
19 CONVERGENCE ANALYSIS I:
STOCHASTIC GRADIENT
ALGORITHMS

We are ready to examine the convergence behavior of the stochastic gradi-
ent algorithm for smooth risks under various operation modes. We will consider
updates with constant and vanishing step-sizes. We will also consider data sam-
pling with and without replacement, as well as under importance sampling. We
will further consider instantaneous and mini-batch gradient approximations. In
all cases, the main conclusion will be that the mean-square error E‖w̃n‖2 is
guaranteed to approach a small O(µ)−neighborhood, while exact convergence
of wn to w? can be guaranteed for some vanishing step-size sequences. These
are reassuring results in that the deterioration due to the stochastic gradient
approximations remains small, which explains in large part the explosive success
of stochastic approximation methods in inference and learning.

19.1 PROBLEM SETTING

We start our exposition by recalling the problem formulation, and the conditions
imposed on the risk and loss functions. We also recall the constructions for the
gradient approximations, and the first and second-order moment results derived
in the last chapter for the gradient noise process.

19.1.1 Risk Minimization Problems

To begin with, in this chapter, we are interested in examining the convergence
behavior of the stochastic gradient implementation:

wn = wn−1 − µ ∇̂wTP (wn−1), n ≥ 0 (19.1)

with constant µ, or even decaying step-sizes µ(n), for the solution of convex
optimization problems of the form:

w? = argmin
w∈IRM

P (w) (19.2)
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where P (w) is a first-order differentiable empirical or stochastic risk, i.e., for the
solution of:

w?
∆
= argmin

w∈IRM

{
P (w)

∆
=

1

N

N−1∑

m=0

Q(w; γ(m), hm)

}
(19.3a)

wo
∆
= argmin

w∈IRM

{
P (w)

∆
= EQ(w;γ,h)

}
(19.3b)

Observe that we use w? to refer to the minimizer in the empirical case, and wo

for the minimizer in the stochastic case. Often, when there is no room for confu-
sion, we will use w? to refer generically to the minimizer of P (w) independent of
whether it represents an empirical or stochastic risk. In the above expressions,
Q(w, ·) denotes the loss function, {γ(m), hm} refer to a collection of N−data
points with γ(m) ∈ IR and hm ∈ IRM , and the expectation in the second line is
over the joint distribution of {γ,h}.

19.1.2 Gradient Vector Approximations

The gradient search direction will be approximated by using either instantaneous
or mini-batch calculations, namely,

(approximations under sampling with and without replacement)

(instantaneous) : ∇̂wT P (w) = ∇wT Q(w;γ,h) (19.4a)

(mini-batch) : ∇̂wT P (w) =
1

B

B−1∑

b=0

∇wT Q(w;γ(b),hb) (19.4b)

where the boldface notation (γ,h) or (γ(b),hb) refers to data samples selected
at random (with or without replacement) from the given dataset {γ(m), hm} in
empirical risk minimization, or assumed to stream in independently over time
in stochastic risk minimization. The difference between the true gradient and its
approximation is gradient noise and denoted by

g(w)
∆
= ∇̂wT P (w)−∇wT P (w) (19.5)

When the stochastic gradient algorithm operates under importance sampling, the
gradient approximations are further scaled by 1/Npb, where pb is the probability
of selecting sample (γ(b),hb):

(approximations under importance sampling)

(instantaneous) : ∇̂wT P (w) =
1

Np
∇wT Q(w;γ,h) (19.6a)

(mini-batch) : ∇̂wT P (w) =
1

B

B−1∑

b=0

1

Npb
∇wT Q(w;γ(b),hb) (19.6b)
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19.1.3 Conditions on Risk and Loss Functions

In Sec. 18.2 we introduced the following conditions for empirical risk minimiza-
tion problems of the form (19.3a):

(A1) (Strongly convex risk). P (w) is ν−strongly convex and first-order differen-
tiable, namely, for every w1, w2 ∈ dom(P ):

P (w2) ≥ P (w1) + (∇wT P (w1))T(w2 − w1) +
ν

2
‖w2 − w1‖2 (19.7a)

(A2) (δ−Lipschitz loss gradients). The gradient vectors ofQ(w, ·) are δ−Lipschitz
regardless of the data argument, i.e.,

‖∇wQ(w2; γ(k), hk)−∇wQ(w1; γ(`), h`)‖ ≤ δ ‖w2 − w1‖ (19.7b)

for any w1, w2 ∈ dom(Q), any 0 ≤ k, ` ≤ N − 1, and with δ ≥ ν. We
explained that condition (19.7b) implies that the gradient of P (w) is itself
δ−Lipschitz:

‖∇w P (w2)−∇w P (w1)‖ ≤ δ‖w2 − w1‖ (19.8)

On the other hand, for stochastic risk minimization problems of the form (19.3b),
we continue to assume the strong convexity of P (w) but replace (A2) by the
requirement that the gradients of the loss are now δ−Lipschitz in the mean-
square sense:

(A2’) (Mean-square δ−Lipschitz loss gradients). The gradient vectors of Q(w, ·)
satisfy the mean-square bound:

E‖∇wQ(w2;γ,h)−∇wQ(w1;γ,h)‖2 ≤ δ2‖w2 − w1‖2 (19.9)

for any w1, w2 ∈ dom(Q) and with δ ≥ ν. We further showed that condition
(19.9) implies that the gradients of P (w) are δ−Lipschitz as well:

‖∇w P (w2)−∇w P (w1)‖ ≤ δ‖w2 − w1‖ (19.10)

which is the same condition (19.8) under empirical risk minimization.

Note that under conditions (A1,A2) for empirical risk minimization or (A1,A2’)
for stochastic risk minimization, the following two conditions hold:

(P1): ν−strong convexity of P (w) as in (19.7a) (19.11a)

(P2): δ−Lipschitz gradients for P (w) as in (19.8) and (19.10) (19.11b)

Moreover, we know from the earlier results (8.29) and (10.20) derived for strongly-
convex and δ−smooth functions that conditions P1 and P2 imply respectively:

(P1) =⇒ ν

2
‖w̃‖2 ≤ P (w)− P (w?) ≤ 1

2ν
‖∇w P (w)‖2 (19.12a)

(P2) =⇒ 1

2δ
‖∇w P (w)‖2 ≤ P (w)− P (w?) ≤ δ

2
‖w̃‖2 (19.12b)
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where w̃ = w? − w. The bounds in both expressions affirm that whenever we
bound ‖w̃‖2 we will also be automatically bounding the excess risk, P (w) −
P (w?).

19.1.4 Gradient Noise

We further showed in Sec. 18.3 that, as a result of the Lipschitz conditions (A2)
or (A2’), the first and second-order moments of the gradient noise process satisfy
the following two properties denoted by G1 and G2 for ease of reference:

(G1): E (gn(wn−1) |wn−1) = 0 (19.13a)

(G2): E (‖gn(wn−1)‖2 |wn−1) ≤ β2
g‖w̃n−1‖2 + σ2

g (19.13b)

for some nonnegative constants {β2
g , σ

2
g} that are independent of w̃n−1. Con-

dition (G1) refers to the zero-mean property of the gradient noise while (G2)
refers to its bounded “variance.” We explained in the previous chapter that re-
sults (19.13a)–(19.13b) hold for instantaneous and mini-batch gradient approx-
imations, regardless of whether the samples are streaming in independently of
each other, sampled uniformly with replacement, sampled without replacement,
or selected under importance sampling. The only exception is that the zero-mean
property (19.13a) will not hold for the instantaneous gradient implementation
when the samples are selected without replacement. This exception is not of
major consequence for the convergence results in this chapter. When property
(19.13a) does not hold, the convergence argument will need to be adjusted (and
becomes more demanding) but will continue to lead to the same conclusion.

In summary, we find that conditions (A1,A2) for empirical risk minimization
or (A1,A2’) for stochastic risk minimization imply the validity of conditions
(P1,P2) on the risk function and conditions (G1,G2) on the gradient noise:

(A1,A2) or (A1,A2’) =⇒ (P1,P2, G1,G2) (19.14)

Remark 19.1. (Conditions on risk and loss functions) The δ−Lipschitz conditions
A2 and A2’ on the loss function were shown in the previous chapter to lead to the
gradient noise properties G1,G2. They also imply the δ−Lipschitz property P2. The
convergence analyses in the sequel will rely largely on G2 and P2, which relate to
the bound on the second-order moment of the gradient noise and to the δ−Lipschitz
condition on the gradients of P (w). While the two properties (G2,P2) follow from
(A2, A2’), they can also be introduced on their own as starting assumptions for the
convergence analysis.

�

19.2 CONVERGENCE UNDER UNIFORM SAMPLING

We are ready to examine the convergence behavior of the stochastic gradient
recursion (19.1) in the mean-square-error sense under conditions (A1,A2) or
(A1,A2’).
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19.2.1 Mean-Square Error Convergence

The first result shows that the mean-square error (MSE), denoted by E‖w̃n‖2,
does not converge to zero but rather to a small neighborhood of size O(µ). Specif-
ically, results (19.18b) and (19.18c) below mean that the behavior of E‖w̃n‖2
and the excess-risk EP (wn) − P (w?) can be described by the combined effect
of two terms: one term O(λn) decays exponentially at the rate λn and a second
term O(µ) describes the size of the steady-state value that is left after sufficient
iterations so that

lim sup
n→∞

E‖w̃n‖2 = O(µ) (19.15a)

lim sup
n→∞

(
EP (wn)− P (w?)

)
= O(µ) (19.15b)

in terms of the limit superior of the variables involved. The limit superior of
a sequence corresponds to the smallest upper bound for the limiting behavior
of that sequence; this concept is useful when a sequence is not necessarily con-
vergent but tends towards a small bounded region. This situation is illustrated
schematically in Fig. 19.1 for E‖w̃n‖2. If a sequence happens to be convergent,
then the limit superior will coincide with its normal limiting value.

x = 1

Figure 19.1 Exponential decay of the mean-square error described by expression
(19.18a) to a level that is bounded by O(µ) and at a rate that is on the order of λn

where λ = 1−O(µ).

It further follows from the proof of the theorem below that, for sufficiently
small step-sizes, the size of the O(µ) limiting region in the above expressions is
actually dependent on σ2

g (the absolute noise term) since it will hold that — see
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the arguments after (19.26) and (19.28):

lim sup
n→∞

E‖w̃n‖2 = O(µσ2
g/2ν) (19.16a)

lim sup
n→∞

(
P (wn)− P (w?)

)
= O(µσ2

g/4) (19.16b)

where ν is the strong-convexity factor. Thus, observe from the statement of the
theorem that the parameters (β2

g , σ
2
g), which define the bound on the second-

order moment of the gradient noise, affect performance in different ways. The
value of β2

g affects both stability (by defining the bound on µ for convergence)
and the rate of convergence λ, whereas σ2

g affects the size of the limiting region
(i.e., the size of the steady-state error). This observation holds for all convergence
results in this chapter.

Theorem 19.1. (MSE convergence under constant step-sizes) Consider the
stochastic gradient recursion (19.1) with the instantaneous gradient approxima-
tion (19.4a) under uniform data sampling or streaming data, used to seek the
minimizers of empirical or stochastic risks. The risk and loss functions are as-
sumed to satisfy conditions (A1,A2) or (A1,A2’). For step-size values satisfying
(i.e., for µ small enough):

µ <
2ν

δ2 + β2
g

∆
= µo (19.17)

it holds that E‖w̃n‖2 and the average excess risk, EP (wn) − P (w?), converge
exponentially fast according to the recursions:

E‖w̃n‖2 ≤ λE‖w̃n−1‖2 + µ2σ2
g (19.18a)

E‖w̃n‖2 ≤ O(λn) +O(µ) (19.18b)

EP (wn)− P (w?) ≤ O(λn) +O(µ) (19.18c)

where

λ
∆
= 1− 2νµ+ (δ2 + β2

g)µ2 ∈ [0, 1) (19.19)

Results (19.18b)–(19.18c) hold for sufficiently small step-sizes.

Proof: We subtract w? from both sides of (19.1) and use (19.5) to get

w̃n = w̃n−1 + µ∇wTP (wn−1) + µ gn(wn−1) (19.20)

We will be squaring this expression. In preparation for that step, we first use the fact
that ∇wP (w?) = 0 to note that for the first two terms on the right-hand side:

‖w̃n−1 + µ∇wTP (wn−1)‖2

= ‖w̃n−1‖2 + 2µ (∇wTP (wn−1))T w̃n−1 + µ2‖∇wTP (wn−1)‖2

= ‖w̃n−1‖2 + 2µ (∇wTP (wn−1))T w̃n−1 + µ2‖∇wTP (w?)−∇wTP (wn−1)‖2

(P2)
≤ ‖w̃n−1‖2 + 2µ (∇wTP (wn−1))T w̃n−1 + µ2δ2‖w̃n−1‖2 (19.21)
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Next, we appeal to the strong convexity property (19.7a) to get

(∇wTP (wn−1))T w̃n−1 ≤ P (w?)− P (wn−1)− ν

2
‖w̃n−1‖2

(8.23)

≤ −ν
2
‖w̃n−1‖2 − ν

2
‖w̃n−1‖2

= −ν‖w̃n−1‖2 (19.22)

Substituting into (19.21) gives

‖w̃n−1 + µ∇wTP (wn−1)‖2 ≤ (1− 2µν + µ2δ2)‖w̃n−1‖2 (19.23)

which is a useful intermediate result. Returning to (19.20), squaring both sides, condi-
tioning on wn−1, and taking expectations we obtain

E
(
‖w̃n‖2 |wn−1

)
= E

(
‖w̃n−1 + µ∇wTP (wn−1) + µ gn(wn−1)‖2 |wn−1

)
(a)
= E

(
‖w̃n−1 + µ∇wTP (wn−1)‖2 |wn−1

)
+

µ2 E
(
‖gn(wn−1)‖2 |wn−1

)
(19.23)

≤ (1− 2µν + µ2δ2)‖w̃n−1‖2 + µ2 E
(
‖gn(wn−1)‖2 |wn−1

)
(G2)
≤ (1− 2µν + µ2δ2)‖w̃n−1‖2 + µ2 (β2

g‖w̃n−1‖2 + σ2
g

)
= (1− 2µν + µ2(δ2 + β2

g))‖w̃n−1‖2 + µ2σ2
g (19.24)

where the cross term in (a) is zero because of the zero-mean property G1; it is at
this step that the zero-mean property of the gradient noise process is used. Taking
expectations of both sides again removes the conditioning onwn−1 and leads to (19.18a)
where λ is defined by (19.19). The same argument used in Fig. 12.2 can be repeated
here to show that condition (19.17) ensures 0 ≤ λ < 1. By further iterating recursion
(19.18a) we obtain

E ‖w̃n‖2 ≤ λn+1 E ‖w̃−1‖2 +
µ2σ2

g

1− λ (19.25)

which proves that E ‖w̃n‖2 converges exponentially towards a region that is upper
bounded by:

lim sup
n→∞

E ‖w̃n‖2 ≤
µ2σ2

g

1− λ =
µσ2

g

2ν − µ(δ2 + β2
g)

(19.26)

It is easy to check that the upper bound does not exceed µσ2
g/ν for any step-size

µ < µo/2. If, on the other hand, µ� µo so that the denominator is approximately 2ν,
then the upper bound is on the order of µσ2

g/2ν. We conclude that (19.18b) holds for
sufficiently small step-sizes.

To establish (19.18c), we use (19.12b) to get

0 ≤ EP (wn)− P (w?) ≤ δ

2
E ‖w̃n‖2 (19.27)

so that from (19.26)

lim sup
n→∞

(
EP (wn)− P (w?)

)
≤ δµσ2

g

2(2ν − µ(δ2 + β2
g))

(19.28)

where the upper bound does not exceed µδσ2
g/2ν for any µ < µo/2. If, on the other
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hand, µ � µo so that the denominator is approximately 4ν, and since ν and δ are of
the same order, then the upper bound is on the order of µσ2

g/4. Either way, we conclude
from (19.27) that EP (wn) converges towards an O(µ)−neighborhood around P (w?)
at the same exponential rate as E ‖w̃n‖2, which is λn.

�

Observe that we can rewrite (19.18a) in the equivalent form
(
E‖w̃n‖2 −

µ2σ2
g

1− λ

)
≤ λ

(
E‖w̃n−1‖2 −

µ2σ2
g

1− λ

)
(19.29)

where the steady-state bound is subtracted from both sides. It is clear from
this representation that λ determines the rate of decay of the mean-square-error
towards its steady-state bound — refer again to Fig. 19.1.

Example 19.1 (Randomized coordinate-descent) A similar convergence analysis can
be applied to a randomized version of coordinate descent using stochastic gradient
approximations — see listing (19.30).

Stochastic randomized coordinate-descent for solving (19.3a) or (19.3b)

given dataset {γ(m), hm}N−1
m=0 or streaming data (γ(n), hn);

start with an arbitrary initial condition w−1.
repeat until convergence over n ≥ 0 :

iterate is wn−1 = col{wn−1,m}Mm=1

select at random or receive (γ(n),hn);
select a random index 1 ≤ mo ≤M ;

wn,mo = wn−1,mo − µ
∂Qu(wn−1;γ(n),hn)

∂wmo
keep wn,m = wn−1,m for all m 6= mo

end
return w? ← wn.

(19.30)

The same argument used in the proof of Theorem 19.1 can be repeated to establish
convergence conditions for (19.30). We leave the analysis to Prob. 19.7.

19.2.2 Regret Analysis

For empirical risks minimized by stochastic gradient algorithms, the regret value
over a window of N iterations is defined as the deviation of the accumulated loss
from the minimal risk value:

R(N)
∆
=

1

N

N−1∑

n=0

Q(wn−1;γ(n),hn) − min
w∈IRM

(
1

N

N−1∑

n=0

Q(w; γ(n), hn)

)

=
1

N

N−1∑

n=0

Q(wn−1;γ(n),hn) − P (w?) (19.31)
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where the arguments (wn−1,γ(n),hn) are random due to uniform sampling and
gradient noise. For this reason, we are denoting the regret variable in boldface
to highlight its random nature as well. We already encountered this definition
earlier in Sec. 17.2 while discussing the AdaGrad algorithm.

We may compare the above expression with the earlier definition (12.57) used
for the gradient-descent case when the actual gradient of P (w) is employed in
the update recursion. We observe that in the above expression for the regret,
the risk function P (w) from (12.57) is replaced by the loss function Q(w; ·). If
we evaluate the conditional expectation of R(N) over the trajectory of weight
iterates, and use the unbiasedness property EQ(w,γ,h) = P (w), we arrive at
the following expression for the conditional regret:

R(N)
∆
= E

(
R(N) |w−1,w0, . . . ,wN−1

)

=
1

N

N−1∑

n=0

P (wn−1) − P (w?) (19.32)

which agrees with the earlier definition (12.57). In stochastic optimization imple-
mentations, it is common to employ the regret (19.32) as a performance measure
as well. Using (19.18c) and the same argument that led to (12.58), we can readily
find that the regret for the stochastic gradient algorithm (19.1) under uniform
sampling satisfies — see Prob. 19.5:

ER(N) ≤ O(1/N) + O(µ) (19.33)

19.3 CONVERGENCE OF MINI-BATCH IMPLEMENTATION

Let (β2
g , σ

2
g) denote the parameters that characterize the bound in (19.13b) for the

stochastic gradient algorithm based on instantaneous gradient approximations.
We showed in (18.45) that these parameters get scaled down by a factor τB
when a mini-batch implementation is used since the second-order moment of the
gradient noise will then satisfy

E
(
‖gn(wn−1)‖2 |wn−1

)
≤ 1

τB

(
β2
g‖w̃n−1‖2 + σ2

g

)
(19.34)

where the value of τB depends on whether the mini-batch samples are selected
with or without replacement:

τB
∆
=





B, sampling with replacement

B
N − 1

N −B , sampling without replacement
(19.35)

Observe from the second line that τB ≈ B for N large enough. The same analysis
used to establish Theorem 19.1 will lead to a similar conclusion apart from the
scaling of β2

g by τB — see Prob. 19.1. Observe from the statement below how
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the min-batch size B influences the performance expressions. In particular,the
size of the steady-state neighborhood is reduced from O(µ) to O(µ/τB).

Theorem 19.2. (MSE convergence of mini-batch implementation) Consider
the stochastic gradient recursion (19.1) with the mini-batch gradient approxima-
tion (19.4b) under random sampling with or without replacement or streaming
data, used to seek the minimizers of empirical or stochastic risks. The risk and
loss functions are assumed to satisfy conditions (A1,A2) or (A1,A2’). For step-
size values satisfying (i.e., for µ small enough):

µ <
2ν

δ2 +
β2
g

τB

∆
= µo (19.36)

it holds that E‖w̃n‖2 and the average excess risk, EP (wn) − P (w?), converge
exponentially fast according to the recursions:

E‖w̃n‖2 ≤ λE‖w̃n−1‖2 +
µ2σ2

g

τB
(19.37a)

E‖w̃n‖2 ≤ O(λn) +O(µ/τB) (19.37b)

EP (wn)− P (w?) ≤ O(λn) +O(µ/τB) (19.37c)

where

λ
∆
= 1− 2νµ+

(
δ2 +

β2
g

τB

)
µ2 ∈ [0, 1) (19.38)

Results (19.37b) and (19.37c) hold for sufficiently small step-sizes.

19.4 CONVERGENCE UNDER VANISHING STEP-SIZES

We observe from (19.18b) that under constant step-size learning, the mean-
square error E‖w̃n‖2 converges to a small neighborhood of size O(µ); the smaller
the value of µ is, the smaller the size of this neighborhood will be. However,
small step-sizes affect the convergence rate of the algorithm because they cause
the value of λ to approach one. One way to reduce the size of the limiting region
to zero is to employ a decaying step-size µ(n) in place of the constant µ. Doing
so, allows us to employ larger step-size values during the initial stages of the
algorithm to speed up convergence and smaller step-size values during the latter
stages to improve steady-state performance. It is common to choose the sequence
µ(n) > 0 to satisfy either of the following two conditions:

(condition I)
∞∑

n=0

µ2(n) <∞ and
∞∑

n=0

µ(n) =∞ (19.39a)

(condition II) lim
n→∞

µ(n) = 0 and
∞∑

n=0

µ(n) =∞ (19.39b)
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Clearly, any sequence that satisfies the stronger condition (19.39a) also satisfies
(19.39b). Recursion (19.1) would then be replaced by

wn = wn−1 − µ(n) ∇̂wTP (wn−1), n ≥ 0 (19.40)

The decaying step-size helps annihilate the effect of gradient noise and ensures
convergence of wn to w?. Specifically, we will show below that wn will now
converge to w? in the mean-square sense under both choices (19.39a) or (19.39b),
i.e., E‖w̃n‖2 → 0 as n → ∞. Based on the discussion from Appendix 3.A
on the convergence of random variables, this conclusion implies convergence in
probability so that

lim
n→∞

P
(
‖w̃n‖2 > ε

)
= 0, for any small ε > 0 (19.41)

We will actually establish below the stronger result that under (19.39a), wn

converges to w? almost surely, i.e., with probability one:

P
(

lim
n→∞

wn = w?
)

= 1 (19.42)

While decaying step-size sequences of the form (19.39a)–(19.39b) provide favor-
able convergence properties towards w?, and assist in countering the effect of
gradient noise, they nevertheless force the step-size to approach zero. This is
problematic for applications requiring continuous learning from streaming data
because the algorithm will update more slowly and become less effective at track-
ing drifts in the location of w? due to changes in the statistical properties of the
data.

Theorem 19.3. (Convergence under vanishing step-sizes) Consider the
stochastic gradient recursion (19.1) with the instantaneous gradient approxima-
tion (19.4a) under uniform data sampling or streaming data, used to seek the
minimizers of empirical or stochastic risks. The risk and loss functions are as-
sumed to satisfy conditions (A1,A2) or (A1,A2’). Then, the following conver-
gence properties hold:

(a) If the step-size sequence µ(n) satisfies (19.39a), then wn converges almost
surely to w?, written as wn → w? a.s.

(b) If the step-size sequence µ(n) satisfies (19.39b), then wn converges in the
mean-square-error sense to w?, i.e., E‖w̃n‖2 → 0, which in turn implies
convergence in probability according to (19.41).

Proof: The same argument leading to (19.24) for constant step-sizes continues to hold
giving the inequality:

E
(
‖w̃n‖2 |wn−1

)
≤ λ(n) ‖w̃n−1‖2 + µ2(n)σ2

g (19.43)

with µ replaced by µ(n) and where now

λ(n)
∆
= 1− 2νµ(n) + (δ2 + β2

g)µ2(n) (19.44)
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We split the term 2νµ(n) into the sum of two terms and write

λ(n) = 1− νµ(n)− νµ(n) + (δ2 + β2
g)µ2(n) (19.45)

Now, since µ(n) → 0, we conclude that for large enough n > no, the value of µ2(n)
is smaller than µ(n). Therefore, a large enough time index, no, exists such that the
following two conditions are satisfied:

νµ(n) ≥ (δ2 + β2
g)µ2(n), 0 ≤ νµ(n) < 1, n > no (19.46)

Consequently,
λ(n) ≤ 1− νµ(n), n > no (19.47)

Then, inequalities (19.43) and (19.47) imply that

E
(
‖w̃n‖2 |wn−1

)
≤ (1− νµ(n)) ‖w̃n−1‖2 + µ2(n)σ2

g , n > no (19.48)

Due to the Markovian property of recursion (19.40), where wn is solely dependent on
the most recent iterate wn−1, we can also write that

E
(
‖w̃n‖2 |wn−1, . . . ,w0,w−1

)
≤ (1− νµ(n)) ‖w̃n−1‖2 + µ2(n)σ2

g , n > no
(19.49)

where the conditioning on the left-hand side is now relative to the entire trajectory.
For compactness of notation, let

u(n+ 1)
∆
= ‖w̃n‖2 (19.50)

Then, inequality (19.49) implies

E
(
u(n+ 1)| u(0),u(1), . . . ,u(n)

)
≤ (1− νµ(n)) u(n) + µ2(n)σ2

g , n > no (19.51)

We now call upon the useful result (19.158) from Appendix 19.A and make the identi-
fications:

a(n)← νµ(n), b(n)← µ2(n)σ2
g (19.52)

These sequences satisfy conditions (19.159) in the appendix in view of assumption
(19.39a) on the step-size sequence and the second condition in (19.46). We then conclude
that u(n)→ 0 almost surely and, hence, wn → w? almost surely.

Finally, taking expectations of both sides of (19.51) leads to

Eu(n+ 1) ≤ (1− νµ(n)) Eu(n) + µ2(n)σ2
g , n > no (19.53)

with the expectation operator appearing on both sides of the inequality. Then, we
conclude from the earlier result (14.136), under conditions (19.39b), that E ‖w̃n‖2 → 0
so that wn converges to w? in the mean-square-error sense.

�

We can be more specific and quantify the rate at which the error variance
E‖w̃n‖2 converges to zero for step-size sequences of the form:

µ(n) =
τ

n+ 1
, τ > 0 (19.54)

which satisfy both conditions (19.39a) and (19.39b). This particular form for µ(n)

is motivated in the next example. In contrast to the previous result (12.68a) on
the convergence rate of gradient-descent algorithms, which was seen to be on the
order of O(1/n2ντ ), the next statement indicates that three rates of convergence
are now possible depending on how ντ compares to the value one.
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Theorem 19.4. (Rates of convergence under (19.54)) Consider the stochas-
tic gradient recursion (19.1) with the instantaneous gradient approximation
(19.4a) under uniform data sampling or streaming data, used to seek the mini-
mizers of empirical or stochastic risks. The risk and loss functions are assumed
to satisfy conditions (A1,A2) or (A1,A2’). Assume the step-size sequence is se-
lected according to (19.54). Then, three convergence rates are possible depending
on how the factor ντ compares to the value one. Specifically, for large enough n,
it holds that: 




E‖w̃n‖2 ≤ O
(

1
n

)
, ντ > 1

E‖w̃n‖2 = O
(

logn
n

)
, ντ = 1

E‖w̃n‖2 = O
(

1
nντ

)
, ντ < 1

(19.55)

The fastest convergence rate occurs when ντ > 1 (i.e., for large enough τ) and
is on the order of O(1/n). The risk values follow a similar convergence behavior
as E‖w̃n‖2, namely,





EP (wn)− P (w?) ≤ O
(

1
n

)
, ντ > 1

EP (wn)− P (w?) = O
(

logn
n

)
, ντ = 1

EP (wn)− P (w?) = O
(

1
nντ

)
, ντ < 1

(19.56)

The fastest convergence rate again occurs when ντ > 1 and is on the order of
O(1/n).

Proof: We use (19.53) and the assumed form for µ(n) in (19.54) to write

Eu(n+ 1) ≤
(

1− ντ

n+ 1

)
Eu(n) +

τ2σ2
g

(n+ 1)2
, n > no (19.57)

This recursion has the same form as (14.136) with the identifications:

a(n)← ντ

n+ 1
, b(n)← τ2σ2

g

(n+ 1)2
, p← 1 (19.58)

The above rates of convergence then follow from the statement in part (b) of Lemma 14.1
from Appendix 14.A. Result (19.56) follows from (19.27).

�

Example 19.2 (Motivating step-size sequences of the form (19.54)) We refer to ex-
pression (19.44) for λ(n) and notice that the following relation holds whenever µ(n) <
ν/(δ2 + β2

g) (this condition is possible for decaying step-sizes and large enough n):

1− 2νµ(n) + (δ2 + β2
g)µ2(n) < 1− µ(n)ν (19.59)
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Then, for large n and sufficiently small µ(n),

1− 2νµ(n)ν + (δ2 + β2
g)µ2(n) < 1− µ(n)ν

≤ 1− µ(n)ν +
µ2(n)ν2

4

=

(
1− µ(n)ν

2

)2

≤ 1− µ(n)ν

2
(19.60)

so that taking expectations of both sides of (19.43):

E ‖w̃n‖2 ≤
(

1− µ(n)ν

2

)
E ‖w̃n−1‖2 + µ2(n)σ2

g (19.61)

We can select µ(n) to tighten the upper bound. By minimizing over µ(n) we arrive at
the choice:

µo(n) =
ν

4σ2
g

E ‖w̃n−1‖2 (19.62)

We now verify that this choice leads to E ‖w̃n−1‖2 = O(1/n) so that the step-size
sequence itself satisfies µo(n) = O(1/n). Indeed, substituting into (19.61) gives

E ‖w̃n‖2 ≤ E ‖w̃n−1‖2
(

1− ν2

16σ2
g

E ‖w̃n−1‖2
)

(19.63)

Inverting both sides we obtain a linear recursion for the inverse quantity 1/E ‖w̃n‖2:

1

E ‖w̃n‖2
≥ 1

E ‖w̃n−1‖2
(

1− ν2

16σ2
g

E ‖w̃n−1‖2
)−1

(a)

≥ 1

E ‖w̃n−1‖2
(

1 +
ν2

16σ2
g

E ‖w̃n−1‖2
)

=
1

E ‖w̃n−1‖2
+

ν2

16σ2
g

(19.64)

where in step (a) we used the fact that for any small enough scalar x2 < 1, it holds
that 1− x2 ≤ 1 and

(1− x)(1 + x) ≤ 1 =⇒ (1− x)−1 ≥ (1 + x) (19.65)

Iterating (19.64) gives a bound on the value of the mean-square-error:

1

E ‖w̃n‖2
≥ 1

E ‖w̃−1‖2
+

(n+ 1)ν2

16σ2
g

(19.66)

Substituting into (19.62) we find that

µo(n) ≤ ν

4σ2
g

(
1

E ‖w̃−1‖2
+

nν2

16σ2
g

)−1

= O(1/n) (19.67)

Example 19.3 (Comparing workloads) Theorem 19.4 reveals that the stochastic gra-
dient algorithm (19.1) is able to converge to the exact minimizer at the rate of O(1/n).
This means that the algorithm will need on the order of 1/ε iterations for the average
risk value EP (wn) to get ε−close to the optimal value P (w?). Since each iteration
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requires the computation of a single gradient vector, we say that the workload (or
computing time) that is needed is proportional to 1/ε:

workload or computing time =

number of iterations × gradient computations per iteration (19.68)

The result of the theorem is equally applicable to mini-batch stochastic implementa-
tions — see Prob. 19.2. Therefore, a total of 1/ε iterations will again be necessary for
EP (wn) to get ε−close to P (w?). Now, however, for mini-batches of size B, it is nec-
essary to evaluate B gradient vectors per iteration so that the workload is increased to
B/ε.

If we were to rely instead on the full-batch gradient-descent implementation (12.28)
for the minimization of the same empirical risk, then we know from the statement
after (12.64a) that a smaller number of ln(1/ε) iterations will be needed for the risk
value P (wn) to get ε−close to P (w?). The workload in this case will become N ln(1/ε).
Table 19.1 summarizes the conclusions.

Table 19.1 Computation time or workload needed for the risk value of each algorithm
to get ε−close to the optimal value.

algorithm for workload or
empirical risk minimization computing time

1. stochastic gradient with decaying step-size 1/ε

2. mini-batch stochastic gradient with B/ε
decaying step-size and mini-batch size B

3. full-batch gradient-descent with N ln(1/ε)

Example 19.4 (Comparing generalization abilities) Each of the algorithms considered
in the previous example is concerned with the solution of the empirical risk minimiza-
tion problem (19.3a). For added clarity, in this example alone, we will refer to the risk
function by writing Pemp(w), where the subscript is meant to emphasize its empirical
nature. Thus, these three algorithms are solving:

w?
∆
= argmin

w∈IRM

{
Pemp(w)

∆
=

1

N

N−1∑
m=0

Q(w; γ(m), hm)

}
(19.69)

We explained earlier in Sec. 12.1.3 when discussing the concept of “generalization” that,
ideally, we would like the solutions by these algorithms to serve as good approximations
for the minimizer of the following stochastic optimization problem:

wo
∆
= argmin

w∈IRM

{
P (w)

∆
= EQ(w;γ,h)

}
(19.70)

Assume we run each algorithm for L iterations and let ε denote the resulting gap
between the empirical risk at wL and its optimal value, i.e.,

ε
∆
= E

(
Pemp(wL)− Pemp(w?)

)
, (empirical excess risk) (19.71)

Clearly, the value of ε is dependent on the algorithm. We can derive an expression that
reveals how close P (wL) gets to P (wo), namely, how close the stochastic risk at wL
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gets to the optimal value. For this purpose, we first note that

E
(
P (wL)− P (wo)

)
= E

(
P (wL)− Pemp(wL)

)
+ E

(
Pemp(wL)− Pemp(w?)

)
︸ ︷︷ ︸

= ε

+

E
(
Pemp(w?)− Pemp(wo)

)
︸ ︷︷ ︸

≤0

+ E
(
Pemp(wo)− P (wo)

)

≥ ε+ E
(
P (wL)− Pemp(wL)

)
+ E

(
Pemp(wo)− P (wo)

)
(19.72)

so that

(stochastic excess risk)

E
(
P (wL)− P (wo)

)
= ε+O

(√
2 ln lnN

N

)
(19.73)

where we used result (3.226) to approximate the differences between the empirical and
true risk values in the last two terms appearing in (19.72). Result (19.73) shows that,
for N large enough,(

stochastic
excess risk

)
=

(
empirical
excess risk

)
+ O

(√
2 ln lnN

N

)
(19.74)

This expression reveals how well algorithms generalize. It shows that the stochastic ex-
cess risk depends on two factors: the sample sizeN and the empirical excess risk (19.71).

Assume we fix the computational (or workload) budget at a maximum value Cmax for
each of the algorithms. Consider first the stochastic gradient implementation (19.1).
From the first row in Table 19.1 we know that this algorithm will lead to an empirical
excess risk on the order of ε = 1/Cmax and, moreover, this excess is independent of N .
Therefore, we conclude from (19.73) that increasing the sample size N will help reduce
the stochastic excess risk and improve generalization.

In contrast, consider next the full-batch gradient-descent algorithm (12.28). From the
third row in Table 19.1 we know that this algorithm will lead to an empirical excess
risk on the order of ε = e−Cmax/N , which depends on N . In other words, both factors
on the right-hand side of (19.73) will now be dependent on N and an optimal choice
for N can be selected.

19.5 CONVERGENCE UNDER RANDOM RESHUFFLING

We return to the stochastic gradient algorithm (19.1) with the instantaneous
gradient approximation (19.4a) and constant step-size µ. We now examine its
convergence behavior under random reshuffling (i.e., sampling without replace-
ment) for empirical risk minimization. In this case, the gradient noise process
does not have zero mean, and we need to adjust the convergence argument. The
analysis will require that we make explicit the multiple epochs (or runs) over
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the data. Thus, let k denote the epoch index. Before the start of an epoch, the
N−size data {γ(m), hm} is reshuffled at random. During the run, we select sam-
ples sequentially from the reshuffled dataset. We describe the algorithm in listing
(19.75).

Stochastic gradient algorithm with random reshuffling

for solving the empirical risk minimization problem (19.3a)

given dataset {γ(m), hm}N−1
m=0;

start from an arbitrary initial condition w0
N−1.

for each run k = 1, 2, . . . ,K :

set wk
−1 = wk−1

N−1;

reshuffle the dataset;
repeat for n = 0, 1, 2, . . . , N − 1 :

wk
n = wk

n−1 − µ∇wT Q(wk
n−1;γ(n),hn)

end
end
return w? ← wK

N−1

(19.75)

In this description, the notation (γ(n),hn) denotes the random sample that is
selected at iteration n of the k−th run. The initial iterate for each run is the
value that is attained at the end of the previous run:

wk
−1 = wk−1

N−1 (19.76)

Since operation under random reshuffling corresponds to sampling without re-
placement, it is clear that no sample points are repeated during each run of the
algorithm. This is in contrast to uniform sampling with replacement, where some
data points may be repeated during the same run of the algorithm. The argu-
ment will show that this simple adjustment to the operation of the algorithm,
using data sampling without as opposed to with replacement, results in perfor-
mance improvement. The mean-square-error, E‖w̃n‖2, will now be reduced to
O(µ2) in comparison to the earlier O(µ) value shown in (19.18b). The proof of
the following theorem appears in Appendix 19.B.



700 Convergence Analysis I: Stochastic Gradient Algorithms

Theorem 19.5. (Convergence under random reshuffling) Consider the
stochastic gradient recursion (19.1) with the instantaneous gradient approxima-
tion (19.4a) under data sampling without replacement, used to seek the min-
imizers of empirical risks. The risk and loss functions are assumed to satisfy
conditions (A1,A2) or (A1,A2’). For step-size values satisfying:

µ <
ν√

24Nδ2
(19.77)

it holds that the mean-square error E‖w̃k
n‖2 converges exponentially over the

epoch index k at the rate λk where

λ = 1− µ

2
νN (19.78)

and, for any 0 ≤ n ≤ N − 1:

E‖w̃k
n‖2 ≤ O(λk) +O(µ2) (19.79a)

EP (wk
n)− P (w?) ≤ O(λk) +O(µ2) (19.79b)

Observe that the results in the theorem are expressed in terms of the epoch index
k tending to +∞. We can also examine the behavior of random reshuffling when
an epoch-dependent step-size is used, say, of the form

µ(k) = τ/k, k ≥ 1, τ > 0 (19.80)

By repeating the arguments from Appendix 19.B and the technique used to
establish Theorem 19.4, we can similarly verify that three convergence rates
are possible depending on how the factor ντN/2 compares to the value one.
Specifically, for any 0 ≤ n ≤ N − 1 and large enough k, it holds that — see
Prob. 19.9: 




E‖w̃k
n‖2 ≤ O

(
1
k

)
, ντN > 2

E‖w̃k
n‖2 = O

(
log k
k

)
, ντN = 2

E‖w̃k
n‖2 = O

(
1

kντN/2

)
, ντN < 2

(19.81)

The fastest convergence rate occurs when ντN > 2 (i.e., for large enough τ) and
is on the order of O(1/k). The risk values follow a similar convergence behavior
as E‖w̃k

n‖2, namely,




EP (wk
n)− P (w?) ≤ O

(
1
k

)
, ντN > 2

EP (wk
n)− P (w?) = O

(
log k
k

)
, ντN = 2

EP (wk
n)− P (w?) = O

(
1

kντN/2

)
, ντN < 2

(19.82)

The fastest convergence rate again occurs when ντN > 2 and is on the order of
O(1/k).

Example 19.5 (Simulating random reshuffling) We compare the performance of the
stochastic gradient algorithm (19.1) with constant step-size under both uniform sam-
pling and random reshuffling for the instantaneous gradient approximation (19.4a).
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The objective is to illustrate the superior steady-state performance under random
reshuffling. According to result (19.79b), if we plot the steady-state deviation value
P (wk

n) − P (w?), as k → ∞, versus the step-size parameter µ in a log-log scale, the
slope of the resulting line should be at least two since

log10

(
EP (wk

n)− P (w?)
)
≤ 2 log10(µ), k →∞ (19.83)

In other words, if the step size is reduced by a factor of 10 from µ to µ/10, then the risk
deviation should be reduced by at least a factor of 100. In comparison, under uniform
sampling, we know from (19.18c) that the risk deviation will be reduced by at least
the same factor 10. We illustrate this behavior by means of a simulation. Consider
the`2−regularized logistic empirical risk:

P (w) = ρ‖w‖2 +
1

N

N−1∑
m=0

ln
(

1 + e−γ(m)hT
mw
)
, w ∈ IRM (19.84)

with ρ = 0.1 and M = 10. The step-size parameter is varied between 10−4 and 10−3.
The simulation generates N = 1000 random pairs of data {γ(m), hm} according to a
logistic model. First, a random parameter model wa ∈ IR10 is selected, and a random
collection of feature vectors {hm} are generated, say, with zero-mean unit-variance
Gaussian entries. Then, for each hm, the label γ(m) is set to either +1 or −1 according
to the following construction:

γ(m) = +1 if
( 1

1 + e−h
T
mw

a

)
≥ 0.5; otherwise γ(m) = −1 (19.85)

A total of K = 2000 epochs are run over the data. In one simulation, we evaluate
the risk value P (wk−1) at the beginning of each epoch and subsequently average these
values over all epochs to approximate the average deviation

EP (wk
n)− P (w?) ≈ 1

K

K∑
k′=1

P (wk
′
−1)− P (w?) (19.86)

In a second simulation, we use the risk value P (wK−1) at the last epoch as the approxi-
mation for EP (wk

−1), i.e.,

EP (wk
−1)− P (w?) ≈ P (wK−1)− P (w?) (19.87)

Both approximations lead to similar results. We plot the variation of the risk deviations
in the logarithmic scale against log10(µ) in Fig. 19.2. The plot shows the simulated val-
ues for these risk deviations against the step-size parameter. The vertical and horizontal
scales are logarithmic. The dotted lines are the fitted regression lines, which provide
an estimate of the slope variations for the measurements. The slopes of the lines for
uniform sampling and random reshuffling are found in this simulation to be 1.3268 and
2.8512, respectively.

19.6 CONVERGENCE UNDER IMPORTANCE SAMPLING

We now examine the convergence behavior of the stochastic gradient algorithm
(19.1) under importance sampling for empirical risk minimization. In this imple-
mentation, a probability value pm is assigned to each sample (γ(m), hm) in the
dataset, and the samples are selected at random according to this distribution.
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Figure 19.2 Random reshuffling has better risk deviation performance than uniform
sampling. The plot shows the simulated values for these risk deviations against the
step-size parameter. The vertical and horizontal scales are logarithmic. The dotted
lines are the fitted regression lines, which provide estimates for the slopes.

We explained earlier that the approximations for the gradient vector will need
to be adjusted and scaled as shown in (19.6a)–(19.6b).

The result of Theorem 19.1 can be extended to the scaled gradient approxima-
tions (19.6a)–(19.6b). We will therefore leave the analysis to the problems — see
Prob. 19.17, where it is shown that the limiting mean-square error will continue
to be O(µσ2

g), where the expression for σ2
g was derived earlier in (18.52b):

σ2
g =

2

N2

N−1∑

m=0

1

pm
‖∇wT Q(w?; γ(m), hm)‖2 (19.88)

for instantaneous gradient approximations. A similar expression holds with σ2
g

divided by B for the mini-batch version. Observe that the expression for σ2
g

involves the selection probabilities {pm}.

19.6.1 Optimal Importance Sampling

One important question that is relevant for importance sampling implemen-
tations is the choice of the selection probabilities {pm}. One possibility is to
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minimize σ2
g over the {pm} in order to reduce the size of the O(µσ2

g)−limiting
neighborhood. Thus, we consider the following constrained optimization prob-
lem:

{pom}
∆
= argmin

{pm}

{
N−1∑

m=0

1

pm
‖∇wT Q(w?; γ(m), hm)‖2

}
(19.89a)

subject to

0 ≤ pm ≤ 1,

N−1∑

m=0

pm = 1 (19.89b)

This problem has a closed-form solution. Let us ignore for the moment the con-
straint 0 ≤ pm ≤ 1 and solve the remaining constrained problem by introducing
the Lagrangian function:

L(pm, α)
∆
=

N−1∑

m=0

1

pm
‖∇wT Q(w?; γ(m), hm)‖2 + α

(
N−1∑

m=0

pm − 1

)
(19.90)

where α is a Lagrange multiplier. Differentiating relative to pm and setting the
derivative to zero gives an expression for pom in terms of α:

pom =
1√
α
‖∇wT Q(w?; γ(m), hm)‖ (19.91)

Since the sum of the {pom} must be one, we find that

√
α =

N−1∑

m=0

‖∇wT Q(w?; γ(m), hm)‖ (19.92)

and, hence,

pom =
‖∇wT Q(w?; γ(m), hm)‖

∑N−1
m=0 ‖∇wT Q(w?; γ(m), hm)‖

(19.93)

This solution satisfies the constraint 0 ≤ pm ≤ 1 and leads to an optimal sam-
pling strategy. However, this particular strategy is not practical for two reasons:
the values of pom depend on the unknown w?, and the denominator involves a
sum over all N data samples.

19.6.2 Adaptive Importance Sampling

We can address the first difficulty, at every iteration n, by replacing w? by the
estimate that is available at the start of that iteration, namely, wn−1. This leads
to an adaptive importance sampling procedure with:

pom,n =
‖∇wT Q(wn−1; γ(m), hm)‖

∑N−1
m=0 ‖∇wT Q(wn−1; γ(m), hm)‖

, m = 0, 1, . . . , N − 1 (19.94)

where we are adding a subscript n to indicate that the probabilities {pom,n} are
the ones used at iteration n while updating wn−1 to wn. Expression (19.94) is
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still inefficient because of the sum in the denominator, which involves all data
samples and N can be large. We address this second difficulty by devising a
recursive scheme to update the denominator.

We introduce an auxiliary vector variable ψn ∈ IRN , whose size is equal to the
number of data samples. One entry of ψn is updated at each iteration n. Let
σ denote the index of the sample (γ,h) that is selected for use at iteration n.
Then, only the σ−th entry of ψn is updated at that iteration:

ψn,σ = βψn−1,σ + (1− β)‖∇wT Q(wn−1; γ(σ), hσ)‖ (19.95)

where β ∈ (0, 1) is a design parameter. All other entries of ψn stay identical to
the entries from the previous instant ψn−1. We can express this update in vector
form as follows. Let Dσ denote the N × N diagonal matrix with β at location
(σ, σ) and ones at all other diagonal entries:

Dσ = diag
{

1, . . . , 1, β, 1, . . . , 1
}
, (N ×N) (19.96)

Let also eσ denote the basis vector in IRN with a unit entry at location σ. Then,

ψn = Dσψn−1 + (1− β)‖∇wT Q(wn−1; γ(σ), hσ)‖ eσ, n ≥ 0 (19.97)

We initialize ψ−1 to large positive values. Note that at iteration n, only one
entry of ψn is updated, and hence this update is computationally inexpensive.
Moreover, each entry of index σ in ψn corresponds to a smooth running estimate
of the norm ‖∇wT Q(wn−1; γ(σ), hσ)‖ (which is the quantity that appears in the
numerator of (19.94)).

We introduce a second auxiliary scalar quantity, denoted by τn for iteration
n, in order to keep track of the sum of the entries of ψ; this sum (and, hence, τ)
will serve as the approximation for the quantity appearing in the denominator
of pom,n:

τn
∆
= ‖ψn‖1 =

N−1∑

m=0

ψn,m =

N−1∑

m=0

ψn−1,m + (ψn,σ − ψn−1,σ) (19.98)

and, hence, using (19.97):

τn = τn−1 + (1− β)
(
‖∇wT Q(wn−1; γ(σ), hσ)‖ − ψn−1,σ

)
, n ≥ 0 (19.99)

with τ−1 = ‖ψ−1‖1. Note that each update of τ only requires O(1) operations,
which is also inexpensive. This construction leads to a procedure that auto-
matically learns an “optimal” sampling strategy. The algorithm is listed below
using instantaneous gradient approximations. In the listing, the vector rn ∈ IRN

contains the values of the probabilities {pm,n} used at iteration n:

rn
∆
= {pm,n}, m = 1, 2, . . . ,M (19.100)
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Stochastic gradient algorithm with adaptive importance

sampling for minimizing the empirical risk (19.3a)

given dataset {γ(m), hm}N−1
m=0;

given a scalar β ∈ (0, 1);

start from an arbitrary initial condition w−1 ∈ IRM ;

initialize ψ−1 ∈ IRN to large positive entries;
set τ−1 = ‖ψ−1‖1;

set r0 = 1
N 1N ; (uniform distribution).

repeat until convergence over n ≥ 0 :

entries of rn are the probabilities {pm,n}N−1
m=0 at iteration n;

select an index 0 ≤ σ ≤ N − 1 according to probabilities {pm,n};
let xn = ∇wT Q(wn−1;γ(σ),hσ); (approximate gradient)
wn = wn−1 −

µ

Npσ,n
xn

Dσ = diag{1, . . . , 1, β, 1, . . . , 1}; (β at σ−th location)

ψn = Dσψn−1 + (1− β)‖xn‖ eσ
τn = τn−1 + (1− β)(‖xn‖ −ψn−1,σ)

rn+1 = ψn/τn
end
return w? ← wn

(19.101)

Example 19.6 (Simulating importance sampling) We illustrate the results by consid-
ering the regularized logistic regression problem:

P (w) = ρ‖w‖2 +
1

N

N−1∑
m=0

ln
(

1 + e−γ(m)hT
mw
)

(19.102)

where hm ∈ IR10 and γ(m) ∈ {±1}. In the simulation, we generate a random dataset
{hm, γ(m)} with N = 500 using the same logistic model from Example 19.5. We set
ρ = 0.01, µ = 0.001, and β = 0.25. We also set the initial condition ψ−1 = 10001N .
We run algorithm (19.101) over K = 200 epochs and compute the risk values P (wk−1)

at the start of each epoch. This leads to a risk deviation curve P (wk−1) − P (w?) over
the epoch index k. We repeat this simulation over L = 100 trials and average the
deviation curves. The results for uniform sampling and importance sampling are shown
in Fig. 19.3.

Table 19.2 summarizes the performance results obtained in this chapter for var-
ious stochastic gradient algorithms under uniform sampling, importance sam-
pling, random reshuffling, data streaming, and also for mini-batch implemen-
tations. Results are shown for strongly-convex risks under both constant and
vanishing step-sizes.
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Figure 19.3 Adaptive importance sampling for a regularized logistic regression
problem.

19.7 CONVERGENCE OF STOCHASTIC CONJUGATE
GRADIENT

We examine in this last section the convergence of the stochastic version of the
Fletcher-Reeves algorithm listed earlier in (16.102) and repeated in (19.105) for
ease of reference. The data are assumed to be sampled uniformly with replace-
ment from a dataset {γ(m), hm} for m = 0, 1, . . . , N − 1, and the algorithm is
used to solve an empirical minimization problem of the form (19.3a).

The convergence analysis given here extends the arguments from Sec. 13.2
to the stochastic case where the gradient of the risk function is replaced by the
gradient of the loss function evaluated at a random data point (γ(n),hn). Several
of the steps in the argument are similar and we will therefore be brief. Recall that
the arguments in Sec. 13.2 dealt with general nonlinear optimization problems
without restricting P (w) to being convex; they established convergence towards
a stationary point. We consider the same scenario.

We assume that a line search procedure is used at each iteration n to select
parameters {αn} that satisfy the following variation of the Wolfe conditions for
some 0 < λ < η < 1/2 — compare with (13.101a)–(13.101b):

Q(wn;γ,h) ≤ Q(wn−1;γn,hn) + λαn∇wQ(wn−1;γn,hn)qn (19.103a)

|∇wQ(wn;γ,h)qn| ≤ η |∇wQ(wn−1;γn,hn)qn| (19.103b)

Here, the notation (γ(n),hn) refers to the data sample selected at iteration n,
and (γ,h) denotes the random sample for iteration n+1. For simplicity, we drop
the arguments (γn,hn) and (γ,h) from the loss functions and their gradients
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and write Q(wn−1) and Q(wn) instead:

Q(wn) ≤ Q(wn−1) + λαn∇wQ(wn−1)qn (19.104a)

|∇wQ(wn)qn| ≤ η |∇wQ(wn−1)qn| (19.104b)

Stochastic Fletcher-Reeves algorithm for minimizing (19.3a)

given dataset {γ(m), hm}N−1
m=0;

start with an arbitrary initial condition w−1;

set q−1 = 0;

repeat until convergence over n ≥ 0 :

select at random (γ(n),hn);

rn−1 = −∇wT Q(wn−1;γ(n),hn)

if n = 0 then β−1 = 0

else βn−1 = ‖rn−1‖2/‖rn−2‖2
end
qn = rn−1 + βn−1 qn−1

find αn using line search: min
α∈IR

Q(wn−1 + αqn)

wn = wn−1 +αnqn
end
return w? ← wn

(19.105)

Lemma 19.1. (Loss descent directions) Assume the {αn} are selected to sat-
isfy (19.104a)–(19.104b) for 0 < λ < η < 1/2, then it holds for any n ≥ 0

that

− 1

1− η ≤
∇wQ(wn−1)qn
‖∇wQ(wn−1)‖2 ≤

2η − 1

1− η < 0 (19.106)

and, hence, the successive {qn} generated by Fletcher-Reeves are descent direc-
tions relative to the loss function Q(w; ·).

Proof: The argument is similar to the one used to establish Lemma 13.1. For n = 0, we
have q0 = −∇wQ(w−1) so that the ratio in the middle is equal to −1 and both sides
of the inequality are satisfied. Now suppose the inequality holds for iteration n and let
us verify that it holds for iteration n + 1. It follows that qn is a descent direction so
that condition (19.104b) becomes

|∇wQ(wn)qn| ≤ −η∇wQ(wn−1)qn (19.107)

which is equivalent to

η∇wQ(wn−1)qn ≤ ∇wQ(wn)qn ≤ −η∇wQ(wn−1)qn (19.108)
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Now note from recursions (19.105) that

∇wQ(wn)qn+1

‖∇wQ(wn)‖2 =
∇wQ(wn)(rn + βnqn)

‖∇wQ(wn)‖2

= −1 + βn
∇wQ(wn)qn
‖∇wQ(wn)‖2 , since rn = −∇wTQ(wn)

= −1 +
‖rn‖2
‖rn−1‖2

∇wQ(wn)qn
‖∇wQ(wn)‖2

= −1 +
∇wQ(wn)qn
‖∇wQ(wn−1)‖2 (19.109)

Using (19.108) we obtain

−1 + η
∇wQ(wn−1)qn
‖∇wQ(wn−1)‖2 ≤ −1 +

∇wQ(wn)qn
‖∇wQ(wn−1)‖2 ≤ −1− η ∇wQ(wn−1)qn

‖∇wQ(wn−1)‖2
(19.110)

and applying the lower bound from (19.106) to the leftmost and rightmost terms we
get

− 1− η

1− η ≤
∇wQ(wn)qn+1

‖∇wQ(wn)‖2 ≤ −1 +
η

1− η (19.111)

which establishes the validity of (19.106) for n+ 1.
�

The next result extends Zoutendijk condition to the stochastic case. Again, nei-
ther the loss nor the risk function are required to be convex in this statement.

Lemma 19.2. (Stochastic Zoutendijk condition) Consider an empirical risk
minimization problem of the form (19.3a), where P (w) is bounded from below
(but not necessarily convex) and the loss function Q(w, ·) is first-order differen-
tiable with δ−Lipschitz gradients as in (19.7b). The data is sampled uniformly
with replacement from {γ(m), hm}. Assume the {αn} are selected to satisfy
(19.104a)–(19.104b) for 0 < λ < η < 1/2 so that the {qn} generated by the
stochastic Fletcher–Reeves procedure (19.105) are descent directions relative to
Q(w; ·) by Lemma 19.1. The iterate wn−1 is updated to wn = wn−1 +αnqn. Let
θn denote the angle defined by:

cos(θn)
∆
=

−∇wQ(wn−1)qn
‖∇wQ(wn−1)‖ ‖qn‖

(19.112)

It then holds that
∞∑

n=0

E
(

cos2(θn)‖∇wQ(wn−1)‖2
)
<∞ (19.113)

where the expectation is over the randomness of the data. Moreover, EP (wn) is
non-increasing meaning that EP (wn) ≤ EP (wn−1).

Proof: The argument is similar to the one used to establish Lemma 13.2. Since qn is
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a descent direction relative to the loss function, we conclude from the second Wolfe
condition (19.104b) or from (19.108) that

∇wQ(wn)qn ≥ η∇wQ(wn−1)qn (19.114)

Subtracting ∇wQ(wn−1)qn from both sides gives(
∇wQ(wn)−∇wQ(wn−1)

)
qn ≥ (η − 1)∇wQ(wn−1)qn (19.115)

From the δ−Lipschitz condition (19.7b) on the gradient of Q(w; ·) we have by Cauchy-
Schwarz:(

∇wQ(wn)−∇wQ(wn−1)
)
qn ≤ ‖∇wQ(wn)−∇wQ(wn−1)‖ ‖qn‖
≤ δ‖wn −wn−1‖ ‖qn‖
= δαn‖qn‖2, since wn = wn−1 +αnqn

(19.116)

Combining (19.115) and (19.116) shows that αn is lower-bounded by

αn ≥ (η − 1)

δ

∇wQ(wn−1)qn
‖qn‖2

(19.117)

where the term on the right-hand side is positive since qn is a descent direction and
η < 1. Substituting this conclusion into the first Wolfe condition (19.104a) we find that

Q(wn) ≤ Q(wn−1) + λ
(η − 1)

δ︸ ︷︷ ︸
∆
= −c

(∇wQ(wn−1)qn)2

‖qn‖2
(19.118)

where we introduced the positive constant c = λ(1− η)/δ. In other words, in terms of
the angles {θn} we have that

Q(wn) ≤ Q(wn−1)− c cos2(θn) ‖∇wQ(wn−1)‖2 (19.119)

Taking expectations over the randomness in the data we get

EP (wn) ≤ EP (wn−1)− cE
(

cos2(θn) ‖∇wQ(wn−1)‖2
)

(19.120)

which shows that EP (wm) is non-increasing. Summing over n gives

∞∑
n=0

E
(

cos2(θn) ‖∇wQ(wm−1)‖2
)
≤ 1

c

(
EP (w−1)− lim

n→∞
EP (wn)

)
(19.121)

Since, by assumption, the risk function is bounded from below, the term on the right-
hand side is bounded by some positive constant and conclusion (19.113) holds.

�

One useful corollary of the previous two lemmas follows if we multiply (19.106)
by ‖∇wQ(wn−1)‖/‖qn‖ and use (19.113) to conclude that the following condition
must also hold:

∞∑

n=0

E

(
‖∇wQ(wn−1)‖4

‖qn‖2

)
<∞ (19.122)
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Theorem 19.6. (Convergence of stochastic Fletcher-Reeves) Consider the
same setting of Lemma 19.2 but assume that the loss function has bounded gra-
dients. Then, it holds that

lim inf
n→∞

‖E∇wP (wn)‖ = 0 (19.123)

This implies that there exists a subsequence of weight iterates over which the
gradient of P (w) converges on average to zero.

Proof: We denote the bound on the gradient of the loss function by

‖∇wQ(w)‖ ≤ c1, for some c1 > 0 (19.124)

Next, since qm is a descent direction relative to the loss function, we conclude from the
second Wolfe condition (19.104b) that

∇wQ(wn)qn ≤ −η∇wQ(wn−1)qn
(19.106)

≤ η

η − 1
‖∇wQ(wn−1)‖2 (19.125)

It follows that

‖qn+1‖2 = ‖rn + βnqn‖2

= ‖∇wQ(wn)‖2 − 2βn∇wQ(wn)qn + β2
n‖qn‖2

= ‖∇wQ(wn)‖2 − 2
‖∇wQ(wn)‖2
‖∇wQ(wn−1)‖2∇wQ(wn)qn + β2

n‖qn‖2

(19.125)

≤ ‖∇wQ(wn)‖2 +
2η

1− η ‖∇wQ(wn)‖2 + β2
n‖qn‖2

=
1 + η

1− η︸ ︷︷ ︸
∆
= c2>1

‖∇wQ(wn)‖2 + β2
n‖qn‖2 (19.126)

Iterating we get

‖qn+1‖2 ≤ c2‖∇wQ(wn)‖2 + c2
‖∇wQ(wn)‖4
‖∇wQ(wn−1)‖2 + c2

‖∇wQ(wn)‖4
‖∇wQ(wn−2)‖2 + . . .

= c2‖∇wQ(wn)‖4
{

1

‖∇wQ(wn)‖2 +
1

‖∇wQ(wn−1)‖2 + . . .

}

= c2‖∇wQ(wn)‖4
n+1∑
j=0

1

‖∇wQ(wj−1)‖2 (19.127)

and, hence,

E ‖qn+1‖2 ≤ c2c41
n+1∑
j=0

E

(
1

‖∇wQ(wj−1)‖2

)
(19.128)

We can now deduce that
lim inf
n→∞

‖E∇wQ(wn)‖ = 0 (19.129)

We establish its validity by contradiction. Assume the result does not hold. This means
that E∇wQ(w) is bounded from below for all n, say,

‖E∇wQ(wn)‖ ≥ c3, for some c3 > 0 and for all n > 0 (19.130)
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For any nonnegative random variable x, we know from Jensen inequality that the
following relations hold:

E |x| ≥ |Ex|, Ex2 ≥ (Ex)2, and E (1/x) ≥ 1/Ex (19.131)

We then conclude that

E ‖∇wQ(wn)‖ ≥ c3, E ‖∇wQ(wn)‖2 ≥ c23, E

(
1

‖∇wQ(wn)‖2

)
≥ 1/c23 (19.132)

Substituting into (19.128), we find that

E ‖qn+1‖2 ≤
c2c

4
1

c23
(n+ 2) (19.133)

This result in turn implies that the series {E (1/‖qj‖2)} diverges since
∞∑
j=0

E

(
1

‖qj‖2

)
≥ c23
c2c41

∞∑
j=0

1

j + 1
(19.134)

However, this conclusion contradicts Zoutendijk condition (19.113) or its corollary
(19.122) since it implies

∞∑
n=0

E

(
‖∇wQ(wn−1)‖4

‖qn‖2

)
≥ c43

∞∑
n=0

(
1

‖qn‖2

)
≥ c63

c2c41

∞∑
j=0

1

j + 1
(19.135)

which is not bounded. We conclude by contradiction that condition (19.129) is valid,
from which (19.123) follows.

�

19.8 COMMENTARIES AND DISCUSSION

Stochastic gradient algorithms. There are extensive works in the literature on stochastic
gradient algorithms and their convergence behavior, including by Albert and Gardner
(1967), Wasan (1969), Mendel and Fu (1970), Tsypkin (1971), Ljung (1977), Kushner
and Clark (1978), Kushner (1984), Polyak (1987), Benveniste, Métivier, and Priouret
(1990), Bertsekas and Tsitsiklis (1997,2000), Bottou (1998,2010,2012), Kushner and
Yin (2003), Spall (2003), Marti (2005), Sayed (2003,2008,2014a), Shalev-Shwartz and
Ben-David (2014), and Bottou, Curtis, and Nocedal (2018). The proof of Theorem 19.1
for operation under constant step-sizes follows the argument from Sayed (2014a). The
convergence result (19.158) in the appendix for a stochastic inequality recursion is from
Polyak (1987, pp. 49–50). The result is useful in characterizing the convergence rates
of stochastic approximation algorithms with diminishing step-sizes, as was shown in
the proof of Theorem 19.3 following Polyak (1987). Some of the earlier studies on re-
gret analysis for stochastic optimization algorithms are the works by Gordon (1999)
and Zinkevich (2003) — see also the treatment by Shalev-Shwartz (2011) and the refer-
ences therein. Analysis of the convergence behavior of the stochastic gradient algorithm
under Polyak and Nesterov momentum acceleration schemes appear in Yuan, Ying, and
Sayed (2016) using the general model described earlier in Prob. 17.12 and arguments
similar to those employed in this chapter. The discussion in Example 19.2 motivating
the choice µ(n) = O(1/n) for the decaying step-size sequence is in line with the anal-
ysis and conclusions from Robbins and Monro (1951) and Nemirovski et al. (2009).
The presentation in Examples 19.3–19.4 is motivated by arguments from Bottou, Cur-
tis, and Nocedal (2018). In Sec. 19.7 we examined the convergence of the stochastic
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version of the Fletcher-Reeves algorithm by extending the derivation from Sec. 13.2
to the stochastic case (19.105). The analysis and proofs follow arguments similar to
Zountendijk (1970), Powell (1984), Al-Baali (1985), and more closely the presentation
from Nocedal and Wright (2006).

Mean-square deviation and excess risk measures. Theorem 19.1 characterizes the size of
the limiting region for the mean-square error, namely, E ‖w̃n‖2 → O(µ) for sufficiently
small µ. If desired, one can pursue a more detailed mean-square-error analysis and
quantify more accurately the size of the constant multiplying µ in the O(µ)−result.
Consider a stochastic gradient implementation that is based on instantaneous gradient
approximations and uniform sampling of the data. Let w? denote the minimizer of the
risk function P (w), which can be an empirical or stochastic risk. Let gn(w?) denote
the gradient noise at location w = w?, i.e.,

gn(w?) = ∇̂wT P (w?)−∇wT P (w?) = ∇wT Q(w?;γ(n),hn) (19.136)

and denote its steady-state covariance matrix, assumed to exist, by

Rg
∆
= lim

n→∞
Egn(w?)gTn(w?) (19.137)

where the expectation is over the randomness in the data. The above expression assumes
that the covariance matrix approaches a stationary value Rg. We know from (19.13b)
that Tr(Rg) ≤ σ2

g . Assume further that P (w) is twice-differentiable and denote its
Hessian matrix at w = w? by

H
∆
= ∇2

w P (w?) (19.138)

Since P (w) is ν−strongly convex, we know that H ≥ νIM . Then, it can be verified
under (A1,A2) or (A1,A2’) and by exploiting the bound on the fourth-order moment
of the gradient noise process established in Prob. 18.4, that — see the derivation in
Sayed (2014a, Ch.4):

(MSD) : lim sup
n→∞

E ‖w̃n‖2 =
µ

2
Tr(H−1Rg) +O(µ3/2) (19.139a)

(ER) : lim sup
n→∞

(
EP (wn)− P (w?)

)
=

µ

4
Tr(Rg) +O(µ3/2) (19.139b)

where the notation MSD and ER stands for “mean-square deviation” and “excess-risk,”
respectively. Extensions of these results to sampling without replacement appear in
Table I of Ying et al. (2019). The above expressions are consistent with the bounds
derived in the body of the chapter. For example, if we replace the upper bound H−1 ≤
νIM into (19.139a) we find that MSD = O(µσ2

g/2ν), which is consistent with (19.16a).
Likewise, using Tr(Rg) ≤ σ2

g in (19.139b) we find ER = O(µσ2
g/4), which is consistent

with (19.16b).
A simplified justification for (19.139a) is given further ahead under the remarks on

the “long-term model.” Consider, for illustration purposes, the following special case
involving a quadratic stochastic risk:

P (w) = E (γ − hTw)2 = σ2
γ − 2rThγw + wTRhw (19.140)

which we expanded in terms of the second-order moments σ2
γ = Eγ2, rhγ = Ehγ, and

Rh = EhhT > 0. The random variables {γ,h} are assumed to have zero means. The
Hessian matrix of P (w) is H = 2Rh for all w. If we differentiate P (w) relative to w
and set the gradient vector to zero, we find that the minimizer occurs at location

Rhw
? = rhγ ⇐⇒ w? = R−1

h rhγ (19.141)

Assume the streaming data {γ(n),hn} arise from a linear regression model of the form
γ(n) = hT

nw
•+v(n), for some model w• ∈ IRM , and where hn and v(n) are zero-mean
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uncorrelated processes. Moreover, v(n) is a white-noise process that is independent of
all other random variables and has variance denoted by σ2

v = Ev2(n). We showed in
Prob. 18.9 that w? = w•, which means that the minimizer w? is able to recover the
underlying model w• and, hence, it also holds that

v(n) = γ(n)− hT
nw

? (19.142)

The gradient noise for instantaneous gradient approximations is given by

gn(w) = 2(rhγ −Rhwn−1)− 2hn(γ(n)− hT
nw) (19.143)

Evaluating at w = w? gives

gn(w?) = −2hn(γ(n)− hT
nw

?) = −2hnv(n) (19.144)

whose covariance matrix is

Rg
∆
= Egn(w?)gTn(w?) = 4σ2

vRh (19.145)

Substituting into (19.139a)–(19.139b) we arrive at the famous expressions for the per-
formance of the least-mean-squares (LMS) algorithm — see, e.g., Widrow and Stearns
(1985), Haykin (2001), Sayed (2003,2008):

MSDLMS ≈ µMσ2
v (19.146a)

ERLMS ≈ µσ2
vTr(Rh) (19.146b)

Long-term model. Consider the stochastic gradient algorithm (19.1) and assume an
implementation with an instantaneous gradient approximation (similar remarks will
hold for the mini-batch version):

wn = wn−1 − µ∇wTQ(wn−1;γ(n),hn))

= wn−1 − µ∇wTP (wn−1)− µgn(wn−1) (19.147)

where the second equality is in terms of the true gradient vector and the gradient noise.
We analyzed the convergence behavior of this recursion in the body of the chapter and
discovered that E ‖w̃n‖2 → O(µ) for sufficiently small step-sizes. Recursion (19.147)
describes a stochastic system, with its state vector wn evolving randomly over time
due to the randomness in the data samples and the resulting gradient noise. In many
instances, it is useful to introduce an approximate model, with constant dynamics, that
could serve as a good approximation for the evolution of the state vector for large time
instants. We motivate this long-term model as follows — see Sayed (2014a,2014b).

Assume P (w) is twice-differentiable and that its Hessian matrix is τ−Lipschitz rel-
ative to the minimizer w?, meaning that

‖∇2
wP (w)−∇2

wP (w?)‖ ≤ τ ‖w̃‖, w̃ = w? − w (19.148)

Since P (w) is ν−strongly convex and its gradient vectors are δ−Lipschitz, we also know
that νIM ≤ ∇2

w P (w) ≤ δIM . Using the mean-value theorem (10.8) we can write

∇wTP (wn−1) = −
( ˆ 1

0

∇2
wP (w? − tw̃n−1)dt

)
︸ ︷︷ ︸

∆
= Hn−1

w̃n−1 (19.149)

where Hn−1 ≤ δIM is a symmetric and random matrix changing with the time index
n. Subtracting w? from both sides of (19.147) and using (19.149) gives

w̃n = (IM − µHn−1)w̃n−1 + µgn(wn−1) (19.150)
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This is a nonlinear stochastic recursion in the error vector. Let H = ∇2
wP (w?) denote

the Hessian matrix at the minimizer and introduce the deviation relative to it

H̃n−1
∆
= H −Hn−1 (19.151)

Then, recursion (19.150) can be rewritten as

cn−1
∆
= H̃n−1w̃n−1 (19.152a)

w̃n = (IM − µH)w̃n−1 + µgn(wn−1) + µcn−1 (19.152b)

Using (19.148), we have that ‖cn−1‖ ≤ τ‖w̃n−1‖2. Now since E ‖w̃n‖2 → O(µ), we
conclude that, for large n, the weight-error vector evolves according to the dynamics:

w̃n = (IM − µH)w̃n−1 + µgn(wn−1) +O(µ2) (19.153)

Working with this long-term model is helpful because its dynamics is driven by the
constant matrix H, as opposed to the random matrix Hn−1. Also, the driving O(µ2)
term can be ignored for small enough µ. Using this model, we can justify the first term
in the MSD expression (19.139a). Indeed, computing the weighted Euclidean norm of
both sides of (19.153) using H−1 as the weighting matrix we get

w̃T
nH
−1w̃n (19.154)

= w̃T
n−1(I − µH)H−1(I − µH)w̃n−1 + µ2gTn(wn−1)H−1gn(wn−1) + cross term

≈ w̃T
n−1(H−1 − 2µIM )w̃n−1 + µ2gTn(wn−1)H−1gn(wn−1) + cross term

where we are ignoring the term µ2w̃T
n−1Hw̃n−1, which is on the order of µ3 as n →

∞. Under expectation, the cross-term is zero since E (gn(wn−1)|wn−1) = 0. Taking
expectations and letting n→∞ we get

E ‖w̃n‖2 → µ

2
Tr(H−1Rg) (19.155)

as claimed.

Random reshuffling. We established in the body of the chapter (see, e.g., the summary
in Table 19.2) that the performance of stochastic gradient algorithms differs under
sampling with and without replacement. In the first case, the steady-state mean-square
error, E ‖w̃n‖2, approaches a neighborhood of size (Oµ), while in the second case un-
der random reshuffling the neighborhood size is reduced to O(µ2), where µ is the small
step-size parameter. This is a remarkable conclusion showing that the manner by which
the same data points are processed by the algorithm can have a nontrivial effect on
performance. It has been noted in several studies, e.g., by Bottou (2009), Recht and Re
(2012), Gürbüzbalaban, Ozdaglar, and Parrilo (2015b), and Shamir (2016) that incor-
porating random reshuffling into the operation of a stochastic gradient algorithm helps
improve performance. The last three works pursued justifications for the enhanced
behavior of the algorithm by examining the convergence rate of the learning process
under vanishing step-sizes. Some of the justifications rely on loose bounds or their con-
clusions are dependent on the sample size. Also, some of the results only establish that
random reshuffling will not degrade performance relative to uniform sampling. In the
body of the chapter, and specifically the arguments used in Appendix 19.B, we followed
the approach by Ying et al. (2019). The contribution in this work provided a detailed
analysis justifying analytically the improved performance from O(µ) to O(µ2) under
constant step-size operation.

Importance sampling The derivation of the optimal and adaptive sampling strategies in
Sec. 19.6 follows the approach proposed by Yuan et al. (2016). There are of course other
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sampling strategies in the literature. For example, in some works, condition (19.7b) on
the loss function is stated instead in the form:

‖∇w Q(w2; γ(m), hm) − ∇w Q(w1; γ(m), hm)‖ ≤ δm ‖w2 − w1‖ (19.156)

with a separate Lipschitz constant δm for each samplem = 0, 1, . . . , N−1. One sampling
strategy proposed by Needell, Ward, and Srebro (2014) and Zhao and Zhang (2015)
measures the importance of each sample according to its Lipschitz constant and selects
the assignment probabilities according to

pm =
δm∑N−1
m=0 δm

(19.157)

This construction is not the result of an optimized design and it requires knowledge
of the Lipschitz constants, which are generally not available in advance. One feature
of the adaptive sampling strategy described in (19.101) is that it relies solely on the
available data.

PROBLEMS

19.1 Repeat the steps in the proof of Theorem 19.1 to establish Theorem 19.2 for the
mini-batch stochastic gradient implementation.
19.2 Extend Theorem 19.4 for decaying step-sizes to the mini-batch stochastic gra-
dient implementation.
19.3 Consider a stochastic gradient implementation with instantaneous gradient ap-
proximations. Assume an empirical risk minimization problem where the N−data
points {γ(m), hm} are randomly reshuffled at the start of each run. Let (γ(n),hn)
denote generically the sample that is selected at iteration n in the k−th run. Let
σ(0 : n− 1) denote the history of all sample selections before the n−th iteration.
(a) Show that, conditioned on wn−1 and σ(0 : n− 1), it holds that

E
(
‖g(wn−1)‖2 |wn−1,σ(0 : n− 1)

)
≤

8δ2‖w̃n−1‖2 + 2E
(
‖∇wT Q(w?;γ(n),hn‖2 |wn−1,σ(0 : n− 1)

)
(b) Conclude that E

(
‖gn(wn−1)‖2 |wn−1

)
≤ β2

g‖w̃n−1‖2 + σ2
g , where β2

g = 8δ2 and
σ2
g = max0≤m≤N−1 ‖∇wT Q(w?; γ(m), hm)‖2.

19.4 Refer to the intermediate result (19.23). Show that it also holds

‖w̃n−1 + µ∇wTP (wn−1)‖2 ≤
(

1− µν

2

)2

‖w̃n−1‖2

19.5 Establish bound (19.33) on the average regret for the stochastic gradient algo-
rithm with constant step-size.
19.6 How would the convergence rates shown in (19.55) change for step-size sequences
of the form µ(n) = τ/(n+ 1)q for 1

2
< q ≤ 1 and τ > 0?

19.7 Extend the proof of Theorem 19.1 to the stochastic coordinate descent recursion
(19.30) to derive conditions on the step-size for convergence. Assess the limiting behav-
ior of the algorithm; its convergence rate and limiting mean-square-error performance.
19.8 Assume the search direction in a stochastic gradient implementation is scaled
by a diagonal positive-definite matrix A as follows:

wn = wn−1 − µA−1∇wT Q(wn−1;γ(n),hn), n ≥ 0

where A ∆
= diag{a(1), a(2), . . . , a(M)}, 0 < a(m) ≤ 1, and µ > 0.

(a) Extend the result of Theorem 19.1 to this case.
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(b) Extend the result of Theorem 19.3 to this case when µ is replaced by µ(n).
19.9 Establish result (19.81).
19.10 Refer to the stochastic gradient recursion (19.1) and assume that the step-size
is a random parameter with mean Eµ = µ̄ and variance σ2

µ. Assume µ is independent
of all other random variables. Follow the arguments used in the proof of Theorem 19.1
and show how the results of the theorem would need to be adjusted. Remark. For a
related discussion, the reader may refer to Zhao and Sayed (2015a,b) and Sayed and
Zhao (2018).
19.11 Refer to the stochastic gradient recursion (19.1) and assume that the step-size
µ is a Bernoulli random variable that is equal to µ with probability p and zero with
probability 1 − p. That is, the recursion is active p fraction of the times. Assume µ
is independent of all other random variables. Follow the arguments used in the proof
of Theorem 19.1 and show how the results of the theorem would need to be adjusted.
Remark. For a related discussion, the reader may refer to Zhao and Sayed (2015a,b)
and Sayed and Zhao (2018).
19.12 Assume P (w) is only convex (but not necessarily strongly-convex) with a loss
function whose gradients are δ−Lipschitz satisfying (18.10b). Consider the stochastic-
gradient recursion (19.1). Show that

1

N

N−1∑
n=0

‖w̃n−1‖2 ≥ 1

Nµ2δ2

(
‖w̃N−1‖2 − ‖w̃−1‖2

)
How would the result change if P (w) is ν−strongly-convex?
19.13 This problem extends the result of Prob. 12.13 to the stochastic gradient sce-
nario. Thus, refer to the stochastic gradient recursion (19.1) and assume P (w) is only
convex (but not necessarily strongly-convex) with a loss function whose gradients are
δ−Lipschitz satisfying (18.10b). Let µ < 1/δ.
(a) Use property (11.120) for convex functions with δ−Lipschitz gradients to argue

that the average risk value, EP (wn), increases by at most O(µ2) per iteration.
Specifically, verify that EP (wn) ≤ EP (wn−1)− µ

2
E ‖∇w P (wn−1)‖2 + 1

2
µ2δσ2

g .
(b) Show that

EP (wn)−P (w?) ≤ 1

2µ

(
E ‖w̃n−1‖2 − E ‖w̃n‖2

)
+µ

(
β2
gE ‖∇w P (wn−1)‖2 + σ2

g

)
(c) Conclude that

1

n

∑n
k=1 EP (wk)− P (w?) ≤ O(1/n) +O(µ).

19.14 Refer to the stochastic gradient algorithm (19.75) under random reshuffling
and assume an epoch-dependent step-size µ(k) = τ/k, for k ≥ 1, is used. Repeat the
arguments in Appendix 19.B and the technique used to derive Lemma 19.4 to establish
the convergence rates (19.81)–(19.82).
19.15 The proof technique used to establish the convergence properties in Theo-
rem 19.1 exploits the fact that the gradient noise process has zero mean conditioned on
the past iterate wn−1. Motivated by the arguments used in Appendix 19.B, assume we
follow now a similar proof technique to avoid the reliance on the zero-mean property
for the gradient noise.
(a) Let 0 < t < 1 be any scalar that we are free to choose. Subtract w? from both

sides of (19.1) and establish the result

‖w̃n‖2 ≤ 1

t
(1− 2µν + µ2δ2) ‖w̃n−1‖2 +

µ2

1− t ‖gn(wn−1)‖2

(b) Verify that 1 − 2µν + µ2δ2 ≤
(
1− µν

2

)2 for µ < ν/δ2. Select t = 1 − µν
2

and

show that E ‖w̃n‖2 ≤ λE ‖w̃n−1)‖2 + 2µσ2
g/ν, where λ = 1 − µ( ν

2
− 2β2

g

ν
). Does

λ ∈ (0, 1)?
(c) Are you able to conclude from the recursion in part (b) that the mean-square

deviation E ‖w̃n‖2 approaches a neighborhood of size O(µ)?
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19.16 Show that the convergence rates in Lemma 19.4 continue to hold for the mini-
batch stochastic gradient implementation.
19.17 Consider an empirical risk minimization problem and apply a stochastic gradi-
ent algorithm with importance sampling using either (19.6a) or (19.6b) to approximate
the gradient direction. Extend the proof of Theorem 19.1 to show that the limiting
mean-square-error region will continue to be O(µσ2

g).
19.18 Probs. 19.18–19.20 are motivated by the discussion in Bottou, Curtis, and
Nocedal (2018). Refer to the stochastic-gradient recursion (19.1) and assume the risk
function P (w) has δ−Lipschitz gradients as in (19.8) or (19.10). Use property (10.13)
for δ−smooth functions to establish the following inequality regardless of how the
stochastic gradient is constructed:

E
(
P (wn)|wn−1

)
− P (wn−1)

≤ −µ
(
∇wT P (wn−1)

)T
E ∇̂wT P (wn−1) +

µ2δ

2
E ‖∇̂wT P (wn−1)‖2

where the expectation operator E is over the statistical distribution of the data {γ,h}
conditioned on the past iterate wn−1. Conclude that if the gradient approximation is
unbiased then

E
(
P (wn)|wn−1

)
− P (wn−1) ≤ −µ‖∇wT P (wn−1)‖2 +

µ2δ

2
E ‖∇̂wT P (wn−1)‖2

19.19 Continuing with Prob. 19.18, assume the stochastic gradient approximation
satisfies the following three conditions in terms of the squared Euclidean norm:

i)
(
∇wT P (wn−1)

)T
E ∇̂wT P (wn−1) ≥ a ‖∇wT P (wn−1)‖2

ii) ‖E ∇̂wT P (wn−1)‖ ≤ b ‖∇wT P (wn−1)‖
iii) var

(
∇̂wT P (wn−1)

)
≤ α+ β‖∇wT P (wn−1)‖2

for some constants b ≥ a > 0 and α, β ≥ 0 and where, by definition,

var
(
∇̂wT P (wn−1)

)
∆
= E ‖∇̂wT P (wn−1)‖2 − ‖E ∇̂wT P (wn−1)‖2

(a) Let β1 = β + b2. Verify that

E ‖∇̂wT P (wn−1)‖2 ≤ α+ β1‖∇wT P (wn−1)‖2

(b) Conclude that

E
(
P (wn)|wn−1

)
− P (wn−1) ≤ −

(
a− 1

2
δµβ1

)
µ‖∇wT P (wn−1)‖2 +

µ2

2
αδ

19.20 Continuing with Prob. 19.19, assume now that P (w) is a ν−strongly convex
risk that is bounded from below. Verify that for µ ≤ a/δβ1 we have

EP (wn)− P (w?) ≤ µδα

2νa
+ (1− µνα)n+1 ×

(
P (w−1)− P (w?)− µδα

2νa

)
and conclude that

lim sup
n→∞

(
EP (wn)− P (w?)

)
≤ µδα

2νa
= O(µ)
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19.21 The stochastic gradient algorithm can be implemented with Polyak-Ruppert
averaging as shown earlier in (16.52), i.e.,

wn = wn−1 − µ∇wT Q(wn−1;γ(n),hn), n ≥ 0

w̄n = w̄n−1 +
1

n+ 2
(wn − w̄n−1)

Extend the result of Theorem 19.1 to this case. Remark. For more discussion on this
technique, the reader may refer to Ruppert (1988) and Polyak and Juditsky (1992).
19.22 A variation of the Polyak-Ruppert averaging algorithm of Prob. 19.21 is to
generate w̄n by means of a convex combination, say

wn = wn−1 − µ∇wT Q(wn−1;γ(n),hn)

w̄n = βw̄n−1 + (1− β)wn, w̄−1 = w−1 = 0

where β ∈ [0, 1]. Extend the result of Theorem 19.1 to this case.
19.23 Refer to the stochastic Nesterov momentum method (17.73) and examine its
convergence properties. Remark. For a related discussion, refer to Yu, Jin, and Yang
(2019).
19.24 In this problem we seek to re-derive the AdaGrad algorithm (17.13) by relying
on the same mean-square-error analysis used in the proof of Theorem 19.1. Thus,
consider a stochastic-gradient recursion of the form

wn = wn−1 − µA−1∇wTQ(wn−1;γ(n),hn)

with a constant step-size, µ and a scaling symmetric and positive-definite matrix A−1.
Let σmax(A−1) denote the maximum singular value of A. If A is restricted to being
diagonal with positive entries, then σmax(A−1) = 1/amin where amin is the smallest
entry in A. Introduce the gradient noise vector

g(w)
∆
= A−1∇̂wT P (w) − A−1∇wT P (w)

(a) Verify that under uniform sampling:

E
(
gn(wn−1) |wn−1

)
= 0, E

(
‖gn(wn−1)‖2A |wn−1

)
≤ β2

g‖w̃n−1‖2A + σ2
g

β2
g = 8δ2/σ2

min(A)

σ2
g =

2

N

N−1∑
m=0

‖∇wT Q(w?; γ(m), hm)‖2A−1

(b) Repeat the argument leading to (19.24) and verify that the relation now becomes

E ‖w̃n‖2A ≤
(

1− 2µν

σmax(A)
+

9µ2δ2

σ2
min(A)

)
E ‖w̃n−1‖2A + µ2σ2

g

(c) Argue that selecting A to minimize σ2
g under the condition Tr(A) ≤ c, leads to

the same optimization problem (17.35) obtained from the regret analysis.
19.25 Refer to the stochastic Fletcher-Reeves algorithm (19.105). Assume the param-
eters βn are bounded for all n, say, βn ≤ β for some β > 0.
(a) Use an argument similar to (13.124) to show that

E ‖qn+1‖2 ≤ β2E ‖qn‖2 +
(1 + η)

1− η E ‖∇wP (wn−1)‖2

(b) Let c = (1 + η)/(1− η). Iterate part (a) to conclude that

E ‖qn+1‖2 ≤ cβn+1

(
1− βn+3

1− β

)
E ‖∇wP (w−1)‖2
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(c) Assume the {αm} are limited to the bounded interval αm = (α`, αu) where
0 < α` < αu. Assume each loss term Q(w; ·) is ν−strongly convex and has
δ−Lipschitz gradients. Show that the average excess risk evolves according to

EP (wn)− P (w?) ≤ ρn
(
EP (wn−1)− P (w?

)
for some positive factor ρ < 1.

Remark. The reader may refer to Jin et al. (2019) for a related discussion.
19.26 Refer to the stochastic Fletcher-Reeves algorithm (19.105). Assume the param-
eters {αn} are generated as follows:

αn = −ρ× ∇wQ(wn−1)qn
qTnΣnqn

where ρ ∈ (0, νmin/δ) and Σn is a given deterministic sequence of matrices satisfy-
ing νmin‖x‖2 ≤ xTΣnx ≤ νmax‖x‖2 for any x and where νmin and νmax are posi-
tive. Assume P (w) is ν−strongly convex with δ−Lipschitz gradients. Establish that
lim infn→∞ ‖E∇wP (wn)‖ = 0. Remark. See the work by Sun and Zhang (2001) for a
related discussion in the non-stochastic case.

19.A STOCHASTIC INEQUALITY RECURSION

The following useful result from Polyak (1987, p.49) is originally from Gladyshev (1965)
and deals with the convergence of stochastic inequality recursions; it is the stochastic
analogue of the earlier deterministic recursion (14.136).

Lemma 19.1. (Stochastic recursion) Let u(n) ≥ 0 denote a scalar sequence of non-
negative random variables satisfying Eu(0) <∞ and consider the stochastic recursion:

E
(
u(n+ 1)| u(0),u(1), . . . ,u(n)

)
≤ (1− a(n))u(n) + b(n), n ≥ 0 (19.158)

where the scalar deterministic sequences {a(n), b(n)} satisfy the five conditions:

0 ≤ a(n) < 1, b(n) ≥ 0,

∞∑
n=0

a(n) =∞,
∞∑
n=0

b(n) <∞, lim
n→∞

b(n)

a(n)
= 0

(19.159)
Then, it holds that

lim
n→∞

u(n) = 0, almost surely (19.160a)

lim
n→∞

Eu(n) = 0 (19.160b)

Proof: For completeness, we establish the lemma by following the same argument from
Polyak (1987, pp. 49–50). First, observe by taking expectations of both sides of (19.158)
that the recursion reduces to the same form covered by Lemma 14.1, namely,

Eu(n+ 1) ≤ (1− a(n))Eu(n) + b(n) (19.161)

and, therefore, Eu(n)→ 0 as n→∞. Next, introduce the auxiliary variable:

s(n)
∆
= u(n) +

∞∑
j=n

b(j) (19.162)
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We know from the conditions 0 ≤ a(n) < 1 and b(n) ≥ 0 that s(n) ≥ 0. Moreover, we
also get Es(0) <∞ since

Es(0) = Eu(0) +

∞∑
j=0

b(j) <∞ (19.163)

Computing the conditional expectation of s(n+ 1) relative to {s(0), s(1), . . . , s(n)} we
get

E
(
s(n+ 1)| s(0), s(1), . . . , s(n)

)
= E

(
u(n+ 1)|u(0),u(1), . . . ,u(n)

)
+

∞∑
j=n+1

b(j)

≤ (1− a(n))u(n) + b(n) +

∞∑
j=n+1

b(j)

= (1− a(n))u(n) +
∞∑
j=n

b(j)

≤ u(n) +

∞∑
j=n

b(j)

= s(n) (19.164)

In other words, we established that

E
(
s(n+ 1)| s(0), s(1), . . . , s(n)

)
≤ s(n) (19.165)

This property means that s(n) ≥ 0 is a semi-martingale process, which also satisfies
Es(0) <∞. For such processes, it is known that there exists a random variable s ≥ 0
such that s(n) → s almost surely (see, e.g., Lipster and Shiryayev (1989), Williams
(1991), and He, Wang, and Yan (1992)). Now note that, by construction,

u(n) = s(n) −
∞∑
j=n

b(j) (19.166)

so that, as n→∞,

P
(

lim
n→∞

u(n) = s
)

= P

(
lim
n→∞

s(n) −
∞∑
j=n

b(j) = s

)

= P
(

lim
n→∞

s(n) = s
)

= 1 (19.167)

and we conclude that u(n) also tends almost surely to s ≥ 0. We showed earlier that
Eu(n) → 0 as n → ∞. It follows that s = 0 so that u(n) converges in probability to
zero.

�
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19.B PROOF OF THEOREM 19.5

In this appendix we follow the derivation from Ying et al. (2019) to establish the
performance results (19.79a)–(19.79b) for operation under random reshuffling.

To begin with, note that recursion (19.75) shows how to move from one iterate to
another within the same run k. The argument below will deduce from this recursion
a similar relation that shows how to move from the initial iterate wk−1

−1 for run k − 1

to the initial iterate wk
−1 for run k. That is, we first transform the description of the

algorithm from iterations within the same run to iterations across epochs. Doing so
will enable us to exploit a useful property of the random reshuffling mechanism, as
explained below in (19.170). Once this new recursion across epochs is derived, we will
then use it to establish (19.79a)–(19.79b).

Proof: Subtracting w? from both sides of (19.75) gives

w̃k
n = w̃k

n−1 + µ∇wT Q(wk
n−1;γ(n),hn) (19.168)

where the notation (γ(n),hn) denotes the random sample that is selected at iteration
n of the k−th epoch. Iterating gives, where we are now dropping the data samples as
arguments for Q(w; ·, ·) for simplicity (we will restore them when necessary):

w̃k+1
−1

∆
= w̃k

N−1

= w̃k
−1 + µ

N−1∑
n=0

∇wT Q(wk
n−1)

(a)
= w̃k

−1 + µ

N−1∑
n=0

∇wT Q(wk
n−1) + µ

N−1∑
n=0

∇wT Q(wk
−1)− µ

N−1∑
n=0

∇wT Q(wk
−1)

(b)
= w̃k

−1 + µN∇wT P (wk
−1) + µ

N−1∑
n=0

(
∇wT Q(wk

n−1)−∇wT Q(wk
−1)
)

(19.169)

where in step (a) we added and subtracted the same quantity, and in step (b) we used
the fact that under random reshuffling:

1

N

N−1∑
n=0

Q(wk
−1;γ(n),hn) =

1

N

N−1∑
m=0

Q(wk
−1; γ(m), hm) = P (wk

−1) (19.170)

The first equality in (19.170) is because each data pair is sampled once under random
reshuffling. Observe that this property would not hold under uniform sampling with
replacement.

Now, let 0 < t < 1 be any scalar that we are free to choose. Continuing with (19.169),
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we square both sides and note that

‖w̃k+1
−1 ‖2 =

∥∥∥∥ tt(w̃k
−1 + µN∇wT P (wk

−1)
)

+

1− t
1− t µ

N−1∑
n=0

(
∇wT Q(wk

n−1)−∇wT Q(wk
−1)
)∥∥∥∥∥

2

(a)

≤ t

∥∥∥∥1

t

(
w̃k
−1 + µN∇wT P (wk

−1)
)∥∥∥∥2

+

(1− t)
∥∥∥∥∥ µ

1− t
N−1∑
n=0

(
∇wT Q(wk

n−1)−∇wT Q(wk
−1)
)∥∥∥∥∥

2

=
1

t

∥∥∥w̃k
−1 + µN∇wT P (wk

−1)
∥∥∥2

+

µ2

1− t

∥∥∥∥∥
N−1∑
n=0

(
∇wT Q(wk

n−1)−∇wT Q(wk
−1)
)∥∥∥∥∥

2

(b)

≤ 1

t

∥∥∥w̃k
−1 + µN∇wT P (wk

−1)
∥∥∥2

+

µ2N

1− t
N−1∑
n=0

∥∥∥∇wT Q(wk
n−1)−∇wT Q(wk

−1)
∥∥∥2

(19.171)

where step (a) uses Jensen inequality (8.76) and step (b) uses the same inequality again
to justify the following property for any vectors {xn}:∥∥∥∥∥

N−1∑
n=1

xn

∥∥∥∥∥
2

= N2

∥∥∥∥∥
N−1∑
n=1

1

N
xn

∥∥∥∥∥
2

(8.76)

≤ N

N−1∑
n=1

‖xn‖2 (19.172)

Let us now examine the two terms on the right-hand side of (19.171). First note that∥∥∥w̃k
−1 + µN∇wT P (wk

−1)
∥∥∥2

= ‖w̃k
−1‖2 + 2µN

(
∇wTP (wk

−1)
)T
w̃k
−1 + µ2N2‖∇wTP (wk

−1)‖2

= ‖w̃k
−1‖2 + 2µN

(
∇wTP (wk

−1)
)T
w̃k
−1 + µ2N2‖∇wTP (w?)︸ ︷︷ ︸

=0

−∇wTP (wk
−1)‖2

(P2)
≤ ‖w̃k

−1‖2 + 2µN
(
∇wTP (wk

−1)
)T
w̃k
−1 + µ2N2δ2‖w̃k

−1‖2 (19.173)

Next, we appeal to the strong convexity property (18.10a) to find that(
∇wTP (wk

−1)
)T
w̃k
−1 ≤ P (w?)− P (wk

−1)− ν

2
‖w̃k
−1‖2

(8.23)

≤ −ν
2
‖w̃k
−1‖2 −

ν

2
‖w̃k
−1‖2

= −ν‖w̃k
−1‖2 (19.174)

Substituting into (19.173) gives

‖w̃k
−1 + µN ∇wT P (wk

−1)‖2 ≤ (1− 2µνN + µ2δ2N2)‖w̃k
−1‖2 (19.175)

Note that for

µ <
2ν

3Nδ2
(19.176)



724 Convergence Analysis I: Stochastic Gradient Algorithms

we have

1− 2µνN + µ2δ2N2 ≤ 1− 4µνN

3

≤ 1− 4µνN

3
+

4µ2ν2N2

9

≤
(

1− 2µνN

3

)2

(19.177)

which has the form of a perfect square. It follows from (19.175) that

‖w̃k
−1 + µN ∇wT P (wk

−1)‖2 ≤
(

1− 2µνN

3

)2

‖w̃k
−1‖2 (19.178)

Consider now the second term on the right-hand side of (19.171) and note that

N−1∑
n=0

∥∥∥∇wT Q(wk
n−1)−∇wT Q(wk

−1)
∥∥∥2 (18.10b)

≤ δ2
N−1∑
n=0

∥∥∥wk
n−1 −wk

−1

∥∥∥2

(a)
= δ2

N−1∑
n=0

∥∥∥∥∥
n−1∑
m=0

wk
m −wk

m−1

∥∥∥∥∥
2

(19.172)

≤ δ2
N−1∑
n=0

n

n−1∑
m=0

∥∥∥wk
m −wk

m−1

∥∥∥2

(b)
= δ2

N−2∑
m=0

∥∥∥wk
m −wk

m−1

∥∥∥2
(

N−1∑
n=m+1

n

)
(c)

≤ δ2N2

2

N−2∑
m=0

∥∥∥wk
m −wk

m−1

∥∥∥2

(19.179)

where step (a) uses the telescoping sum

wk
n−1 −wk

−1 =

n−1∑
m=0

wk
m −wk

m−1 (19.180)

Step (b) uses the easily-verified property

N−1∑
n=0

n−1∑
m=0

anm =

N−2∑
m=0

N−1∑
n=m+1

anm (19.181)

and step (c) uses

N−1∑
n=m+1

n ≤
N−1∑
n=0

n =
N(N − 1)

2
≤ N2

2
(19.182)

Continuing with (19.179), we appeal to the stochastic gradient recursion to observe
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that for each term in the sum:∥∥∥wk
m −wk

m−1

∥∥∥2 (19.75)
= µ2

∥∥∥∇wTQ(wk
m−1)

∥∥∥2

= µ2
∥∥∥∇wTQ(wk

m−1) +∇wTQ(w?)−∇wTQ(w?)
∥∥∥2

≤ 2µ2
∥∥∥∇wTQ(wk

m−1) +∇wTQ(w?)
∥∥∥2

+ 2µ2 ‖∇wTQ(w?)‖2

(18.10b)

≤ 2µ2δ2 ‖w̃k
m−1‖2 + 2µ2 ‖∇wTQ(w?)‖2

(19.183)

Therefore, we have∥∥∥wk
m −wk

m−1

∥∥∥2

≤ 2µ2δ2 ‖w? −wk
−1 +wk

−1 −wk
m−1‖2 + 2µ2 ‖∇wTQ(w?)‖2

≤ 4µ2δ2 ‖w̃k
−1‖2 + 4µ2δ2‖wk

−1 −wk
m−1‖2 + 2µ2 ‖∇wTQ(w?)‖2

(19.184)

Introduce the average loss value

Qav
∆
=

1

N

N−1∑
m=0

‖∇wTQ(w?; γ(m), hm)‖2 (19.185)

We know from (18.40) that

Qav = O(σ2
g) (19.186)

i.e., it is on the order of the factor σ2
g that bounds the second-order moment of the

gradient noise process. Adding (19.184) over m gives

N−1∑
m=0

∥∥∥wk
m −wk

m−1

∥∥∥2

≤ 4µ2δ2N ‖w̃k
−1‖2 + 2µ2NQav + 4µ2δ2

N−1∑
m=0

‖wk
m−1 −wk

−1‖2

(a)
= 4µ2δ2N ‖w̃k

−1‖2 + 2µ2NQav + 4µ2δ2
N−1∑
m=0

∥∥∥∥∥
m−1∑
n=0

wk
n −wk

n−1

∥∥∥∥∥
2

(b)

≤ 4µ2δ2N ‖w̃k
−1‖2 + 2µ2NQav + 4µ2δ2

N−1∑
m=0

m−1∑
n=0

m
∥∥∥wk

n −wk
n−1

∥∥∥2

(c)
= 4µ2δ2N ‖w̃k

−1‖2 + 2µ2NQav + 4µ2δ2
N−2∑
n=0

∥∥∥wk
n −wk

n−1

∥∥∥2
(

N−1∑
m=n+1

m

)
(d)

≤ 4µ2δ2N ‖w̃k
−1‖2 + 2µ2NQav + 2µ2δ2N2

N−2∑
n=0

∥∥∥wk
n −wk

n−1

∥∥∥2

≤ 4µ2δ2N ‖w̃k
−1‖2 + 2µ2NQav + 2µ2δ2N2

N−1∑
n=0

∥∥∥wk
n −wk

n−1

∥∥∥2

(19.187)

where in step (a) we used again a telescoping sum representation, in step (b) we used
property (19.172), in step (c) we appealed again to (19.181), and in step (d) we used
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(19.182). In the last step, we increased the upper limit on the summation on the right-
hand side to N − 1. It follows that

N−1∑
m=0

∥∥∥wk
m −wk

m−1

∥∥∥2

≤ 1

1− 2µ2δ2N2

(
4µ2δ2N ‖w̃k

−1‖2 + 2µ2NQav

)
(19.188)

Combining (19.178), (19.179), and (19.188) into (19.171), we arrive at

‖w̃k+1
−1 ‖2 ≤

1

t

(
1− 2µνN

3

)2

‖w̃k
−1‖2 +

µ2δ2N3

2(1− t)(1− 2µ2δ2N2)

(
4µ2δ2N ‖w̃k

−1‖2 + 2µ2NQav

)
(19.189)

We select t = 1− 2µνN
3

so that

‖w̃k+1
−1 ‖2 ≤

(
1− 2µνN

3

)
‖w̃k
−1‖2 +

3µδ2N2

4ν(1− 2µ2δ2N2)

(
4µ2δ2N ‖w̃k

−1‖2 + 2µ2NQav

)
≤
(

1− 2µνN

3
+

3µ3δ4N3

ν(1− 2µ2δ2N2)

)
‖w̃k
−1‖2 +

3µ3δ2N3

2ν(1− 2µ2δ2N2)
Qav (19.190)

Assume again that µ is small enough such that

1− 2µ2δ2N2 >
3

4
⇐⇒ µ <

1√
8Nδ

(19.191)

Since ν ≤ δ, this condition is met by any

µ <
ν√

8Nδ2
(19.192)

Then, we have

‖w̃k+1
−1 ‖2 ≤

(
1− 2µνN

3
+

4µ3δ4N3

ν

)
‖w̃k
−1‖2 +

2µ3δ2N3

ν
Qav

(19.193)

Assume further that µ is small enough such that

1− 2µνN

3
+

4µ3δ4N3

ν
< 1− µ

2
νN (19.194)

which is equivalent to

µ <
ν√

24Nδ2
(19.195)

Conditions (19.176), (19.192), and (19.195) are met by (19.77). Then, it follows that

‖w̃k+1
−1 ‖2 ≤

(
1− µ

2
νN
)
‖w̃k
−1‖2 +

2µ3δ2N3

ν
Qav (19.196)
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or, by taking expectations of both sides,

E ‖w̃k+1
−1 ‖2 ≤

(
1− µ

2
νN
)
E ‖w̃k

−1‖2 +
2µ3δ2N3

ν
Qav (19.197)

and, hence,

E ‖w̃k
−1‖2 ≤ O(λk) +O(µ2) (19.198)

with λ = 1− µνN
2

. Finally, note that for any n we have

‖w̃k
n‖2 = ‖w̃k

n − w̃k
−1 + w̃k

−1‖2

≤ 2‖w̃k
−1‖2 + 2‖w̃k

n − w̃k
−1‖2

= 2‖w̃k
−1‖2 + 2‖wk

n −wk
−1‖2

(a)
= 2‖w̃k

−1‖2 + 2
∥∥∥ n∑
m=0

wk
m −wk

m−1

∥∥∥2

(19.172)

≤ 2‖w̃k
−1‖2 + 2(n+ 1)

n∑
m=0

∥∥∥wk
m −wk

m−1

∥∥∥2

(b)

≤ O(λk) +O(µ2) +O(µ2), large k

= O(λk) +O(µ2) (19.199)

where in step (a) we used a telescoping series representation and in step (b) we used
(19.188) and (19.198). We therefore arrive at (19.79a). To establish (19.79b), we use
(19.12b) to note that

0 ≤ EP (wk
n)− P (w?) ≤ δ

2
E ‖w̃k

n‖2 (19.200)

�
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