
29 Linear Regression

The mean-square-error (MSE) problem of estimating a random variable x from
observations of another random variable y seeks a mapping c(y) that solves

x̂ = argmin
x=c(y)

E (x− c(y))2 (29.1)

We showed in (27.18) that the optimal estimate is given by the conditional
mean x̂ = E (x|y = y). For example, for continuous random variables, the MSE
estimate involves an integral computation of the form:

x̂ =

ˆ
x∈X

xfx|y(x|y)dx (29.2)

over the domain of realizations x ∈ X. Evaluation of this solution requires knowl-
edge of the conditional distribution, fx|y(x|y). Even if fx|y(x|y) were available,
computation of the integral expression is generally not possible in closed-form.
In this chapter, we address this challenge by limiting c(y) to the class of affine
functions of y. Assuming y isM−dimensional, affine functions take the following
form:

c(y) = yTw − θ (29.3)

for some parameters w ∈ IRM and θ ∈ IR; the latter is called the offset parameter.
The problem of determining the MSE estimator x̂ is then reduced to the problem
of selecting optimal parameters (w, θ) to minimize the same mean-square-error in
(29.1). Despite its apparent narrowness, this class of estimators leads to solutions
that are tractable mathematically and deliver laudable performance in a wide
range of applications.

29.1 REGRESSION MODEL

Although we can treat the inference problem in greater generality than below, by
considering directly the problem of estimating a random vector x from another
random vector y, we will consider first the case of estimating a scalar x from a
vector y ∈ IRM .

Let {x̄, ȳ} denote the first-order moments of the random variables x ∈ IR and
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y ∈ IRM , i.e., their means:

x̄ = Ex, ȳ = Ey (29.4a)

and let {σ2
x, Ry, rxy} denote their second-order moments, i.e., their (co)-variances

and cross-covariance vector:

σ2
x = E (x− x̄)2, (scalar) (29.4b)

Ry = E (y − ȳ)(y − ȳ)T, (M ×M) (29.4c)

rxy = E (x− x̄)(y − ȳ)T = rTyx, (1×M) (29.4d)

The cross-covariance vector, rxy, between x and y is a useful measure of the
amount of information that one variable conveys about the other. We then
pose the problem of determining the linear least-mean-square-error estimator
(l.l.m.s.e., for short) of x given y, namely, an estimator for the form

x̂LMSE = yTw − θ = wTy − θ, (estimator for x) (29.5)

where (w, θ) are determined by solving

(wo, θo) = argmin
w,θ

E (x− x̂LMSE)2 (29.6)

The minus sign in front of the offset parameter θ in (29.5) is chosen for conve-
nience, and the subscript LMSE refers to the “linear mean-square error estimator.
” Since in this chapter we will be dealing almost exclusively with linear estima-
tors under the mean-square-error criterion, we will refrain from including the
subscript and will simply write x̂. It is customary to refer to model (29.5) as
a linear regression model in the sense that the individual entries of y are being
combined linearly, or a linear model is being fitted to the entries of y, in order
to estimate x.

Theorem 29.1. (Linear estimators) The solution (wo, θo) to (29.6) satisfies
the relations

Ryw
o = ryx, θo = ȳTwo − x̄ (29.7)

so that, when Ry is invertible, the estimator and the resulting minimum mean-
square error (m.m.s.e.) are given by

x̂− x̄ = rxyR
−1
y (y − ȳ) (29.8a)

m.m.s.e. = σ2
x − rxyR−1

y ryx (29.8b)

Proof: We provide an algebraic proof. Let x̃ = x − x̂. We expand the mean-square
error (m.s.e.) to get

m.s.e.
∆
= E x̃2 = E (x− yTw + θ)2 (29.9)

= Ex2 − 2(ExyT)w + 2θx̄− 2θȳTw + wT(EyyT)w + θ2
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This m.s.e. is a quadratic function of w and θ. Differentiating with respect to w and θ
and setting the derivatives to zero at the optimal solution gives:

∂ m.s.e./∂θ
∣∣∣
θ=θo,w=wo

= 2x̄− 2ȳTwo + 2θo = 0 (29.10)

∇w m.s.e.
∣∣∣
θ=θo,w=wo

= −2ExyT − 2θoȳT + 2(wo)T(EyyT) = 0 (29.11)

Solving for θo and wo we find

θo = ȳTwo − x̄ and (EyyT)wo = Eyx+ θoȳ (29.12)

Replacing θo in the second expression for wo and grouping terms gives(
EyyT − ȳȳT

)
wo = Eyx− ȳx̄ ⇐⇒ Ryw

o = ryx (29.13)

which leads to (29.7). Substituting the expressions for (wo, θo) into (29.9) leads to
(29.8b). Finally, the Hessian matrix of the m.s.e. relative to w and θ is given by

H
∆
=

 ∂2m.s.e.
∂θ2

∂
∂θ

(
∇wm.s.e.

)
∇wT

(
∂m.s.e.
∂θ

)
∇2
wm.s.e.

 =

[
2 −2ȳT

−2ȳ 2EyyT

]
(29.14)

This Hessian matrix is nonnegative-definite since its (1, 1) entry is positive and the
Schur complement relative to this entry is nonnegative-definite:

Schur complement = 2EyyT − 2ȳȳT = 2Ry ≥ 0 (29.15)

Since the m.s.e. cost is quadratic in the parameters (w, θ), we conclude that the solution
(wo, θo) corresponds to a global minimizer.

�

It is sufficient for our purposes to assume that Ry > 0. Observe from the state-
ment of the theorem that the solution to the linear regression problem only re-
quires knowledge of the first and second-order moments {x̄, ȳ, σ2

x, Ry, rxy}; there
is no need to know the full conditional pdf fx|y(x|y) as was the case with the
optimal conditional mean estimator (27.18). Moreover, the observation, y, does
not appear in the m.m.s.e. expression. This means that we can assess before-
hand, even before receiving the observation, the performance level that will be
expected from the solution.

Remark 29.1. (Linear model) Consider two random variables {x,y} and assume
they are related by a linear model of the form:

x = yTzo + v (29.16)

for some unknown parameter zo ∈ IRM , and where v has zero mean and is orthogonal
to y, i.e., EvyT = 0. Taking expectation of both sides gives x̄ = ȳTzo so that

x− x̄ = (y − ȳ)Tzo + v (29.17)

Multiplying both sides by (y − ȳ) from the left and taking expectations again gives

ryx = Ryz
o (29.18)

This is the same equation satisfied by the solution wo in (29.7). We therefore conclude
that when the variables {x,y} happen to be related by a linear model as in (29.16),
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then the estimator, x̂LMSE, is able to recover the exact model zo. Put in another way,
when we solve a linear mean-square error problem, we are implicitly assuming that the
variables {x,y} satisfy a linear model of the above form.

�

Two properties
The linear least-mean-squares estimator satisfies two useful properties. First, the
estimator is unbiased since by taking expectations of both sides of (29.8a) we
get

E (x̂− x̄) = rxyR
−1
y E (y − ȳ)︸ ︷︷ ︸

=0

= 0 (29.19)

so that,

E x̂ = x̄ (unbiased estimator) (29.20)

Moreover, using (29.8a) again, we find that the variance of the estimator x̂ is
given by

σ2
x̂ = E (x̂− x̄)2

(29.8a)
= rxyR

−1
y

(
E (y − ȳ)(y − ȳ)T

)
︸ ︷︷ ︸

=Ry

R−1
y ryx

= rxyR
−1
y ryx (29.21)

so that expression (29.8b) for the m.m.s.e. can be equivalently rewritten as

m.m.s.e. = E x̃2 = σ2
x − σ2

x̂ (29.22)

Second, the linear least-mean-square error estimator satisfies an important or-
thogonality condition, namely, it is is uncorrelated with the observation:

E x̃yT = 0 (orthogonality principle) (29.23)

Proof of (29.23): From expression (29.8a) we note that

E x̃(y − ȳ)T = E (x− x̂)(y − ȳ)T

(29.8a)
= E

(
x− x̄− rxyR−1

y (y − ȳ)
)

(y − ȳ)T

= E (x− x̄)(y − ȳ)T − rxyR
−1
y E (y − ȳ)(y − ȳ)T

= rxy − rxyR
−1
y Ry

= 0 (29.24)

But since E x̃ = 0, we conclude that (29.23) holds.
�

It is because of the orthogonality property (29.23) between the estimation error
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and the observation that equations (29.7) for wo are referred to as the normal
equations:

Ryw
o = ryx (normal equations) (29.25)

It can be verified that these equations are always consistent, i.e., a solution wo al-
ways exists independent of whether Ry is invertible or not — see Appendix 29.A.
Moreover, the orthogonality condition (29.23) plays a critical role in character-
izing linear estimators.

Theorem 29.2. (Orthogonality principle) An unbiased linear estimator is
optimal in the least-mean-square-error sense if, and only if, its estimation error
satisfies the orthogonality condition (29.23).

Proof: One direction of the argument has already been proven prior to the state-
ment, namely, the linear least-mean-square-error estimator, x̂, given by (29.8a), satis-
fies (29.23). With regards to the converse statement, assume now that we are given an
unbiased linear estimator for x of the form

x̂u = yTwu − θu (29.26)

and that the corresponding estimation error satisfies the orthogonality condition (29.23),
i.e., x̃u ⊥ y. We verify that the parameters {wu, θu} must coincide with the optimal
parameters {wo, θo} given by (29.7).

Indeed, the fact that x̂u is unbiased means that E x̂u = x̄ and, hence, θu satisfies

θu = −(x̄− ȳTwu) (29.27)

so that, by substituting into (29.26), we get that x̂u satisfies

x̂u − x̄ = (y − ȳ)Twu (29.28)

Now using the assumed orthogonality condition x̃u ⊥ y we must have

E (x− x̂u)yT = 0 (29.29)

which is equivalent to

E (x− x̂u)(y − ȳ)T = 0 (29.30)

since, by assumption, E x̂u = Ex. Substituting expression (29.28) for x̂u into (29.30),
we find that wu must satisfy

E
(
x− x̄− (y − ȳ)Twu

)
(y − ȳ)T = 0 (29.31)

which leads to
ryx = Rywu (29.32)

so that wo and wu satisfy the same normal equations. Substituting wu by wo into
expression (29.27) we get that θu = θo.

�

Example 29.1 (Multiple noisy measurements of a binary signal) Consider a signal x
that assumes the values ±1 with probability 1/2 each. We collectN noisy measurements

y` = x+ v`, ` = 1, . . . , N (29.33)
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where v` is zero-mean noise of unit-variance and independent of x. We introduce the
observation vector y = col{y1,y2, . . . ,yN}. Then, say, for N = 5, it is straightforward
to find that

rxy =
[

1 1 1 1 1
]
, Ry =


2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1 2

 (29.34)

so that

x̂ = rxyR
−1
y y =

[ 1 1 1 1 1
]


2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1 2


−1 y (29.35)

We need to evaluate R−1
y . Due to the special structure of Ry, its inverse can be evaluated

in closed form for any N . Observe that, for any N , the matrix Ry can be expressed as
Ry = IN+11T, where IN is the N×N identity matrix and 1 is the N×1 column vector
with unit entries, 1 = col{1, 1, 1, . . . , 1}. In other words, Ry is a rank-one modification
of the identity matrix. This is a useful observation since the inverse of every such matrix
has a similar form (see Prob. 1.10). Specifically, it can be verified that, for any column
vector a ∈ IRN , (

IN + aaT
)−1

= IN − aaT

1 + ‖a‖2 (29.36)

where ‖a‖2 = aTa denotes the squared Euclidean norm of a. Using this result with
a = 1, we find that

rxyR
−1
y = 1

T

(
IN − 11T

N + 1

)
= 1

T − N

N + 1
1
T =

1T

N + 1
(29.37)

so that

x̂ =
1

N + 1
1
Ty =

1

N + 1

N∑
`=1

y` (29.38)

Recall that in this problem the variable x is discrete and assumes the values ±1. The
estimator x̂ in (29.38) will generally assume real-values. If one wishes to use x̂ to decide
whether x = +1 or x = −1, then one may consider examining the sign of x̂ and use
the sub-optimal estimator:

x̂sub = sign

(
1

N + 1

N∑
n=1

yn

)
(29.39)

where the sign function was defined earlier in (27.36).

Example 29.2 (Learning a regression model from data) Assume we can estimate the
price of a house in some neighborhood A, measured in units of ×1000 USD, in some
affine manner from the surface area s (measured in m2) and the unit’s age a (measured
in years), say, as:

P̂ = αs+ βa− θ (29.40)

for some unknown scalar parameters (α, β, θ). Here, the scalar θ denotes an offset
parameter and the above relation represents the equation of a plane mapping values



29.1 Regression Model 1085

(s, a) into an estimate for the house price, denoted by P̂ . We collect the attributes
{s, a} into an observation vector:

y =

[
s
a

]
(29.41)

and the unknown parameters {α, β} into a column vector:

w =

[
α
β

]
(29.42)

Then, the mapping from y to P̂ can be written more compactly as:

P̂ = yTw − θ (29.43)

The price P plays the role of the variable x that we wish to estimate from observations of
y. If we happen to know the first and second-order moments of the price and observation
variables, then we could estimate (w, θ) by using

wo = R−1
y ryP , θo = ȳTwo − P̄ (29.44)

where P̄ is the average price of houses in neighborhood A. Often, in practice, these
statistical moments are not known beforehand. They can, however, be estimated from
measurements. Assume we have available a list of N houses from neighborhood A
with their prices, size, and age; obviously, the house whose price we are interested
in estimating should not be part of this list. We denote the available information by
{Pn, yn} where n = 1, 2, . . . , N . Then, we can estimate the first and second-order
moments from this data by using the sample averages:

̂̄P =
1

N

N∑
n=1

Pn, ̂̄y =
1

N

N∑
n=1

yn (29.45a)

and

r̂yP =
1

N

N∑
n=1

(yn − ̂̄y )(Pn − ̂̄P ) (29.46a)

R̂y =
1

N

N∑
n=1

(yn − ̂̄y )(yn − ̂̄y )T (29.46b)

The parameters (wo, θo) would be approximated by

w? = R̂−1
y r̂yP (29.47a)

θ? = ̂̄yTw? − ̂̄P (29.47b)

where we are using the star notation to refer to parameters estimated directly from
data measurements; this will be a standard convention in our treatment.

Figure 29.1 illustrates these results by means of a simulation. The figure shows the
scatter diagram for N = 500 points (Pn, yn) representing the triplet (price, area, age)
for a collection of 500 houses. The price is measured in units of ×1000 USD, the area
in units of m2, and the age in units of years. The spheres represent the measured data.
The flat plane represents the regression plane that results from the above calculations,
namely,

P̂ = yTw? − θ? (29.48)

with

w? =

[
3.02
−2.04

]
, θ? = 1.26 (29.49)



1086 Linear Regression

Figure 29.1 Scatter diagram of N = 500 points (Pn, yn) representing the triplet (price,
area, age) for a collection of 500 houses. The price is measured in units of ×1000
USD, the area in units of m2, and the age in units of years. The spheres represent the
measured data. The flat plane represents the fitted regression plane (29.48).

The values of the parameters (α, β, θ) are measured in units of ×1000 USD. Now given
a 17−year old house with area 102m2, we can use the above parameter values to
estimate/predict its price as follows:

P̂ = (3.02× 102)− (2.04× 17)− 1.26 = 272.1K USD (29.50)

29.2 CENTERING AND AUGMENTATION

We describe in this section two useful pre-processing steps that are common in
inference and learning implementations in order to remove the need for the offset
parameter, θ.

29.2.1 Centering

We start with centering. One useful fact to note is that the mean values {x̄, ȳ}
appear subtracted from both sides of (29.8a). We say that the random variables
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{x,y} are being centered, by subtracting their means, and that the estimation
problem actually amounts to estimating one centered variable from another cen-
tered variable, i.e., to estimating xc = x− x̄ from yc = y− ȳ in a linear manner.
Indeed, note that the variables {x,y} and {xc,yc} have the same second-order
moments since

Ryc
∆
= EycyT

c = E (y − ȳ)(y − ȳ)T
∆
= Ry (29.51a)

and

rxcyc
∆
= Exc(yc)T = E (x− x̄)(y − ȳ)T

∆
= rxy (29.51b)

so that estimating xc from yc leads to the same relation

x̂c = rxyR
−1
y yc (29.52)

For this reason, and without loss in generality, it is customary in linear estimation
problems to assume that the variables {x,y} have zero means (or have already
been centered) and to solve the estimation task under this condition.

The fact that centering arises in the context of linear least-mean-square-error
estimation can also be seen directly from (29.5) if we were to impose the require-
ment that the estimator should be unbiased. In that case, we would conclude
from (29.5) that θ must satisfy

x̄ = ȳTw − θ =⇒ θ = ȳTw − x̄ (29.53)

Substituting this condition for θ into (29.5) we find that, in effect, the estimator
we are seeking should be of the form

x̂− x̄ = (y − ȳ)Tw (29.54)

with centered variables appearing on both sides of the expression.

29.2.2 Augmentation

There is a second equivalent construction to centering, and which will be used
extensively in later chapters. We refer to the affine model (29.5) and introduce
the extended vectors:

y′
∆
=

[
1

y

]
, w′

∆
=

[ −θ
w

]
, (M + 1)× 1 (29.55)

where we have added the scalars 1 and −θ as leading entries on top of y and
w, respectively. Then, the affine estimator (29.5) can be rewritten in the linear
(rather than affine) form:

x̂ = (y′)Tw′ (29.56)

and the design problem becomes one of determining a parameter vector (w′)o

that minimizes E x̃2. We already know from the statement of Theorem 29.1
applied to this extended problem that (w′)o should satisfy the linear equations:

Ry′(w
′)o = ry′x (29.57)
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where the first and second-order moments are computed as follows:

ȳ′
∆
= Ey′ =

[
1

ȳ

]
(29.58a)

while

ry′x
∆
= E (y′ − ȳ′)(x− x̄)

= E
[

0

(y − ȳ)

]
(x− x̄)

=

[
0

ryx

]
(29.58b)

and

Ry′
∆
= Ey′(y′)T − ȳ′(ȳ′)T

= E
[

1 yT

y yyT

]
−
[

1 ȳT

ȳ ȳȳT

]

=

[
0 0

0 Ry

]

(29.58c)

If we denote the individual entries of (w′)o by

(w′)o
∆
=

[ −θo
wo

]
(29.59)

then it follows from the expressions for Ry′ and ry′x and from (29.57) that the
wo component satisfies Rywo = ryx. This result agrees with (29.7). Again, if we
impose the unbiasedness condition that E x̂ = x̄ at the optimal solution (w′)o,
then we conclude from (29.56) that θo must satisfy

x̄ = (ȳ′)T(w′)o

=
[

1 ȳT
] [ −θo

wo

]

= −θo + ȳTwo (29.60)

from which we conclude that θo = ȳTwo − x̄, which again agrees with (29.7).
For this reason, it is customary to assume that the variables have been extended
to (y′, w′) as in (29.55), and to seek a linear (as opposed to affine) model as in
(29.56). It is a matter of convenience whether we assume that the variables (x,y)

are centered and replaced by (xc,yc) or that (y, w) are extended and replaced
by (y′, w′). The net effect in both cases is that we can assume that we are dealing
with an offset-free problem that estimates xc from yc or x from y′ in a linear
(rather than affine) manner.
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29.3 VECTOR ESTIMATION

The results from Sec. 29.1 can be easily extended to the case of estimating a
vector (as opposed to a scalar) variable x from multiple measurements. Thus,
consider a column vector x with entries

x =




x1

x2

...
xM


 , x̄ =




x̄1

x̄2

...
x̄M


 , (M × 1) (29.61)

We wish to estimate x from multiple observations, say,

y =




y1

y2
...
yN


 , ȳ =




ȳ1

ȳ2

...
ȳN


 , (N × 1) (29.62)

The solution to this problem can be deduced from the results of the previous
sections. First, according to (29.8a), we express the estimate for an arbitrary
m−th entry of x from all observations as follows:

(x̂m − x̄m) = wT
m(y − ȳ) (29.63)

for some column vector wm ∈ IRN , and where the variables have been centered
around their respective means. The vectors {wm} are then determined by mini-
mizing the aggregate mean-square-error:

{wom}
∆
= argmin
{wm∈IRN}Mm=1

{
M∑

m=1

E (xm − x̂m)2

}
(29.64)

29.3.1 Error Covariance Matrix

We can rewrite the cost in an equivalent form. Assume we collect the estimators
into a column vector,

x̂ =




x̂1

x̂2

...
x̂M


 (29.65)

and introduce the error vector:

x̃
∆
= x− x̂ (29.66)
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Then, the mean-squared Euclidean norm of x̃ agrees with the cost appearing in
(29.64), i.e.,

E‖x̃‖2 =

M∑

m=1

E (xm − x̂m)2 (29.67)

If we further let Rx̃ denote the covariance matrix of the error vector, namely,

Rx̃
∆
= E x̃x̃T (29.68)

then we also have that

E‖x̃‖2 = Tr (Rx̃) (29.69)

so that, in effect, problem (29.64) is seeking the weight vectors {wom} that min-
imize the trace of the error covariance matrix:

{wom}
∆
= argmin
{wm∈IRN}Mm=1

{
Tr (Rx̃)

}
(29.70)

We refer to the trace of Rx̃, which appears in the above expression, as the
mean-square-error in the vector case. We also refer to the matrix Rx̃ as the
mean-square-error matrix. In this way, for vector estimation problems, when we
write m.s.e. we may be referring either to the scalar quantity Tr(Rx̃) or to the
matrix quantity Rx̃ depending on the context. It is common to use the matrix
representation for the m.s.e. in the vector case.

29.3.2 Normal Equations

Continuing with (29.64), we observe that the cost consists of the sum of M
non-negative separable terms, with each term depending on the respective wm.
Therefore, we can determine the optimal coefficients {wm, m = 1, . . . ,M} by
minimizing each term separately:

wom = argmin
wm∈IRN

E (xm − x̂m)2 (29.71)

This is the same problem we studied before: estimating a scalar variable xm from
multiple observations {y`, ` = 1, . . . , N}. We already know that the solution is
given by the normal equations:

Ryw
o
m = ryxm , m = 1, 2, . . . ,M (29.72)

where rxmy is the cross-covariance vector of xm with y:

rxmy
∆
= E (xm − x̄m)(y − ȳ)T (29.73)

Moreover, the resulting estimation error satisfies the orthogonality condition:

E x̃myT = 0, m = 1, . . . ,M (29.74)
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where x̃m = xm − x̂m. Note that the {rxmy} are the rows of the M ×N cross-
covariance matrix Rxy between the vectors x and y:

Rxy = E (x− x̄)(y − ȳ)T =




rx1y

rx2y

...
rxMy


 , (M ×N) (29.75)

Therefore, by collecting the wom from (29.72) as columns into a matrix W o, for
all k = 1, 2, . . . ,M :

W o =
[
wo1 wo2 . . . woM

]
, (N ×M) (29.76)

and by noting that Ryx = RT
xy, we find that W o satisfies the normal equations

RyW
o = Ryx (normal equations) (29.77)

It follows that the optimal estimator is given by

x̂− x̄ = (W o)
T

(y − ȳ) (29.78)

or, equivalently,

x̂− x̄ = RxyR
−1
y (y − ȳ) (29.79)

In view of (29.74), the resulting estimation error vector satisfies the orthogonality
condition:

E x̃yT = 0 (orthogonality principle) (29.80)

where x̃ = x−x̂. The corresponding minimum mean-square error matrix is given
by

m.m.s.e. = E (x− x̂)(x− x̂)T

= E (x− x̂)(x− x̄+ x̄− x̂)T

= E (x− x̂)(x− x̄)T

= E ((x− x̄)− (x̂− x̄))(x− x̄)T

= E (x− x̄)(x− x̄)T − E (x̂− x̄)(x− x̄)T (29.81)

and we conclude from (29.79) that

m.m.s.e. = Rx −RxyR−1
y Ryx (29.82)

in terms of the covariance and cross-covariance matrices of x and y.



1092 Linear Regression

29.4 LINEAR MODELS

We apply the mean-square-error estimation theory of the previous sections to
the important case of linear models, which arises often in applications. Thus,
assume that zero-mean random vectors {x,y} are related via a linear model of
the form:

y = Hx+ v (29.83)

for some N × M known matrix H. We continue to assume that y is N × 1

and x is M × 1 so that we are estimating a vector variable from another vector
variable. We explained earlier that the zero-mean assumption is not restrictive
since the random variables x and y can be assumed to have been centered. In the
above model, the variable v denotes a zero-mean random additive noise vector
with known covariance matrix, Rv = EvvT. The covariance matrix of x is also
assumed to be known, say, Rx = ExxT. Both {x,v} are uncorrelated with each
other, i.e., ExvT = 0, and we further assume that

Rx > 0, Rv > 0 (29.84)

Two equivalent representations
According to (29.79), when Ry > 0, the linear least-mean-square-error estimator
of x given y is

x̂ = RxyR
−1
y y (29.85)

Because of (29.83), the covariances {Rxy, Ry} can be determined in terms of
the linear model parameters {H,Rx, Rv}. Indeed, the uncorrelatedness of {x,v}
gives

Ry = EyyT = E (Hx+ v)(Hx+ v)T = HRxH
T +Rv (29.86)

Rxy = ExyT = Ex(Hx+ v)T = RxH
T (29.87)

Moreover, since Rv > 0 we immediately get Ry > 0. Expression (29.85) for x̂
then becomes

x̂ = RxH
T
(
Rv +HRxH

T
)−1

y (29.88)

This expression can be rewritten in an equivalent form by using the matrix in-
version formula (1.81). The result states that for arbitrary matrices {A,B,C,D}
of compatible dimensions, if A and C are invertible, then

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1 (29.89)

Applying this identity to the matrix
(
Rv +HRxH

T
)−1 in (29.88), with the iden-

tifications

A← Rv, B ← H, C ← Rx, D ← HT (29.90)
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we obtain

x̂ = RxH
T
{
R−1
v −R−1

v H(R−1
x +HTR−1

v H)−1HTR−1
v

}
y

=
{
Rx(R−1

x +HTR−1
v H)−RxHTR−1

v H
}

(R−1
x +HTR−1

v H)−1HTR−1
v y

=
(
R−1
x +HTR−1

v H
)−1

HTR−1
v y (29.91)

where in the second equality we factored out (R−1
x +HTR−1

v H)−1HTR−1
v y from

the right. Hence,

x̂ =
(
R−1
x +HTR−1

v H
)−1

HTR−1
v y (29.92)

This alternative form is useful in several contexts. Observe, for example, that
when H happens to be a column vector (i.e., when x is a scalar), the quantity
(Rv + HRxH

T) that appears in (29.88) is a matrix, while the quantity (R−1
x +

HTR−1
v H) that appears in (29.92) is a scalar. In this case, the representation

(29.92) leads to a simpler expression for x̂. In general, the convenience of using
(29.88) or (29.92) depends on the situation at hand.

It further follows that the m.m.s.e. matrix is given by

m.m.s.e. = E x̃x̃T = ExxT − E x̂x̂T

= E (x− x̂)xT, since x̃ ⊥ x̂
= Rx −

(
R−1
x +HTR−1

v H
)−1

HTR−1
v HRx

=
(
R−1
x +HTR−1

v H
)−1

(29.93)

where in the last equality we used the matrix inversion lemma again. That is,

m.m.s.e. =
(
R−1
x +HTR−1

v H
)−1

(29.94)

Lemma 29.1. (Equivalent linear estimators) Consider two zero-mean random
vectors {x,y} that are related via a linear model of the form y = Hx+ v. The
variables {x,v} have zero mean, positive-definite covariance matrices Rx and
Rv, respectively, and are uncorrelated with each other. The linear least-mean-
square-error estimator of x given y can be computed by either of the following
equivalent expressions:

x̂ = RxH
T
(
Rv +HRxH

T
)−1

y (29.95a)

=
(
R−1
x +HTR−1

v H
)−1

HTR−1
v y (29.95b)

with the resulting m.m.s.e. value given by

m.m.s.e. =
(
R−1
x +HTR−1

v H
)−1

(29.96)
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29.5 DATA FUSION

We illustrate one application of the theory for linear models to the important
problem of fusing information from several sources in order to enhance the ac-
curacy of the estimation process. Thus, assume that we have a collection of N
sensors that are distributed over some region in space. All sensors are interested
in estimating the same zero-mean vector x with covariance matrix Rx = ExxT.
For example, the sensors could be tracking a moving object and their objective
is to estimate the speed and direction of motion of the target.

Assume each sensor k collects a measurement vector yk that is related to x
via a linear model, say,

yk = Hkx+ vk (29.97)

where Hk is the model matrix that maps x to yk at sensor k and vk is zero-
mean measurement noise with covariance matrix Rk = EvkvTk . In general, the
quantity yk is a vector, say, of size Lk × 1. If the vector x has size M × 1, then
Hk is Lk ×M . We assume Lk ≥ M so that each sensor k has at least as many
measurements as the size of the unknown vector x.

29.5.1 Fusing Raw Data

In the first fusion method, each sensor k transmits its measurement vector yk
and its model parameters {Hk, Rk, Rx} to a remote fusion center. The latter
collects all measurements from across the nodes, {yk, k = 1, 2, . . . , N}, and all
model parameters {(Hk, Rk), k = 1, 2, . . . , N}. The collected data satisfies the
model: 



y1

y2
...
yN




︸ ︷︷ ︸
y

=




H1

H2

...
HN




︸ ︷︷ ︸
H

x +




v1

v2

...
vN




︸ ︷︷ ︸
v

(29.98)

which is a linear model of the same form as (29.83). We assume that the noises
{vk} across all nodes are uncorrelated with each other so that the covariance
matrix of the aggregate noise vector, v, is block diagonal:

Rv = blkdiag
{
R1, R2, . . . , RN

}
(29.99)

Now, using (29.92), the fusion center can determine the estimator of x that is
based on all measurements {yk} as follows:

x̂ =
(
R−1
x +HTR−1

v H
)−1

HTR−1
v y (29.100)

The resulting m.m.s.e. would be

P =
(
R−1
x +HTR−1

v H
)−1

(29.101)
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where we are denoting the m.m.s.e. by the letter P ; it is a matrix of size M ×
M . We note that we are deliberately using form (29.92) for the estimator of x
because, as we are going to see shortly, this form will allow us to derive a second
more efficient fusion method.

The solution method (29.100) requires all sensors to transmit {yk, Hk, Rk} to
the fusion center; this amounts to a total of

Lk + LkM +
1

2
L2
k entries to be transmitted per sensor (29.102)

where the last term (L2
k/2) arises from the transmission of (half of) the entries

of the Lk × Lk symmetric matrix Rk.

29.5.2 Fusing Processed Data

In the fusion method (29.100), the fusion center fuses the raw data {yk, Hk, Rk}
that are collected at the sensors. A more efficient data fusion method is possible
and leads to a reduction in the amount of communication resources that are
necessary between the sensors and the fusion center. This alternative method is
based on the sensors performing some local processing first and then sharing the
results of the processing step with the fusion center. The two fusion modes are
illustrated in Fig. 29.2.

Figure 29.2 Two modes for data fusion: (a) on the left, the sensors share their raw
data {yk, Hk, Rk} with the fusion center, (b) while on the right, the sensors share
their local estimation results {x̂k, Pk} with the fusion center.

Specifically, assume that each node estimates x using its own data yk. We
denote the resulting estimator by x̂k and it is given by:

x̂k =
(
R−1
x +HT

kR
−1
k Hk

)−1
HT
kR
−1
k yk (29.103)
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The corresponding m.m.s.e. is

Pk =
(
R−1
x +HT

kR
−1
k Hk

)−1
(29.104)

We assume now that the nodes share the processed data {x̂k, Pk} with the fusion
center rather than the raw data {yk, Hk, Rk}. It turns out that the desired global
quantities {x̂, P} can be recovered from these processed data.

To begin with, observe that we can rework expression (29.101) for the global
m.m.s.e. as follows:

P−1 = R−1
x +HTR−1

v H

= R−1
x +

N∑

k=1

HT
kR
−1
k Hk

=

N∑

k=1

(
R−1
x +HT

kR
−1
k Hk

)
− (N − 1)R−1

x

=

N∑

k=1

P−1
k − (N − 1)R−1

x (29.105)

This expression allows the fusion center to determine P−1 directly from knowl-
edge of the quantities {P−1

k , R−1
x }. Note further that the global expression (29.100)

can be rewritten as

P−1x̂ = HTR−1
v y (29.106)

which, using H and Rv from (29.98)–(29.99), leads to

P−1x̂ =

N∑

k=1

HT
kR
−1
k yk =

N∑

k=1

P−1
k x̂k (29.107)

Therefore, we arrive at the following conclusion to fuse the data from multiple
sensors.

Lemma 29.2. (Data fusion) Consider a collection of N linear measurements
of the form yk = Hkx + vk, where x and vk have zero mean, positive-definite
covariance matrices Rx and Rk, respectively, and are uncorrelated with each
other. Let x̂ denote the linear least-mean-square-error estimator of x given the
N observations {y1,y2, . . . ,yN} with error covariance matrix P = E x̃x̃T. Let
x̂k denote the linear least-mean-square-error estimator of the same x given only
yk with error covariance matrix Pk = E x̃kx̃T

k . It holds that

P−1 =
(
P−1

1 + P−1
2 + . . .+ P−1

N

)
− (N − 1)R−1

x (29.108a)

P−1x̂ = P−1
1 x̂1 + P−1

2 x̂2 + . . .+ P−1
N x̂N (29.108b)

Observe from (29.108b) that the individual estimators are scaled by the inverses
of their m.m.s.e matrices so that more accurate estimators are given more weight.
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In this method, the sensors need to send to the fusion center the processed
information {x̂k, Pk}. This amounts to a total of

M +M2/2 entries to be transmitted per node (29.109)

which is smaller than (29.102) given that Lk ≥M .

29.6 MINIMUM-VARIANCE UNBIASED ESTIMATION

In the previous section we examined the linear model (29.83) where the unknown,
x, is modeled as a random variable with covariance matrix, Rx. We encountered
one instance of this model earlier in Example 29.1, which dealt with the prob-
lem of estimating a zero-mean scalar random variable, x, from a collection of
noisy measurements, {y1,y2, . . . ,yN}. The model relating the variables in that
example is a special case of (29.83) since it amounts to




y1

y2
...
yN




︸ ︷︷ ︸
∆
= y

=




1

1
...
1




︸ ︷︷ ︸
∆
= H

x +




v1

v2

...
vN




︸ ︷︷ ︸
∆
= v

(29.110)

where

H = col{1, 1, . . . , 1} (29.111a)

Rx = σ2
x (29.111b)

Rv = σ2
vIN (29.111c)

Note that, for generality, we are using generic values for σ2
x and σ2

v rather than
set them equal to one, as was the case in Example 29.1. We can recover the
solution (29.38) by appealing to expression (29.92), which gives

x̂ =

(
1

σ2
x

+
N

σ2
v

)−1
1

σ2
v

N∑

`=1

y` =
1

N + 1
SNR

N∑

`=1

y` (29.112)

in terms of the signal-to-noise ratio defined as

SNR ∆
= σ2

x/σ
2
v (29.113)

In (29.110), the variable x is assumed to have been selected at random and,
subsequently, N noisy measurements of this same value are collected. The obser-
vations are used to estimate x according to (29.112). Observe that the solution
does not correspond to computing the sample mean of the observations. Expres-
sion (29.112) would reduce to the sample mean only when SNR→∞.

We now consider an alternative formulation for estimating the unknown by
modeling it as a deterministic unknown constant, say, x, rather than a random
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quantity, x. For this purpose, we replace the earlier linear model (29.83) by one
of the form

y = Hx+ v (29.114)

where, compared with (29.83), we are replacing the boldface letter x by the
normal letter x (remember that we reserve the boldface notation to random
variables). The observation vector y in (29.114) continues to be random since
the disturbance v is random. Any estimator for x that is based on y will also
be a random variable itself. Given model (29.114), we now study the problem of
designing an optimal linear estimator for x of the form

x̂ = WTy (29.115)

for some coefficient matrix WT ∈ IRM×N to be determined. It will turn out
that, for such problems, W is found by solving a constrained least-mean-square-
error estimation problem, as opposed to the unconstrained estimation problem
(29.70).

29.6.1 Problem Formulation

Thus, consider a zero-mean random noise variable v with a positive-definite
covariance matrix Rv = EvvT > 0, and let y be a noisy measurement of Hx
according to model (29.114) where x is the unknown constant vector that we
wish to estimate. The dimensions of the data matrix H are denoted by N ×M
and it is assumed that N ≥M and that H has full rank:

rank(H) = M, N ≥M (29.116)

That is, H is a tall matrix so that the number of available measurements is at
least as many as the number of unknown entries in x. The full rank condition
on H guarantees that the matrix product HTR−1

v H is positive-definite — recall
result (1.59). The inverse of this matrix product will appear in the expression
for the estimator.

We are interested in determining a linear estimator for x of the form x̂ = WTy.
The choice of W should satisfy two conditions:

(a) (Unbiasedness). That is, we must guarantee E x̂ = x, which is the same as
WTEy = x. But from (29.114) we have Ey = Hx so that W must satisfy
WTHx = x, no matter what the value of x is. This condition means that W
should satisfy

WTH = IM (29.117)

(b) (Optimality). The choice of W should minimize the trace of the covariance
matrix of the estimation error, x̃ = x− x̂. Using the condition WTH = IM ,
we find that

x̂ = WTy = WT(Hx+ v) = WTHx+WTv = x+WTv

(29.118)
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so that x̃ = −Wv. This means that the error covariance matrix, as a function
of W , is given by

E x̃x̃T = WTRvW (29.119)

Combining (29.117) and (29.119), we conclude that the desired W can be found
by solving the following constrained optimization problem:

W o ∆
= argmin

W

{
Tr(WTRvW )

}
, subject to WTH = IM , Rv > 0 (29.120)

The estimator x̂ = (W o)Ty that results from the solution of (29.120) is known as
the minimum-variance-unbiased estimator, or MVUE for short. It is also some-
times called the best linear unbiased estimator or BLUE.

Example 29.3 (Guessing the solution) Let us first try to guess the form of the solution
to the constrained problem (29.120) by appealing to the solution of the linear least-
mean-square-error estimation problem (29.83). In that formulation, the unknown, x, is
modeled as a random variable with covariance matrix Rx. From expression (29.92), we
know that the linear estimator is given by

x̂ = (R−1
x +HTR−1

v H)−1HTR−1
v y (29.121)

Now assume that the covariance matrix of x has the particular form Rx = σ2
xI, with a

sufficiently large positive scalar σ2
x (i.e., σ2

x →∞). That is, assume that the variance of
each of the entries of x is “infinitely” large. In this way, the variable x can be “regarded”
as playing the role of some unknown constant vector, x. Then, the above expression for
x̂ reduces to

x̂ = (HTR−1
v H)−1HTR−1

v y (29.122)

This conclusion suggests that the choice

(W o)T = (HTR−1
v H)−1HTR−1

v (29.123)

should solve the problem of estimating the unknown constant vector x for model
(29.114). We establish this result more formally next.

29.6.2 Gauss-Markov Theorem

Result (29.123) is a manifestation of the Gauss-Markov Theorem.
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Theorem 29.3. (Gauss-Markov theorem) Consider a linear model of the form
y = Hx+ v, where x is an unknown constant, v has zero-mean and covariance
matrix Rv > 0, and H is a tall full-rank matrix (with as least as many rows as
columns). The minimum-variance unbiased estimator for x, the one that solves
(29.120), is given by

x̂MVUE = (HTR−1
v H)−1HTR−1

v y (29.124)

Equivalently, the optimal W in (29.120) is

(W o)T = (HTR−1
v H)−1HTR−1

v (29.125)

Moreover, the resulting minimum mean-square error is

Rx̃
∆
= E x̃x̃T = (HTR−1

v H)−1 (29.126)

Proof: Let J(W ) = WTRvW denote the cost function that appears in (29.120). Some
straightforward algebra shows that J(W ) can be expressed as

J(W ) = (W −W o)TRv(W −W o) + (W o)TRvW
o (29.127)

This is because, using WTH = I,

WTRvW
o = WTRv

(
R−1
v H(HTR−1

v H)−1
)

= WTH(HTR−1
v H)−1 = (HTR−1

v H)−1 (29.128)

Likewise, (W o)TRvW
o = (HTR−1

v H)−1. Relation (29.127) expresses the cost J(K)
as the sum of two nonnegative-definite terms: one is independent of W and is equal to
(W o)TRvW

o, while the other is dependent on W . It is then clear, since Rv > 0, that
the trace of the cost is minimized by choosing W = W o. Note further that the matrix
W o satisfies the constraint (W o)TH = IM .

�

Example 29.4 (Sample mean estimator) Let us reconsider problem (29.110) where x
is now modeled as an unknown constant, i.e., we now write

y1

y2

...
yN


︸ ︷︷ ︸

∆
= y

=


1
1
...
1


︸ ︷︷ ︸

∆
= H

x +


v1

v2

...
vN


︸ ︷︷ ︸

∆
= v

(29.129)

where the boldface x is replaced by x. In this case, the value of x can be regarded as
the mean value for each measurement, y`. Using expression (29.124) we find that the
minimum-variance unbiased estimator for x is given by (compare with (29.112)):

x̂MVUE =
1

N

N∑
`=1

y` (29.130)

which is simply the sample mean estimator that we are familiar with from introductory
courses on statistics.
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29.7 COMMENTARIES AND DISCUSSION

Linear estimation. In this chapter we covered the basics of linear mean-square error re-
gression analysis and highlighted only concepts that are relevant to the subject matter
of the book, motivated by the presentations in Sayed (2003,2008) and Kailath, Sayed,
and Hassibi (2000). The pioneering work in this domain was done independently by
the Russian mathematician Andrey Kolmogorov (1903–1987) in the works by Kol-
mogorov (1939,1941a,b) and the American mathematician Norbert Wiener (1894–
1964) in the work by Wiener (1949); the latter reference was originally published in
1942 as a classified report during World War II. Kolmogorov was motivated by the
work of Wold (1938) on stationary processes and solved a linear prediction problem
for discrete-time stationary random processes. Wiener, on the other hand, solved a
continuous-time prediction problem under causality constraints by means of an elegant
technique now known as the Wiener-Hopf technique introduced in Wiener and Hopf
(1931). Readers interested in more details about Wiener’s contribution, and linear es-
timation theory in general, may consult the textbook by Kailath, Sayed, and Hassibi
(2000).

Unbiased estimators. In the least-mean-square-error estimation problems studied here,
the estimators were required to be unbiased. Sometimes, unbiasedness can be a hurdle
to minimizing the mean-square error. This is because there are estimators that are
biased but that can achieve smaller error variances than unbiased estimators — see,
e.g., Rao (1973), Cox and Hinkley (1974), and Kendall and Stuart (1976–1979).

Two interesting examples to this effect are the following given in Sayed (2008): the
first example is from Kay (1993, pp. 310–311) while the second example is from Rao
(1973). In the derivation leading to (29.130) we studied the problem of estimating the
mean value, x, of N measurements {y`}. The minimum-variance unbiased estimator
for x was seen to be given by the sample mean estimator:

x̂MVUE =
1

N

N∑
`=1

y` (29.131)

The value of x was not restricted in any way; it was only assumed to be an unknown
constant and that it could assume any value in the interval (−∞,∞). But what if we
know beforehand that x is limited to some interval, say [−α, α] for some finite α > 0?
One way to incorporate this piece of information into the design of an estimator for x
is to consider the following alternative construction:

x̂ =

 −α, if x̂MVUE < −α
x̂MVUE, if − α ≤ x̂MVUE ≤ α
α, if x̂MVUE > α

(29.132)

in terms of a realization for x̂MVUE. In this way, x̂ will always assume values within
[−α, α]. A calculation in Kay (1993) shows that although the above (truncated mean)
estimator x̂ is biased, it nevertheless satisfies E (x − x̂)2 < E (x − x̂MVUE)2 — see
Prob. 29.5. In other words, the truncated mean estimator results in a smaller mean-
square error.

A second classical example from the realm of statistics is the variance estimator. In
this case, the parameter to be estimated is the variance of a random variable y given
access to several observations of it, say {y`}. Let σ2

y denote the variance of y. Two
well-known estimators for σ2

y are

σ̂2
y =

1

N − 1

N∑
`=1

(y` − ȳ)2 and σ̂2
y =

1

N + 1

N∑
`=1

(y` − ȳ)2 (29.133)
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where ȳ = 1
N

∑N
`=1 y` is the sample mean. The first one is unbiased while the second

one is biased. However, it is shown in Rao (1973) that

E
(
σ2
y − σ̂2

y

)2

< E
(
σ2
y − σ̂2

y

)2

(29.134)

We therefore see that biased estimators can result in smaller mean-square errors. How-
ever, unbiasedness is often a desirable property in practice since it guarantees that, on
average, the estimator agrees with the unknown quantity that we seek to estimate.

Gauss-Markov theorem. Theorem 29.3 characterizes unbiased linear estimators of small-
est error variance (or covariance), also known as BLUE estimators. Given an unknown
x ∈ IRM and a random observation y ∈ IRM , the theorem was obtained by solving the
constrained optimization problem (29.120), namely,

min
W

E ‖x̃‖2, subject to x̂ = WTy, y = Hx+ v, WTH = IM , EvvT = Rv

(29.135)
The significance of the solution (29.124) is perhaps best understood if we recast it in
the context of least-squares problems. We will study such problems in greater detail in
Chapter 50; see also Sayed (2008). For now, let us assume that Rv = σ2

vIN , so that the
noise components are uncorrelated with each other and have equal variances. Then,
expression (29.124) for the estimate of x reduces to

x̂ = (HTH)−1HTy (29.136)

We are going to see later that this expression can be interpreted as the solution to
the following least-squares problem. Given a noisy deterministic observation vector y
satisfying

y = Hx+ v (29.137)

the unknown x can be estimated by solving

x̂ = argmin
x∈IRM

‖y −Hx‖2 (29.138)

in terms of the squared Euclidean norm of the difference y−Hx. Indeed, if we expand
the squared error we get

J(x)
∆
= ‖y −Hx‖2 = ‖y‖2 − 2yTHx+ xTHTHx (29.139)

Setting the gradient vector relative to x to zero at x̂ gives

∇x J(x)
∣∣∣
x=x̂

= 2x̂THTH − 2yTH = 0 =⇒ x̂ = (HTH)−1HTy (29.140)

which is the same expression we had in (29.136). We therefore find that the standard
least-squares estimate for x coincides with the BLUE estimate. More generally, consider
a weighted least-squares problem of the form

x̂ = argmin
x∈IRM

(y −Hx)TR(y −Hx) (29.141)

where R > 0 denotes some weighting matrix. Differentiating again and solving for x̂
gives

x̂ = (HTRH)−1HTRy (29.142)

Comparing with (29.124) we find that the weighted least-squares solution would agree
with the BLUE estimate if we select the weighting matrix as R = R−1

v (i.e., as the
inverse of the noise covariance matrix). Therefore, the Gauss-Markov theorem is essen-
tially stating that the least-squares solution leads to the best linear unbiased estimator
(BLUE) if the weighting matrix is matched with R−1

v .
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The original version of the Gauss-Markov theorem with Rv = σ2
vIN is due to the

German mathematician Carl Friedrich Gauss (1777–1855) and the Russian math-
ematician Andrey Markov (1856–1922), who published versions of the result in
Gauss (1821) and Markov (1912). The extension to the case of arbitrary covariance ma-
trices Rv was given by Aitken (1935) — see also the overview by Plackett (1949,1950).
The discussion in Sec. 29.6 on the Gauss Markov theorem, and the leading Secs. 29.4
and 29.5 on linear models and data fusion are adapted from the discussion in Kailath,
Sayed, and Hassibi (2000).

PROBLEMS1

29.1 Show that the linear least-mean-square-error estimator defined by (29.70) also
minimizes the determinant of the error covariance matrix, det (Rx̃).
29.2 Show that the linear least-mean-square-error estimator defined by (29.70) also
minimizes the E x̃TW x̃ for any W ≥ 0.
29.3 All variables are zero mean. Show that for any three random variables {x,y,z}
it holds that

x̂y,z = x̂y + (̂x̃y)z̃y

where

x̂y,z = linear least-mean-squares estimator (l.l.m.s.e) of x given {z,y}.
x̂y = l.l.m.s.e of x given y.
ẑy = l.l.m.s.e of z given y.
x̃y = x− x̂y
z̃y = z − ẑy

(̂x̃y)z̃y = l.l.m.s.e of x̃y given z̃y.

What is the geometric interpretation of this result?
29.4 Verify that the mean-square-error values that correspond to the estimators
{x̂o, x̂•} defined by (29.149a)–(29.149b) coincide.
29.5 Refer to the truncated mean estimator (29.132). Show that it results in a smaller
mean-square error, namely, E (x− x̂)2 < E (x− x̂MVUE)2.
29.6 Let {x,y} denote two zero-mean random variables with positive-definite co-
variance matrices {Rx, Ry}. Let x̂ denote the linear least-mean-square-error estimator
of x given y. Likewise, let ŷ denote the linear least-mean-square-error estimator of y
given x. Introduce the estimation errors x̃ = x − x̂ and ỹ = y − ŷ, and denote their
covariance matrices by Rx̃ and Rỹ, respectively.
(a) Show that RxR−1

x̃ x̂ = RxyR
−1
ỹ y.

(b) Assume {y,x} are related via a linear model of the form y = Hx + v, where
H is a matrix of appropriate dimensions while v has zero-mean with covariance
matrix Rv and is uncorrelated with x. Verify that the identity of part (a) reduces
to R−1

x̃ x̂ = HTR−1
v y.

29.7 Let x be a zero-mean random variable with an M ×M positive-definite covari-
ance matrix Rx. Let x̂1 denote the linear least-mean-square-error estimator of x given
a zero-mean observation y1. Likewise, let x̂2 denote the linear least-mean-square-error
estimator of the same variable x given a second zero-mean observation y2. That is, we
have two separate estimators for x from two separate sources. Let P1 and P2 denote
the corresponding error covariance matrices: P1 = E x̃1x̃

T
1 and P2 = E x̃2x̃

T
2 where

1 Some problems in this section are adapted from exercises in Sayed (2003,2008) and
Kailath, Sayed, and Hassibi (2000).
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x̃j = x− x̂j , Assume P1 > 0 and P2 > 0 and that the cross-covariance matrix

E
[
x
y1

] [
x
y2

]T
has rank M .
(a) Show that the linear least-mean-square-error estimator of x given both {y1,y2},

denoted by x̂, satisfies P−1x̂ = P−1
1 x̂1 + P−1

2 x̂2, where P denotes the resulting
error covariance matrix and is given by P−1 = P−1

1 + P−1
2 −R−1

x .
(b) Assume {y1,x} and {y2,x} are related via linear models of the form y1 =

H1x + v1 and y2 = H2x + v2, where {v1,v2} have zero means with covariance
matrices {Rv1 , Rv2} and are uncorrelated with each other and with x. Verify that
this situation satisfies the required rank-deficiency condition and conclude that
the estimator of x given {y1,y2} is given by the expression in part (a).

29.8 Let y1 = H1x + v1 and y2 = H2x + v2 denote two linear observation models
with the same unknown random vector x. All random variables have zero-mean. The
covariance and cross-covariance matrices of {x,v1,v2} are denoted by

E

xv1

v2

xv1

v2

T

=

Rx 0 0
0 R1 C
0 CT R2


In particular, observe that we are assuming the noises to be correlated with C = Ev1v

T
2 .

All covariance matrices are assumed to be invertible whenever necessary.
(a) Show how you would replace the observation vectors {y1,y2} by two other obser-

vation vectors {z1,z2} of similar dimensions such that they satisfy linear models
of the form

z1 = G1x+w1, z2 = G2x+w2

for some matrices G1 and G2 to be specified, and where the noises {w1,w2} are
now uncorrelated. What are the covariance matrices of w1 and w2 in terms of
R1 and R2?

(b) Let x̂1 be the linear least-mean-square-error estimator (l.l.m.s.e.) of x given z1

with error covariance matrix P1. Similarly, let x̂2 be the l.l.m.s.e. of x given y2

with error covariance matrix P2. Let further x̂ denote the l.l.m.s.e. of x given
{y1,y2} with error covariance matrix P . Determine expressions for x̂ and P in
terms of {x̂1, x̂2, P1, P2, C,Rx, R1, R2}.

29.9 Let y = Hx + v. All random variables have zero-mean. The covariance and
cross-covariance matrices of {x,v} are denoted by

E
[
x
v

] [
x
v

]T
=

[
Rx C
CT Rv

]
with positive-definite Rx and Rv.
(a) What is the l.l.m.s.e. of x given y? What is the corresponding m.m.s.e.?
(b) A new scalar observation, α, is added to y and a new row vector is added to H

such that [
y
α

]
=

[
H
hT

]
x+

[
v
n

]
where hT is a row vector, n is uncorrelated with all other variables and has
variance σ2. Let x̂new denote the new estimator for x given {y,α}. Relate x̂new
to x̂ from part (a). Relate also their m.m.s.e. values.
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29.10 All variables are zero-mean. Let ya
y
yb

 =

 Ha
H
Hb

x+

 va
v
vb


where {va,v,vb}, are uncorrelated with x and have zero mean and covariance matrices:

E

 va
v
vb

 va
v
vb

T

=

 Ra Sa 0
ST
a R Sb
0 ST

b Rb


Let x̂ya,y denote the linear estimator of x given {ya,y}. Let x̂yb,y denote the linear
estimator of x given {yb,y}. Can you relate these estimators, and their minimum-
mean-square-error, to each other?
29.11 Let y = x + v, where x and v are independent zero-mean Gaussian ran-
dom variables with variances σ2

x and σ2
v, respectively. Show that the linear least-mean-

square-error estimator of x2 using {y,y2} is

x̂2 = σ2
x +

σ4
x

σ4
x + 2σ2

xσ2
v + σ4

v

(y2 − σ2
x − σ2

v)

29.12 A random variable z is defined as follows

z =

{
−x, with probability p

Hx+ v, with probability 1− p

where x and v are zero-mean uncorrelated random vectors. Assume we know the linear
least-mean-square-error estimator of x given y, namely, x̂|y, where y is a zero-mean
random random variable that is also uncorrelated with v.
(a) Find an expression for ẑ|y in terms of x̂|y.
(b) Find an expression for the linear least-mean-square-error estimator x̂|z and the

corresponding m.m.s.e.
29.13 Consider the distributed network with m nodes, shown in Fig. 29.13. Each
node k observes a zero-mean measurement yk that is related to an unknown zero-mean
variable x via a linear model of the form yk = Hkx + vk, where the data matrix Hk
is known, and the noise vk is zero mean and uncorrelated with x. The noises across
all nodes are uncorrelated with each other. Let {Rx, Rk} denote the positive-definite
covariance matrices of {x,vk}, respectively. Introduce the following notation:
• At each node k, the notation x̂k denotes the linear least-mean-squares estimator of

x that is based on the observation yk. Likewise, Pk denotes the resulting error
covariance matrix, Pk = E x̃kx̃T

k .
• At each node k, the notation x̂1:k denotes the linear least-mean-squares estimator of

x that is based on the observations {y1,y2, . . . ,yk}, i.e., on the observations col-
lected at nodes 1 through k. Likewise, P1:k denotes the resulting error covariance
matrix, P1:k = E x̃1:kx̃

T
1:k.

The network functions as follows. Node 1 uses y1 to estimate x. The resulting estimator,
x̂1, and the corresponding error covariance matrix, P1 = E x̃1x̃

T
1 , are transmitted to

node 2. Node 2 in turn uses its measurement y2 and the data {x̂1, P1} received from
node 1 to compute the estimator of x that is based on both observations {y1,y2}. Note
that node 2 does not have access to y1 but only to y2 and the information received
from node 1. The estimator computed by node 2, x̂1:2, and the corresponding error
covariance matrix, P1:2, are then transmitted to node 3. Node 3 evaluates {x̂1:3, P1:3}
using {y3, x̂1:2, P1:2} and transmits {x̂1:3, P1:3} to node 4 and so forth.
(a) Find an expression for x̂1:m in terms of x̂1:m−1 and x̂m.
(b) Find an expression for P−1

1:m in terms of {P−1
1:m−1, P

−1
m , R−1

x }.
(c) Find a recursion relating P1:m to P1:m−1.
(d) Show that P1:m is a non-increasing sequence as a function of m.
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<latexit sha1_base64="dcjZyGmucOm3CJuKVgs6Jen3orc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCp7JbRMVTwYvHFeyHtEvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZFyacaeO6305hbX1jc6u4XdrZ3ds/KB8etXScKkKbJOax6oRYU84kbRpmOO0kimIRctoOx7czv/1ElWaxfDCThAYCDyWLGMHGSo9Vv595N/VptV+uuDV3DrRKvJxUIIffL3/1BjFJBZWGcKx113MTE2RYGUY4nZZ6qaYJJmM8pF1LJRZUB9n84Ck6s8oARbGyJQ2aq78nMiy0nojQdgpsRnrZm4n/ed3URNdBxmSSGirJYlGUcmRiNPseDZiixPCJJZgoZm9FZIQVJsZmVLIheMsvr5JWveZd1i7u65WGm8dRhBM4hXPw4AoacAc+NIGAgGd4hTdHOS/Ou/OxaC04+cwx/IHz+QM7VI9V</latexit>

P1:2

<latexit sha1_base64="4Ynt1fRPB//RlQsRvq7LL6KRhMY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCp7LbioqnghePFeyHtEvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305ubX1jcyu/XdjZ3ds/KB4etXSUKEKbJOKR6gRYU84kbRpmOO3EimIRcNoOxrczv/1ElWaRfDCTmPoCDyULGcHGSo/lRj/1bmrTcr9YcivuHGiVeBkpQYZGv/jVG0QkEVQawrHWXc+NjZ9iZRjhdFroJZrGmIzxkHYtlVhQ7afzg6fozCoDFEbKljRorv6eSLHQeiIC2ymwGellbyb+53UTE177KZNxYqgki0VhwpGJ0Ox7NGCKEsMnlmCimL0VkRFWmBibUcGG4C2/vEpa1Yp3Wbm4r5bqbhZHHk7gFM7Bgyuowx00oAkEBDzDK7w5ynlx3p2PRWvOyWaO4Q+czx882o9W</latexit>

P1:3

<latexit sha1_base64="iz3n9DIBp+lNt/PYWOyAH5hzn0Q=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BFvBi2W3iIqnghePFewHbJeSTbNtaLJZklmhLP0ZXjwo4tVf481/Y9ruQVsfDDzem2FmXpgIbsB1v53C2vrG5lZxu7Szu7d/UD48ahuVaspaVAmluyExTPCYtYCDYN1EMyJDwTrh+G7md56YNlzFjzBJWCDJMOYRpwSs5Feb/cy7lRfetNovV9yaOwdeJV5OKihHs1/+6g0UTSWLgQpijO+5CQQZ0cCpYNNSLzUsIXRMhsy3NCaSmSCbnzzFZ1YZ4EhpWzHgufp7IiPSmIkMbackMDLL3kz8z/NTiG6CjMdJCiymi0VRKjAoPPsfD7hmFMTEEkI1t7diOiKaULAplWwI3vLLq6Rdr3lXtcuHeqXh5nEU0Qk6RefIQ9eoge5RE7UQRQo9o1f05oDz4rw7H4vWgpPPHKM/cD5/AHLckAI=</latexit>

P1:m�1

<latexit sha1_base64="2a0Girqgx/qG9YI9qMaX9FnO6Ww=">AAAB+3icbVDNS8MwHE3n15xfdR69BDfB02iHqMeBF48T3AdspaRpuoWlSUlSsZT9K148KOLVf8Sb/43p1oNuPgh5vPf7kZcXJIwq7TjfVmVjc2t7p7pb29s/ODyyj+t9JVKJSQ8LJuQwQIowyklPU83IMJEExQEjg2B2W/iDRyIVFfxBZwnxYjThNKIYaSP5dr05DgQLVRabK8/mvtv07YbTchaA68QtSQOU6Pr21zgUOI0J15ghpUauk2gvR1JTzMi8Nk4VSRCeoQkZGcpRTJSXL7LP4blRQhgJaQ7XcKH+3shRrIp0ZjJGeqpWvUL8zxulOrrxcsqTVBOOlw9FKYNawKIIGFJJsGaZIQhLarJCPEUSYW3qqpkS3NUvr5N+u+VetS7v242OU9ZRBafgDFwAF1yDDrgDXdADGDyBZ/AK3qy59WK9Wx/L0YpV7pyAP7A+fwC6qJQw</latexit>y1

<latexit sha1_base64="IZ7I9kkqoPYvU5I/S5Iag7Ia+ps=">AAAB+3icbVDNS8MwHE3n15xfdR69BDfB02iHqMeBF48T3AdspaRpuoWlSUlScZT+K148KOLVf8Sb/43p1oNuPgh5vPf7kZcXJIwq7TjfVmVjc2t7p7pb29s/ODyyj+t9JVKJSQ8LJuQwQIowyklPU83IMJEExQEjg2B2W/iDRyIVFfxBzxPixWjCaUQx0kby7XpzHAgWqnlsrmye++2mbzeclrMAXCduSRqgRNe3v8ahwGlMuMYMKTVynUR7GZKaYkby2jhVJEF4hiZkZChHMVFetsiew3OjhDAS0hyu4UL9vZGhWBXpzGSM9FSteoX4nzdKdXTjZZQnqSYcLx+KUga1gEURMKSSYM3mhiAsqckK8RRJhLWpq2ZKcFe/vE767ZZ71bq8bzc6TllHFZyCM3ABXHANOuAOdEEPYPAEnsEreLNy68V6tz6WoxWr3DkBf2B9/gC8LZQx</latexit>y2

<latexit sha1_base64="YtyGrSr4yjjV9nZyfDM86gRF9MY=">AAAB+3icbVBPS8MwHE3nvzn/1Xn0EtwET6Odoh4HXjxOcHOwlZKm6RaWJiVJxVH6Vbx4UMSrX8Sb38Z060E3H4Q83vv9yMsLEkaVdpxvq7K2vrG5Vd2u7ezu7R/Yh/W+EqnEpIcFE3IQIEUY5aSnqWZkkEiC4oCRh2B6U/gPj0QqKvi9niXEi9GY04hipI3k2/XmKBAsVLPYXNks98+bvt1wWs4ccJW4JWmAEl3f/hqFAqcx4RozpNTQdRLtZUhqihnJa6NUkQThKRqToaEcxUR52Tx7Dk+NEsJISHO4hnP190aGYlWkM5Mx0hO17BXif94w1dG1l1GepJpwvHgoShnUAhZFwJBKgjWbGYKwpCYrxBMkEdamrpopwV3+8irpt1vuZevirt3oOGUdVXAMTsAZcMEV6IBb0AU9gMETeAav4M3KrRfr3fpYjFascucI/IH1+QO9spQy</latexit>y3

<latexit sha1_base64="jSqCWJQoee/c4KFca8KfgZBiLcI=">AAAB+3icbVBPS8MwHE3nvzn/1Xn0EtwET6MdQz0OvHic4DZhKyVN0y0sTUqSiqX0q3jxoIhXv4g3v43Z1oNuPgh5vPf7kZcXJIwq7TjfVmVjc2t7p7pb29s/ODyyj+sDJVKJSR8LJuRDgBRhlJO+ppqRh0QSFAeMDIPZzdwfPhKpqOD3OkuIF6MJpxHFSBvJt+vNcSBYqLLYXHlW+J2mbzeclrMAXCduSRqgRM+3v8ahwGlMuMYMKTVynUR7OZKaYkaK2jhVJEF4hiZkZChHMVFevshewHOjhDAS0hyu4UL9vZGjWM3TmckY6ala9ebif94o1dG1l1OepJpwvHwoShnUAs6LgCGVBGuWGYKwpCYrxFMkEdamrpopwV398joZtFvuZatz1250nbKOKjgFZ+ACuOAKdMEt6IE+wOAJPINX8GYV1ov1bn0sRytWuXMC/sD6/AG/N5Qz</latexit>y4

<latexit sha1_base64="yI9gn6UKBXj99QPjfba/JaCOZYQ=">AAAB+3icbVBLS8NAGNzUV62vWI9egq3gqSRF1GPBi8cK9gFtCJvNpl26j7C7EUPoX/HiQRGv/hFv/hs3bQ7aOrDsMPN97OyECSVKu+63VdnY3Nreqe7W9vYPDo/s43pfiVQi3EOCCjkMocKUcNzTRFM8TCSGLKR4EM5uC3/wiKUigj/oLME+gxNOYoKgNlJg15vjUNBIZcxceTYPWDOwG27LXcBZJ15JGqBEN7C/xpFAKcNcIwqVGnluov0cSk0QxfPaOFU4gWgGJ3hkKIcMKz9fZJ8750aJnFhIc7h2FurvjRwyVaQzkwzqqVr1CvE/b5Tq+MbPCU9SjTlaPhSn1NHCKYpwIiIx0jQzBCJJTFYHTaGESJu6aqYEb/XL66TfbnlXrcv7dqPjlnVUwSk4AxfAA9egA+5AF/QAAk/gGbyCN2tuvVjv1sdytGKVOyfgD6zPHxXjlGw=</latexit>ym

Figure 29.3 A distributed network with m nodes for Prob. 29.13.

(e) Assume Hk = H for all k and Rvk = Rv > 0. Assume further that H is tall and
has full column rank. Find limm→∞ P1:m.

29.14 Consider two sensors labeled k = 1, 2, and assume each sensor has an unbiased
estimator, {wk, k = 1, 2} for some M × 1 column vector wo. Let {Pk, k = 1, 2} denote
the error covariance matrix, Pk = E (wo−wk)(wo−wk)T. Assume the errors of the two
estimators are uncorrelated, i.e., E (wo−w1)(wo−w2)T = 0. Consider a new aggregate
estimator of the form ŵ = αw1 + (1− α)w2.
(a) If α is nonnegative, determine the optimal scalar α that minimizes the mean-

square-error, i.e., minα≥0 E ‖wo − ŵ‖2.
(b) Repeat part (a) when α is not restricted to being nonnegative. When would a

negative α be advantageous?
(c) Let P = E (wo − ŵ)(wo − ŵ)T. How does P compare to P1 and P2 in both cases

(a) and (b)?
(d) Now assume the errors of the two estimators are correlated instead, i.e., E (wo −

w1)(wo −w2)T = C, for some matrix C. Repeat parts (a)–(c).
29.15 Consider N sensors labeled k = 1, 2, . . . , N . Each node has an unbiased esti-
mate of some unknown column vector wo ∈ IRM . We denote the individual estimator
at node k by wk. We also denote the error covariance matrix of wk by Pk and the
cross-covariance matrix of wk and w` by Pk`. A sensor S wishes to combine the es-
timators {wk, k = 1, . . . , N} through ŵS =

∑N
k=1 akwk in order to optimize the cost

function:

min
{ak}

E
∥∥∥wo − N∑

k=1

akwk

∥∥∥2

where the {ak} are real-valued scalars.
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(a) Find a condition on the coefficients {ak} to ensure that the resulting ŵS is an
unbiased estimator for wo.

(b) Under condition (a), find the optimal coefficients {ak}. Your solution should not
depend on wo.

(c) Assume the reliability of each estimator wk is measured by the scalar σ2
k =

Tr(Pk). The smaller the σ2
k is, the more reliable the estimator will be. What is

the relation between the optimal coefficients {ak} and the reliability factors {σ2
k}?

(d) Evaluate the reliability of the estimator ŵS .
(e) Motivate and derive a stochastic gradient algorithm for updating the coefficients

{ak} in part (b).
(f) How is the estimator of part (b) different from the unbiased linear least-mean-

squares estimator of wo based on the {wk}? Find the latter estimator.
(g) Find the minimum mean-square-error (m.m.s.e.) of the estimators in parts (b)

and (f) for the case where Pk` = 0 when ` 6= k. Specialize your result to the case
Pk = P for all k and compare the resulting mean-square-errors.

29.16 Consider a collection of N independent and identically-distributed random
variables, {y(n), n = 0, 1, . . . , N − 1}. Each y(n) has a Gaussian distribution with
zero mean and variance σ2

y. We want to use the observations {y(n)} to estimate the
variance σ2

y in the following manner:

σ̂2
y = α

N−1∑
n=0

y2(n)

for some scalar parameter α to be determined.
(a) What is the mean of the estimator σ̂2

y in terms of α and σ2
y?

(b) Evaluate the mean-square-error below in terms of α and σ2
y:

m.s.e. = E (σ̂2
y − σ2

y)2

(c) Determine the optimal scalar α that minimizes the m.s.e.. Is the corresponding
estimator biased or unbiased?

(d) For what value of α would the estimator be unbiased? What is the m.s.e. of this
estimator and how does it compare to the m.s.e. of the estimator from part (c)?

29.17 Consider noisy observations y(n) = x+v(n), where x and v(n) are independent
random variables, v(n) is a white random process with zero mean and distributed as
follows:

v(n) is Gaussian with variance σ2
v with probability q

v(n) is uniformly distributed over [−a, a] with probability 1− q
Moreover, x assumes the values ±1 with equal probability. The value of x is the same
for all measurements {y(n)}. All variables are real-valued.
(a) Find an expression for the linear least-mean-square-error estimator (l.l.m.s.e.) of

x given the collection of N observations {y(0),y(1), . . . ,y(N − 1)}.
(b) Find the l.l.m.s.e. of x given the observations {y(0),y(1), . . . ,y(N − 1)} and

{y2(0),y2(1), . . . ,y2(N − 1)}. How does the answer compare to part (a)?
29.18 This problem deals with constrained mean-square-error estimation. Let d de-
note a scalar zero-mean random variable with variance σ2

d, and let u denote an M × 1
zero-mean random vector with covariance matrix Ru = EuuT > 0. Consider the con-
strained optimization problem

min
w

E (d− uTw)2, subject to cTw = α

where c is a known M × 1 vector and α is a known real scalar.
(a) Let z = w−R−1

u rud and rdu = EduT. Show that the above optimization problem
is equivalent to the following:

min
z∈IRM

{
σ2
d − rduR−1

u rud + zTRuz
}
, subject to cTz = α− cTR−1

u rud
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(b) Show that the optimal solution, wo, of the constrained optimization problem is
given by

wo = R−1
u rud −

(
cTR−1

u rud − α
cTR−1

u c

)
R−1
u c

Verify that this solution satisfies the constraint cTwo = α.
29.19 Let x be a zero-mean random variable with an M ×M positive-definite co-
variance matrix Rx. Let x̂y1

denote the linear least-mean-square-error estimator of x
given a zero-mean observation y1 with covariance matrix Ry1 . Likewise, let x̂y2

denote
the linear least-mean-square-error estimator of x given another zero-mean observation
y2 with covariance matrix Ry2 . Let Ry1,y2 = Ey1y

T
2 . We want to determine another

estimator for x by combining x̂y1 and x̂y2 in a convex manner as follows:

x̂ = λx̂y1 + (1− λ)x̂y2

where λ is a real scalar lying inside the interval 0 ≤ λ ≤ 1.
(a) Determine the value of λ that results in an estimator x̂ with the smallest mean-

square error.
(b) If λ is allowed to be any arbitrary real scalar (not necessarily limited to the range

[0, 1]), how much smaller can the mean-square-error be?
29.20 Let y = s + v be a vector of measurements, where v is noise and s is the
desired signal. Both v and s are zero-mean uncorrelated random vectors with covariance
matrices {Rv, Rs}, respectively. We wish to determine a unit-norm column vector, w,
such that the signal-to-noise ratio in the output signal, yTw, is maximized.
(a) Verify that the covariance matrices of the signal and noise components in yTw

are equal to wTRsw and wTRvw, respectively.
(b) Assume first that Rv = σ2

vI. Use the Rayleigh-Ritz characterization (1.16) to
conclude that the solution of

max
‖w‖=1

(
wTRsw

σ2
v‖w‖2

)
is given by the unit-norm eigenvector that corresponds to the maximum eigen-
value of Rs, written as wo = qmax, where Rsqmax = λmaxqmax. Verify further that
the resulting maximum SNR is equal to λmax/σ

2
v.

(c) Assume now that v is colored noise so that its covariance matrix is not necessarily
diagonal. Introduce the eigen-decomposition Rv = UΛUT, where U is orthogonal
and Λ is diagonal with positive entries. Let L = UΛ1/2. Repeat the argument of
part (b) to show that the solution of

max
‖w‖=1

(
wTRsw

wTRvw

)
is now related to the unit-norm eigenvector that corresponds to the maximum
eigenvalue of L−1Rs

(
LT
)−1.

29.21 Consider the optimization problem:

min
W

WTRvW, subject to WTH = A, Rv > 0

where WT isM ×N , H is N ×P , A isM ×P , P < N ,M < N , and H has full rank. In
the text we assumed A is square and equal to the identity matrix (see (29.120)). Show
that the optimal solution is given by

(W o)T = A(HTR−1
v H)−1HTR−1

v

and that the resulting minimum cost is A(HTR−1
v H)−1AT.

29.22 Refer to (29.108a). Compare P to Pk, for each k = 1, 2, . . . , N . Specifically,
verify that the difference Pk − P is non-negative definite.
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29.23 Refer to (29.108a)–(29.108b). Let {x̂, P} be the estimator and the m.m.s.e. that
result from estimating x from data across all N sensors. Let {x̂′, P ′} be the estimator
and the m.m.s.e. that result from estimating x from data across the first N−1 sensors.
Relate {x̂, P} to {x̂′, P ′}.
29.24 All variables are zero-mean. Consider a complex-valued scalar random variable
d and a complex-valued M × 1 regression vector u. Let

d̂ = (wo)Tu = uTwo

denote the linear least-mean-square-error error (l.l.m.s.e.) estimator of d given u for
some M × 1 vector wo. Consider additionally the problem of estimating separately the
real and imaginary parts of d using knowledge of the real and imaginary parts of u,
also in the linear least-mean-square-error sense, namely,

d̂real = (woreal)
T

[
Re(u)
Im(u)

]
, d̂imag = (woimag)T

[
Re(u)
Im(u)

]
for some 2M × 1 vectors woreal and woimag.
(a) Argue that estimating the real and imaginary parts of d from the real and imagi-

nary parts of u is equivalent to estimating the real and imaginary parts of d from
{u,u∗}, where u∗ is the complex conjugate transpose of u.

(b) What are the optimal choices for wo, woreal and woimag?
(c) Let d̂2 = d̂real+jd̂imag denote the estimator that is obtained for d from this second

construction. What is the corresponding m.m.s.e.? How does it compare to the
m.m.s.e. obtained for d̂ = (wo)Tu? Under what conditions will both constructions
lead to the same m.m.s.e.?

29.A CONSISTENCY OF NORMAL EQUATIONS

In this appendix we verify that the normal equations (29.25) are always consistent, i.e.,
we establish that a solution wo always exists. Moreover, the solution is either unique or
there are infinitely many solutions. In the latter case, all solutions will differ by vectors
in the nullspace of Ry and, moreover, all of them will lead to the same estimator for x
and to the same mean-square error. Only these possibilities can occur.

Proof (Consistency of normal equations). We verify that at least one solution wo

exists to the normal equations Rywo = ryx. For this purpose, we need to verify that
ryx belongs to the range space of Ry, i.e.,

ryx ∈ R (Ry) (29.143)

We show this property by contradiction. Assume that (29.143) does not hold. Under this
assumption, there should exist some nonzero vector p ∈ N(Ry) that is not orthogonal
to ryx, namely,

∃ p such that Ryp = 0, rTyxp 6= 0 (29.144)

It follows from Ryp = 0 that pTRyp = 0 so that

pTRyp = 0⇐⇒ pT
(
E (y − ȳ)(y − ȳ)T

)
p = 0

⇐⇒ E
(

(y − ȳ)Tp
)2

= 0 (29.145)
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from which we conclude that the zero-mean scalar random variable (y − ȳ)Tp has zero
variance and, hence,

(y − ȳ)Tp = 0, in probability (29.146)

This conclusion leads to a contradiction since it implies that

rTyxp = E (x− x̄)(y − ȳ)T p

(29.146)
= 0, in probability (29.147)

which violates the assertion that rTyxp 6= 0. We conclude that (29.143) holds and the
normal equations (29.25) are consistent.

Next we verify that the solution wo is either unique or there are infinitely many
solutions. To being with, it is clear from (29.25) that the solution is unique whenever
Ry is invertible, in which case wo = R−1

y ryx. On the other hand, when Ry is singular,
then infinitely many solutions exist. This is because if we let p denote any nontrivial
vector in the nullspace of Ry, i.e., Ryp = 0, then the vector wo + p will also satisfy the
normal equations (29.25).

The next property we verify is that when infinitely many solutions exist, any solution
will continue to lead to the same estimator for x and to the same mean-square-error
value. Let wo and w• denote any two solutions to the normal equations, i.e.,

Ryw
o = ryx, Ryw

• = ryx (29.148)

The corresponding estimators for x are denoted by

x̂o = x̄+ (y − ȳ)Two (29.149a)

x̂• = x̄+ (y − ȳ)Tw• (29.149b)

Subtracting both equalities in (29.148) gives

Ry(wo − w•) = 0 (29.150)

so that any two solution vectors differ by vectors in the nullspace of Ry, namely,

w• = wo + p, for some p ∈ N(Ry) (29.151)

Moreover, we obtain from (29.150) that

Ry(wo − w•) = 0 =⇒ (wo − w•)TRy(wo − w•) = 0

=⇒ (wo − w•)T
(
E (y − ȳ)(y − ȳ)T

)
(wo − w•) = 0

=⇒ E
(

(y − ȳ)T(wo − w•)
)2

= 0 (29.152)

which implies that the following zero-mean scalar random variable is equal to zero in
probability:

α
∆
= (y − ȳ)T(wo − w•) = 0, in probability (29.153)

That is, for any ε > 0,
P(|α| ≥ ε) = 0 (29.154)

Subtracting expressions (29.149a)–(29.149b) gives

x̂o − x̂• = (y − ȳ)T (wo − w•)
(29.153)

= 0, in probability (29.155)

which confirms our claim that different solutions to the normal equations continue to
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lead to the same estimator. It is left as an exercise to check that the mean-square-errors
corresponding to x̂o and x̂• also agree with each other — see Prob. 29.4.

�
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