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18 GRADIENT NOISE

18.1

The purpose of this chapter is to study the gradient noise process more closely,
for both cases of smooth and nonsmooth risk functions, and to derive expressions
for its first and second-order moments (i.e., mean and variance). The results will
then be exploited in the subsequent chapters to assess how gradient noise affects
the convergence behavior of various stochastic approximation algorithms. The
presentation in the chapter prepares the ground for the detailed convergence
analyses given in the next chapters. Throughout this chapter, we will use the
terminology “smooth” functions to refer to risks that are at least first-order dif-
ferentiable everywhere in their domain, and apply the qualification “non-smooth”
functions to risks that are not differentiable at some points in their domains.

MOTIVATION

We examined several stochastic optimization algorithms in the previous chapters
for the solution of convex optimization problems of the form:

w”* = argmin P(w) (18.1)
welRM

with and without constraints on w, for both smooth and nonsmooth risks, as
well as for empirical and stochastic risks, namely,

1>

N-1
w* 2 argmin {P(w) %Z Q(w;'y(m),hm)} (18.2a)

welRM m=0

welRM

w’ 2 argmin {P(w) ]EQ(w;’y,h)} (18.2b)

In these expressions, Q(w, ) denotes some convex loss function, {y(m), hy, } re-
fer to a collection of N—data points with v(m) € IR and h,, € IRM, and the
expectation in the second line is over the joint distribution of {~,h}. In most
algorithms, the desired gradient or subgradient search direction was approxi-
mated by using either instantaneous or mini-batch calculations. For example,
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for smooth risk functions P(w), we used approximations of the form:

(instantaneous) : m( )=V ,wT Q(w-7, h) (18.3a)
(mini-batch) : ¥« P(w) = — Z VU,TQ(w ~(b), hb) (18.3b)

where the boldface notation (v, h) or (v(b), hy) refers to data samples selected at
random from the dataset {v(m), h,,} in empirical risk minimization, or assumed
to stream in independently over time in stochastic risk minimization. When
P(w) happens to be nonsmooth, the gradient vectors of Q(wj;-) are replaced by
subgradients, denoted by sq(w;~y, h). The difference between the true gradient
and its approximation is gradient noise and denoted by

g(w) 2 Vo1 P(w) = V1 P(w) (18.4)

We explained in Sec. 16.4 that the presence of this noise source alters the dy-
namics of the optimization algorithms. For example, the following two relations
highlight the difference between the original gradient-descent method and its
stochastic version for smooth risks:

(gradient-descent) : w,, = wy,_1 — pV,,m P(w,_1) (18.5a)
(stochastic version) : w,, = w,_1 — ,uV/wT\P(wn,l)

=wp_1 — pVyr Plwy—1) — pg(wy—1) (18.5b)

The gradient noise appears as a driving perturbation in the second recursion.
This is illustrated in Fig. 18.1, where the block with z~' represents a unit delay
element. The panel on top shows the dynamics of (18.5a), while the panel in the
bottom shows the dynamics of the perturbed update (18.5b). The gradient noise
seeps into the operation of the algorithm and some degradation in performance
is expected. While we were able to show in a previous chapter that the gradient
descent implementation (18.5a) converges to the exact minimizer w* of P(w) for
sufficiently small step-sizes, we will discover in future chapters that the stochas-
tic version (18.5b) can only approach a small neighborhood around w* of size
E||w,|?* = O(u) as n — oo.

Example 18.1 (Gradient noise for quadratic risks) We illustrate the concept of gradi-
ent noise by considering two quadratic risks: one empirical and the other stochastic.
Consider first the empirical risk:

Plw) = plwl® + 5 > (0m) — hlw)?, p>0 (186)

N-1
m=0

In this case, the gradient vector and its instantaneous approximation are given by

Vo P(w) = 2pw — NZ — hpw) (18.7a)
Ve P(w) = 2pw — 2h,(v(n) — hlw) (18.7b)
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Figure 18.1 The panel on top shows the dynamics of the original gradient-descent

recursion (18.5a) while the panel in the bottom shows the dynamics of the stochastic
version (18.5b). The true gradient vector is perturbed by gradient noise, which seeps

into the operation of the algorithm. The block with z~! represents a unit delay
element.

where {v(n), hy} refer to the random sample selected at iteration n by the stochastic

gradient implementation. The resulting gradient noise process is then given by

g(w) = % i hn (7(m) — hjyw) — 2k (v(n) — hyw) (18.7¢)

Observe that g(w) depends on the sample {v(n), h,} and, therefore, in principle, we

should be writing g,,(w) with a subscript n to highlight its dependency on n.

Consider next the stochastic risk:
P(w) = pllw|* + E(y — h'w)?

= 03/ — QT;IL—,YIU +w' (pIa + Rp)w

which we expanded in terms of the second-order moments 03 =E~?, riy = Ehry, and
Ry, = EhRAT. The random variables {v, h} are assumed to have zero means. In this

case, the gradient of P(w) and its instantaneous approximation are given by

Vw P(w) = 2pw — 2(rpy — Rpw) (18.9a)
Vo P(w) = 2pw — 2hy(v(n) — hlw) (18.9b)
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so that the corresponding gradient noise process is now
g(w) = 2(rny — Rpw) — 2hn(y(n) — hhw) (18.9¢)
Observe again that g(w) depends on the streaming sample {vy(n), h,}.

18.2 SMOOTH RISK FUNCTIONS

To facilitate the analysis and presentation, we will treat smooth and nonsmooth
risks separately, although we will end up with the same ultimate conclusion about
the gradient noise for both cases. We start with smooth risks and describe the
conditions that are normally imposed on the risk and loss functions, P(w) and
Q(w, ). The conditions listed here are satisfied by several risk and loss functions
of interest, as illustrated in the problems at the end of the chapter.

Empirical risks

Consider smooth empirical risks of the form (18.2a). We will assume that the
risk and loss functions satisfy the two conditions listed below. Compared with
the earlier conditions (12.12a)—(12.12b) in the gradient-descent case, we see that
we now need to take the loss function into consideration since its gradients are
the ones used in the stochastic implementation:

(A1) (Strongly convex risk). P(w) is v—strongly convex and first-order differen-
tiable, namely, for every wi,ws € dom(P):

P(wz) > P(w1) + (V1 P(wy)) " (we —w1) + %erle? (18.10a)

for some v > 0.

(A2) (0—Lipschitz loss gradients). The gradient vectors of Q(w, -) are 6—Lipschitz
regardless of the data argument, i.e.,

IV Q(wa; v(k), hit) — Vi Q(w1;v(£), h(€))[| < 6 |jws —wy]| (18.10b)

for any wi,wy € dom(Q), any 0 < k,¢/ < N — 1, and with § > v (this
latter requirement can always be met by enlarging ¢). Condition (18.10b) is
equivalent to saying the loss function is d—smooth. It is easy to verify from
the triangle inequality of norms that (18.10b) implies that the gradient of
P(w) is itself §—Lipschitz:

||Vw P(’wg) - Vw P(wl)H S (SH’LUQ — w1|| (18.11)

Moreover, if it happens that P(w) is twice-differentiable, then we already
know from (12.15) that conditions (18.10a) and (18.11) combined are equiv-
alent to:

0 < vy < V2 Plw) < 8y (18.12)

in terms of the Hessian matrix of P(w).
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Stochastic risks

For stochastic risks of the form (18.2b), we continue to assume that P(w) is
v-strongly-convex but that the loss function has gradients that are §—Lipschitz
in the mean-square sense:

(A1)

(A2')

(Strongly convex risk). P(w) is v—strongly convex and first-order differen-
tiable, namely, for every wi,ws € dom(P):

P(w2) > P(w1) + (Vr P(w1)) " (we — w1) + g”’wz —wy||?  (18.13a)

for some v > 0.
(Mean-square §—Lipschitz loss gradients). The gradient vectors of Q(w, )
satisfy the mean-square bound:

E |V Q(wz; v, h) — Vi Q(w1; 7, h)||? < 82wy — w||? (18.13b)

for any wq,ws € dom(Q) and with 6 > v. The expectation is over the joint
distribution of the random data {v,h}. Using the fact that for any scalar
random variable z it holds that (Ex)? < Ex?, we conclude from condition
(18.13b) that the gradient vectors of the loss function are also d—Lipschitz
on average, namely,

E(Vw Q(w2; v, h) = Vi Q(wi;, h)|| < bfjwz —wi | (18.14)

By further applying Jensen inequality (8.77) that f(Ex) < E f(x) for the
convex function f(x) = ||z||, we can conclude from (18.14) that the gradients
of P(w) are themselves 6—Lipschitz as well:

IV P(wz) = Vi P(wy)|| < 6llwz — w| (18.15)

Proof of (18.15): Note that

IV P(ws) = Vo Pwn)]| 2 [[Vu EQ(wai v h) = Vw EQ(uwsi v, b)|
< B (Ve Qs h) = Vi Qb)) |

B[V Q(w2; v, k) =V Q(wi;, h)||

IN

(18.14)
< §llwa — wn | (18.16)

Step (a) switches the order of the expectation and differentiation operators, which
is possible under certain conditions that are generally valid for our cases of interest
— recall the explanation in Appendix 16.A on the dominated convergence theorem.
In particular, the switching is possible when the loss function Q(wj;-,-) and its
gradient are continuous functions of w.

For ease of reference, we collect in Table 18.1 the main relations and conditions
described so far for smooth empirical and stochastic risk minimization.
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GRADIENT NOISE FOR SMOOTH RISKS

Using the §—Lipschitz conditions on the gradient of the loss function alone, we
will now derive expressions for the first and second-order moments of the gradient
noise. For the instantaneous and mini-batch constructions (18.3a)—(18.3b), the
gradient noise at iteration n is given by

(instantaneous approximation)
9(wn1) = Vor Q(wa_1:9(n),ho) = Vor Plw,—1)  (18.17a)

for instantaneous gradient approximations, and by

(mini-batch approximation)
( L U Qi (). h) — Vur Plwa_y)  (18.17b)
g wn—l) - B g wT wn—lv’Y( s Tey) — VT Wp—1 ( .

for mini-batch approximations, where (y(n), h,) and {7v(b), hy} denote the ran-
dom data samples used at the n—th iteration while updating w,_1 to w,. It
is important to recognize that the gradient noise is random in nature because
its calculation depends on the random data samples. For this reason, we are de-
noting it in boldface. Moreover, the gradient noise is dependent on the iteration
index n because its calculation depends on w,,_1 and on the data samples used
at that iteration. For added clarify, we will often write g,,(w,,—1) instead of just
g(w,_1), with an added subscript n, in order to emphasize that we are referring
to the gradient noise computed at iteration n.

The main conclusion of this section (and actually, of this chapter) will be to
show that the conditional second-order moment of the gradient noise is bounded
as follows:

E (g, (wn )2 1) < BT | + 07 (18.18)

for some nonnegative constants ( 3, 03) that will be independent of the error

Wp—1 = w* — wp—1 (here, we are using w* to refer generically to the minimizer
of the risk function P(w), whether empirical or stochastic in nature). The con-
ditioning on w,_1 in (18.18) could have been written more explicitly as

E (llgn (wn-) [* | war = waos) (18.19)

to indicate that the conditioning is based on an actual realization for w,,_;. For
convenience, we will be using the simpler notation shown in (18.18) throughout
our presentation where the conditioning is written relative to the random vari-
able. Result (18.18) shows that the second-order moment of the gradient noise
is upper bounded by a quadratic term that involves two factors: one factor is
dependent on |[w,_1]|? and, therefore, gets smaller as the quality of the iterate
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wy_1 improves, while the second factor is a constant term 03. This latter term
is persistent and continues to exist even if ||w, _1||?> approaches zero.

It is important to remark that result (18.18) is only dependent on how the
approximate gradient vector is constructed; the result does not depend on the
particular stochastic approximation algorithm used to update the successive iter-
ates from w,,_1 to w,. By conditioning on w,,_1, we are in effect stating that the
bound holds regardless of how this iterate is generated. Once its value is given
and used to compute the gradient approximation, then the resulting gradient
noise will satisfy (18.18).

Before establishing (18.18), it is worth recalling the types of sampling strategies
that can be employed by a stochastic approximation algorithm to select itsr
random samples.

Sampling Strategies

For mini-batch implementations, the B samples can be chosen with or without
replacement or they can be streaming in:

(a) (Sampling with replacement). In this case, we sample with replacement one
data point (y(b),hy) at a time from the N—dataset {y(m),h,,} until B
samples have been selected. In this way, all samples within the mini-batch
are selected independently of each other, although some samples may appear
repeated.

(b) (Sampling without replacement). We can also sample without replacement,
one data point (y(b),hy) at a time from the dataset {v(m),h,,} until B
samples have been selected. Here, the samples within the mini-batch will be
different but the selections will not be independent of each other anymore.

(c) (Streaming data). For stochastic risk minimization, the samples {v(b), hs}
used in the mini-batch will be streaming in independently of each other.

(d) (Importance sampling). In this case, a probability value p,, is assigned to
each sample (y(m), h,,) in the dataset, and the mini-batch samples are se-
lected at random (with replacement) from the dataset according to this dis-
tribution. We explained in Example 16.2 that the approximation for the
gradient vector will need to be adjusted to include an additional scaling by
1/Np, — compare with (18.3b):

%

—— 1 1
Vor Pw) ==Y —V,rQ(w;~(b), h 18.20
() =5 X 375, Vor Qs (0. hu) (18.20)

I
o

We clarify in the sequel how this scaling corrects an inherent bias that is
present under importance sampling — see argument (18.30).

For implementations with instantaneous gradient approximations, the random
sample can also be selected with or without replacement or it can stream in:
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(a’) (Sampling with replacement). In this case, the sample (y(n), h,) at iter-
ation n is selected uniformly at random from the dataset {y(m), hy,} with
replacement. Some sample points may be selected multiple times.

(b’) (Sampling without replacement). In this case, the sample (y(n),h,) at
iteration n is selected at random from the same dataset but without replace-
ment.

(c’) (Streaming data). For stochastic risk minimization, the samples (y(n), hy)
stream in independently of each other.

(d’) (Importance sampling). In this case, a probability value p,, is assigned to
each sample (y(m), h,,) in the dataset, and the sample (y(n), h,,) is selected
at random according to this distribution. We also explained in Example 16.2
that the approximation for the gradient vector will need to be adjusted to
include an additional scaling by 1/Np,, — compare with (18.3a):

— 1

Vot P(w) anVwT Q(w;~(n), hy) (18.21)

where p,, is the probability with which sample (vy(n), h,) is selected. We
clarify in the sequel how the scaling corrects the bias that arises under im-
portance sampling — see argument (18.30).

The derivations in the remainder of this section are meant to establish the fol-
lowing main conclusion.

LEMMA 18.1. (Gradient noise under smooth risks) Consider the empirical or
stochastic risk optimization problems (18.2a)—-(18.2b) and assume the risk and
loss functions are first-order differentiable with the gradients of the loss function
satisfying the 6— Lipschitz conditions (18.10b) or (18.13b).The first and second-
order moments of the gradient noise process will satisfy:

E(gn(wn-1) |wn-1) =0 (18.22a)
E (Ign(wn-0)I” | wn-1) < B7|[@n—1] + of (18.22b)

for some nonnegative constants {ﬂg, 03} that are independent of W, _1.

Results (18.22a)—(18.22b) hold for instantaneous and mini-batch gradient ap-
proximations, regardless of whether the samples are streaming in independently
of each other, sampled uniformly with replacement, sampled without replace-
ment, or selected under importance sampling. The only exception is that the
zero-mean property (18.22a) will not hold for the instantaneous gradient imple-
mentation when the samples are selected without replacement. This exception
is not of major consequence for the convergence analyses in the next chapters.
When property (18.22a) does not hold, the convergence argument will need to be
adjusted (and becomes more demanding) but will continue to lead to the same
conclusion.
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To establish properties (18.22a)—(18.22b), we proceed by examining each sam-
pling procedure separately and then show that they all lead to the same result.
We consider the zero-mean property (18.22a) first.

First-Order Moment

We verify in this section that for almost all cases of interest, the gradient noise
process has zero mean conditioned on the previous iterate, i.e.,

E(g,(wn-1)|wy—1) = 0 (18.23)
Sampling with replacement
Consider first the case of an instantaneous gradient approximation where a single

sample is chosen at each iteration n. Let o denote the index of the data sample
selected at that iteration so that

P(c =m)=1/N, me{0,1,2,...,N -1} (18.24)

In this case, the approximate search direction is unbiased since, by conditioning
on wy_1, we get

E (V/wij(wn—l) | wn—l) = E (va Q(wn—-1;7(0), ha) | wn—l)

1 N-—1
3 Var Quacsir(0), o)
o=0

20 g+ Plw,_y) (18.25)
where in the second equality we used the fact that the loss function assumes
each of the values Q(w,—1;7(0), hy) with probability 1/N. We conclude that
(18.23) holds. This is a reassuring conclusion because it means that, on average,
the approximation we are using for the gradient vector agrees with the actual
gradient.

The gradient noise process continues to have zero conditional mean in the
mini-batch implementation. This is because the approximate search direction is
again unbiased:

B-1
E (m(wn—l) | wn—l) =E ( ! D Vur Q(wi1;7(b), ) |wn—1>

B
b=0
1 B-1
= 2 Y B (Var Quwn 1:y(8), o) w1 )
b=0
WEg (VwT Q(wn-1;7(0), he) |’wn—1)

1 N-1
= =Y Vaur Qi 1(0). )
o=0

= V1 Plwn_1) (18.26)
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where in step (a) we used the fact that the data samples (vy(b), h;) are selected
independently of each other.

Sampling without replacement
When the data point (y(n), h,,) is sampled without replacement from the dataset

{y(m), hy} and used to compute an instantaneous gradient approximation, we
find that

E (Var Plwn-1)|wa-1) =B (Vur Quw-1:7(0), ho) | wa-)

1 N-1
” Nmzzjo Vot Q(wn—157(m), huy)

= V1 Pwn_1) (18.27)

where the first line is not equal to the second line because o cannot be selected
uniformly with probability 1/N when conditioned on w,,_1. This is due to the
fact that knowledge of w,,_1 carries with it information about the samples that
were selected in the previous iterations leading to w,, 1. As a result, the gradient
noise process under random reshuffling is biased. For this reason, we will need to
adjust the convergence arguments for algorithms employing random reshuffling
in comparison to uniform sampling.

A different conclusion holds for mini-batch implementations where the B > 1
samples are selected randomly without replacement. In this case, the zero mean
property for the gradient noise will continue to hold. To see this, observe first
that collecting B—samples sequentially, one at a time without replacement, is
equivalent to choosing B data points at once from the original N—long data
set. The number of possible choices for this mini-batch of data is given by the
combinatorial expression:

A (N N! A
CcR = ( ):B!( =L (18.28)

which we are denoting by L. We number the L possible choices for the mini-batch
by B1, Bs, ..., B, and each one of them can be selected with equal probability
1/L. Assuming that some random mini-batch £ is selected at iteration n, we can
write
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E (V1 P(wn-1) |wa-1) = E (; ) vaQ(wn_l;wbxhb)wn_l)

beBy

wT (U}n—l) (1829)

where the expectation in the first line is relative to the randomness in the mini-
batch selections, and step (a) uses result (18.117) from the appendix. Observe
that the mini-batches {B,} in the second line will generally contain some common
samples. Equality (a) accounts for these repetitions and rewrites the equality only
in terms of the original samples within 0 < m < N — 1 without any repetitions.
We therefore conclude that the gradient noise process continues to have zero
mean in this case.

Importance sampling
Under importance sampling, the scaling by 1/Np,, of the gradient approximation
renders the search directions unbiased since

B (Var Plw,1)[0,1) = E (7= Var Qua-s7(0). o) | w0,-1)

(i) UZZO Do <NUVU,T Q(wn—1;7(0), ho))
1 N-1
= ~ ;) Vot Q(wn—1;7(0), ho)
-Vt (wn71> (18.30)

where in step (a) we used the fact that each (v(o), hg) is selected with proba-
bility pe. The same unbiasedness result holds for the mini-batch version.

Streaming data
Under stochastic risk minimization, the data samples stream in independently of
each other. As a result, the approximate search direction continues to be unbiased
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conditioned on the prior weight iterate since now

E (V/wﬁj(wnq) |wn71) = E (VUJ Q(wn—1;7(n), hn) |wn—1)
2 Vur (EQwa—1:v(n). ha) [ wn1 )

= V,r EQ(wn—l; ’y(n), hn)
=" V., Plw,_1) (18.31)

Step (a) switches the order of the expectation and differentiation operators
which, as explained earlier, is possible in most cases of interest since the loss
Q(w; -, -) and its gradient will generally be continuous functions of w. Step (b) is
because the samples (v(n), h,,) are independent over time and therefore indepen-
dent of w,,_1 (which is a function of previous data samples). The conditioning
on w,_1 that appears in step (a) can therefore be removed in step (b). It follows
that the gradient noise has zero mean conditioned on w,_; and result (18.23)
continues to hold.

Second-Order Moment

We examine next the second-order moment of the gradient noise process under
different sampling procedures and verify that it satisfies

E (g, (wn 1) |wn 1) < BT + 07 (18.32)

2

for some constants (3, 0’3) independent of w,, 1.

Sampling with replacement

Consider first the case of an instantaneous gradient approximation where a single
sample is chosen at each iteration n. Let o denote the index of the random data
sample selected at that iteration. The squared Euclidean norm of the gradient
noise is given by

A — 2
lgn(wa-n)[* 2 || Vour Plwn-1) = Vur Plw,)|

- [P Gtntohie) - o]

DVt Qwn 1) — Vot P(w,, 1) (18.33)

we are removing the data argument (y(o),he) from Q(wj;-,-) in step (a) to
simplify the notation. Adding and subtracting the same term Vv Q(w*) gives
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g, (wn—1)]*
= [Vur Q(wn-1) = Vyr Q(w*) + V1 Q(w*) = V1 P(wy—1) |

(b)
< 2|V Q(wn—1) = Vour Q(w*) = Vyr Pwn—1)|* + 2([[Vyr Q(w) |

(e)
< 4V Qwn-1) = Vour Q(*)|* + 2|V, Q(w*) [ +
4[| Vo1 P(w*) = V1 P(wy—1) |
(18.10b) _ _
< A8 W [P+ 4% [wpa [P + 2| VT Q(w)I? (18.34)
In step (b), we applied Jensen inequality ||a+b[|? < 2||a||? +2||b||? for any vectors
(a,b), and in step (¢) we added V,rP(w*) = 0 and applied Jensen inequality
again. Conditioning on w,_; and taking expectations over the randomness in
data selection, we conclude that (18.32) holds for the following parameters:

o2 2E (vaTQ(w*;v(U),ha)IIQ)

2

N—-1
(18.24) 2 N
= N ZvaTQ(w :7(0), he) (18.35b)
o=0

If desired, the value for ﬁg can be tightened to B§ = 262 — see Prob. 18.3. It is

sufficient for our purposes to know that a bound of the form (18.32) exists; the

specific values for the parameters {63, 03} are not relevant at this stage.

For mini-batch implementations, the gradient noise process continues to satisfy
relation (18.32) albeit with the parameters ( 3, 03) scaled by B. Indeed, since the
data points {v(b), hy} are now sampled with replacement and are independent

of each other, we have

E (lgn(wn—1)* | wn-1)

S (e ORI ST Py

B—1 2
1
=E | ||5 Y Var Qin-1:7(b). hs) = Vir Plw,a)| [wams
b=0
1 B-1 2
—E || 5 > (Vor Qun-159(0) bu) = Vur Plwa-))
b=0
(@ 1 B-1 )
< Foy) E ||vwT Q(wnfh’-Y(b)v hb) - VwT P(wnfl)H (1836)
b=0

where step (a) follows from the triangle inequality of norms. Using the same
bound that would result from argument (18.34) we then get:
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A

B-—1
E (||gn(w'rb—1)H2 | wn—l) > F Z ﬁ ||717n—1||2 + U;)
b=0

E (B2 Wn—1]* + 02) (18.37)

and step (a) uses the same bound that would result from argument (18.34).

Sampling without replacement

If we repeat the same argument for the implementation with instantaneous gradi-
ent approximation, we will similarly find that the same relation (18.32) continues
to hold albeit with parameters

B2 =868° (18.38a)
02 = 2B |V Q(us5(0), hor |2+ ) (18.38b)

where the expression for 02 involves an inconvenient conditioning on w,_1. We
can remove the conditioning as follows. Let o denote the data index selected
at iteration n. We know that o is not necessarily chosen uniformly when we
condition on w,,_; due to data sampling with replacement. Let us introduce, for

the sake of argument, the conditional probabilities:
Ko 2 IP’(U - m|wn_1), K 20, > K = 1 (18.39)

That is, Ky, is the likelihood of selecting index o = m at iteration n conditioned
on knowledge of w,,—1. Then, substituting into (18.38b), we get

MZ

N—-1
mvaTQ ( )7hm)H2 <2 Z vaT Q(W*;V(m)vhmlp
m=0
(18.40)

which is independent of w,, 1. This result can be used as the expression for U;
n (18.32).

A similar conclusion holds for the mini-batch gradient approximation where
the B samples are randomly selected without replacement. To establish this re-
sult, we need to appeal to the auxiliary Lemma 18.1 from the appendix. First,
for any iterate value w,_1, we introduce the auxiliary vectors:

o VMTQ<wn,1;'y(m),hm) Vo Pwa_y), m=0,1,....N —1 (18.41)

It is clear from the definition of the empirical risk function (18.2a) that

¥ > am =0 (18.42)
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which means that the vectors {z,,} satisfy condition (18.129) required by the
lemma. At iteration n, the mini-batch implementation selects B vectors {x;} at
random without replacement. Let

o

1

gn(Wn-1) =5 D @ (18.43)
b

I
o

Then, result (18.130) in the appendix implies that

I['3<||9n(ﬂf’n—1)||2 \wn_l)

1 B(N - B) \~
= QMN;VZQ(wnl;V(m),hm) — Vot P(w, 1)
(@ 1 (N—B) \= N .
< FNE 1) 2 (Pl 209 Q). ) )
® 1 (N - DB) ~
=5 v Gell@nal®+og) (18.44)

where step (a) uses the same bound that would result from argument (18.34),
and step (b) uses (18.35a)-(18.35b). We can group the results for the mini-batch
implementations under sampling with and without replacement into a single
statement as follows:

1 ~
E (lgn(wn-0I? [wi1) < = (BT ] +02) (18.45)
where the factor 75 is chosen as:

B, when samples are selected with replacement
B N -1
N - B’

>

B

when samples are selected without replacement

(18.46)
Observe from the second line that 75 ~ B for N large enough.

Importance sampling
Under importance sampling, the same bound (18.32) holds for both cases of
instantaneous and mini-batch gradient approximations, as can be seen from the
following argument.

For the instantaneous gradient implementations we have:



658 Gradient Noise

19, (wn1)|1 (18.47)
2
é H wTP Wp— 1) vaP(wn—l)H
1 2
::HA@anTQhuw4;70wvhw-—VwaTwn—ﬂ
(a) ’
‘NmeQm%anmeﬁ
O || o VurQwn 1) — 5 Vur Q') + 11— V,r Q) ~ Ve Pl )|
Np, " Np, " N !

where step (a) removes the data arguments (y(n), h,) from V, r Q(w;-,-) for
convenience, and step (b) adds and subtracts the same quantity V,r Q(w*). We
therefore get

g, (wn—1)|]?
1 1 2
< T n—1) — 37 VwT ) — wT n—
2 | T Q1) = -V Q) = Vo Pl )|+
1 2
2L oo
=~ an wT Q(wn—l) m wTQ(w) +
1 2
4 VHJTP 'LU* 7vaP Wy — +2 wT
9. Pl) = T Pl +2 | - 0r @)
(18.100b) 16211 2.,y 1 v v « 2
||wn,1H + Han wTQ(wn71>_an wTQ(w) +
2
2 T * 18.4
HNmWU@w) (18.48)

where in step (c) we applied Jensen inequality |a + b[|*> < 2|al|?> + 2]|b||? for
any two vectors (a,b) and added V,,rP(w*) = 0. Next, we need to condition on
w,,_1 and take expectations. For that purpose, we note that

2 N-1 2 )
‘ wnl} = Z Pm—5 5 NZp 2 [Vr Q(w™;v(m), hin)||
m=0

E {2 H]lenva Q(w*

9

— ||V Q(w*; y(m), ) ||

m=0*""

(18.49)



18.3 Gradient Noise for Smooth Risks 659

while

1 1
E {4 H]Vpnva Q(wnfl) — mva Q(w*)

2
’wnfl
N-1

1 *
=4 Z me ”va Q(wn—l; V(m)v hm) - va Q(U) )”2

m=0

(as.a0b) 452 N1 1
S Dl (18.50)

m=0

Substituting into (18.48) we conclude that

L (Ilgn(111n—1)|\2 Iwn_l) < Bollwn-1l + o} (18.51)
where the parameters {32, 02} are given by
1 =1
2 _ 452
B2 =45 (1 + 52 mz::() pm> (18.52a)
2 1
02 =<5 O — [ Vur QU7 (m), ) I (18.52b)
m=0 4"

A similar bound holds with the above parameters {ﬂ;, 03} divided by B for the
mini-batch version — see Prob. 18.13.

Streaming data
Under stochastic risk minimization, the gradient noise process continues to sat-
isfy relation (18.32) as can be seen from the following sequence of inequalities:

E (/g ()|l [wn—1)

2 & (|Fur Plwn) = Tur Pl w1

— E (| Var Qwn—1:7(n), ) = Vi Plw,1) 2 [wn1)

WE (Va1 Qwnr) = Vot Plwn1)|? | w,1)

D& (|[Vur Qawn 1) = Fur Q) + Vor Q) = For Plaog )| 1)
(18.53)

In step (a) we removed the data argument (v(n),h,) from Q(w;-,-) to sim-
plify the notation, and in step (b) we added and subtracted the same quantity
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Vot Q(w?). It follows that
(Ilgn wi,1)|[* | wi-1)

(
< 2E (vaT Q Wiy — 1) VwT Q(wo) — va P('wn_1)||2 |'wn_1) =+
2E (|| Vot Q(w®)?)

(d)
< AE ([Vur Qwn-1) = Vyr Q) |* [wn-1) +2E (|Vyr Q(w)]?) +
4[| Vyr P(w®) = Vyr P(wp—1)|” +

(18.14)
<A@ ||+ 482 | @ [P + 2E [V yr Q(w) |12 (18.54)

In step (c) we applied Jensen inequality ||a+b||*> < 2||a|? +2/|b||? for any vectors
(a,b), and in step (d) we added V,rP(w®) = 0 and applied Jensen inequality
again. We conclude that relation (18.32) holds with parameters:

B2 =868° (18.55a)
02 = 2K (IVur Qs v, b)) (18.55D)

where the expectation in o2

5 is over the joint distribution of the data {~, h}.
REMARK 18.1. (Variance-reduced techniques) We will dlscover through future ex-
pressions (19.18a) and (19.26) that the constant factor o, in (18.32) is a source of
performance degradation. It will prevent the iterates wy, from converging exactly to
w*. In future Chapter 22 we will introduce the class of variance-reduced algorithms
for empirical risk minimization. These algorlthms adjust the gradient approximation in
such a way that the constant driving term, ag, will end up disappearing from the vari-
ance expression (18.32). By doing so, we Wlll be able to recover the exact convergence
of w, to w*.

REMARK 18.2. (Bound on second-order moment for gradient noise) The derivation
of the bound (18.32) relied almost exclusively on the assumption that the loss function
has §—Lipschitz gradients either in the deterministic sense (18.10b) or in the mean-
square sense (18.13b). The convergence analyses in future chapters will continue to
hold if one assumes (or imposes) from the start that the gradient noise satisfies (18.32)
for some nonnegative constants (87, 05).

NONSMOOTH RISK FUNCTIONS

We consider next the case of nonsmooth risk functions where gradient vectors
are replaced by subgradients and these are in turn approximated by using either
instantaneous or mini-batch versions, say as,

(instantaneous) : 5(w) = sg(w;~, h) (18.56a)
| B

(mini-batch) : s(w) = B so(w;(b), hp) (18.56Db)
b=0
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In this notation, s(w) denotes a subgradient construction for P(w), and s (w;~, h)
refers to a subgradient of the loss function at the same location. For example,
for the empirical risk minimization case (18.2a), a subgradient construction for
P(w) can be chosen as

—

> sqwiy(m), hn) (18.57)

=0

N—
1

s(w) = i

m

in terms of individual subgradients of the loss function parameterized by the data
points (y(m), huy,). The instantaneous approximation (18.56a) selects one subgra-
dient vector at random, while the mini-batch approximation (18.56b) selects B
subgradient vectors at random. The difference between the original subgradient
construction and its approximation is again called the gradient noise:

gw) 2 3(w) - s(w) (18.58)

The following two relations highlight the difference between the original subgra-
dient method and its stochastic version:

(subgradient method) : w,, = w1 — ps(wy—1) (18.59a)
(stochastic version) : w,, = w,_1 — uS(w,_1)

=wp_1 — ps(wp—1) — pg(wy—1) (18.59b)

Example 18.2 (Gradient noise for a nonsmooth quadratic risk) We illustrate the form
of the gradient noise process for two ¢; —regularized quadratic risks: an empirical risk
and a stochastic risk. Consider first the empirical case:

s

1

Pw) = afwllh + + > ((m) = hyw)? (18.60)

N—
m=0

Subgradient constructions for P(w) and its loss function can be chosen as
so(w;y(n), hy) = asign(w) — 2k, (y(n) — hyw) (18.61a)
g N1
s(w) = asign(w) — i mz;ohm('y(m) — hyw) (18.61Db)
with the resulting gradient noise vector given by

D b (y(m) = hpw) = 2k (y(n) = hyw) (18.62)

=0

2w

g(w) =

N-1
m

Observe that g(w) depends on the data (v(n),h,) and, hence, as explained before,
we could have written instead g,,(w) to highlight this dependency. Consider next the
stochastic risk

P(w) = allwlly + E(y —h'w)?
= a|lw|i + o3 - 27’2710 +w' Ryw (18.63)
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Subgradient constructions for P(w) and its loss function can be chosen as
s(w) = asign(w) — 2(rpy — Rpw) (18.64a)
so(w;y(n), hy) = asign(w) — 2k, (y(n) — hhw) (18.64b)
with the resulting gradient noise vector given by
g(w) = 2(rny — Rpw) — 2hy (y(n) — hyw) (18.65)
Observe again that g(w) depends on n.

We are again interested in characterizing the first and second-order moments
of the gradient noise process. For this purpose, we describe below the conditions
that are normally imposed on the risk and loss functions, P(w) and Q(w, ). The
conditions listed here are satisfied by several risk and loss functions of interest,
as illustrated in the next example and in the problems at the end of the chapter.

Empirical risks

Consider initially the case of nonsmooth empirical risks of the form (18.2a). We
will assume that the risk and loss functions satisfy the two conditions listed
below. Compared with the earlier conditions (14.28a)—(14.28b), we see that we
are now taking the loss function into consideration since its subgradients are the
ones used in the stochastic approximation implementation:

(1) (Strongly convex risk). P(w) is v—strongly convex, namely, for every wy, wq €
dom(P), there exists a subgradient s(w;) relative to w' such that

P(wy) > P(wy) + (s(w1))" (we —w1) + g||IU2—’LU1H2 (18.66a)

for some v > 0.
(2) (Affine-Lipschitz loss subgradients). The loss function Q(w, -) is convex over

w and its subgradients are affine-Lipschitz, i.e., there exist nonnegative con-
stants {0, d2} such that, independently of the data samples,

[sq (w23 7(€), he) — sg(wisy(k), hw)|| < 0wz — w1l + 02 (18.66b)
for any wy,ws € dom(Q), any indexes 0 < £,k < N — 1, and for any subgra-
dients:

Observe that condition (18.66b) is stated in terms of the particular subgradi-
ent construction sg(w;~y,w) used by the stochastic implementation and any
of the subgradients s, (w; 7, h) from the subdifferential set of Q(w;, h). For

later use, it is useful to note that condition (18.66b) implies the following
relation, which involves the squared norms as opposed to the actual norms:

IsQ(w2;v(£), he) — s (wi; (k) hie) |* < 26%|wz —wil + 263 (18.68)

This result follows from the inequality (a + b)? < 2a? + 2b2 for any (a, b).



18.4 Nonsmooth Risk Functions 663

Based on the explanation given in Example 8.6 on the subdifferential for
sums of convex functions, we characterize all subgradients for P(w) by writ-
ing

L V-l
s'(w) = ¥ Z 5o (w;y(m), hu,) (18.69)

in terms of any subdifferential sf,(w,-) for Q(w,). It readily follows from
the triangle inequality of norms that subgradient vectors for the risk func-
tion P(w) also satisfy affine-Lipschitz conditions, namely, for all w;, ws €
dom(P):

Ils(wg) — s (w)]] Ollwe — w1 || + d2 (18.70a)
lls(wz) — 8" (w1)]|> < 282 ||wo — wql|* 4 265 (18.70b)

A CIA

Example 18.3 (¢2—regularized hinge risk) We illustrate condition (18.66b) by consid-
ering the following ¢>—regularized hinge risk, written using a subscript ¢ to index the
data {v(¢), he} instead of m:

N-—1
P(w) = pllw|® + % > max {0,1-(OhTw}, w=col{wn} € R (18.71)
£=0

The corresponding loss function is given by
QUwiy(€),he) = pllw|® + max {0,1-v(Ofw} (18.72)

We know from the earlier results (8.59a) and (8.72a) how to characterize the subdif-
ferential set of Q(w,~(¢), he). Let hy = col{hem} denote the individual entries of hy.
Then, it holds that

so(w;v(£), he) = 2pw + col{Gw(g)héym (wm)} (18.73a)

where each Gg(z), for scalars (3, z), is defined by

0, Bz>1
G2 = [ped, fao1, £50 (18.73b)
[07_64]7 5'2217 ﬂ<0

Moreover, one particular subgradient construction for Q(wj;-) is given by

sQ(w;y(€), he) = 2pw — y(O)he I[y(O)hew < 1] (18.73c¢)
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Using the triangle inequality of norms we get:
lIsQ (w23 v(£), he) — s (wi; v(k), hi) |
< 2pllwz —wr| + [[yOhe i@ hFwz < 1| + [[col{ Gy, (wm) }
< 20 llwz = wnll + Iy (Ohell + [y (k) e

8

1>

< —_
< 20wz —will + | max  2]y(Oh]
25
25,
= 8||wa — wi| + & (18.74)

since I[a] is bounded by one and ||col{G., ), ,, (wm)}| is bounded by [|v(k)hx||. Ob-
serve how the factor d; arises from the non-smooth component in P(w).

Stochastic risks

For stochastic risks of the form (18.2b), we continue to assume that P(w) is
v-strongly-convex but that the loss function has subgradients that are affine-
Lipschitz in the mean-square sense:

(1’) (Strongly convex risk). P(w) is v—strongly convex, namely, for every wy, wq €
dom(P) there exists a subgradient vector s(w;) relative to w' such that

P(wy) > P(wy) + (s(w1)) (wa —w1) + g”wg—lez (18.75a)

for some v > 0.
(2’) (Mean-square affine-Lipschitz loss gradients). The loss function Q(w,-) is
convex over w and its subgradient vectors satisfy
E|sq(wa; 7, k) — sg(wisy, h)|[* < 6%[we —wi [ +65  (18.75b)

for any wy,wq € dom(Q) and for any

sg(w;y, h) € yr Q(w; v, h) (18.76)

Again, condition (18.75b) is stated in terms of the particular subgradient
construction sg(w;-,-) used by the stochastic optimization algorithm and
any of the possible subgradients sg(w;-,-) from the subdifferential set of
Q(w; -, ). Note from (18.75b) that

E||sq(w2; v, h) = sp(wi;y, h)|J?

é (52”’(1}2 — w1||2 + (5% + 2(5(52”71)2 — ’LU1H
= (0llwy — wy || + 62)° (18.77)
Now using the fact that for any scalar random variable x it holds that

(Ex)? < Ex?, we conclude that the subgradient vectors are also affine Lip-
schitz on average, namely,

E[[sq(w2; 7y, h) — sg(wisy, h)|| < dljwz — wi]| + 62 (18.78)
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Moreover, the constructions

= Esq(w;~, h) (18.79a)
E sq(w;~, h) (18.79Db)

2
g
>

correspond to subgradient vectors for the risk function P(w) and we can also
conclude that they satisfy similar affine-Lipschitz conditions:

[s(wg) — &' (w1)|| < Ollwy — wil| + b2 (18.80a)
[s(wa) — 8" (w1)|> < 6 [lwg —wi]? + 63 (18.80b)
for any wy,ws € dom(P). Expressions (18.79a)—(18.79b) are justified by

switching the order of the expectation and sub-differentiation operators to
write:

Ow P(w) = 0y (EQ(w;%h)) @ g (8w Q(w;'y,h)) (18.81)

Step (a) is possible under conditions that are generally valid for our cases of
interest — as was already explained in Lemma 16.1. In particular, the switch-
ing is possible whenever the loss function Q(w;-) is convex and bounded in
neighborhoods where the subgradients are evaluated.

Proof of (18.80a)—(18.80b): Note that

s(ws) = s"(wi)|* = [Esq(ws;y,h) — Esg(wi;, )|
< E|lsq(wz;y, h) — sq(wi;v, h)|?
(18.75b)
< 62Hw2 —w1\|2+5§
< 0%flwz — wi||* + 63 + 2682]|wz — wi |
< (O||lwa — wi]| + 82)3 (18.82)
[

For ease of reference, we collect in Table 18.2 the main relations and conditions
described so far for nonsmooth empirical and stochastic risk minimization.

GRADIENT NOISE FOR NONSMOOTH RISKS

Using the affine-Lipschitz conditions on the subgradients of the convex loss func-
tion alone, we will now derive expressions for the first and second-order mo-
ments of the gradient noise. For the instantaneous and mini-batch constructions
(18.56a)—(18.56b), the gradient noise at iteration n is given by

(instantaneous approximation)

g(wy—1) = s@(wn—1;7(n), hy) — s(wn—1) (18.83a)



Table 18.2 Main relations and conditions used for nonsmooth empirical and stochastic risk minimization problems.

quantity

_ empirical risk minimization

| stochastic risk minimization

Optimization problem

subgradient vector

Instantaneous approximation

Mini-batch approximation

Conditions on risk and loss functions

N-1
w =argmin § P@) 2 5 37 Qi) )
| Nl
s(w) = 2 sq(w;y(m), hm)
s(w) = sq(w;y(n), hn)
(v(n), hy) selected at random

B-1
~ 1

5(w) = 5 3 solws7(0) )
{v(b), hp} selected at random
(18.66a)—(18.66b)

P(w) v—strongly convex, Q(w, -) convex
sq(w; 7y, h) affine-Lipschitz

w’ = argmin

welRM

1>

P(w) = EQ(w;v,h)

s(w) = Esq(w;v, h)

®)

(w) = sq(w;y(n), hn)
¥(n), hy) streaming in

—~

B—-1

1

S(w) = sq(w;(b), hy)

B
b
{~(b), hp} streaming in

o

(18.75a)— (18.75b)

P(w) v—strongly convex, Q(w, -) convex
sq(w;~y, h) affine-Lipschitz in
mean-square sense
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for instantaneous subgradient approximations or by

(mini-batch approximation)
| Bl

g(wn_1) = B Z 5Q(wn—1;7(b), hp) — s(wn_1) (18.83b)
b=0

for mini-batch approximations, where (v(n), h,,) and {7(b), hy} denote the ran-
dom data samples used at the n—th iteration while updating w,,_1 to w,,. The
main conclusion of this section is again to show that the second-order moment of
the gradient noise is bounded in the same manner as in (18.18), i.e., as follows:

E (IIgn(fwn_l)H2 | wn—l) < B2llwn-1|* + o} (18.84)

for some nonnegative constants {5z,02} that will be independent of the error
Wp_1 = wW* — w,_1. More specifically, the derivations in the remainder of this
section are meant to establish the following conclusion, which is similar to the
statement of Lemma 18.1 for smooth risks except for the condition on the sub-
gradients of the loss function.

LEMMA 18.2. (Gradient noise under nonsmooth risks) Consider the empirical
or stochastic risk optimization problems (18.2a)—(18.2b) and assume the subgra-
dients of the convex loss function satisfy the affine-Lipschitz conditions (18.66b)
or (18.75b). The first and second-order moments of the gradient process will
satisfy:

E(g,(wn-1) |wyp-1) =0 (18.85a)
E (|lgn (wn-1)I* | wn—1) < B} | @n-l* + o (18.85b)

for some nonnegative constants {63, ag} that are independent of W, 1.

Results (18.85a)—(18.85b) hold for instantaneous or mini-batch gradient approx-
imations, regardless of whether the samples are streaming in independently of
each other, sampled uniformly with replacement, sampled without replacement,
or selected under importance sampling. Again, the only exception is that the
zero-mean property (18.85a) will not hold for the instantaneous gradient imple-
mentation when the samples are selected without replacement.

To establish properties (18.85a)—(18.85b), we proceed by examining each sam-
pling procedure separately and then show that they all lead to the same result.
We consider the zero-mean property (18.85a) first. Since the arguments are sim-
ilar to what we have done in the smooth case, we will be brief.
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First-Order Moment

We verify again, as was the case with smooth risks, that the gradient noise
process has zero mean conditioned on the previous iterate, i.e.,

E(g,(wn-1)|wp—1) = 0 (18.86)

where the expectation is over the randomness in sample selection.

Sampling with replacement

Consider first the case of empirical risk minimization where samples are selected
uniformly from the given data set. Let o denote the sample index that is selected
at iteration n with

1

P(U:m):N, me {0,1,2,...,N — 1} (18.87)
It follows that
E(Swn-1)|wa1) = E(sqwn137(0),ho) |wa 1)
1 N-1
= 2 $Q(Wn—1;v(m), hp,)
5D (wnr) (18.88)

where in the first equality we used the fact that the loss function assumes each
of the values sq(wp—1;7y(m), hy) with probability 1/N. It follows that (18.86)
holds for instantaneous subgradient approximations.

The gradient noise process continues to have zero conditional mean in the
mini-batch implementation. This is because the approximate search direction is
again unbiased:

1

E(g(wn_l)\wn_l) - E(;Z_:SQ(’wn—l;’Y(b),hb)wn_1>

b=0

1 B—1

= = Y E(sq(wa1i7(0), hs) |wn 1)
b=0

(é) E (SQ(wnfU’V(U)v hO‘) ‘ wn71>

1 N—-1
- N ~ sQ(wn—1;7(0), ho)

(5D g (wny) (18.89)

where in step (a) we used the fact that the data samples (v(b), hy) are selected
independently of each other.
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Sampling without replacement
When samples are selected at random without replacement, we obtain for the
instantaneous subgradient approximation:

E (§(wn,1) |wn,1) =F (SQ(wan(o‘), ho) | wn,l)

=

1
N SQ(wn—N'Y(m)ahm)

e

3
]
o

= s(wp—1) (18.90)

where the first line is not equal to the second line because, conditioned on w,,_1,
the sample index o cannot be selected uniformly. As a result, the gradient noise
process under random reshuffling is biased and does not have zero mean anymore.

A different conclusion holds for mini-batch implementations where the B sam-
ples in the batch are selected randomly without replacement. In this case, the
zero mean property for the gradient noise continues to hold, as can be verified
by repeating the argument that led to (18.29) in the smooth case.

Importance sampling
Under importance sampling, the instantaneous and mini-batch subgradient ap-
proximations would be scaled as follows:

1
(instantaneous) : 5(w) = Np so(w;vy(e), ha) (18.91a)
1301
ini- h): s == — ; 18.91
(mini-batch) : 5(w) B bE_O N, sq(w;y(b), hy) (18.91b)

The scalings render these search directions unbiased so that (18.23) continues to
hold. The argument is similar to the one used to establish (18.30) in the smooth
case.

Streaming data
Under stochastic risk minimization, the data samples stream in independently of

each other. As a result, the gradient noise process continues to satisfy relation
(18.86) since

a 18.79a
E (sq(wa1:7(n), hn) w1 ) @ Esqun-1iv(n). k) "2 s(w,1)

(18.92)
Step (a) is because the samples (y(n), h,,) are independent over time and, hence,

they are also independent of w,,_; (which is a function of all previous data
samples).
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Second-Order Moment

We examine next the second-order moment of the gradient noise process under
different sampling procedures and verify that it satisfies:

E (Ilg, (w1l [wn-1) < B2 + 02 (18.93)
for some constants (52, 07) independent of @, ;. The arguments are similar to

the ones used in the smooth case and, therefore, we shall be brief again.

Sampling with replacement

Consider first the case of empirical risk minimization where samples are selected
uniformly from the given dataset {y(m), h,}. It follows for instantaneous sub-
gradient approximations that:

A
g, (wa-D)I> = [s@(wn-1;7(0), ha) — s(w,_1)]||”
(a)
= |IsQwn-1) = sQ(w*) + sq(w*) — s(wn—1)|?
() )
< 2|sq(wn-1) = sQ(w*) = s(wn-1)|* + 2 [sq(w*)|?
(C) * *
< 4sQwa-1) = sQ(w)[|* + 2 [sq(w)|* +
4ls(wn—1) — 8" (w*)|?

(18.68) 21| 5, 2 2 21|, 2 2 *\ (12

< 80%||wp—1|® + 805 + 867 [[wn—1]|” + 855 + 2|[sq(w")

(18.94)

In step (a) we removed the data argument (y(o), hg) from sg(w;-) to simplify
the notation and added and subtracted sg(w*). In step (b) we applied Jensen
inequality ||a+b[|? < 2||al|?+2||b||? for any vectors (a, b), and in step (c) we added
and subtracted s'(w*) = 0. We know from property (8.47) that a subgradient
vector ' (w*) for P(w) exists that evaluates to zero at the minimizer. We conclude
that (18.93) holds with

B; = 166 (18.95a)
02 = 1652+ 2E (|lsq(w*s (o), hor) |2 | wa )
= 1683 +2E||sq(w*;7(a), ho )l
(18.87) 9 2
="1603 + Z_O s (w*;y(m), )| (18.95b)
A similar conclusion holds for the mini-batch version with the parameters (52, o7)

divided by B.
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Sampling without replacement
If we repeat the same argument leading to (18.94), we will conclude that the
same relation (18.93) holds albeit with parameters:

B2 =165 (18.96a)
02 = 1662 + 2 (||va Qw*;(0), ho || |wn,1) (18.96b)

where the expression for 03 still involves an inconvenient conditioning on w,,_1.
We can remove the conditioning as explained earlier in (18.40) to arrive at

N—-1
02 <1603 +2 Y [V Qs v(m), huml|? (18.97)
m=0

2

which is independent of w,,—1. This result can be used as the expression for o

in (18.93).

A similar conclusion holds for the mini-batch subgradient approximation where
the B samples are randomly selected without replacement. The same argument
leading to (18.45) will continue to hold and lead to

1 ~
E (llgn (wan)|* wnor) < — (8l + 03) (18.98)
where
A B, when samples are selected with replacement
= N -1
B B when samples are selected without replacement

N-B’
(18.99)
We see from the second line that 7 ~ B for N large enough.

Importance sampling
Under importance sampling, we have for implementations with instantaneous
subgradient approximations:

19, (wn—1)]” (18.100)

A~
2 [8(wn1) = s(wn)|?
2

- H s w15 7(n), h) — s(wa)

Npn
o 1 2
o se(wa1) = s(w,)
1 1 2
2 Fsaten) — gmsalw) + f—sa(w') — stw.)|

where step (a) removes the data arguments (v(n), h,) from sg(w;-, -) for conve-
nience, and step (b) adds and subtracts the same quantity sg(w*). We therefore
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have
lg(wn—1)|?

1 1 1 2
<2 Han SQ(wn_l) — ansQ(w*) — s(wn_l) +2 Han SQ(w*)
°) 1 1 2 1 2
=1 Han sQ(wn-1) = Npn se(wh)| +2 Han sq(w’)

% 2
48" (w*) = s(wn-1)||
(18.10b)

2
< 45 @ P +4 H

2

+2H

1
No. sQ(w”)
(18.101)

1 *
an SQ(wnfl) - an SQ(w )

where in step (c) we applied Jensen inequality ||a + b < 2||a||* + 2||b||* for any
two vectors (a, b), and used the fact that there exists a subgradient for P(w) such
that s’(w*) = 0. Next, we need to condition on w,,_; and take expectations. For
that purpose, we note that

1
E<2 so(w*
{ Han ol

2
\wnl}—NQZnsQ Y(m), )|

m=0 Pm
(18.102)
and
4 *\ (|2 8 - 2 2
E | gz Isa(wn) = so(w)P|wn < 5 37 (@] +63)
" m=0 1"
(18.103)
Substituting into (18.101) we conclude that
E(Hgn(wnfl)llﬂwnfl) < Byll@n-1* +of (18.104)
where the parameters {597 g} are given by
) 1
2 — 482 (1 (18.105a)
m=0 Pm
N—
Z (||3Q *:y(m), hm)|\2+45§> (18.105b)

A similar bound holds with the above parameters {53, 03} divided by B for the
mini-batch version — see Prob. 18.13.

Streaming data
Under stochastic risk minimization, the data samples stream in independently of
each other. As a result, the gradient noise process continues to satisfy relation
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(18.93) as can be seen from the following sequence of inequalities:
E (||g(wn,1)||2 |'wn71)
A
=E (HSQ(wnfl;’Y(n)v hn) - S<wn71)”2 ‘ wnfl)

DE (Jsgwn1) — sow?) + sq(w?) — s(wn1)|* |wn_1)
(b)
< 2E (lsq(wa1) — sQ() — s(wn1)| | wn-1) + 2B [sqw?)]

(¢
<AE (IsQ(wn-1) = sq(w®)|* [wn-1) + 2E||sq(w’)]
4|s(wn-1) = &' (w®)||?
(18£5b) 462”,&}' 2 2 2 2 2 o, 2
= n1l[” + 405 + 467 [wn 1|7 + 405 + 2K [[sq (w7, h)]|

(18.106)

In step (a) we removed the argument (vy(n), h,) from sg(w;-,-) to simplify the
notation and added and subtracted sg(w®). In step (b) we applied Jensen in-
equality |la + b||? < 2||a]|?> + 2||b||? for any vectors (a,b), and in step (c) we
added and subtracted s'(w°) = 0. We know from property (8.47) that a subgra-
dient vector s'(w?) exists for P(w) that evaluates to zero at the minimizer. We
conclude that a relation of the form (18.93) continues to hold with

B2 =868° (18.107a)
o2 =803 +2E (|[sq(w’~, h)|?) (18.107b)

2

5 is over the joint distribution of the data (v, h).

where the expectation in o

COMMENTARIES AND DISCUSSION

Moments of gradient noise. We established in the body of the chapter that under
certain d—Lipschitz or affine-Lipschitz conditions on the gradients or subgradients of
the loss function, the second-order moment of the gradient noise process in stochastic
implementations satisfies the bound

E (g, (wn-1)[* [w0n-1) < B2Tn-1]* + o (18.108)

for some parameters (32, 02) that are independent of the error vector, W, —1. It is verified
in the problems that this bound holds for many cases of interest involving risks that
arise frequently in inference and learning problems with and without regularization.
The bound (18.108) is similar to conditions used earlier in the optimization literature.
In Polyak (1987), the term involving ||@,—1]| is termed the “relative noise component,”
while the term involving ag is termed the “absolute noise component.” In Polyak and
Tsypkin (1973) and Bertsekas and Tsitsiklis (2000), it is assumed instead that the
gradient noise satisfies a condition of the type:

E (g, (wn-)I” [wa-1) < a1+ [Vor Plwa-s)]?) (18.100)

for some positive constant . One main difference is that (18.109) is introduced as
an assumption in these works, whereas we established the validity of (18.108) in the
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chapter. We can verify that, for strongly-convex risks, conditions (18.108) and (18.109)
are equivalent. One direction follows from the earlier result (10.20) for d—smooth risks
that

1 N 5~
LIV P@)IP < Pw) — P*) < 2 a? (15.110)
where w = w* — w. Substituting into the right-hand side of (18.109) we get
E (llg,(wn-1)I [wn-1) < a+ad® @1’ (18.111)

The other direction follows similarly from property (8.29) for v—strongly convex func-
tions, namely,

vV, . 1
5le|2 < P(w) = P(w’) < o[V P(w)|? (18.112)

Absolute and relative noise terms. The presence of both relative and absolute terms in
the bound (18.108) is necessary in most cases of interest — see, e.g., Chen and Sayed
(2012a) and Sayed (2014a). An example to this effect is treated in Prob. 18.9. Consider
the quadratic stochastic risk optimization problem:

w® = argmin {IE (v— hTw)z} (18.113)
welRM

Assume the streaming data {v(n),h,} arises from a linear regression model of the
form ~(n) = hlw® + v(n), for some model w® € IRM, and where h,, and v(n) are
zero-mean uncorrelated processes. Let Ry, = Eh,h) > 0, 7y = Eh,v(n), and o2 =
Ewv?(n). Moreover, v(n) is a white-noise process that is independent of all other random
variables. It is shown in the problem that w® = w®, which means that the solution to the
optimization problem is able to recover the underlying model w®. A stochastic gradient
algorithm with instantaneous gradient approximation can then be used to estimate w*®
and it is verified in the same problem that the gradient noise process in this case will
satisfy

E (Jlg(wn-1)*wn-1) < 82@n-1]* + o (18.114)

where
or =40, Tr(Ry), B2 =4E||Ry, — hoh, | (18.115)

We observe that even in this case, dealing with a quadratic risk function, the upper
bound includes both relative and absolute noise terms.

Affine Lipschitz conditions. For nonsmooth risks, the affine-Lipschitz conditions (18.66b)—
(18.75b) are from the work by Ying and Sayed (2018). It is customary in the literature
to use a more restrictive condition that assumes the subgradient vectors sq(w,-) are
uniformly bounded either in the absolute sense or in the mean-square sense depend-
ing on whether one is dealing with empirical or stochastic minimization problems —
see, e.g., Bertsekas (1999), Nemirovski et al. (2009), Nedic and Ozdaglar (2009), Ram,
Nedic, and Veeravalli (2010), Srivastava and Nedic (2011), and Agarwal et al. (2012).
That is, in these works, it is generally imposed that

[s@w;v, W) <G or E|sqw;y,h)|* <G (18.116)

for some constant G > 0 and for all subgradients in the subdifferential set of Q(w,-).
We know from the result of Prob. 14.3 that the bounded subgradient assumption,
Is@(w;~y, h-)|| < G, is in conflict with the v—strong convexity assumption on P(w); the
latter condition implies that the subgradient norm cannot be bounded. One common
way to circumvent the difficulty with the bounded requirement on the subgradients
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is to restrict the domain of P(w) to some bounded convex set, say, w € W, in order
to bound its subgradient vectors, and then employ a projection-based subgradient im-
plementation. This approach can still face challenges. First, projections onto W may
not be straightforward to perform unless the set W is simple enough and, second, the
bound G that results on the subgradient vectors by limiting w to W can be loose. In our
presentation, we established and adopted the more relaxed affine-Lipschitz conditions
(18.66b) or (18.75Db).

PROBLEMS

18.1 Consider the ¢;—regularized quadratic and logistic losses defined by

pllwll®> + (v —hTw)?, (quadratic)
Quwiy,h) = pllwl|* + In (1 + e_’yhT“’) . (logistic)

Verify that these losses satisfy the mean-square d—Lipschitz condition (18.13b) for
zero-mean random variables {v, h}.

18.2  Verify that the mini-batch gradient approximation (18.20) is unbiased under
importance sampling conditioned on wp_1.

18.3  If desired, we can tighten the bound in (18.32) to 82 = 26° as follows. Use the

fact that, for any scalar random variable =, we have E (x — Ex)? < Ex? to show that
E (g, (wn-)I* [wn-1) < E (V.1 Qwn-1)|* [ wn-1)

where we are not showing the data arguments of Q(w, -) for convenience. Conclude that
E (|lg,, (wn-1)||* | wn-1) < 26%||@n1]|* + o3.

18.4 Repeat the argument that led to the second-order moment bound (18.32) for
both cases of empirical and stochastic risks and establish that the fourth-order moment
of the gradient noise process satisfies a similar relation, namely,

E (g, (wn-)* |wn-1) < Bjall@n|* + s

for some nonnegative constants (844, 0g4). Show further that if the above bound on the
fourth-order moment of the gradient noise process holds, then it automatically implies
that the following bound on the second-order moment also holds:

E (Ilgu (a-1)II” [wa-1) < BllGn-s]? + 0}

where 82 = (Ba4)"/? and 02 = (0as)"/2.

18.5 Assume the bound given in Prob. 18.4 holds for the fourth-order moment of
the gradient noise process generated by a stochastic gradient algorithm with instan-
taneous gradient approximation. Consider instead a mini-batch implementation for
smooth risks. Show that the gradient noise satisfies

C ~
E (g, (wn-ll" [war) < 22 (Ballna]* +05s)

where Cp = 3 — % < 3. Conclude that a B?—fold decrease occurs in the mean-fourth

moment of the gradient noise.

18.6 Consider a stochastic gradient implementation with instantaneous gradient ap-
proximation using data sampling without replacement. Show that & 27]:’:_01 g, (w) =0.
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18.7 Consider a stochastic gradient implementation with instantaneous gradient ap-
proximation. Assume multiple epochs are run using random reshuffling at the start of
each epoch. Show that the conditional mean of the gradient noise at the beginning of
every k—th epoch satisfies E (g, (w*,)|w*,) = 0.

18.8 Let y(n) be a streaming sequence of binary random variables assuming the
values +1, and let h, € RM be a streaming sequence of real random vectors with
Ry, = Eh,h] > 0. Assume the random processes {v(n),h,} are jointly wide-sense
stationary and zero mean. Consider the regularized logistic risk function:

Pw) = Bjjw|® + Eln (14+¢7)

(a) Write down the expression for the gradient noise process, g,,(wn—1), that would
result from using a constant step-size stochastic gradient algorithm with instan-
taneous gradient approximation.

(b)  Verify from first principles that this noise process satisfies

E (g, (wn-1)|wn-1)=0
E (g, (wn-1)[* [wn-1) < B |@n-1]* + o

for some nonnegative constants /6'3 and ag.
(¢c)  Verify also that the fourth-order moment of the gradient noise process satisfies

4 4~ 4 4
E (llgn(wn-)lI" [wn-1) < Bga [@n-1l" + oga

for some nonnegative constants 534 and 034. What conditions on the moments of
the data are needed to ensure this result?

(d) Define Ry n(w) =E (g,,(w)g, (w) | wn_1), which denotes the conditional second-
order moment of the gradient noise process. Show that

Ve Pw® + Aw) = V5, P(w”)|| < k1 [|Aw|
[Rg,n(w” + Aw) = Ry n(w?)[| < k2 || Aw]|®

for small perturbations ||Aw]|| < e and for some constants k1 > 0, k2 > 0, and
positive exponent a. What conditions on the moments of the data are needed to
ensure these results?

18.9 Consider the quadratic stochastic risk optimization problem:

w° = argmin E (v — h'w)?
welRM

Assume the streaming data {«(n), h,} arise from a linear regression model of the form
~(n) = hfw® + v(n), for some model parameter w® € IR and where h, and v,
are zero-mean uncorrelated processes. Let Ry = Ehnh! > 0, Thy = Ehny(n), and
o2 = Ev?(n). Moreover, v(n) is a white-noise process that is independent of all other
random variables.
(a) Show that w® = w®. That is, show that the optimal solution w? is able to recover

the underlying model w*.
(b)  Verify that the gradient noise is g,,(wn—1) = 2(Rn — hnhh)Wn—1 — 2h,v(n).
(¢) Show that E(g,,(wn-1) | wn-1) =0.
(d) Show that E (||g(wn—1)||*|wn-1) < B:||Wn-1]]> + o where o, = 4o, Tr(R) and

82 = 4E | Ry — hh 7).
18.10 Consider the ¢; —regularized quadratic and logistic losses defined by

n allw|li + (v —hTw)?, (quadratic)

Qwiy, h) = allw|l; + In (1 —l—(f’yhT“’)7 (logistic)

Verify that these losses satisfy the mean-square affine-Lipschitz condition (18.75b) for
some (4, d2). Remark. For a related discussion, see Ying and Sayed (2018).
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18.11 Consider the ¢2—regularized hinge loss
Qw;v,h) = pllwl* + max{0,1 - yh w}

Verify that this loss satisfies the mean-square affine-Lipschitz condition (18.75b) for
some (0, d2). Remark. For a related discussion, see Ying and Sayed (2018).

18.12 Consider the quadratic, Perceptron, and hinge losses defined by

. | qw) + (y(n) — kT w)?, (quadratic)
Q(w;y(m), hm) —{ q(w) + max{0, —y(m)h],w}, (Perceptron)

Show that these losses satisfy the affine Lipschitz condition (18.66b) under ¢1, £, or
elastic-net regularization. Determine for each case the respective values for {9, d2}.
18.13 Refer to the bound (18.104) derived for a stochastic gradient implementation
under importance sampling. Repeat the derivation assuming instead a mini-batch im-
plementation where the B samples are selected with replacement. Show that the same
bound holds with {32, 02} divided by B.

18.14 Refer to the statement of Lemma 18.1 and let 5 be any nonnegative constant.
Verify that

B
b
E HZ B o ;)
j=1

2 1 B—-1 2 B—-1 ; 2 N-—1 )
- <Nj206 -(£7) ) <X o

AVERAGING OVER MINI-BATCHES

In this appendix, we establish the validity of the third step in the argument leading to
conclusion (18.29). To do so, we need to validate the equality:

> <; >V Q(UJ;’Y(b)ahb)) = C%:l mZ_OVwT Q(w;y(m),hm)  (18.117)

(=1 beB,

where Cy 1 is the combinatorial coefficient for choosing B — 1 data points out of N —1
total samples. We simplify the notation and denote the data point (y(m), hm) by the
letter x,,,. We also introduce the symbols

q(w;zm) £ Vo Q(w;zm) (18.118a)
. 1 1
¢ (w) = B Z Vo1 Qw;zp) = B Z q(w; zp) (18.118b)
beBy bEB,

so that we are interested in establishing the identity:

CB—I N-1

dod"(w) = =Y a(wsan) (18.119)
=1 m=0

Consider first a few illustrative examples. Assume there are N = 3 data samples
To,x1, and x2 and that the mini-batch size is B = 2. Then, there are L = 3 candidate
mini-batches {B1, B, B3} and, for this case,

¢ (w) = %(q(w; o) + q(w; xl)) (18.120a)
¢ (w) = %(q(w; z0) + q(w; 132)) (18.120b)
¢ (w) = %(q(w;xl) + q(w;xz)) (18.120c)
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As a result, it holds that

L N-1
qu"' (w) = q(w; zo) + g(w; z1) + g(w; z2) Z q(w; zm) (18.121)
=1 m=0

which satisfies (18.119). Assume next that there are N = 4 data samples o, 1, T2 and
x3 with the size of the mini-bath still at B = 2. Then, there are L = CZ = 6 candidate
mini-batches with:

¢ (w) = %(q(w z0) + q(w; 21 ) (18.122a)
q"2 (w) = %(q(w z0) + q(w; T2 ) (18.122b)
" (w) = %(q(w z0) + q(w; 3 ) (18.122c)
g™ (w) = %(q(w 1) + q(w; 2 ) (18.122d)
" (w) = %(q(w;xl ) + a(w; @) (18.122¢)
¢ (w) = %(q(w z2) + q(w; 3 ) (18.122f)
As a result, it holds that

L N-1

que(w) %(311(10 x0) + 3q(w; 1) + 3q(w; x2) + 3q(w; x3)) g q(w; zm)

. " (18.123)

which again satisfies (18.119). In the third example, we assume there are N = 4 data
samples xo, 1, T2, and xs and increase the mini-batch size to B = 3. Then, there are
L = C} = 4 candidate mini-batches with:

1
"t (w) = 3 (q(w; zo) + q(w; 1) + g(w; x2)> (18.124a)
1
2 (w) = 3 (q(w; zo) + q(w; 1) + q(w; xg)) (18.124b)
Bs _ 1 . . .
q 3 (w)= 3 (q(w7 xo) + q(w; x2) + q(w; 1173)) (18.124c)
1
" (w) = 3 (q(w; z1) + q(w; x2) + q(w; .’173)) (18.124d)
It follows that the following result holds, which satisfies (18.119):
L 1 N-1
Zqﬁl (w) = 3 (3q(w Zo) + 3q(w; z1) + 3¢(w; z2) + 3q(w; x3 ) q(w; xm)
(=1 m=0
(18.125)

Let us consider next the general scenario with IV data samples and mini-batches of
size B. Then, there are

(18.126)
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candidate batches. We denote these batches by B1, Bz, -+, Br. It then holds that
L L 1
3 _ .
Yo w) =) | 5 2 a(wim) (18.127a)
=1 (=1 bEB,
1 LB
S SN
=1 ¢=1
1

=5 (ocoq(w; xo) + a1q(w; x1) + - - + an—19(w; mN—l))
where the {an,} are integers; each «y, counts how many times the term g¢(w;z.m,)
appears in (18.127a). A critical observation here is that a., is equal to the number of
mini-batches that involve the data sample x,,, as is evident from the previous examples.
Thus, suppose ., is already selected. Then, the number of mini-batches that will
contain ,, can be determined by counting in how many ways B — 1 data samples (that
exclude z,,) can be selected from the remaining N — 1 data samples. This number is
given by CE~1. That is,

(N - 1)!

BoD B (18.128)

B-1
Qg ="+ = QN-1 :CN71 =

from which we conclude that (18.117) holds.

AUXILIARY VARIANCE RESULT

In this appendix we establish the following result.

LeEMMA 18.1. (Variance expression) Consider N vectors {xo,x1,...,Tn—1} satisfying

N D=0 (18.129)

Assume we sample B of the vectors without replacement and obtain the random sequence
{xon), o), -, o) }. Then, it holds that:

B 3 B(N — B) N-1
B> eo0| = Faop X ol (18.130
j=1 n=0

Proof: The proof employs mathematical induction and follows the derivation from Ying
et al. (2018). We introduce the notation:

2

B
f(B) 2 EHZmam (18.131)

and note that for any single sample selected at random from the collection of N samples:

N-1
1 A

n=0

where we are using the notation var(z) to refer to the average squared value of the



680 Gradient Noise

samples. It follows that (18.130) holds for B = 1. Next we assume result (18.130) holds
up to B and establish that it also holds at B + 1. Indeed, note that, by definition,

B+1
F(B+1) EHZ%Q)

2

=E HZ To(j) T To(B+1)
j=1

B
.
+E|lzomin )’ +2E (Z xO’(J’)) Zo(B+1)

Jj=1

B
thﬂj)
j=1

B T
= f(B) 4 var(z) + 2 (mej)) To(B41) (18.133)
j=1
where we used
(18.132
Ellzeomenl? P2 var(z) (18.134)

We introduce the notation o (1: B) to denote the collection of sample indexes selected
during steps 1 through B. To evaluate the last cross term in (18.133), we exploit the
conditional mean property Ea = E (E (a|b)), for any two random variables a and b, to
write:

B T
E (Z xa(j)) To(B+1)
j=1

B T
=Eoun) |Eomt1) (2350(1)) To(B+1)

o(l:B)

B T

@) 1

=Eoqu:p (Zwau)) Np 2
Jj=1 j

J'¢0(1:B)
1 N-1 B
= N_B Ea(l :B) <Z$J(]) Tjr — ZIO'(J")
/=0 i'=1
T

B
®
= _N prows) [ Zxam Z Lo (j')
B
= *N (1:B) (Z zo )l )

=1

B

1 T
~v—gloan 2| X sewreu

J=1 \J'=1,5'#j
B B
(18.132) B 1
= —N — Bvar(m) — N — ]Eg(l :B) Z V _12: )xo.(J )

Jj=1

(18.135)



18.B Auxiliary Variance Result 681

where in step (a) we used the fact that

1
E (2o |o(l:B) = % g; o (18.136)
J :

since the expectation is over the distribution of 2o (1), and in step (b) we used the
condition

> = (18.137)

We continue with (18.135). Without loss of generality, we assume j < j' in the following
argument. If j > j', exchanging the places of zg(;) and zg(;/) leads to the same
conclusion:

T T
Eows) (Jfamxmm) = Eoumeou (J?a(j)xo(j'))

= Eoy {frzTrm (E o lzeyn | "(j)]) }

N-—-1
1
T
= Ecr(j) IO’(]) N_1 Z Tn
J'#j

N—-1
1
.
= Eoy{roum | y 7 > wp—zo)
J=1

(18.137) 1 2
= ~y—iBowlzewl

1
= “N= 1var(x) (18.138)

Substituting (18.138) into (18.135), we obtain:

B T
E (;xgm) To(B41) = _NB, 1var(:v) (18.139)
Combining (18.133), (18.134), and (18.139), we get:

f(B+1) = f(B) + var(z) —
@ B(N - B)
N -1

_ ((B U B 1)) var(z) (18.140)

2
N = 1var(a:)

var(z) + var(z) — sz lvar(x)

where in step (a) we used the induction assumption on f(B) and form (18.130). The
same form turns out to be valid for f(B + 1) and we conclude that (18.130) is valid.
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