Anderson (2002) provides a theoretical justification for the
superior performance of corrected AIC in relation to BIC.

The Bayesian information criterion (BIC) was proposed by Schwarz (1978); it bears
a strong resemblance to AIC except that it penalizes the model selection more strongly
by scaling the model order M} by In N instead of 1 as happens with AIC. BIC adopts
a Bayesian approach and assigns a prior 7(k) to the model variable k € {1,2,..., K},
as well as a prior to the parameter 8; under each class k. It then maximizes the
posterior 7w (k|yi,y2,...,y~n) given the observations. One of the main features of the
BIC formulation is that its criterion is consistent. This means that if the true unknown
distribution that generated the observations happens to belong to the collection of
candidate models {01, ...,0k}, then the BIC solution is guaranteed to select it with
probability one in the limit of large datasets — see, e.g., Claeskens and Hjort (2008).
This property may also explain the observation in McQuarrie and Tsai (1998) that BIC
outperforms AIC for moderate-size datasets in the sense that BIC tends to select the
true model more frequently.

It is clear from the derivations in Appendices 31.B and 31.C that the AIC and BIC
formulations are based on some approximations, especially asymptotically as the sam-
ple size N tends to infinity. This reflects on their behavior. For instance, BIC penalizes
the model complexity more heavily than AIC; it uses the penalty term My In N versus
M, for AIC. For this reason, AIC is more likely to favor more complex models, whereas
BIC favors simpler models. For more information on AIC and BIC, their derivations,
and applications, readers may refer to Linhart and Zucchini (1986), Ghosh, Delam-
pady, and Samanta (2006), Claeskens and Hjort (2008), Konishi and Kitagawa (2008),
Hastie, Tibshirani and Friedman (2009), and Neath and Cavanaugh (2012).

Minimum description length. The minimum length description (MDL) criterion is due
to Rissanen (1978,1986). It selects solutions that can represent the model and the data
in the most compressed form (in terms of bit representation). This line of reasoning is
consistent with what is generally referred to as the Occam razor principle. The prin-
ciple basically states that simpler explanations or hypotheses should be preferred over
more complex explanations or hypotheses. We will encounter it again in future Sec. 64.5
when we discuss the issue of overfitting by complex models and the bias-variance trade-
off. MDL relies on information-theoretic and coding theory arguments, and exploits to
great effect the connection between code lengths and the pdfs of the variables through
the notion of entropy. Specifically, —log, fz(x) bits are needed to represent realizations
z for the random variable with distribution f(z). The MDL approach exploits this
connection to formulate a design criterion. We explained in the body of the chapter
that when prior distributions are assigned to the models, the MDL solution reduces to
selecting the best fit from among a collection of MAP estimators. We also explained
that MDL and BIC are closely related. In particular, if we use the bit representation
(31.182), then the MDL formulation in (31.185) will reduce to BIC. A good overview
of MDL is given by Hansen and Yu (2001). For more information, the reader may con-
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sult Barron and Cover (1991), Barron, Rissanen, and Yu (1998), and Grunwald (2007).

Frequentist view. The maximum-likelihood approach of this chapter treats the parame-
ter 0 as an unknown but fixred quantity and does not attach any probability distribution
to it. This approach is reminiscent of the frequentist viewpoint to probability and statis-
tics. In the frequentist approach, the notion of probability is defined as the long-term
frequency of occurrence of events, evaluated from repeated experimentation or observa-
tion. For example, the probability of landing heads (H) in a coin toss can be determined
by repeatedly tossing the coin N times and counting how many heads are observed,
say, M times. The ratio M /N then approaches the probability of the event, P(H), as
N — .
We can re-examine the ML formulation in light of this description, namely,

N
Oy = argmax { > In fy(yn; 9)} (31.218)

n=1

where we are adding the subscript N to indicate that Oy is computed from N mea-
surements. This solution leads to a mapping from the observations to the estimate:

{yn}N ML gy (31.219)

n=1
But since the observations {y,} are realizations of a random process, the randomness

will reflect itself on the ML estimate as well. Specifically, O will vary with the measure-
ments {yn}: two different collections of N measurements, each arising from the same

data distribution fy(y), will generally lead to two different values for é\N. For this rea-

son, we will denote the ML estimate in boldface and write Oy to highlight its random
nature. Thus, although the ML formalism models € as an unknown but fixed parame-

ter, its estimator Oy is a random quantity with mean and variance. In particular, the
Cramer-Rao bound (31.117) provides a lower bound on the expected mean-square error
in terms of the inverse of the Fisher information matrix. Obviously, the bound is useful
when the Fisher matrix can be evaluated in closed-form. This is often challenging since,
as can be seen from expressions (31.102) and (31.99), the designer will need to compute
certain expectations.

As befits the frequentist approach, one useful alternative to assess the performance
of ML estimators is to resort to a bootstrap calculation. The term “bootstrap” is com-
monly used in the statistical literature to refer to a technique where a statistic (such
as mean or variance) is estimated by re-sampling with replacement from existing mea-
surements. We will encounter this approach in other contexts in this text, e.g., when
studying bagging classifiers in Chapter 62 and also temporal-difference techniques in
reinforcement learning in Chapter 46. Under bootstrap, we re-sample the original N
measurements {yn,} with replacement and obtain another collection of N samples, de-

noted by {yS)}. These sample values arise from the same original set and some values
may appear repeated due to resampling with replacement. We then compute the ML
estimate again from this new collection and denote it by:

N
{yg)} ML (31.220)
n=1

We repeat the re-sampling operation multiple times. Each time b leads to a new ML

estimate, é\(]f,’) The main advantage of carrying out these bootstrap calculations is that,

without collecting any additional data, the estimates {é\(]\’;)} lead to a histogram distri-

bution that approximates the pdf for the estimator 8y. We can subsequently use the
estimated pdf to deduce useful statistics about the ML estimator, such as its sample
mean, variance, and confidence interval, as illustrated in Fig. 31.7.
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Figure 31.7 Illustration of a histogram constructed for the distribution of a
maximum-likelihood estimator O, obtained by applying the bootstrap method.

Bayesian view. In contrast to the frequentist approach, the Bayesian view to inference
treats the concept of probability as a measure of uncertainty rather than frequency of
occurrence. In this case, the probability of an event is a subjective measure and provides
an indication of the belief we have about its occurrence. This point of view is partic-
ularly useful to model events that do not occur frequently and are therefore difficult
to capture by long-term frequency calculations. The early proponent of this interpreta-
tion for the notion of probability was the British philosopher and mathematician Frank
Ramsey (1903—-1930) in the work by Ramsey (1931) published posthumously — see
also the accounts by Sahlin (2008) and Misak (2020).

Under the Bayesian paradigm, it is possible to assign probabilities to events that are
not necessarily repeatable. For example, consider again the case of a likelihood function
that is parameterized by some 0, as in (31.218). The objective continues to be finding an
estimate for . However, in many instances, the designer may have available some prior
information about which values for 6 are more or less likely. This information can be
codified into a probability density function. One can model the unknown as a random
variable, 6, and associate a pdf with it, fg(6). This pdf is called the prior and it can
be interpreted as a weighting function. The prior models the amount of uncertainty we
have about 0: regions of high confidence will have higher likelihood of occurring than
regions of lower confidence. For example, assume 6@ is a scalar and we know that its
value lies in the range 0 € [0, 1]. If we adopt a uniform prior over this interval, then we
are codifying that all values in this range are equally likely. If, on the other hand, 6 can
assume values over (—oo, 00) but its true value lies somewhere within [—1, 1], then we
could perhaps select a Gaussian prior with zero mean and unit standard deviation to
reflect this knowledge. Once a prior is selected for 8, the Bayesian approach then seeks
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the estimate for § by maximizing the posterior likelihood of @ given the observations.
Using Bayes rule, this posterior is given by

fe(e) X fyl’“‘?yN‘e(yl’ ., Yn|0)
fyla'“ayN(y17' . -7yN)

f01y,,. gy Oy, yn) = (31.221)

The evidence in the denominator is independent of # and can be ignored in the maxi-
mization so that we can write

JO1y, oy Oy sun) o< f(0) x f, 01 yn6) (31.222)
posterior prior likelihood

or, equivalently, in the log domain (to bring forth the analogy with the ML approach)

N
Infg, uy Oly1,-..,yn) =1n fg(0) + Zlnfy(yn;ﬁ) + constant  (31.223)
n=1

The Bayesian approach then seeks the estimate that solves:

~

N
On = argr@nax {1nf9(9) —+ nz::llnfy(yn;ﬁ)} (31.224)

This construction leads to the mazimum a-posteriori (MAP) estimate for 6, which
we have already encountered in Chapter 28. We find another instance of it in our
derivation of the Bayesian information criterion (BIC) in Appendix 31.C. Comparing
with the ML formulation (31.218) we observe that the main difference is the appearance
of the additional term In fg(6) originating from the prior. We therefore find that the
frequentist approach ignores the prior and employs only the likelihood function to arrive
at the ML estimate 0, while the Bayesian approach keeps the prior and uses it to arrive
at the MAP estimate. Table 31.1 compares the main features of the frequentist and
Bayesian approaches to inference: the former focuses on finding a 6 that best fits the
likelihood model to the data, while the latter focuses on finding a 6 that best fits the
posterior distribution.

Table 31.1 Comparing frequentist and Bayesian approaches.

frequentist inference | Bayesian inference

1. ML is prime example 1. MAP is prime example

2. Probability is long-term frequency 2. Probability is measure of uncertainty
3. Model unknown but fixed 3. Model random with uncertainty

4. Does not use a prior for the model 4. Uses a prior for the model

5. Uses likelihood of data given model | 5. Uses likelihood of data given model
6. Finds best-fit model for the data 6. Finds best model for the parameter
7. Usually less complex 7. Finding evidence is challenging

The additional term In fg (@) in (31.224) has another useful interpretation. Consider
an example where 6 is M —dimensional with a Gaussian prior of the form:

L _-1e02

fg(6) = e (31.225)

then

In fg(0) = —%H9H2 + constant (31.226)
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and the cost that is being maximized in (31.224) becomes
Iy 1 N
§ = argmax {—7”9”2 + > I fy(yn;Q)} (31.227)
0 2 n=1

We see that the effect of the additional term is to discourage large values for 0. We refer
to In fg(0) in (31.224) as a regularization term, and we will study its effect more closely
in Chapter 51 where we will also consider other choices for the regularizatioil factor.
We will find out then that different choices for this factor help infuse into 6 certain
desirable properties such as forcing them to have small norm or sparse structure.

The frequentist and Bayesian approaches lead to different but related results in
general. To illustrate the difference, we consider in Prob. 31.8 a random variable y
that follows a binomial distribution with parameters N and p, i.e., the probability of
observing y = k successes in N trials is given by:

Py =k) = (JZ)pk(l—p)N_k, k=0,1,...,N (31.228a)

We show in that problem that having observed y = y, the maximum-likelihood estimate
for the probability of success p is

pu = y/N (31.228b)

whereas in the earlier Prob. 28.11 we modeled p as a random variable that follows a
beta distribution with shape parameters (2,1). We found then that the MAP estimate
for p is given by

y+1
N+1

Observe that the expressions for both estimates are different, although they tend to each
other for large sample sizes, N. The fact that the expressions are different should not
come as a surprise. After all, while the ML formulation is using solely the observation
y to estimate p, the Bayesian formulation is using one additional piece of information
represented by the assumption of a Beta distribution for p.

We will encounter repeated instances of the Bayesian formulation in our treatment.
One of the main difficulties that arises in this technique is the following. Referring
back to expression (31.221), we indicated that the evidence in the denominator is

assuming p ~ Beta(2,1) (31.228c)

~
Pmar =

independent of € and can therefore be ignored in the process of seeking 6. However,
in many instances, we still desire to know the resulting posterior distribution that
appears on the left-hand side. We will explain in future chapters that the posterior
quantity is useful in many cases, for example, to predict future values for y from past
observations — see Chapter 33. The difficulty lies in computing the evidence that
appears in the denominator. We will describe several techniques in later chapters for
this purpose including variational inference methods and Markov chain Monte Carlo
(MCMC) methods.

In summary, the Bayesian formulation is anchored on the Bayes rule for mapping
priors to posteriors. Although the frequentist approach was popular in the 20th Century,
the Bayesian approach has become more prominent in recent years due to several
theoretical and computational advances described in later chapters. Its main challenge
continues to be selecting a suitable prior that conforms to the physical reality of 6.
This is actually one of the main criticisms directed at the Bayesian approach: the
prior is often selected in a subjective manner and for the convenience of mathematical
tractability; it need not represent a faithful codification of the truth about the unknown,
0. Moreover, different priors will lead to different MAP estimates even for the same
measurements.

This old-age debate about the merits of the frequentist and Bayesian approaches is
likely to continue for decades to come. However, both approaches have merit and have
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proven useful in many contexts. It is better to view them as complementary rather than
competing or conflicting approaches. While both methodologies assume knowledge of
the likelihood function, we should note that the likelihood expressions are not exact
but rather approximations in most cases anyway. In this way, the ML and Bayesian
inference approaches seek, in their own ways, parameter estimates that “best” explain
the observed data and they lead to good performance in many applications of interest.
One may view the Bayesian formulation as a “regularized” frequentist formulation, in
which case more commonalities link these two approaches than actual differences. The
main distinction between them then becomes one of interpreting what their respective
costs mean. For more discussion on the frequentist and Bayesian approaches, the reader
may refer to Savage (1954), de Finetti (1974), Samaniego and Reneau (1994), Barnett
(1999), Samaniego (2010), Wakefield (2013), and VanderPlas (2014).

Heart disease Cleveland dataset. Figure 31.1 relies on data derived from the heart-
disease Cleveland dataset. The dataset consists of 297 samples that belong to patients
with and without heart disease. It is available on the UCI Machine Learning Repository
at https://archive.ics.uci.edu/ml/datasets/heart+Disease. The investigators re-
sponsible for the collection of the data are the leading 4 co-authors of the article by
Detrano et al. (1989).

PROBLEMS

31.1 Establish relations (31.24).

31.2 Establish the validity of (31.29).

31.3 Let y(n) = x 4+ v(n), where z is an unknown scalar constant and v(n) is zero-
mean white noise with power 2. An estimator for z is constructed recursively in the
following manner:

Z(n) = 1—-a)Z(n—1) + ay(n), n>0

starting from Z(—1) = 0 and where 0 < « < 1. Determine the steady-state mean and
variance of Z(n) as n — co. Any optimal choice for a?

31.4 Consider a vector-valued Gaussian distribution y ~ Ny (p, Ry) where y € RM.
Follow the same maximum-likelihood arguments from Sec. 31.1 to motivate the follow-
ing unbiased estimates for (u, Ry) from N independent realizations {y, }:

1 1 <
~_ B _ o o T
A= n;yn, Ry = ;(yn ) (yn — 1)

31.5 Consider the same setting of Prob. 28.10. Assume we collect N independent
realizations {y,} forn=1,2,... N.
(a) Verify that
)\SefNA
fy1 ----- yN(ylv"'vyN;)‘): N

Hn:l yn'

where S = 27]:]:1 Yn, and conclude that the maximum-likelihood estimate of A is
given by Ay, = % 22]:1 Yn. Is the estimator unbiased?

(b)  Show that T'(y) = + SN ya is a sufficient statistic for A.
31.6 A random variable y is uniformly distributed over the interval 0 < y < a. We
observe N independent and identically distributed realizations {y,,¥y,,...,yx} and

we wish to determine the maximume-likelihood estimate for a.
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(a)  Verify that

furoun (W1, ynia) = GLNH 0< max yn<a

where I[z] denotes the indicator function and was defined earlier in (4.164).
(b)  Conclude that Gy = maxi<n<ny Yn-
(¢) Show that the estimator is biased, namely, establish that E@ur, = Na/(N + 1).
(d) Show that T'(y) = maxi<n<n Yn is a sufficient statistic for a.
31.7 Assume y is an exponentially-distributed random variable with rate A > 0,
ie., fy(y;A) = Ae™¥ for y > 0. Verify that the maximum-likelihood estimate of A
given N independent and identically distributed realizations {y1,y2,...,y~n} is 2=
N/ SN yn. Show that

< NX 2 NZ\?
o1 W= Ny

Is the ML estimator efficient in this case?

31.8 A random variable y follows a binomial distribution with parameters N and p,

i.e., the probability of observing k successes in N trials is given by:

N ~
P(y =k) = <k)pk(1p)N * k=0,1,...,N

(a) Having observed y = y, show that the maximum-likelihood estimate of p when
N is known is given by pumr = y/N.

(b) Having observed y = y, show that the maximum-likelihood estimate of N when
p is known is given by the smallest value of N that satisfies Ny + 1 >y/p.

(¢) Under part (b), assume y/p is an integer. Conclude that there are two ML esti-
mates given by ]VML = y/p and ]VML = (y/p) — 1.

Remark. We compare in Probs. 28.11 and 28.12 the above ML solution to the MAP

(maximum a-posteriori) and MMSE (minimum mean-square-error) solutions.

31.9 Derive expressions (31.41)—(31.42).

31.10 Is the unbiased estimator (31.25) efficient? That is, does it attain the Cramer-

Rao lower bound?

31.11 Let y be a Bernoulli random variable that is equal to one with probability p

and equal to zero with probability 1 — p. Show that the Fisher information value for p

is given by F(p) = 1/p(1 — p).

31.12 Let y be distributed according to a Poisson distribution with mean A > 0, i.e.,

k_—A
Py =k) = A; . k=0,1,2,...

where A is the average number of events occurring in an interval of time. Show that the
Fisher information value for A is given by F(A) = 1/\. Show further that the maximum-
likelihood estimate of A from NN independent and identically distributed observations

{Y1,Ya,.-.,yy} is efficient.
31.13 Let y be distributed according to the beta distribution

fu(y;0) =ay*™", ye€(0,1), a>0

Assume we collect N independent and identically distributed observations {y;, Yo, ..., Yn }-

(a)  Show that the maximum-likelihood estimate of a is given by

1 & -
v = — <N;lnyn>
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(b)  Verify that the variance of amy is given by

o2 N

ML T (N —1)2(N —2)
(c) Show that the Fisher information value for a is F(a) = N/a.
(d) Is the maximum-likelihood estimator efficient?
31.14 Consider the vector-valued Gaussian distribution (31.105) with a diagonal co-
variance matrix. Introduce the vector of parameters
0 = col{p1, p2,...,pp,Ino1,Inos,...,Inop}

Compute the Fisher information matrix I(6) relative to these parameters.
31.15 Conclude from (31.122) that the mean-square error for any biased estimator

satisfies
~2 2 . ~1 2
E6° > (0-9(0)° - (IE(9 1“§$;y’9)) (a%f))

where 0 — ¢g(0) is the bias.
31.16 Establish expression (31.209) for the conditional distribution of the observa-
tions given the statistic T'(y).
31.17 Establish the validity of inequality (31.211) given by the Rao-Blackwell theo-
rem.
31.18 Refer to the log-likelihood function (31.133) and verify that the two regularity
conditions (31.229)—(31.230) are satisfied.
31.19 Let y denote a random variable that is uniformly distributed over the interval
[0, 6], where € > 0 is an unknown parameter, i.e., fy(y;0) = 1/6 for 0 <y < 6.

(a) Argue that 0 = 2y is an unbiased estimator for 6, i.e., E@ = 6.
(b)  Verify that the second regularity condition (31.230) fails in this case.

c) Verify that

. 2
EQ =0/3, E (7811”;’0(3”9)) =1/6?

and conclude that the Cramer-Rao bound result does not hold in this case.

31.20 Consider the problem of estimating the mean of a sequence of N observations

{y(n)} drawn from a Gaussian distribution with mean x and known variance o-.

a) Assume that p € IR. Let fi,,,; denote the maximum-likelihood estimator for p
from the observations {y(n)}. What is the variance of @i, ? Is the estimator
Broa unbiased?

(b)  Continue assuming that p € IR. What is the Cramér-Rao bound (lower bound on
var(f,e,)) for the parameter 4 as a function of o;, and N. Is the estimator fi,,,,
efficient?

(¢) Now assume that u € Z, where Z denotes the set of integers. Consider the estima-
tor Dippeger = round(fi ., ), where round(z) : IR — Z returns the nearest-integer
to the real number z (where round(z—1/2) =  when z itself is an integer). Com-
pute the probability mass function of fi; ..., and express it using the standard
Gaussian cumulative distribution function (CDF) Q(x) defined earlier in part (b)
of Prob. 4.31. Based on the probability mass function, is the estimator fi;,cger
unbiased?

(d)  Using the fact that the variance of fi;,.e, can be written as:

Va‘r(ﬁinteger) = Q (% g) - 2Q <%>

where

21 1,22
~g == 2y —
Q(x) “wx Ele , asx — o0
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show that the variance of the rounded estimator fi,;.q., is of the form:

(1 ) ~ 8a _82]3 N/ 2
var iy eger —~ ¢ , as N/o, — o0

(e) Compare the variances of parts (a) and (d). How fast does the variance of each
estimator decay as a function of N7 Is this a surprising result?
Remark. For more details on these results, the reader may refer to Hammersley (1950).

31.21 Refer to the expressions in Table 5.1 for several traditional probability dis-
tributions. Use result (31.81) to determine the ML estimates for the parameter 6 in
each case. Express your results in terms of estimates for the original parameters for the
various distributions.

31.22 Refer to expression (31.79) for the log-likelihood function of an exponential
distribution. Establish the identity

N

1 1

N Vor I fus oy (e yni0) = 5 Y T(n) — ET(y)
n=1

31.23  Refer to the least-squares problem (31.144) with unknown scalar parameters

{a, b, c}. Determine the estimates {a, b, c}.

31.24 Refer to expressions (31.194)—(31.196) derived under an MDL formulation for

selecting the best of two models.

(a) Maximize J(u1) over the parameter p1 and determine an expression for fi;. Ignore
the constant term and evaluate J(fi1).

(b)  Maximize J(u2,03) over the parameters (u2,03) and determine expressions for
(fi2, 53). Ignore the constant term and evaluate J(fiz, 53 ).

(¢)  Which model would you choose according to the MDL criterion?

31.25 We continue with Prob. 31.24 but assume now that the number of bits needed

to represent each model is computed based on (31.181). In this case, the cost functions

J(u1) and J(uz,o03) will be replaced by

,u1)2 + cte
)

M2 2 + cte

=N

-

Ju) = =3 n(N) = 25 37
(N = 5z O

J(p2,05) = —In

[\]

1
o (Yn —
=1

(Yn —
O'% n=1
Repeat the derivations of Prob. 31.24 for this case.
31.26  Refer to the least-squares problem (31.176). Differentiate the cost with respect
to w and establish the validity of the solution w}; and the corresponding minimum
cost En given by(31.177a)—(31.177b).
31.27 Consider N independent measurements {y1,¥2,...,yn} and introduce their
sample mean and sample variance estimates:

1 & 1 &
RS SR S o
n=1 n=1

We wish to use the data to decide between two models, Ny (0,1) and Ny(a, 1). One of
the models has § = 0 and My = 0 while the other model has # = a and My = 1. Here,
My denotes the number of parameters under model . Show that the AIC scores for
both models are given by

AIC(0) = N1n(2n) + N&* + Ni°
AIC(a) = 2 + N In(27) + N&°
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Conclude that model Ny (a, 0) is selected whenever i > 2/N. Verify that under BIC
the condition changes to ii* > (In N)/N.

31.28 Use approximation (31.279) for large sample size N in the BIC formulation to
justify the expression

6BIC(k)/2

w(klyr ..., = -
( ‘yl yN) 25:1 eBIC(kJ’)/?

31.29 Refer to the cross validation construction (31.204). Assume, for simplicity, that

cross validation performs a single pass over the data so that, for each model 0y, a single

estimate Xy 1 is generated using Xy 1 = T 23:1 In fy (ye; §k) Assume further that the

log-likelihood functions are bounded, say, 0 < In fy (y; é\z) < b for all y.

(a) For any small 6 > 0, use Hoeffding inequality (3.232b) to verify that P(\jﬁ'\k’l —
Xp| > 8) < 272T9°/0%

(b) Show how to select & to ensure that with high probability 1 — e:

b2 1n(2 vz
e |Rex — Xe| < ((/))
E<K

1 2T

(¢) Explain that

max Xk,l is close to max Xj with high probability
1<k<K 1<k<K

Quantify the likely distance between maxj X 1 and maxy Xp.
31.30 This example is extracted from Eddy (2004) and VanderPlas (2014). Alice and
Bob are present in a room with a billiard table; they cannot see the table. Their friend
Carol rolls a ball down the table and marks the location where it lands. Subsequently,
Carol rolls more balls. If the ball lands to the left of the mark, a point is given to
Alice. Otherwise, a point is given to Bob. The first person to reach six points wins the
game. After 8 throws, Alice has 5 points and Bob has 3 points. We wish to evaluate
the chance of Bob winning the game using the frequentist and Bayesian approaches.
(a) Based on the frequentist approach, the probability of a ball throw favoring Alice
is p = 5/8. The same probability for Bob is 1 — p = 3/8. Use these values to
estimate the likelihood that Bob will win the game.
(b) Based on the Bayesian approach, we model the unknown success probability for
Alice as a random variable p. Assume a uniform prior for p, i.e., fp(p) = 1 for
p € [0,1]. The measurements in this problem are y, = 5 and y, = 3 (the number
of balls successfully assigned to Alice and Bob, respectively). Use Bayes’ rule to
show that

1
/p5(1—p)6dp
Jo o T

! 5 3
/ p’(1—p)dp
0

Evaluate the expression and compare your result with part (a). Comment on the
difference.
31.31 Let {y,,} denote a collection of N random variables, for n = 1,2,..., N, with
each variable y,, distributed according to its own individual pdf, denoted by f,(y), with
its own mean p,. In many problems of interest (e.g., in economics, decision-making,
and in reinforcement learning studied later in Example ?77?), the objective is to estimate
the maximum mean value of the variables, i.e., to solve problems of the type:

P(Bob wins | ya = 5,y = 3) =

2 max E Yy
Hmax 1SRN n

If the means {u,} were known beforehand, then the answer is obviously the largest
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value among the {pn}, i.e., tmax = maxi<p<n in. The challenge is to estimate fimax
directly from observations. Thus, assume we collect M,, independent and identically dis-
tributed observations for each variable y,,. We denote the observations by {yn,m, m =

1,...,My,}. These observations can be used to determine unbiased estimates for the

{pn} using the sample mean calculation G, = (1/M,) an{ll Yn,m- Now consider the

estimate construction:

~ A ~
E = max
Hmax 1SnenN Hn

(a) Show that the estimator fi . constructed in this manner for pmax is biased. It
is sufficient to provide an example.

(b) Let y,, denote any unbiased estimator for y,,, i.e., Ey,, = Ey,,. Show that @
is an unbiased estimator for the alternative problem pmax = E maxi<p<n @n
(observe how the maximization and expectation operations are switched relative
to the original problem).

Remark. The bias of the maximum sample mean estimator is well-studied in the lit-

erature, with ramifications in the fields of economics and management — see, e.g.,

the works by Capen, Clapp, and Campbell (1971), Smith and Winkler (2006), Thaler

(1988), and Van den Steen (2004).

31.32 We continue with the setting of Prob. 31.31. Assume we collect, for each vari-

able y,,, two disjoint sets of independent and identically distributed observations with

Méa) and Mflb) samples in each. We use these measurements to compute two sample
means for y,,, namely,

1M ) 1 M
~(a) E ~(b) _ §
n - a Yn,m, M - b Yn,m
MTS' ) m=1 M"(Z ) m=1

where we are using the superscripts (a) and (b) to distinguish between the two sample
means. The observations {yn,m } used in each expression originate from the correspond-
ing set of measurements. Both sample means {ﬁS{”, ﬁ;b)} are unbiased estimators for
the same mean, un, i.e.,

BAY = BAY =By,

Let N be the set of indexes that maximize the expected values of the {y,, }:

N= {n* ‘ n” = argmax ]Eyn}

1<n<N

Let n® be an index that maximizes {fi'"}, i.c.,

n® = argmax 1

1<n<N

and consider the sample mean from set (b) that corresponds to this same index, namely,
~(b)

ne

(that is, we maximize over one sample mean set and consider the corresponding
sample mean from the other set). Verify that ﬁ;ba) continues to be a biased estimator

for pmax but that it does not overestimate it in the sense that

—(b) A
o < ax  —
Epyne < pma max Ey,
Show further that the inequality is strict if, and only if, P(n® ¢ N) > 0. Remark. For

further motivation and discussion on this construction, the reader may refer to van
Hasselt (2010).
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31.A DERIVATION OF CRAMER-RAO BOUND

We provide in this appendix one derivation for the Cramer-Rao bounds (31.120a)—
(31.120b) and (31.122) for the case of scalar parameters by following an argument
similar to Cassella and Berger (2002), Frieden (2004), and Van Trees (1968,2013); the
argument can be extended with proper adjustments to the vector case. The derivation
relies on two regularity conditions on the density function, namely,

(a) The score function exists and is finite, i.e., for every y where fy(y;0) > 0, it should
hold that

8(0) = 78111](5’9(%9) < o0 (31.229)

(b) It is possible to exchange the operations of integration and differentiation in the
equality below involving 6 and the distribution of the observation, i.e.,

o ([ antoa) = [ 5 (gnwo)a (31.230)

where the estimate 8 does not depend on 6.

It is straightforward to verify that these conditions imply that the score function has
zero mean since

ES(6) = E<7aln{;’éy?9)>

(R0 gy s 0pay

o (252 o

o Ofy (y; 9)
a0 W

—o0

(31.230) O o0 )
=S nmo
| S ——
=1
= 0 (31.231)

The derivation that follows is not limited to unbiased estimators 0 and will lead to
the more general statement (31.122) when E@ = g(0), for some function g(-). Thus,
consider the following sequence of calculations involving the correlation between the
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score function and 6, namely,

E(g9(0) —0)8(0) = Eg(0)S(0) — EOS(9)
= g(0)ES(H) — EBS(0)
ot
= —E68(0)

Il

|
—
8%

o A(%e(ye)) Fo: 0)dy

L ()

[

31.230 1o} RPN
0 9( 9fy(y;9)dy>

)

KR

50 (31.232)

We now call upon the Cauchy-Schwarz inequality for random variables, which states
that — recall Prob. 3.12:

{E0) - 0)30)} <E(9(0) - )’ E(S0))? (31.233)
so that, using (31.232), we have
(8?3—;’”) < E(9(6) - B)°E (S(9))? (31.234)

or, equivalently,

2 1 ag®)\* _ 1 (9g(0)\"
E(g(6) —0)" > W (W) = % (W) (31.235)

where we used the fact that the information value, F'(0), coincides with the variance of
the score function. The above inequality coincides with (31.122).

DERIVATION OF THE AIC FORMULATION

In this appendix we motivate the cost function that is optimized in (31.154) by the AIC
criterion by following the argument from Cavanaugh (1997) adjusted to our notation
and conventions. The objective is to devise a criterion that selects the “best” fit from a
collection of K models {61, ...,0k} using data measurements {y1,y2,...,yn~}.

Let fy(y) denote the true unknown pdf of the variable y. We will simplify the notation
and write f(y) without the subscript. Let f(y;0k) denote a model for the unknown pdf
that is parameterized by 6y of size M},. We estimate 0, by maximizing the log-likelihood
function:

N
6, = In f(yn|0 31.236
& argerilax{z n f(ynl k)} ( )

n=1
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One way to select a “best fit” model from among the K models is to minimize the KL
divergence between the true model and its approximation, namely,

K= argmnin {DKL ( Wl f(y;ék))} — 0" = O (31.237)

where

Dt (W) 1 fwi80) = [ 1wy — [ 1@ fsBody  (31239)

—entropy —cross-entropy

The first term on the right-hand side is independent of k. Therefore, the problem of
selecting the optimal k reduces to

1<k<K 1<k<K

= argmax{/f(y) lnf(y;gk)dy} = argmax {Ey lnf(y;ak)} (31.239)

The quantity that is being maximized is the mean of In f(y; 5k) over the true distri-

bution of y; in this case, the argument y of f(y; é\k) is treated as a random variable.
The expectation is not available since f(y) is unknown. The AIC formulation uses the
available data measurements to construct an unbiased estimate for the mean as follows:

~ 1 X - M,
EyInf(y:06) = 5 D I flynifs) — (31.240)
n=1

N
The first term on the right-hand side is a sample mean approximation; however, for
this problem, it leads to a biased estimate for E In f(y;0%). The reason for the bias
is because the measurements are used twice: once as an argument of f(y»;0x) and the

other in the computation of 0. The bias can be “removed” by subtracting M /N. This
result needs proof as we proceed to explain. Once established, we would then arrive at
the AIC formulation (31.154), namely, (where we are scaling (31.240) by multiplying
by 2N):

N
k* = argmin {sz -2) 1nf(yn;§k)} (31.241)
1<k<K ot

We thus need to establish that the expression on the right-hand side of (31.240) provides
an “unbiased” estimate for E, In f(y;6x). That is, we need to verify that

E,] 2 3 1 .0, M\ gyt .0,
v{ v 2 fnifk) — 7 ¢~ By Inf(y;0k) (31.242)
n=1

As the argument will show, the derivation is based on a couple of approximations and
the result is valid for large sample sizes, N.

Proof of (31.242): Motivated by (31.239), we introduce first the following notation for
the mean log-likelihood function that we are trying to approximate from the data:

L) £ /f(y)lnf(y;G)dy = Ey In f(y;0) (31.243)

Tts maximizer is denoted by 6*. We perform a second-order Taylor series expansion for
L(0y) around 0* to find

L) = L(6") + %(9* — ) IO = B0) + o607 — Be]?) (31.244)
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in terms of the Hessian matrix:

J 2 VZL(Q))QZG*
~ VIEnj(u:0)|
= EVj lnf(y;ﬁ)‘gze*
G _p(gr) (31.245)

where F'(0*) is the Fisher information matrix at 8*. In the third equality we assumed
that we can exchange the differentiation and expectation operations; this is usually
justified by a result known as the dominated convergence theorem in analysis; we com-
mented on this topic in some detail in Appendix 16.A. Ignoring higher-order error
terms, we conclude that

L) ~ L(0”) — = (0" — 0x) " F(0") (0" — O) (31.246)

In a similar vein, consider the empirical log-likelihood function used in the approxi-
mation (31.240), namely,

N
= Inf(yn; 0) (31.247)
=1
and let us perform a second-order Taylor series expansion around 6*:

0Br) ~ £06%) + (B — 6)TSi + %(e* ) THL(6" — B (31.248)

in terms of the gradient vector and Hessian matrix quantities:

N
Sk 2 Vit 9)‘ Z o7 10 f (s )‘9:9* (31.249a)
A N_
2
H, 2 V2 ‘6 N g 210 f(yn: 0 ‘H* (31.249b)

We rework the expressions for Si and Hy by noting that the second-order Taylor series
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approximations are valid for é\k close to 0* (which in turn requires large N):

N
Sk = Z Vot In f(yn;0%), (by definition)
n=1
N
(@)

=1

N
VorIn f(yn;07) = Y Vor In f(yn; 61)

n n=1

=0

{VHT In f(yn;0") — VGTlnf(yn;é\k)}

(b)

(/ V2 In f(yn: B + 10" —Gk)dt) 0" — Bh)

NS

Mz an M=

5 In f(yn; 0°)(0" — Br)

N
N(zi,;l% 1nf(yn;0*)> (0" - 0r)

—NF(6*)(6* — %), N large enough (31.250)

3
Il
-

Q

where step (a) is because Oy is the ML estimate that solves (31.236), step (b) uses

the mean-value theorem (10.5), and step (c) is because 6* and 6 are close to each
other. In the last step we used the sample average as an approximation for the Fisher
information matrix. Similarly, for the Hessian matrix we can verify that

N
1 A 1 2 . 0* ~ *
SHe 2 Ng::vglnf(yn,e) ~ —F(60Y) (31.251)

We can also write by the law of large numbers:

N
= Z In f(yn;0%), (by definition)

— -
= N(N T;hlf(yn;@*))

~ NL(0*), for N large enough (31.252)
Substituting into (31.248) we find that

B = L") + %(9* — G TEO)(0" — By (31.253)

1~ M, ? ~
Ey{NE(Gk) - N} ~ L(0k) (31.254)
or, equivalently,

Ey{lz@) - L(ék)} My /N (31.255)



1228

Maximum Likelihood

To establish that the relation is valid, we first note using (31.246) and (31.253) that
the difference on the left-hand side is given

Ey{]i,f@) - L@)} ~E {(9* —0x) F(0) (0" - éﬂ)} (31.256)

SEE {m(e* —6)TF(0")(6" - @)W}

To facilitate the derivation from this point, we assume initially that 6* is close to
the true (unknown) model that generated the data. For all practical purposes, this
assumption amounts to the “strong” requirement that the true model is included in
the set of models parameterized by the {0 }; we will remove this condition afterwards.
Under this assumption, we can appeal to property (31.129) to note that approximately:

VN(@¢* —8;,) % N(o, F—l(a*)) (31.257)
Next, introduce the eigendecomposition of F'(6*), say,
F(6*) =UAUT (31.258)

where U is orthogonal and A is My x M}, diagonal with positive entries {A;}. Then,
transformation by AY/2UT does not destroy Gaussianity:

2 2 VNAY2UT (0" — 0) -5 N(0, I) (31.259)

where A'/? denotes a diagonal matrix with the positive square-roots of the {\;}. Tt
follows that

My,
Ey{}ve@ : L(ak)} ~Llg { > z?} (31.200)

where the term on the right-hand side involves the sum of M, independent Gaussian-
distributed random variables with zero mean and unit variance each. It is well-known
that such a sum is Chi-square distributed with M} degrees of freedom — recall Prob. 4.3:

M,
D 2~ (M) (31.261)
j=1

Since the mean of a Chi-square distributed random variable is equal to its degree, we
conclude that

Ey{}ve@) - L(ék)} ~ My /N (31.262)

as claimed.

The previous argument assumed that the true unknown model is included in the
set of models parameterized by the {0 }; this assumption enabled the use of property
(31.257) where the covariance matrix of the Gaussian distribution is given by F~'(6*%).
Consider now the more general case where the true model that generated the data need
not be included in the set of candidate models. Let us denote this true model by 6°.
We verify that the covariance matrix in (31.257) will need to be adjusted (while the
remainder of the argument will continue to be the same). To see this, introduce the
score variable:

8(6) £ VerIn f(y,0) (31.263)

We know that its mean is zero and its covariance matrix at § = 6° is the Fisher
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information matrix, F(6°); recall (31.97). The covariance matrix will be different at
other values for 6. In particular, let V' denote the covariance matrix at 8 = 6*:

V(6*) £ ES(6%)8T(6) (31.264)

If we examine the definition for Sj from the first line of (31.250), we find that it is
the sum of N independent realizations for 8§(6*), each with zero mean and covariance
matrix V. Therefore, from the central limit theorem, we have

m(zlv 2 Vor mf(yn%@*)) =5 N(O,V(0) (31.265)

It follows from the last line of (31.250) that — compare with (31.257):

VN -8 -5 N((L F’l(é?*)V(Q*)F’l(H*)) (31.266)

The argument continues in the same manner from here by introducing the eigendecom-
position:

FH OV (0 F1(0) = UAUT (31.267)

to arrive at the same expression (31.262).

DERIVATION OF THE BIC FORMULATION

In this appendix we motivate the cost function that is optimized in (31.160) by the
BIC criterion by following the argument from Neath and Cavanaugh (2012) and Ghosh,
Delampady, and Samanta (2006) adjusted to our notation and conventions. The ob-
jective is to devise a criterion that selects the “best” fit from a collection of K models
{01,...,0k}. Each model 0; has M} parameters.

So far in the chapter, we have modeled the 6 as unknown (deterministic) parameters
that we wish to estimate. The Bayesian information criterion, however, follows an
alternative paradigm (which we encountered in Chapter 28 under Bayesian inference).
Specifically, as befits a Bayesian formulation, each variable 6, will be modeled as as
a random variable in its own right (rather than as a deterministic variable that is
unknown). Given a class k, the Bayesian formulation assumes a distribution fo, (Ok|k)
for the variable ). This essentially amounts to giving more or less weights to different
values for 6, with some values being preferred over other values as dictated by the
assumed pdf.

We assign a prior probability mass distribution to the model indexes {k} as well,
denoted by:

>

m(k) = Plk=k), > m(k)=1 (31.268)

k=1

This pmf is not going to influence the final solution; it can be thought of as assigning
more or less relevance to some models based on prior knowledge or experience. The
prior 7(k) could, for example, be chosen as the uniform distribution, w(k) = 1/K, in
which case all models are treated equally. We will compute the posterior distribution
given the observations, namely, 7(k|y1, y2,...,yn~), and then show that selecting the k
that maximizes this posterior leads to the BIC formulation.

For simplicity of notation in this appendix, we will write f(z) instead of f(z) to refer
to the pdf of a random variable z without the subscript. As such, we will write f(0x|k)
without the subscripts, which are understood from the arguments. We are already using
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this notation in the distribution 7 (-), and will be using it below for joint and conditional
distributions involving the variables {k,y,,...,yy}. From Bayes rule we have:

f(k,y1,92,...,yN)
f(yl,y27“'7yN)

m(kly1, y2, .., Yn) =
(a)

X f(k’ylay%"'ayN)

= 7(k) f(y1,92,. .., yn|k) (31.269)

where step (a) is because the denominator in the first equality is independent of k. To
evaluate the last conditional pdf we marginalize over 0, and apply Bayes rule again:

f(y17y27"'7yN‘k):/ f(y17y27-~~7yN70k|k)d0k
0, €O

— [ S unln k) S@RB. (31.270)
0, €0

where are using 0; € Oy to denote the domain of ;. Given k and 6y, the first term
under integration is related to the log-likelihood function over the data, which we denote
by

N
00r) 2 mf(ynye, o ynloek) = > Inf(yalon) (31.271)
n=1

Now, let 0) be the ML estimate obtained by maximizing this function:

0, = argmax L(0r) = ve; £(0r)
O

=0 (31.272)

6, =04
We perform a second-order Taylor series expansion of () around 0 to find
~ 1 ~ —~ —~
£(0k) = £(0k) + 5(91@ — Hk)THk(Gk —0) + o(||6r — 0k (31.273)

in terms of the Hessian matrix

Hy, 2 V20(6))

k=Y

N
o= 2 Vo, nf(mlow)|, (31.274)
n=1

0, =04

Comparing with (31.97) and (31.99) we find that for large enough N, the above Hessian
matrix is well approximated by the Fisher information matrix, namely,

1 ~
~Hx = —F(l:) (31.275)

Ignoring higher-order terms and substituting (31.273) into (31.271) we determine the
following expression for the likelihood function:

~ N R e e
F, vz, yn |0k, k) ~ %) x exp{ — 5 (0~ 0x) F(01) (0 — 0k)} (31.276)

Substituting further into (31.270) we obtain:
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f(y17y27"'7yN|k)

~ et ) /0keek. eXp{—%(Hk —0,)" [%F_l(ak)] 71(9k - ék)} 1 (Oxlk)dO%

27\ My /2 ~\—1/2 ~ -1 o~
~ (F) x (det F(Hk)) x el 5 /eke@k Ng, (9,€,NF 1(49,6)) F(0x1k)d6,
(31.277)

where in the last equality we scaled the expression inside the integral to transform it
into a Gaussian distribution. The above expression is valid for large values of N and
for values of 04 close to 0. At this stage it is customary in the literature to appeal to
approximate arguments in order to evaluate the integral expression. In one case, it is
assumed that f(0x|k) = 1 in the vicinity of O (which corresponds to an uninformative
or flat prior) so that the integral evaluates to the mean of the Gaussian distribution,
which is é\k In a second case, one notes that the variance of the Gaussian distribution

shrinks as N — oo and uses this observation to approximate the integral by f(§k|k)
Either approximation leads to the same final result. We continue with this second
approximation. Substituting into (31.269) we obtain (where we are further multiplying
both sides of the equality by 2 for convenience to arrive at the same form as the BIC):

N
2In7(kly1,y2,...,yn) = — MpIn N + QZlnf(yn;@\k) (31.278)

n=1

+2In7(k) — Indet F(é\k) +In f(é\k\k) + cte

The terms on the second line remain bounded as N — oo; we can ignore them in the
maximization of Inw(k|y1, y2, ..., yn), which leads to the BIC formulation (31.160).
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