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28 Bayesian Inference

28.1

The mean-square-error (MSE) criterion (27.17) is one notable example of the
Bayesian approach to statistical inference. In the Bayesian approach, both the
unknown quantity, «, and the observation, y, are treated as random variables and
an estimator Z for x is sought by minimizing the expected value of some other
loss function denoted by Q(x, Z). In the previous chapter, we focused exclusively
on the quadratic loss Q(z, Z) = (& —x)? for scalar «. In this chapter, we consider
more general loss functions, which will lead to other types of inference solutions
such as the mean-absolute error (MAE) and the maximum a-posteriori (MAP)
estimators. We will also derive the famed Bayes classifier as a special case when
the realizations for & are limited to the discrete values € {+1}.

BAYESIAN FORMULATION

Consider scalar random variables {x, y}, where y is observable and the objective
is to infer the value of . The estimator for x is denoted by Z and is defined as
some function of y, denoted by ¢(y), to be determined by minimizing an average
loss over the joint distribution of {@,y}. The purpose of the loss function is to
measure the discrepancy between & and its estimator. The inference problem is
stated as:

Ee) 2 argmin EQ(x, ) (28.1)
z=c(y)

where the loss Q(-,-) is non-negative, and the expectation is over the joint pdf
fzy(2z,y). Similar to what we did in the last chapter, we will continue to employ
continuous-time distributions in our presentation with the understanding that
the arguments can be easily adjusted for discrete distributions.

Observe that we are attaching a subscript @ to Z¢ to highlight its dependence
on the choice of loss functions. The cost that appears in (28.1) in the form of an
expected loss is also referred to as the risk and is denoted by:

R(c) £ EQ(x, @), (risk function) (28.2)

Note that the risk depends on ¢(y). Different choices for ¢(y) will generally have
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different risk values and the objective is to choose an optimal mapping, denoted
by ¢°(y), with the smallest risk value possible:

R(c°) = min EQ(z,Z) (28.3)

a=c(y)

For later use, it is useful to note that formulation (28.1) admits an equivalent
characterization. Using the conditional mean property (27.24), we rewrite the
mean loss in the following form by conditioning on the observation y:

EQ(z.2) = E, {]Emy (Q(w,ay))} (28.4)

Now, since the loss function assumes nonnegative values, the minimization in
(28.1) can be attained by solving instead:

Foly) 2 argmin {Em (Q(m,fﬁyy))} (28.5)

r=c(y)

where the expectation of the loss function is now evaluated relative to the condi-
tional pdf, fg,(2|y). This conditional pdf is known as the predictive distribution
because it enables us to “predict” values for @ for each individual observation for
y. The predictor Z¢ in (28.5) is a function of y and that is why we are denoting
it more explicitly by writing Zg(y), with an argument y. Using relation (28.4),
we then find that the minimal risk value admits the representation:

R(e*) = By {Eapy (Q@. 20 W) |y = v) } (28.6)

Formulations (28.1) and (28.5) are also valid when either @ or y (or both) are
vector-valued. We continue with the scalar case for illustration purposes. Two
special cases of Bayesian estimators are evident.

Mean-square-error (MSE) inference
In the mean-square-error case, the loss function is quadratic and chosen as

Q(z,z) = (x — z)* (28.7)

In this case, we can solve problem (28.1) explicitly and showed in the last chapter
that the estimator is the mean of the conditional distribution of & given y, i.e.,

Note that we are attaching a subscript MSE to distinguish this estimator from
other estimators discussed below.
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Mean-absolute error (MAE) inference
In this case, the loss function is the absolute error, namely,

Qz,z) = |z —z| (28.9)

We showed in Prob. 27.13 that the corresponding estimator Z is given by the
median (rather than the mean) of the conditional distribution, fg,(z|y). That
is, the value of Ty is the point that enforces the equality:

/ M fewely)de = / T faely)de = 172 (28.10)

—00 IMAE

MAXIMUM A-POSTERIORI INFERENCE

Another popular inference solution is the maximum a-posteriori (MAP) estima-
tor. While the MSE estimator, Zysg, selects the value z that corresponds to the
mean of the conditional pdf, fz,(x|y), the MAP estimator, denoted by Zyap,
selects the location x that corresponds to the peak of the same pdf:

Tnap = argmax faly(zly) (28.11)
TE

where the maximization is over the domain of z € X. MAP estimators need not
be unique because fg|,(z|y) may be a multi-modal distribution.

MAP estimators can be viewed as a limiting case of Bayesian inference if the
loss function is set to the 0/1—loss defined as follows — see Prob. 28.1:

1, z#x

28.12
0, otherwise (28.12)

A
Q(ma :13) - {
We illustrate this fact by considering the case in which & has a discrete support
set. Thus, given an observation y = y, and considering the 0/1—loss (28.12), we
have:

zeX
1) S by 2y =)
THAT
= 1-Ple=2Zly=y) (28.13)

where the expectation on the left-hand side of (a) is relative to the conditional
distribution of x given y = y. It follows that

argmin E ;,, Q(z,Z|y = y) = argmax P(x = 2|y = y) (28.14)

In other words, and in view of (28.5), the mean of the loss function (28.12) is
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minimized when ¥ is selected as the location that maximizes the conditional
distribution, P(xz = z|y = y).

For jointly Gaussian-distributed random variables {x, y}, the MSE and MAP
estimators for @ will agree with each other. This is because the conditional pdf,
fz|y(z]y), will be Gaussian and the locations of its mean and peak will coincide.
This conclusion, however, is not generally true for other distributions.

Example 28.1 (MSE and MAP estimators) Assume the conditional pdf of a scalar
random variable, @, given observations of another scalar random variable, y > 0, follows
a Rayleigh distribution of the form (3.26), namely,

2 2
farlaly) = 5 e/ x>0 (28.15)
Y
Then, we know from (3.27) that the mean and variance of this distribution, denoted
by fia), and o2 respectively, are given by

x|y’
™ ™
Haly =Y 4/ 9 Ua25|y = (2 - 5) y2 (28.16)

Moreover, the peak location of the Rayleigh distribution (its mode location) and its
median are given by

mode = y, median = yv2In2 (28.17)

It follows from these expressions that the MSE, MAE, and MAP estimators for @ given
y are given by

. T ~
TMSE =Y \/;, TMAE = YV2In2, ZTumar =y (28.18)

Example 28.2 (Election poll) Two candidates A and B are running for office in a local
district election. The probability of success for candidate A is p. We survey a fraction
of the voters in the district, say, a number of N potential voters, and ask them whether
they will be voting for one candidate or the other. We would like to use the result of
the survey to estimate p, i.e., the likelihood of success for candidate A.

Let y denote a binomial variable with parameters N and p. The probability of observing
y successes in N trials (i.e., the probability of obtaining y positive answers in favor of
candidate A out of N) is given by the expression:

Py =y) = <];7>py(1p)Ny, y=0,1,...,N (28.19)

The value of the parameter p can be estimated in a number of ways, for example, by
using a mean-square-error formulation (as described in Prob. 28.12), or a maximum-
likelihood formulation (as discussed in future Prob. 31.8), or a maximum a-posteriori
(MAP) formulation. In this example, we focus on the MAP approach.

In Bayesian inference, we treat the quantities we wish to estimate as random variables.
For this reason, we will need to model p as a random variable and then determine
an expression for the conditional pdf, fp,(ply). Once this pdf is computed, its peak
location will provide the desired MAP estimate, pPyap.

Treating p as random requires that we specify its distribution, fp(p), also called the
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prior. Since the value of p is confined to the interval [0, 1], we can select the prior from
the family of Beta distributions. This family is useful in modeling random variables
that are confined to finite intervals. The Beta distribution is defined by two positive
shape parameters (a,b) as follows:

Pa+b) 4 b—1
p(l=p) ", 0<p<1
fp(p;a,b) = 4 T'(a)l'(b) (-7 (28.20)
0, otherwise

where I'(z) denotes the Gamma function defined earlier in Prob. 4.3. Different choices
for (a,b) result in different behavior for the distribution fp(p). For example, the uni-
form distribution over the interval [0, 1] corresponds to the choice a = b = 1. In this
case, the variable p is equally likely to assume any value within the interval. Other
values for a and b will give more likelihood to smaller or larger values in the interval.
The top row in Fig. 28.1 plots some typical curves for the Beta distribution.
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Figure 28.1 (7Top) Plots of several Beta distributions for different values of the shape
parameters (a,b). Observe how a = b = 1 results in the uniform distribution, while
other values for (a,b) give more likelihood to smaller or larger values within the
interval [0, 1]. (Bottom) Results of polling N = 500 likely voters. The colors refer to
votes for candidates A or B.

The mean and variance of the Beta distribution (28.20) are known to be:

_ a 2 ab
_ _ 28.21
P=a%e T (a+02(at+b+1) (28.21)
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When a > 0 and b > 0, the mode of the distribution is also known to occur at

a—1
de= —— 28.22
mode = ~ - ( )
Using these facts, we derive an expression for the conditional pdf, fp|, (ply), in Prob. 28.2
and deduce there that its peak occurs at location:

y+a—1

_ 28.2
N+a+b—-2 (28.23)

I/)\MAP =
The bottom plot in Figure 28.1 shows the polling results from surveying N = 500
potential voters in the district. The simulation assumes a Beta distribution with pa-
rameters a = 3 and b = 2. The actual success probability was generated randomly
according to this distribution and took the value p = 0.5565. Out of the N = 500
surveys, there were y = 287 votes in favor of candidate A. Substituting into (28.23) we
find that

~ 287 +3—1
= ————————— ~0.5746 28.24
Pvar = 500 +3+2 -2 (2824)
Note that we could have also estimated p by simply dividing y by IV; this computation
is a common solution and we will encounter it later in Prob. 31.8 where we will show
that it amounts to the maximum-likelihood estimate for p denoted by:

~ 287
= — —=0.574 28.2
PmL 500 0.5740 ( 8 5)
This latter solution method, however, treats p as an unknown constant and not as a a
random variable.

BAYES CLASSIFIER

One useful application of the MAP formulation (28.11) arises in the context of
classification problems, which we will study in great detail in later chapters. In
these problems, the unknown variable x is discrete and assumes a finite number
of levels.

Binary Classification

We motivate classification problems by considering first the case in which x is
a discrete binary random variable assuming one of two possible values, say, €
{£1}. Given some possibly vector-valued observation y € RM that is dependent
on x, we would like to infer & by determining a mapping, now called a classifier,
¢(y), that maps y into one of the two discrete values:

c(y): RM — {£1} (28.26)

We refer to  as the class variable or the label corresponding to y. The intention
is to employ this mapping to deduce from the observation y whether it belongs to
class +1 or —1. We can attain this objective by seeking the optimal estimator,
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denoted by %bayes, that minimizes the probability of erroneous decisions (or
misclassifications), i.e., that solves:

Boayes = argmin{P(cly) # @) | (28.27)
z=c(y)

We verify below that the following classifier, known as Bayes classifier, solves
(28.27):

~ [ 41, when P(z=+1ly=y) >1/2
Thayes { —1, otherwise (28.28)
which can also be written in a single equation as
Foayes = QH[]P’(m =ty =y) > 1/2] —1 (28.29)
in terms of the indicator function:
1, if statement a is true
Tja) = { 0, otherwise (28.30)

Expression (28.28) indicates that the classifier decides in favor of +1 when the
conditional probability of the event @ = +1 is at least 1/2. In other words, the
classifier ﬁbayes selects the value for x that maximizes the conditional probabil-
ity of observing x given y, which means that Zpayes coincides with the MAP
estimator:

Thayes = TMAP = arg{ma;c P(x = x|y =) (28.31)
rze{£l

Proof of (28.28): First, note that problem (28.27) is equivalent to solving

Thayes 2 argmax P(c(y) = x) (28.32)
Z=c(y)

where

P(c(y) =) = / P(c(y) = aly = y) fy(y)dy

1>

€Y
/ AWy (28.33)

where the integration is over the observation space, y € Y. In the above expression,
the term fy(y) denotes the probability density function of the observation and the
shorthand notation A(y) denotes the conditional probability that appears multiplying
fy(y) in the first line. Since fy(y) > 0, we can solve (28.32) by seeking a classifier ¢(y)
that maximizes A(y). Now observe that, since the events * = +1 and @ = —1 are
mutually exclusive conditioned on y:

Aly) 2

(c(y) =zly =y) (28.34)
(c(y) =+L,z=+1lly=y) + Plc(y) = L,z = -1y =y)
Ie(y) =+ P(x=+1ly=y) + I[c(y) = -1 P(z =~y =y)

For any given observation y, we need to select ¢(y) to maximize A(y). There are only

P
P
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two possibilities for c(y) in the binary classification problem, either c¢(y) = +1 or
c(y) = —1:
if we set c(y) = +1, then A(y) =P(xz=+1lly=vy) (28.35)
if we set c(y) = —1, then A(y) =P(xz= -1y =vy) (28.36)

Therefore, we should set ¢(y) = 4+1 whenever
Ple=+lly=y)2P(x=-lly=y) = 1-Pl@=+1lly=y) (28.37)

which is equivalent to the condition P (x = +1|ly =y) > 1/2.
]

Likelihood Ratio Test

The Bayes classifier (28.28) can be expressed in an equivalent form involving a
likelihood ratio test. To see this, note from expression (28.28) that deciding on
whether x is +1 or —1 amounts to checking the inequality:

Ple=+lly=y) > P@e=-1y=y) < Tuly) =+1  (28.38)

Using Bayes rule (3.39) for conditional probabilities, the above inequality is
equivalent to checking whether

fyz(yle =+1)Px =+1) = fya(ylz=—-1)Px=-1) (28.39)
Let m41 denote the prior probabilities for the events € = +1 and © = —1, i.e.,
T 2 Plx=+1), 71 2 Plx=-1) (28.40)
where
T +74 =1 (28.41)

Let further L(y) denote the likelihood ratio:
fylw(y|w = _1)

Then, condition (28.39) translates into deciding for & = +1 or & = —1 depending
on whether

L(y) (28.42)

1
= ! (28.43)

+
L
(y) B

This test is equivalent to the Bayes classifier (28.28): it decides for & = +1
when the likelihood ratio is larger than or equal to m_1 /7. When the classes
are equally probable so that m_1 = w41 = 1/2, the threshold value on the right-
hand side of (28.43) reduces to one.

Example 28.3 (Hard classifier) Let us apply the Bayes classifier (28.28) to the situa-
tion encountered earlier in Example 27.3. In that example, we discussed recovering the
class variable © € {+1, —1} for cat and dog images from soft measurements y = « + v
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in the presence of additive Gaussian perturbation, v.

Given y, we would like now to recover & by minimizing the probability of misclassi-
fication (rather than the mean-square-error, as was done in Example 27.3). The solu-
tion is given by the Bayes classifier (28.28); its computation requires that we evaluate
P(x = +1|y = y). This quantity has already been evaluated in Example 3.17. Indeed,
from that example we know that:

Pl =+1ly=y) = 0 +f‘1’§y+’f3y 1y where; f,(v) = No(0,1) (28.44)

Simplifying gives
1
- (wtD2/2
(e*(y*1)2/2) +1
According to (28.28), we need to compare P(z = +1|y = y) against the threshold 1/2.
It is easy to verify from the above expression that

Plx=+1ly=y) = (28.45)

Ple=+lly=y)>1/2 « y>0 (28.46)

In this way, expression (28.28) for the optimal classifier reduces to

~ _ +1, when y >0
Thayes { —1, otherwise (28.47)
which is equivalent to
Tbayes = sign(y) (28.48)

This is precisely the expression for the sub-optimal MSE estimator we used earlier in
(27.35)! Here, we discover that this construction is actually optimal but relative to the
misclassification criterion (28.27).

Example 28.4 (Using the likelihood ratio test) We reconsider the previous example
from the perspective of likelihood ratios to arrive at the same conclusion (28.48). Indeed,
note that the pdf of the observation y under both classes © € {£1} is Gaussian with
means {£1} and variances equal to one:

.f'yla:(y|a: = +1) ~ N’y(la 1)a fylm(y|m = _1) ~ N’y(_lv 1) (28'49)

In other words,
1 —Ll(y—1)?
fyle(lz = +1) = ——e 20 (28.50a)
V2T

1 _1 1)2
fyleylz = 1) = ——e 207 (28.50b)
V2

so that the likelihood ratio is
e~ 317

L = 28.51
(v) 67%(y+1)2 (28.51)

Assuming equally probable classes, we need to compare this ratio against one or, equiv-
alently,

exp{—%(y — 1)2 + %(y + 1)2} (28.52)

LAIVE
—



28.3 Bayes Classifier 1059

Computing the natural logarithms of both sides, it is straightforward to verify that the
above condition reduces to

(28.53)

<
LAIVE
o

which is equivalent to (28.48).

The likelihood ratio test can be illustrated graphically as shown in Fig. 28.2. The
figure shows two Gaussian distributions centered at +1 and with unit variances. These
distributions represent the conditional pdfs (28.50a)—(28.50b) of the observation given
x. In the example under consideration, the means are symmetric around the origin
and both distributions have equal variances. Obviously, more general situations can
be considered as well — see Prob. 28.5. For the scenario illustrated in the figure, the
likelihood ratio test (28.53) leads to comparing the value of y against zero. That is,
given an observation y, we decide that its class is € = +1 whenever y > 0 (i.e., whenever
it lies to the right of the zero threshold). Likewise, we decide that its class is @ = —1
whenever y < 0 (i.e., whenever it lies to the left of the zero threshold). The figure
highlights in color two small areas under the pdf curves. The smaller area to the right
of the zero threshold (colored in red) corresponds to the following probability of error:

/Ooo fy\m(y‘m = _1)dy

1 —iw+n?
= ——e 2 dy = ¢ 28.54
| = y (28.54)

- N

P(deciding & = +1|le = —1) =

>

0 X 41 y
s

threshold

K Plx = +1jx = —1) /

Figure 28.2 Illustration of the conditional Gaussian distributions (28.50a)—(28.50Db).

That is, the probability of assigning y wrongly to class * = +1 when it actually
originates from class @ = —1 is given by the red-colored area in the figure, whose value
we are denoting by e. Likewise, from the same figure, the smaller area to the left of the
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zero threshold (colored in blue) corresponds to the following probability of error:

0
P(deciding & = -1z = +1) = / fyle(ylx = +1)dy

/D L mdemn?y (28.55)
= e = € .
oo V2T Y

In this example, both error probabilities (or areas) are equal in size and we denote each
one of them by e. The probabilities can be combined to determine an expression for
the probability of error of the Bayes classifier since:

P(Zpayes # ) P( erroneous decisions )

= %]P’( deciding @ = +1|x = —1) + %]P’(deciding r=—1lz =+1)
= €/2+4¢€/2
¢ (28.56)

Example 28.5 (Classifying iris flowers) We reconsider the iris flower dataset encoun-
tered earlier in Example 27.4. The top row in Figure 28.3 shows two histogram distri-
butions for the petal length measured in cm for two types of flowers: iris setosa and iris
virginica. Each histogram constructs 5 bins based on 50 measurements for each flower
type. The width of the bin is 0.32cm for setosa flowers and 0.70cm for virginica flowers.
The bottom row shows the same histograms normalized by dividing each bin value
by the number of samples (which is 50) and by the bin width (0.32 for setosa flowers
and 0.70 for virginica flowers). This normalization results in approximations for the
probability density functions. We assume that a flower can only be one of two kinds:
either setosa or virginica. Given an observation of a flower with petal length equal to
5.5¢cm, we would like to decide whether it is of one type or the other. We will be solving
classification problems of this type in a more structured manner in later chapters, and
in many different ways. The current example is only meant to illustrate Bayes classifiers.

Let @ denote the class label, namely, * = +1 if the flower is iris setosa and @ = —1 if
the flower is iris virginica. We model the petal length as a random variable y. According

to the Bayes classifier (28.28), we need to determine the conditional probability P(xz =
+1|y = 5.5). To do so, we assume the flowers are equally distributed so that

Plx = +1) = Pz = —1) = 1/2 (28.57)
According to Bayes rule (3.42b), we have:

]P)(ili = 1‘) fy\w(y‘m = ZE)
fy(y)

Pl =zly=y) = (28.58)

Therefore, we need to evaluate the pdfs fy(y|z) and fy(y) that appear on the right-
hand side. We do not have these pdfs but we will estimate them from the data measure-
ments by assuming they follow Gaussian distributions. For that purpose, we only need
to identify the mean and variance parameters for these distributions; in later chapters,
we will learn how to fit more complex distributions into data measurements such as
mixtures of Gaussian models.

The sample means and variances for the petal length computed from the respective 50
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Figure 28.3 (7Top) Histogram distribution of the petal length measured in cm for iris
setosa flowers on the left and for iris virginica flowers on the right. (Bottom) The
same histogram plots are normalized by dividing the value for each bin by the bin size
and by the total number of 50 samples to generate approximate probability
distributions for the petal length variable. (Bottom) Two Gaussian distributions are
fitted on top of the normalized histograms.

measurements for each flower type are found to be:

E (petal length | flower = setosa) ~ 5.0060 (28.59a)

E (petal length ’ flower = virginica) ~ 6.5880 (28.59b)
var(petal length | flower = setosa) & 0.1242 (28.59c)
var(petal length ’ flower = virginica) ~ 0.4043 (28.59d)

where, for example, the sample mean and variance for the setosa flower are computed
by using:

50
E (petal length ’ flower = setosa) ~ 1 Z UYn 2 Ysetosa (28.60)
50 —
1 &
var(petal length ’ flower = setosa) ~ o (yn — gsetosaf (28.61)
n=1

Here, the sum is over the 50 setosa samples and y,, is the petal length for the n—th
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setosa sample.

The bottom row in Figure 28.3 shows two Gaussian distributions with these means and
variances fitted on top of the histograms. These are used as approximations for the
conditional pds fy|z(y|Z = x), namely,

1 1 2
(ylz = setosa) = 1 _-s. 28,62
Jyl=(y|lx = setosa) 0o 0'12429xp{ 7% 0.1242(31 5.0060) } (28.62)

1

oL 1 2
(yle = = - (y— 6.5880 28.63
Jyla(ylz = virginica) = —m—=re 436XP{ 5% 04013 Y ) } (28.63)

The combined distribution for the petal length variable can then be approximated by

1 1 1 2
Foy) =5 5= 0.1242eXp{ 5% 0.1242 ¥ ~ 5-0060) } +
1 1 1 2
1 6 98.64
2 V2r x 04043 P { 2% 0.4043 ¥ ~ 6-5880) } (28:64)

since it is equally likely for a petal length to arise from one Gaussian distribution or
the other. Figure 28.4 shows the normalized histogram distribution for all 100 petal
lengths and fits the sum of two Gaussian distributions on top of it.

N combined distribution (100 flowers)
T T T T

o
0
T
L

- normalized

2 ]

g histogram fitted

Zo6 pdf n
2

So.

a

S

S

3 4 5 6 7 8 9
petal length (cm)

Figure 28.4 Combined normalized histogram for the distribution of the petal length
measured in cm for both classes of iris setosa and iris virginica flowers. The sum of
two Gaussian distributions is fitted on top of the histogram.

We now have all the elements needed to evaluate the right-hand side of (28.58) for the
given petal length of y = 5.5 cm. Indeed,

P(x = setosa) fy|»(y = 5.5|x = setosa)
fy(y =5.5)
~ 0.4730 (28.65)

P(x = setosal|y = 5.5) =

0.5 x 0.3309
T 0.3498

This value is less than 1/2 and we therefore classify the flower as being of the iris
virginica type.
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Multiclass Classification

Problem 28.3 at the end of the chapter extends conclusion (28.28) to multiclass
classification problems where & could assume one of R > 2 discrete values, say,

x € {1,2,...,R}. In this case, the classifier maps the observation vector y to
integer values in the range {1,2,..., R}, i.e.,
cy): RM = {1,2,..., R} (28.66)

and its optimal construction is now given by the MAP formulation:

Thayes = Tmap = argmax Plx=zly=y) (28.67)
z€{1,2,....R}

which is the natural generalization of (28.31). This construction seeks the class
z that maximizes the posterior probability given the observation. Since the ob-
servation y is random, the resulting classifier Zpayes is also random, i.e., each
realization value y = y results in a realization Zpayes-

We can assess the probability of erroneous decisions by the Bayes classifier as
follows. If the true label corresponding to y = y is x, then the probability of
error for this observation is

A
P(errorly =y) = P(Zpayes # 2|y =y)
=1- ]P)(abayes = l’|y = y) (2868)

If we average over the distribution of the observations, we remove the condition-
ing over y and arrive at the probability of error for the Bayes classifier denoted
by

ayes A = -
P;D ves = ]P(mbayes #x) = / y (1 - ]P(xbayGS(y) = l’y|y = y))fy(y)dy
ye

(28.69)

Here, we are writing x,, with an explicit subscript ¥, inside the integral expression
to emphasize that x, is the label that corresponds to the observation y. The
following bound holds.

THEOREM 28.1. (Performance of Bayes classifier) Consider a multiclass clas-
sification problem with R labels, x = 1,2,..., R. It holds that
R—-1

Pc]oayes < =

(28.70)

Proof: We employ the result of future Theorem 52.1 in the following argument. By
construction, the Bayes classifier minimizes the probability of erroneous decisions, i.e.,
Thayes = argmin P(c(y) # x) (28.71)

2=c(y)
In future Theorem 52.1, we will study one particular suboptimal classifier called the

nearest-neighbor rule. It is suboptimal in the sense that it does not minimize the prob-
ability of error. We denote its probability of error by P., which is of course worse than
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that of the optimal Bayes classifier, i.e., P°%* < P,. We will establish in Theorem 52.1
that the probability of error for the nearest-neighbor classifier is upper bounded by

P, < pPwes (2 - %wam) (28.72)

The right-hand side is a quadratic function in PP®°%; its maximum is attained at the
location PP®° = (R — 1)/R. Substituting this value into the upper bound we get

R-1 R R-1 R-1
phwves <« p< 2 — = 28.
€ = = R < R-1 R ) R (28.73)

as claimed.

Discriminant Function Structure

Regardless of whether we are dealing with a binary or multiclass classification
problem, both solutions (28.31) and (28.67) admit a discriminant function inter-
pretation. The solution first associates a discriminant function with each discrete
class x, which we denote by:

A

d.(y) = Ple=zly=y), z=12,...,R (28.74)

This function measures the likelihood that observation y belongs to class x. Then,
the optimal classifier selects the class label, Zpayes, with the largest discrimination
value — see Fig. 28.5. We will encounter this type of structure multiple times
in our treatment — see, e.g., future expression (56.10), which will arise in the
design of linear discriminant classifiers; see also future Prob. 56.1.

LOGISTIC REGRESSION INFERENCE

We will encounter other choices for the loss function Q(x, Z) in our future devel-
opment. One of them is the logistic regression loss for binary variables € {1}
defined by

Q(x,z) =In(1+e72%), Z=c(y) (28.75)

We will study logistic regression in greater detail later in Chapter 59. Here we
provide some motivation based on the following theorem, which provides an
expression for the optimal estimator Z that follows from minimizing the logistic
risk.
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nservation

Y

[
discriminant |
functions i

1

1

Thayes = argmax dq(y)
1<z<R

\\ l /:C\bayes (y) /

Figure 28.5 Classifier structure in the form of a collection of discriminant functions,
d(y); one for each discrete value z. For each observation vector, y, the optimal
classifier is obtained by selecting the class label Tpayes with the largest discrimination
value. This value is denoted by Zbayes(y) at the bottom of the figure.

THEOREM 28.2. (Minimizer of logistic risk) Consider a binary classification
problem where x € {1} and the following Bayesian inference problem:

Zrr = argmin E In(1 + e~ *2) (28.76)
z=c(y)
The optimal estimator that minimizes the above risk is given by
oy 1 (BE =4y =y)
o= ) = (P(w =1y =)
where we are denoting the ratio by the notation logit(y). The sign of T r deter-
mines the logistic classifier for x.

) 2 logit(y) (28.77)

Proof: Let R(c) = E In(1 + e ®®) denote the logistic risk. We recall the conditional
mean property from Prob. 3.25 that Ea = E [E (a|b)], for any two random variables a
and b. Applying this property to the logistic risk we get

R(c) = ]Ey{IEm‘yOn(l + e—wﬁ)|y)} (28.78)

where the inner expectation is over the conditional pdf fg,(x|y), while the outer ex-
pectation is over the distribution of y. The inner expectation is always nonnegative.
Therefore, it is sufficient to examine the problem of minimizing its value to arrive at
a minimizer for R(c). Since & assumes the discrete values 1, we can assess the inner
expectation and write

Eapy (In(1+¢7°%) |y = y)
=Pz =+1lly=y)In(1+e°) + Pz = -1y = y)In(1 + ) (28.79)
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Differentiating over Z and setting the derivative to zero at Trr = c°(y) gives

—TLR TLR

tPz=—-lly=y)—— =0 (28.80)

—Plxz=+1ly =y) 1+ efLr

e
1+ e 7R
or, equivalently,

[P(a: _ —|—1\y _ y) _ eTLR (1 + eszR) _ eTLR (1 + e*ILR) _ eiLR _ eC()(h) (28 81)
P(x=—1ly=y) e TLr (1 + e"LR) 1+ e 7Lr '

from which we arrive at (28.77). We explain in (28.85) that the sign of Zrr determines
the Bayes classifier for .

The reason for the qualification “logistic” is because the solution (28.77) ex-
presses the conditional label probabilities in the form of logistic functions eval-
uated at Tpr. Indeed, it follows from (28.77) that

1

Plx =+1lly=y) = [y (28.82a)
1

Plx=-1ly=y) = 1+ etoir (28.82b)

Figure 28.6 illustrates the logistic functions 1/(1 + e~ *) and 1/(1 4 €*). Note
that these functions return values between 0 and 1 (as befits a true probability
measure).

logistic function for class +1 . logistic function for class -1
0.8 0.8
[ —
‘w 0.6 v 06
+ Z
T o4 <04
— —
0.2 0.2
0 0
10 5 0 5 10 -10 5 0 5 10

Figure 28.6 Typical behavior of logistic functions for two classes. The figure shows
plots of the functions 1/(1 4+ e~*) (left) and 1/(1 + €*) (right) assumed to correspond
to classes +1 and —1, respectively.

Note that the logit of y is the logarithm of the odds of y belonging to one class
or the other:
A Ple=+lly=y)  Ple=+lly=y)
Ple=—-ly=y) 1-Pl@=+ly=y)

odds(y) (28.83)

so that
odds(y) > 1 < Pz =+1lly=y) >1/2 (28.84)
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which agrees with the condition used by the Bayes classifier. Therefore, once the
logarithm is applied to the odds function, the value of Zrr will be nonnegative
when P(z = +1|y = y) > 1/2 and negative otherwise. For this reason, we can use
the logistic estimator g to deduce the value of the Bayes classifier by rewriting
(28.28) in the form:

~ +1, when Zpgr = logit(y) >0

Thayes = { —1, otherwise v (28.85)

Example 28.6 (Exponential loss and boosting) We will encounter later in Chapter 62,
while studying boosting algorithms for learning, the exponential loss function Q(z, Z) =
e~ ®®. Consider again a binary classification problem where & € {£1} and assume we
seek to solve

Tepxp = argmin {IE eimﬁ} (28.86)

2=c(y)

Then, the same derivation will lead to

1 (P(w =+lly=y)

/fl’\EXP = Zzin
2 "\ Bl@=1ly=y)

1
) = §logit(y) (28.87)
with an additional scaling by 1/2.

Example 28.7 (Motivating the logistic risk) One way to motivate the logistic risk
function used in (28.76) is to invoke the Kullback-Leibler (KL) divergence measure. Let
fziy(x|y) denote some unknown conditional pdf that we wish to estimate, where we are
using the pdf notation fz,(x|y) instead of the more explicit form P(x = +1|y = y) for
convenience. Assume we opt to use a sigmoid function to approximate the unknown
pdf and choose the approximation to be of the form:

1

gmly(x|y) =

for some function ¢(y) to be determined. Such sigmoidal functions are particularly use-
ful to model distributions for binary-valued discrete variables & € {£1} since they
return values between 0 and 1 (as befitting a true probability measure).

Recall from the discussion in Chapter 6 that the KL divergence is a useful measure of
closeness between probability distributions. Accordingly, we can choose ¢(y) to minimize
the KL divergence between fgy(z|y) and gu4(x|y), ie.,

Cly) 2 ar%gl)in E; {m (%)} (28.89)

where the expectation is relative to the unknown distribution f,(x|y). But since this
distribution is independent of ¢(y), the above problem is equivalent to

¢’(y) = argmin {—Ef In gw‘y(m\y)} (28.90)
c(y)
Substituting the assumed form (28.88) for g, (x|y), we arrive at
°(y) = argmin E ln(l + e*““”) (28.91)
c(y)

which agrees with the logistic risk formulation (28.76).
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DISCRIMINATIVE AND GENERATIVE MODELS

The solution of Bayesian inference problems requires knowledge of the condi-
tional distribution fg),(z|y), as is evident from (28.5). For example, the mean-
square error estimator, Zysg, corresponds to the mean of this conditional dis-
tribution, while the maximum a-posteriori estimator, Zyiap, corresponds to the
location of its mode. The same is true for the Bayes classifier when « is discrete
since it requires knowledge of the conditional probabilities P(x = r|y = y).

Implementing inference solutions that depend on knowledge of the conditional
distribution fg),(x|y) can be challenging, as explained below. For this reason, in
future chapters we will be pursuing various methodologies that attempt to solve
the inference problem of predicting « from y in different ways, either by insisting
on approximating the conditional pdf f,(x|y) or by ignoring it altogether and
working directly with data realizations instead. Four broad classes of approaches
stand out:

(a) (Approaches based on discriminative models). Even if f, (z|y) were known
in closed-form, computing its mean or mode locations can be demanding and
need not admit closed-form solutions. In later chapters, we will assume that
this conditional distribution has particular forms that are easy to work with.
These approximate techniques will belong to the class of discriminative meth-
ods because they assume models for the conditional pdf f4,(z|y) and allow
us to discriminate between classes.

(b) (Approaches based on generative models). In some other instances, we
may actually have more information than fs,(z|y) and know the full joint
distribution fg 4 (x,y). In principle, this joint distribution should be sufficient
to determine the conditional pdf since, from Bayes rule:

fay(,y)

where the distribution for y (also called its evidence), and which appears in
the denominator, can be determined by marginalizing the joint distribution:

fapy(zly) = (28.92)

fy(y) = /e%J fay(2,y)dy (28.93)

The difficulty, however, lies in the fact that this marginalization does not
always admit a tractable closed-form expression. In later chapters, we will
describe various approximation methods to forgo the need to evaluate the ev-
idence, such as the Laplace method, the Markov chain Monte Carlo method,
and the expectation propagation method, in addition to variational inference
techniques.

Besides solving inference problems, knowledge of the joint distribution
can also be used to determine the generative distribution, fy(y|x), which
allows us to generate samples y from knowledge of z. We will encounter
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many examples of this approach in the form of Gaussian mixture models
(GMM), restricted Boltzmann machines (RBMs), hidden Markov models
(HMMs), and variational autoencoders. These techniques belong to the class
of generative methods because they allow us to determine models for the
reverse conditional pdf fyq(y|x).

Observe that the main difference between the discriminative and gener-
ative approaches is that the former works with (or approximates) fay(x|y)
while the latter works with (or approximates) fya(y|z):

discriminative approach —> works with f,, (z|y) (28.94a)
generative approach = works with f,,(y|z) (28.94b)

(Approaches based on model-based inference). The inference methods un-
der (a) and (b) work directly with joint or conditional distributions for the
variables involved, namely, f|,(7|y) and fz . (2,y). These distributions are
either known or approximated. The approximations can take different forms.
For example, one can assume a parametric model for the conditional pdf
fzy(7|y; 0), assumed parameterized by some 6 (such as assuming a Gaus-
sian form with its mean and variance playing the role of the parameter 6).
One can then seek to estimate € in order to fit the assumed distribution
model onto the data, and proceed from there to perform inference. The
maximum-likelihood technique and Gaussian mixture models are examples
of this approach. Alternatively, one can assume a model relating the vari-
ables {x, y} directly, such as a state-space model or a linear regression model
that tells us how x generates y. The Kalman and particle filter solutions are
prominent examples of this approach. The assumed state-space models im-
plicitly define a conditional distribution linking & and y. One can then work
with the model equations to perform inference. In many instances of inter-
est, the assumed model removes the need to know the full conditional pdf
fz|y(z|y), and only some of its moments are necessary. We will encounter
our first example of this scenario in the next chapter. There, by assuming
a linear regression model, it will be seen that the Bayesian solution only
requires knowledge of the first and second-order moments of the variables
{:c, y}, namely, their means, cross-covariance, and variances. Our treatment
of inference methods will cover steps (a)—(c) in some detail, and introduce
various techniques that fit into one of these approaches starting from the
next chapter.

(Approaches based on data-driven inference). Model-based solutions can
be complex and computationally demanding; for example, it is not unusual
for these implementations to involve the computation of challenging inte-
grals or to require fitting complex distributions onto data. Moreover, in a
large number of applications, designers do not know the general forms of
the conditional or joint probability distributions, or even models linking the
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variables, and will only have access to data realizations {z(n),y,} that arise
from these distributions or models. For this reason, we will be motivated to
introduce a variety of learning methods that perform inference directly from
data. In contrast to the inference methods under (a)—(c), which attempt to
approximate or emulate the underlying distributions or models, learning al-
gorithms will be largely data-driven and will arrive at inference conclusions
without the need to know or determine explicitly the forms of the underlying
distributions or models.

The learning methods will differ by how they process the data. Some meth-
ods will operate directly on {x(n),y,} to estimate values for the conditional
probabilities (rather than their actual forms). Examples include the nearest
neighbor (NN) rule and self-organizing maps (SOMs). Other learning meth-
ods will go a step further. They will require the mapping ¢(y) to be an affine
model of the observations, say, c(y) = y"w —6, for some parameters w € RM
and 0 € IR, or use some more involved nonlinear models as happens with
kernel methods and neural networks. For affine models, the Bayesian infer-
ence problem (28.1) will reduce to minimizing over the parameters (w, 0):

(w®,6°) = argmin EQ(w, §;x,y) (28.95)
w,0
For example, in the mean-square error case, the loss function will take the
form (for scalar x):

Qz,2) = (z - &)
=(x—y w+0)?
=Q(w,0;,y) (28.96)

which shows that the loss is dependent on the parameters (w,#) and on
the variables {x,y}. Formulation (28.95) is an optimization problem with
a stochastic risk. If we observe a collection of realizations {z(n),y,} arising
from the underlying (but unknown) distribution fy 4(z,y), then we already
know how to run stochastic gradient algorithms and many variations thereof
to seek the optimizers (w®, 6°).

We will also consider empirical risk versions of problem (28.95) such as

s

N-1
(w*,0*) = ar%)rgin {]1[ 7;] Q(w,@;x(n),yn)} (28.97)

Most learning algorithms discussed in later chapters will correspond to stochas-
tic approximation methods applied to the minimization of the stochastic or
empirical formulations similar to (28.95) or (28.97). We will encounter a va-
riety of methods that fit into this paradigm such as support vector machines,
the Perceptron, kernel methods, and neural networks. These methods will
differ by their choice of the loss function.
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For ease of reference, we represent the various inference and learning methods
described above in the diagram shown in Fig. 28.7, where we also embedded the
encoder and decoder cells that map the variables {@, y} to each other.

COMMENTARIES AND DISCUSSION

Bayesian and non-Bayesian formulations. In statistics, there is a clear distinction be-
tween the classical approach and the Bayesian approach to estimation. In the classical
approach, the unknown quantity to be estimated is modeled as a deterministic but un-
known constant. One popular non-Bayesian technique is the mazimum likelihood (ML)
approach discussed later in Chapter 31. This approach was developed by the English
statistician Ronald Fisher (1890-1962) in the works by Fisher (1912,1922,1925) —
see the presentations by Pratt (1976), Savage (1976), and Aldrich (1997). The maxi-
mum likelihood formulation does not assume any prior distribution for the unknown «
and relies on maximizing a certain likelihood function

The Bayesian approach, on the other hand, models both the unknown quantity and
the observation as random variables. It allows the designer to incorporate prior knowl-
edge about the unknown into the solution, such as information about its probability
density function. This fact helps explain why Bayesian techniques are dominant in many
successful filtering and estimation designs. We will provide a more detailed compari-
son of the maximum-likelihood and Bayesian approaches in the comments at the end
of Chapter 31. For additional information on Bayesian and non-Bayesian techniques,
readers may refer to the texts by Zacks (1971), Box and Tiao (1973), Scharf (1991),
Kay (1993), Cassella and Berger (2002), Cox (2006), Hogg and McKean (2012), and
Van Trees (2013).

Bayes classifiers. The Bayes classifier (28.67) is one notable application of the method
of Bayesian inference in statistical analysis. Some early references on the application
of Bayesian inference to classification problems include the works by Chow (1957) and
Miller (1962) and the texts by Davenport and Root (1958), Middleton (1960), and Wald
(1950). For readers interested in learning more about Bayes classifiers and Bayesian in-
ference, there are many available treatments in the literature including, among others,
the textbooks by Bernardo and Smith (2000), Lee (2002), DeGroot (2004), Cox (2006),
Bolstad (2007), Robert (2007), Hoff (2009), and Young and Smith (2010).

Likelihood ratio tests. In expression (28.31) we showed that the optimal classifier that
minimizes the probability of misclassification can be obtained by maximizing the pos-
terior probability of the variable & given the observation y = y. This construction
provides a useful interpretation for the Bayes classifier as a maximum a-posteriori
(MAP) solution — see Duda, Hart, and Stork (2000), Webb (2002), Bishop (2007),
and Theodoridis and Koutroumbas (2008). In Sec. 28.3.2, we explained how the Bayes
classifier (28.28) can be recast in terms of the likelihood ratio test (28.43). This reformu-
lation brings forth connections with another notable framework in statistical analysis,
namely, the solution of detection problems by evaluating likelihood ratios and compar-
ing them against threshold values. There is an extensive literature on this important
topic, starting with the seminal works by Neyman and Pearson (1928,1933), which laid
the foundation for most of the subsequent development in this field. In one of its most
basic forms, the Neyman-Pearson construction allows us to select between two simple
hypotheses represented by parameter values x, and z1. For example, in the context
of binary classification, the parameter x, could be chosen to represent class +1, while
the parameter x; could be chosen to represent class —1. The two hypotheses are then
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stated as follows:

{ H,: x=1x,, (null or positive hypothesis) (28.98)

H,: xz =z, (alternative or negative hypothesis)

It is customary to refer to H, as the null or positive hypothesis, while H; is the
alternative or negative hypothesis. Given an observation y, the Neyman-Pearson test
would accept H, in lieu of H; (i.e., declare that the null hypothesis is valid) when the
following likelihood ratio exceeds some threshold value 7:

— H,
A fylz(ylz = o) z n (28.99)

LW = F el =o) 2

The value of 7 is usually selected to ensure that some upper bound, denoted by «, is
imposed on the probability of erroneously rejecting H, when H, is true. The resulting
type-I error, or the probability of falsenegatives or missed detection, is given by:

(false negative or type-I error)

P(L(y) < n|Ho,) = P(reject Ho|when Hp is true) < « (28.100)
On the other hand, the probability of false positives or false alarm, also called type-I1
error, corresponds to

(false positive or type-II error)

B =P(L(y) > n|H1) = P(accept Ho|when H; is true) (28.101)
The Neyman-Pearson theory establishes that the likelihood test (28.99) is the most

powerful test at level a. This means that it is the test that results in the largest power
defined as the following probability:

power = P (reject Ho|when H; is true) = 1—f (28.102)

which measures the ability of the test to reject H, when H; is present. Table 28.1
summarizes the various decision possibilities and their respective probabilities.

Table 28.1 Definitions of the probabilities of false negatives, false positives, and the
power of a hypothesis test.

[ H, is true [ H, is true

accept H, correct decision, 1 — a. type-II error (false positive), 3.

reject H, | type-I error (false negative), a. | correct decision (power), 1 — S.

Returning to the Bayes classifier, we noted in expression (28.43) that the threshold
value 7 should be selected as the ratio n = w—_1/m41, in terms of the priors for the
classes +1. Moreover, from expressions (28.54)—(28.55), we can deduce the probabilities
of errors of types-I and II (i.e., the fraction of false negatives and false positives by the
classifier) for the situation discussed in the example:

0
P (deciding = —1jx = +1) = / \/%e*%(yflﬂdy = ¢ (type-l) (28.103a)
_ ™

oo 1 N 2
-3 (y+1) _

——e 2 dy = €, (type-1l) (28.103b)

V2T

Consequently, for this example, a = 8 = ¢, and the resulting power level is

P (deciding ¢ = +1jx = —1) = /
0

P(deciding x = -1l = —-1) = 1 —¢ (28.104)
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For further reading on hypothesis testing and statistical inference, some useful ref-
erences include the texts by Kay (1998), Poor (1998), Cassella and Berger (2002),
DeGroot (2004), Lehmann and Romano (2005), Cox (2006), Levy (2008), Young and
Smith (2010), and Van Trees (1968,2013).

Beta distribution. The Beta distribution (28.20), also known as the Beta distribution
of first-kind, is very useful to model random variables that are confined to the finite
interval [0,1]. It is parameterized by two positive shape parameters a and b and in-
cludes the uniform distribution as a special case. It is often used as a prior in Bayesian
inference, as was illustrated in Example 28.2. For more information on the Beta distri-
bution, the reader may consult the texts by Hahn and Shapiro (1994), Johnson, Kotz,
and Balakrishnan (1995), and Gupta and Nadarajah (2004).

PROBLEMS

28.1 Motivated by the 0/1—loss (28.12), consider the alternative loss function:

A [ 1 Jz—Z>e€
Q(%w)—{o7 |m—§\§e

for some small € > 0. Show that

T+e
EQ(x @ly=y) = 1- / Fary (2ly)da

—€

28.2 Consider a collection of N independent Gaussian realizations {y,, } with mean p
and unit variance, i.e., y, ~ Ny, (u,1) forn=0,1,..., N —1. The mean p is unknown

but arises from a Gaussian prior distribution g ~ Ny (0, O'Z) with known variance.
(a) Determine the posterior distribution fjy,,....yn_, (Y0, Y1, - - yn—1).

(b) Determine the optimal mean-square error (MSE) estimator of p.
(¢) Determine the maximum a-posterior (MAP) estimator for .
(d) Determine the mean absolute error (MAE) estimator for pu.

28.3 Refer to the derivation of the Bayes classifier (28.28). We wish to extend the solu-
tion to multiclass classification problems consisting of R classes, say, € {1,2,..., R}.
Given y, we again seek to solve over all possible classifiers: min.(,) P (c(y) # x). Show
that the Bayes classifier in this case is given by the MAP construction

Thayes = argmax P(xz = z|ly = y)
1<z<R

28.4 A binary label © € {+1,—1} is observed under zero-mean additive Gaussian

noise v with variance o2. The observation is denoted by y = @ + v. Assume & = +1

with probability p and & = —1 with probability 1 — p. Determine the form of the Bayes

classifier. Compare with the result of Example 28.3.

28.5 Consider a binary classification problem in which @ = 41 with probability p

and & = —1 with probability 1 — p. The observation is scalar valued, y € IR, and it

has a Gaussian distribution with mean m4; and variance 03, when & = 41, and mean

m—1 and variance 02, when = —1.

(a) Determine the form of the Bayes classifier.

(b)  Assume J?H = 02, = 02 and my1 > m_1. Determine an expression for the
probability of error of this classifier.

28.6 Consider a binary classification problem in which & = +1 with probability p and

« = —1 with probability 1 — p. The observation y is M —dimensional, y € IRM, and it

has a Gaussian distribution with mean m.4; and covariance matrix 311 when © = +1,
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and mean m_; and covariance matrix >_; when & = —1. Follow the log-likelihood
ratio test of Sec. 28.3.2 to determine the form of the Bayes classifier.

28.7 We consider binary classification problems with @ = £1. The Bayes classifier
was derived by minimizing the probability of erroneous decisions, as defined by (28.27).
There are two types of error that can occur: assigning an observation to @ = +1 when it
actually arises from & = —1 or, conversely, assigning an observation to @ = —1 when it
arises from = +1. The formulation (28.27) treats these two errors equally. However,
there are situations where one type of error is more serious than the other, e.g., in
deciding whether a person has a particular disease or not. To address such situations,
we can assign weights to the errors and define instead a weighted risk function, also
called the Bayes risk, for the classifier c(y) as follows:

R(c) & ap,ampPle(y) = —1lz = +1) + a1 71 Pc(y) = +1|z = —1)

In this expression, the nonnegative scalar a41,—1 weighs the error in assigning an ob-
servation from & = +1 to & = —1; similarly, for a—1,41. Moreover, the scalars 741
denote the prior probabilities for & = +1.

(a) Follow arguments similar to those in Sec. 28.3 to determine the optimal classifier
that minimizes the above weighted risk, R(c). Verify that the expression reduces
to (28.28) when the weights {a{1,-1,@—1,41} are equal.

(b) Follow the derivation of the log-likelihood ratio test of Sec. 28.3.2 to show that
the optimal classifier admits the following equivalent representation:

+>1 1,41 mT—1
w = (G (2)

] Q41,11 T+1

where L(y) is the likelihood ratio defined by (28.42).
28.8 We continue with the setting of Prob. 28.7, except that now we consider situa-
tions where it is also important to emphasize correct decisions in addition to erroneous
decisions. There are two types of correct decisions: assigning an observation to @ = +1
when it arises from @ = +1 or assigning it to ® = —1 when it arises from = —1.
Again, there are situations where one type of correct decisions is more relevant than

the other. We can address these scenarios by defining a general weighted risk function
as follows:

R(y) £ as1,-17m11P(c(y)
(c(y)
(c(y)
(c(

a—1,—17—1P(c(y)

1,41 7l’71]P) =
Qy1,41 T4 P =+l =+1

Given a—1,41 > a—1,—1 and o41,—1 > 41,41, follow the derivation of the log-likelihood
ratio test from Sec. 28.3.2 to show that the optimal classifier admits the following
equivalent representation:

Y lap—a) (7
L(y) = — e
5 \@41,-1 —aqi,41 T4l
where L(y) is the likelihood ratio defined by (28.42).

28.9 Let w11 and m_; denote the prior probabilities for & = £1,i.e., P(x = +1) = 741
and P(x = —1) = m_1. Introduce the conditional pdfs:

i) & fuelle=+1), fa1(y) 2 fyalyle=-1)
Let t(y) = P(x = +1|y = y). Show that

T1f+1

ty) = T frr +Fmo1foa
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Conclude that the test t(y) > 1/2 is equivalent to checking for the condition 741 f1+1(y) >
m-1f-1(y)-

28.10 Let y denote a random variable that is distributed according to a Poisson
distribution with mean \ > 0, i.e.,

)\k —A
Ply = k) = z' . k=0,1,2,...

where X is the average number of events occurring in an interval of time. We model A

as a random variable following an exponential distribution with mean equal to one, i.e.,

) = e~ for A > 0. Assume we collect N independent and identically distributed

observations {y;,...,yy}. We would like to estimate A from the observations.
(a) LetS= 2521 Yn. Verify that

f)\lyl,u.,yN ()\|y1, ce. ,yN) ~ e_A(N"’l))\S

where x denotes proportionality. Conclude that the conditional pdf of A given the
observations follows a Gamma distribution (which we defined earlier in Prob. 5.2).
Determine the mean of this distribution and conclude that the MSE estimate for

A is given by
~ 1 N
A = 1 n
MSE N1 ( +;y>

(b)  Show that the maximum a-posteriori (MAP) estimate for A is given by

~ 1 X
Avap = 7N+1 E Yn
n=1

(¢) Show that the mean-absolute error (MAE) estimate for A is found by solving the
integral equation

1

Xl\/IAE
§/ AN +1)5T e 2V gy = 1/2
- Jo

(d) Which of the estimators found in parts (a)—(c) is unbiased?
28.11 A random variable y follows a binomial distribution with parameters N and
p, i.e., the probability of observing k successes in N trials is given by:

N -
Py = k) = (k)p’“(l—p)” Y k=01,...,N

Having observed y = y, we wish to estimate the probability of success, p, using a MAP

estimator. To do so, and as explained in Example 28.2, we assume that the marginal

distribution of p follows the Beta distribution (28.20).

(a)  Using the assumed forms for the distributions of p and y, determine an expression
for the conditional pdf fp,, (ply).

(b) Show that the peak of fp,(ply) occurs at location

y+a-—1
N+a+b-2

Pmar =

(¢) Compare the MAP solution to the ML solution in future Prob. 31.8.
28.12 Consider the same setting of Prob. 28.11. Show that the MSE estimate of p
given y = y (i.e., the conditional mean estimate) is given by:

yta

puse = E(ply=y) = Niatb



28.6 Commentaries and Discussion 1077

Find the resulting mean-square-error. Compare the MSE solution to the ML solution
from future Prob. 31.8.
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