
16 STOCHASTIC OPTIMIZATION

We examined several types of algorithms in the last chapters including gradi-
ent descent, coordinate descent, subgradient, proximal gradient, projection gra-
dient, and mirror descent algorithms. We applied the methods to the solution of
general convex optimization problems of the form:

w? = argmin
w∈IRM

P (w) (16.1)

with and without constraints on w, and for both smooth and nonsmooth risks.
In this chapter, we are going to exploit the structure of P (w) and the fact that it
may correspond to an empirical or stochastic risk, in which case problem (16.1)
takes either form:

w?
∆
= argmin

w∈IRM

{
P (w)

∆
=

1

N

N−1∑

m=0

Q(w; γ(m), hm)

}
(16.2a)

wo
∆
= argmin

w∈IRM

{
P (w)

∆
= EQ(w;γ,h)

}
(16.2b)

where Q(w; ·, ·) is some convex loss function, γ(m) ∈ IR are target signals, and
hm ∈ IRM are observed vectors (also called feature vectors). The expectation in
the second line is over the joint distribution of the data {γ,h}. The exposition
will address two main challenges:

(a) (Amount of data). The size N of the dataset in empirical risk minimization
problems can be large, which leads to a serious computational burden on the
optimization methods devised so far in our treatment.

(b) (Unknown statistics). The joint pdf of {γ,h} for stochastic risks is generally
unknown and, therefore, the risk P (w) is unavailable. As a result, it is not
possible to evaluate gradients or subgradients of P (w) and many of the
methods devised in the previous chapters will not be applicable.

These two issues are recurrent in the context of inference and learning problems.
We will provide ways to alleviate their effect by appealing to stochastic approx-
imation. Under this approach, and independent of whether we are dealing with
empirical or stochastic risks, the gradient or subgradient vectors of P (w) will
be approximated from a small amount of data samples, using instantaneous or
mini-batch calculations. And the (sub)gradient estimates will then be used to
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drive the updates of the weight iterates. Some degradation in performance will
ensue from the gradient approximations, but it is generally tolerable. The result-
ing stochastic approximation algorithms form the backbone of most data-driven
inference and learning methods: they do not require knowledge of the underly-
ing signal statistics, and do not need to process the entire dataset repeatedly at
every iteration.

16.1 STOCHASTIC GRADIENT ALGORITHM

We start our treatment by considering the gradient-descent method where the
risk function is smooth in order to illustrate the main steps of the stochastic
approximation method. Recall that we use the qualification “smooth” to refer to
risks that are at least first-order differentiable everywhere.

Applying the gradient-descent method to the solution of either problem (16.2a)
or (16.2b) leads to update relations of the form:

(empirical risk) wn = wn−1 − µ×
(

1

N

N−1∑

m=0

∇wT Q(wn−1; γ(m), hm)

)
(16.3a)

(stochastic risk) wn = wn−1 − µ ×
(
E ∇wT Q(wn−1,γ,h)

)
(16.3b)

where in the second line we exchanged the order of the differentiation and ex-
pectation operators, i.e., we used

∇wT P (w)
∆
= ∇wT EQ(w;γ,h)

(a)
= E∇wT Q(w;γ,h) (16.4)

Example 16.1 (Switching gradient and expectation operators) We will often encounter
situations that require switching gradient and expectation operators, as already seen
in (16.4). We explain in Appendix 16.A on the dominated convergence theorem that
the switching is possible under some mild conditions that are generally valid for our
cases of interest. For instance, the switching will be possible when the loss function
Q(w; ·) and its gradient are continuous functions of w. The following example considers
a situation where we can verify the validity of the switching operation directly from
first principles. Consider the quadratic loss:

Q(w;γ,h) = (γ − hTw)2, γ ∈ IR, h ∈ IRM (16.5a)

∇wT Q(w;γ,h) = −2h(γ − hTw) (16.5b)

and assume (γ,h) have zero means with second-order moments Eγ2 = σ2
γ , Ehγ = rhγ ,

and EhhT = Rh. In this case, direct calculations show that

EQ(w;γ,h) = σ2
γ − 2(rhγ)Tw + 2wTRhw (16.6a)

∇wT EQ(w;γ,h) = −2rhγ + 2Rhw (16.6b)

E∇wTQ(w;γ,h)
(16.5b)

= −2rhγ + 2Rhw (16.6c)

from which we conclude, by comparing the last two lines, that the switching operation
is justified.
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Returning to the gradient-descent recursions (16.3a)–(16.3b), we observe first
that implementation (16.3a) in the empirical case employs the entire dataset
{γ(m), hm} at every iteration n. This means that the data needs to be available
beforehand, prior to running the algorithm. This also means that this partic-
ular implementation cannot be used in streaming scenarios where data pairs
{γ(n), hn} arrive sequentially, one pair at every iteration n. Moreover, the same
dataset is used repeatedly by the algorithm, from one iteration to the other, until
sufficient convergence is attained. The data is needed to compute the gradient
of P (w) at wn−1, and this calculation can be costly for large N .

For implementation (16.3b) in the stochastic case, the situation is different
but related. The main problem here is that the gradient of P (w) is not known
because the statistical distribution of the data {γ,h} is unavailable and, hence,
the risk P (w) itself is not known. Even if the joint distribution of the data
were known, evaluation of P (w) and its gradient in closed form can still be
difficult. Therefore, this second implementation suffers from the unavailability
of statistical information. And even if this information is available, calculations
can still be analytically intractable.

16.1.1 Stochastic Approximation

Stochastic approximation helps address these challenges for both cases of em-
pirical and stochastic risks. Interestingly, the method will lead to the same im-
plementation for both types of risks (empirical or stochastic). We motivate the
approach by treating both risks separately initially for the benefit of the reader,
until it becomes clear that one can proceed thereafter by using a unified presen-
tation.

Empirical risks
First, in the empirical case (16.2a), the true gradient vector is given by

∇wT P (w) =
1

N

N−1∑

m=0

∇wT Q(w; γ(m), hm) (16.7)

The gradient in this case is known but costly to compute and involves the entire
dataset. Two popular ways to approximate it are as follows:

(a) We can select one data pair (γ(n),hn) at random from the N−size dataset
and use it to approximate the true gradient by the expression:

(instantaneous approximation)

∇̂wT P (w) = ∇wT Q(w;γ(n),hn) (16.8)

In other words, we select a single term from the right-hand side of (16.7) to
approximate ∇wT P (w). There are many ways by which the data sample can
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be selected from the dataset (e.g., by sampling with or without replacement).
We will discuss sampling strategies in the sequel.

(b) More generally, we can select more than one data pair at random, say, a
mini-batch of size B, and use them to approximate the true gradient by
means of a sample average:

(mini-batch approximation)

∇̂wT P (w) =
1

B

B−1∑

b=0

∇wT Q(w;γ(b),hb) (16.9)

Again, there are different ways by which the samples in the mini-batch can
be selected from the given dataset. And, the value ofB is usually a power of 2.

Stochastic risks
For the case of stochastic risks in (16.2b), the situation is different but related.
The true gradient vector of the risk function now has the form:

∇wTP (w) = E ∇wT Q(w;γ, h) (16.10)

The main difficulty is that this gradient is generally unknown because the expec-
tation on the right-hand side cannot be computed either because the statistical
distribution of the data is unavailable or because the computation is analytically
intractable. Stochastic approximation provides one useful way out:

(a’) We assume we can sample (or observe) one data pair (γ(n),hn) from the
underlying joint distribution for {γ,h}, and use this data sample to approx-
imate the true gradient by the expression:

(instantaneous approximation)

∇̂wT P (w) = ∇wT Q(w;γ(n),hn) (16.11)

Comparing with (16.10), we observe that we are effectively dropping the
expectation operator E altogether and evaluating the gradient of the loss at
one realization for the data. We say that we are replacing the expectation
E ∇wT Q(w;γ, h) by the instantaneous approximation ∇wT Q(w;γ(n),hn).
The resulting approximation (16.11) has the same form as in the empirical
case, shown in (16.8).

(b’) We can alternatively sample (or observe) more than one data pair from the
underlying joint distribution for {γ,h}, say, a mini-batch of size B, and use
the samples to compute:

(mini-batch approximation)

∇̂wT P (w) =
1

B

B−1∑

b=0

∇wT Q(w;γ(b),hb) (16.12)
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Again, this expression has the same form as the approximation (16.9) used
in the empirical case — compare with (16.9).

Comparison
The gradient approximations in the empirical and stochastic risk cases have
the same form, whether a single data point is used or a mini-batch of data
samples. The difference between the constructions lies in their interpretation. In
the empirical case, the data samples are extracted from the already given dataset,
whereas in the stochastic case the data samples stream in and correspond to
realizations from the underlying distribution for {γ,h}. Either way, for empirical
or stochastic risks, the resulting stochastic gradient algorithm (often denoted by
the letters SGA) takes the following form for instantaneous approximations:

(stochastic gradient algorithm, SGA)

for every iteration n ≥ 0:
select or receive a random data pair (γ(n),hn)

update wn = wn−1 − µ∇wT Q(wn−1;γ(n),hn)

end

(16.13a)

or, in the mini-batch case,

(mini-batch stochastic gradient algorithm, mini-SGA)

for every iteration n ≥ 0:
select or receive B random data pairs (γ(b),hb)

update wn = wn−1 − µ×
(

1

B

B−1∑

b=0

∇wT Q(wn−1;γ(b),hb)

)

end

(16.13b)

Obviously, the first implementation (16.13a) is a special case of the mini-batch
algorithm when B = 1. Note that in these listings, we are denoting the samples
{γ(b),hb} as well as the iterates {wn−1,wn} in boldface. This is because they are
now random variables. Indeed, assume we run either algorithm for N iterations
and obtain the sequence of realizations {w0, w1, w2, . . . , wN−1}. If we re-run the
same algorithm again, and even if we start from the same initial condition w−1,

the sequence of realizations that will result for the iterates {wn} will generally
be different from the previous run. This is because the samples {γ(b),hb} are
selected at random in both runs. However, as the analysis will reveal, all the
random trajectories for {wn} will continue to converge close enough to w? in
some meaningful sense.

We will refer to algorithms that employ sample-based approximations for the
true gradients (or subgradients) as stochastic optimization methods. We will also
refer to these methods as online learning algorithms or simply online algorithms
because they respond to streaming data.
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16.1.2 Convergence Questions

The randomness in (16.13a) or (16.13b) raises several interesting questions. For
example, we established earlier in Theorem 12.1 that the gradient-descent im-
plementation (16.3a) in the empirical case generates iterates wn that converge
at some exponential rate λn to the true minimizer w? of P (w). Now, however,
the true gradient vector of P (w) is replaced by an approximation based on a ran-
domly selected data point (or on a mini-batch of randomly selected data points).
Some loss in performance is expected to occur due to the gradient approxima-
tion. Specifically, the sequence of iterates wn (and the corresponding risk values
P (wn)) need not converge any longer to the exact minimizer w? (and the corre-
sponding minimum value P (w?)). Even the convergence question becomes more
subtle because we are not dealing anymore with a deterministic sequence of it-
erates {wn} converging towards a limit point w?. Instead, we are now dealing
with a random sequence {wn}. Each run of the stochastic algorithm generates a
trajectory for this random process, and these trajectories will generally be dif-
ferent over different runs. A well-designed stochastic algorithm should be able
to ensure that these trajectories will approach w? in some useful probabilistic
sense. Using the random error vector:

w̃n
∆
= w? −wn (16.14)

we will examine in future chapters convergence questions such as the following:




does E‖w̃n‖2 approach zero? (mean-square-error convergence)

does lim
n→∞

P(‖w̃n‖2 > ε) = 0? (convergence in probability)

does P
(

lim
n→∞

‖w̃n‖2 = 0
)

= 1? (almost sure convergence)

(16.15)
We will often examine the limiting value of the mean-square-error (also called
mean-square deviation or MSD):

lim sup
n→∞

E‖w̃n‖2 (16.16)

from which we will be able to comment on the behavior of the algorithms in prob-
ability. This is because mean-square-error convergence implies convergence in
probability in view of Markov inequality (recall the discussion in Appendix 3.A):

P
(
‖w̃n‖2 ≥ ε

)
≤ E‖w̃n‖2/ε, for any ε > 0 (16.17)

The convergence analysis of stochastic optimization methods is demanding due
to the degradation that is introduced by the stochastic gradient (or subgradi-
ent) approximations. Nevertheless, the conclusions will be reassuring in that the
methods will be shown to perform well for small enough step-sizes.
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16.1.3 Sample Selection

In stochastic risk minimization, the samples (γ(n), hn) stream in and the stochas-
tic gradient algorithm or its mini-batch version respond to them accordingly.
However, in empirical risk minimization, when a collection of N data samples
{γ(m), hm} is already available, it is necessary to devise strategies to sample
from this dataset. There are several ways by which the random samples can be
selected.

For generality, we let σ denote a random integer index from within the range
0 ≤ σ ≤ N − 1. The value of σ determines the data pair that is used by the
algorithm at iteration n, namely, (γ(σ),hσ). Clearly, the value of σ varies with
the iteration index n, which means that, in principle, we should be writing σ(n)

. We lighten the notation and write σ. Using this variable, we rewrite (16.13a)
more explicitly in the equivalent form:

(stochastic gradient algorithm, SGA)

for every iteration n ≥ 0:
select a random index σ from within 0 ≤ σ ≤ N − 1

consider the random data pair (γ(σ),hσ)

update wn = wn−1 − µ∇wT Q(wn−1;γ(σ),hσ)

end

(16.18)

The random index σ can be selected in a number of ways:

(a) (Uniform sampling). In this case, σ is selected uniformly from the discrete
set of indexes {0, 1, . . . , N − 1} so that, for each integer m in this set:

P(σ = m) =
1

N
, m ∈ {0, 1, 2, . . . , N − 1} (16.19)

This mode of operation amounts to sampling from theN data pairs {γ(m), hm}
with replacement, which means that some sample points may be selected
multiple times during the operation of the algorithm.

(b) (Random reshuffling). In this case, we sample from the N data pairs without
replacement. Another way to describe the sampling process is to randomly
reshuffle the N data points first, and then process the samples sequentially,
one after the other, from the reshuffled data.

(c) (Importance sampling). In this case, a probability value pm is assigned to
every index m ∈ {0, 1, . . . , N − 1} with their sum adding up to one:

∑

m

pm = 1 (16.20)

The probabilities {pm} need not be uniform. At every iteration n, the random
index σ is selected according to this distribution, i.e.,

P(σ = m) = pm, m ∈ {0, 1, 2, . . . , N − 1} (16.21)

This mode of operation amounts to sampling from the N−data pairs with
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replacement, albeit one where some data points are more or less likely to be
selected according to the probabilities {pm}. This is in contrast to (16.19)
where all data points are equally likely to be selected. While this description
assumes the {pm} are known, there are ways for stochastic algorithms to
learn what values to use for the {pm} — see future Sec. 19.6.

Likewise, for the mini-batch implementation (16.13b), the B samples can be
chosen with or without replacement:

(i) We can sample with replacement one data point (γ(b),hb) at a time until
all B samples have been selected. In this mode of operation, the samples
within each mini-batch are selected independently of each other although
some samples may appear repeated.

(ii) We can sample without replacement one point (γ(b),hb) at a time until all B
samples have been selected. In this case, the samples within each mini-batch
will be different. However, the samples are not independent anymore because
the selection of one sample is dependent on the previously selected samples.

Example 16.2 (Bias under importance sampling) It is useful to remark that we can
always transform a stochastic implementation that relies on importance sampling into
an equivalent implementation that applies uniform sampling to a larger dataset. The
original dataset has N samples {γ(m), hm}. We extend it to size N ′ > N as follows.
We repeat each sample (γ(m), hm) a number Nm of times such that its proportion,
measured by Nm/N ′, in the new dataset becomes equal to pm. In this way, selecting
uniformly from the N ′−long dataset will correspond to selecting with probability pm
from the original N−long dataset. Clearly, when this is done, the empirical risk that
we will be minimizing will not be (16.3a) any longer, which is defined over the original
N−data samples, but rather the modified risk:

P ′(w)
∆
=

1

N ′

N′−1∑
m′=0

Q
(
w; γ(m′), hm′

)
(16.22)

where the sum is over the enlarged N ′ data samples (which include sample repetitions).
This modified risk function can be rewritten in a weighted form in terms of the original
data samples:

P ′(w)
∆
=

N−1∑
m=0

pmQ(w; γ(m), hm) (16.23)

where the loss values are scaled by the respective probabilities, {pm}. This observation
means that, under importance sampling, the stochastic gradient recursion, using either
instantaneous or mini-batch gradient approximations, will be converging towards the
minimizer of the weighted risk P ′(w) and not towards the desired minimizer w? of the
original risk P (w). We say that importance sampling biases the solution. For this reason,
in implementations that employ importance sampling, the instantaneous and mini-
batch approximations for the gradient vector are usually redefined by incorporating an
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additional scaling by 1/Npσ:

(instantaneous) : ∇̂wT P (w) =
1

Npσ
∇wT Q(w; γ(σ), hσ) (16.24a)

(mini-batch) : ∇̂wT P (w) =
1

B

B−1∑
b=0

1

Npb
∇wT Q(w;γ(b),hb) (16.24b)

The role of the scaling in removing the bias is explained in the next chapter.

16.1.4 Data Runs

Besides random sample selection, there is another element that arises in the
implementation of stochastic approximation algorithms for empirical risk mini-
mization when a collection of N data points {γ(m), hm} is available. It is cus-
tomary to perform repeated runs (also called epochs) over the N−data points
to enhance performance and smooth out the effect of errors due to the gradi-
ent approximations. During each run k, the algorithm starts from some initial
condition, denoted by wk−1, and carries out N iterations by sampling from the
data and performing stochastic gradient updates. At the end of the run, the final
iterate is wkN−1. This iterate is chosen as the initial condition for the next run:

wk+1
−1︸ ︷︷ ︸

start of
run k + 1

= wk
N−1︸ ︷︷ ︸

end of
run k

(16.25)

and the process repeats. The algorithm starts from wk+1
−1 , and carries out N iter-

ations by sampling from the same data again and performing stochastic gradient
updates. At the end of the run, the final iterate is wk+1

N−1, which is set to wk+2
−1

and so forth. The sampling of the data is random during each run so that the
data are generally covered in different orders between runs. Within each run, the
random samples are selected either with or without replacement.

We can describe the multiple runs explicitly by using the subscript k ≥ 1 to
index the iterates within the k−th run, such as writing wk

n. Using this nota-
tion, and incorporating multiple runs, the stochastic gradient algorithm (16.18)
applied to the minimization of an empirical risk of the form (16.2a) can be as
shown in (16.26); we can similarly write a mini-batch version:
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(stochastic gradient algorithm with multiple runs)

given N data pairs {γ(m), hm},m = 0, 1, . . . , N − 1;
given a desired number of epochs, K;

start with an arbitrary initial condition w0
N−1.

for each epoch k = 1, 2, . . . ,K :

set initial condition to wk
−1 = wk−1

N−1;

repeat for n = 0, 1, 2, . . . , N − 1 :

select a random index 0 ≤ σ ≤ N − 1;

wk
n = wk

n−1 − µ∇wT Q(wk
n−1;γ(σ),hσ)

end
end
return w? ← wK

N−1.

(16.26)

Since each run starts from the iterate obtained at the end of the previous run
then, for all practical purposes, the above implementation can be described more
succinctly as one standard iteration running continuously over the data as listed
in (16.27) and (16.28) for instantaneous and mini-batch gradient approxima-
tions. The notation (γ(n),hn) in listing (16.27) refers to the data sample that is
selected at iteration n. For example, in empirical risk minimization, this sample
is selected at random from the N−size dataset {γ(m), hm} according to some
selection policy (e.g., uniform sampling, random reshuffling) and then used to
update wn−1 to wn. Similar remarks apply to the mini-batch version (16.28).
From the discussion in the previous section, we already known that the same al-
gorithm is applicable to the minimization of stochastic risks of the form (16.2b).
The main difference is that the dataset {γ(m), hm} will not be available before-
hand. Instead, the samples (γ(n),hn) will stream in successively over time. The
description (16.27) accounts for this possibility as well and is applicable to the
minimization of both empirical and stochastic risks.

Stochastic gradient algorithm for minimizing (16.2a) or (16.2b)

given dataset {γ(m), hm}N−1
m=0 or streaming data (γ(n), hn);

start from an arbitrary initial condition, w−1.

repeat until convergence over n ≥ 0 :

select at random or receive a sample (γ(n),hn) at iteration n;

wn = wn−1 − µ∇wT Q(wn−1;γ(n),hn)

end
return w? ← wn.

(16.27)
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Mini-batch stochastic gradient algorithm for minimizing (16.2a) or (16.2b)

given dataset {γ(m), hm}N−1
m=0 or streaming data (γ(n), hn);

given a mini-batch size, B;
start from an arbitrary initial condition, w−1.

repeat until convergence over n ≥ 0 :

select at random or receive B samples {γ(b),hb}B−1
b=0 at iteration n;

wn = wn−1 − µ
(

1

B

B−1∑

b=0

∇wT Q(wn−1;γ(b),hb)

)

end
return w? ← wn.

(16.28)

Example 16.3 (Delta rule and adaline) Consider the `2−regularized least-squares risk:

P (w) = ρ‖w‖2 +
1

N

N−1∑
m=0

(γ(m)− hT
mw)2 (16.29)

For an arbitrary data point (γ, h) we have:

Q(w; γ, h) = ρ‖w‖2 + (γ − hTw)2 (16.30a)

∇wT Q(w; γ, h) = 2ρw − 2h(γ − hTw) (16.30b)

so that the stochastic gradient iteration (16.27) reduces to:

wn = (1− 2µρ)wn−1 + 2µhn(γ(n)− hT
nwn−1), n ≥ 0 (16.31)

where µ > 0 is a small step-size. This recursion is known as the leaky LMS (least-mean-
squares) algorithm in the adaptive filtering literature — the reason for the designation
“least-mean-squares” is explained in the next example, where we re-derive the same
algorithm as the solution to a stochastic risk minimizing problem involving the mean-
square-error criterion. When ρ = 0, the recursion reduces to the plain LMS algorithm:

wn = wn−1 + 2µhn(γ(n)− hT
nwn−1), n ≥ 0 (16.32)

If we focus on a single entry of the weight vector, say, wn[m′] for the m′−th entry, and
if we introduce the quantities

δwn[m′]
∆
= wn[m′]−wn−1[m′], (change due to update) (16.33)

e(n)
∆
= γ(n)− hT

nwn−1 (16.34)

then recursion (16.32) gives, for the individual entries of the weight vector:

δwn[m′] = 2µe(n)hn[m′] (16.35)

In other words, the change in the individual entries of the weight vector is proportional
to the observation entry, hn[m′], scaled by the error signal and step-size. This form
of the LMS recursion is known as the delta rule in the machine learning and neural
network literature. In the particular case when the γ(n) are binary variables assuming
the values ±1, recursion (16.32) is also referred to as the adaline algorithm, where
“adaline” stands for “adaptive linear” solution.
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Example 16.4 (Delta rule from stochastic risk minimization) We re-derive the same
delta rule by considering instead the stochastic risk minimization problem:

P (w) = ρ‖w‖2 + E (γ − hTw)2 (16.36)

where the loss function is now given by

Q(w;γ,h) = ρ‖w‖2 + (γ − hTw)2 (16.37a)

∇wT Q(w;γ,h) = 2ρw − 2h(γ − hTw) (16.37b)

In this case, the stochastic gradient iteration (16.27) leads to the same delta rule:

wn = (1− 2µρ)wn−1 + 2µhn(γ(n)− hT
nwn−1) (16.38)

We illustrate the performance of the algorithm in Fig. 16.1, which shows the learning
curve in linear scale using ρ = 0.5, µ = 0.001, and M = 10. The simulation generates
random pairs of data {γ(m), hm} according to a linear model. First, a random param-
eter model wa ∈ IR10 is selected, and a random collection of feature vectors {hm} are
generated with zero-mean unit-variance Gaussian entries. Likewise, a collection of N
independent noise Gaussian entries {v(m)} with zero mean and variance σ2

v = 0.0001
is generated. Then, each γ(m) is set to

γ(m) = hT
mw

a + v(m) (16.39)

The minimizer wo for the risk (16.36) can be determined in closed form and is given
by

wo = (ρIM +Rh)−1rhγ (16.40)

where, for the simulated data,

Rh = EhhT = IM , (by construction) (16.41a)

rhγ
∆
= Eγh = E (hTwa + v)h = Rhw

a = wa (16.41b)

In the stochastic-gradient implementation (16.38), data (γ(n),hn) stream in, one pair
at a time. The learning curve of the stochastic algorithm is denoted by P (n) and defined
as

P (n)
∆
= EP (wn−1), (learning curve) (16.42)

where the expectation is over the randomness in the weight iterates. The learning curve
shows how the risk value evolves on average over time. We can simulate the learning
curve by using repeated experiments with each experiment having its own data and
starting from the same initial condition. We construct the learning curve in this example
as follows. We generate L replicas of N = 3000−long data sequences {γ(m), hm} arising
from the same linear model to ensure they have the same statistical distribution. We
subsequently run the stochastic-gradient algorithm on each of these datasets, always
starting from the same initial condition w−1. In the simulations we perform L = 500
experiments. Each experiment ` results in a realization for a risk curve of the form:

P̂ (w`n−1) = ρ‖w`n−1‖2 +
(
γ(n)− hT

nw
`
n−1

)2

, 0 ≤ n ≤ N − 1 (16.43)

This curve is evaluated at the successive weight iterates during the `−th experiment.
By averaging the curves over all L−experiments we obtain an ensemble average ap-
proximation for the true risk value as follows:

P (n) ≈ 1

L

L∑
`=1

P̂ (w`n−1), 0 ≤ n ≤ N − 1 (16.44)

where P (n) denotes the estimate for the risk value P (w) at the n−th iteration of the
algorithm. This is the curve that is shown in the left plot of Fig. 16.4.
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Figure 16.1 (Left) Ensemble-average learning curve P (n) for the stochastic gradient
implementation (16.27) in linear scale obtained by averaging over repeated
experiments. (Right) Comparison of the minimizer wo and the limit iterate wn
obtained at the end of one experiment.

Example 16.5 (Logistic regression) Consider the `2−regularized logistic regression
empirical risk:

P (w) = ρ‖w‖2 +
1

N

N−1∑
m=0

ln
(

1 + e−γ(m)hT
mw
)

(16.45)

for which

Q(w; γ(n), hn) = ρ‖w‖2 + ln
(

1 + e−γ(n)hT
nw
)

(16.46a)

∇wT Q(w; γ(n), hn) = 2ρw − γ(n)hn

1 + eγ(n)hT
nw

(16.46b)

The stochastic gradient iteration (16.27) becomes

wn = (1− 2µρ)wn−1 + µ
γ(n)hn

1 + eγ(n)hT
nwn−1

, n ≥ 0 (16.47)

We illustrate the performance of this algorithm in Fig. 16.2, which shows the normalized
learning curves in logarithmic scale under uniform sampling and random reshuffling, in
addition to the learning curve for a mini-batch implementation.

The simulation uses ρ = 1, µ = 0.0001, and M = 10. It generates N = 500 random
pairs of data {γ(m), hm} according to a logistic model. First, a random parameter
model wa ∈ IR10 is selected, and a random collection of feature vectors {hm} are
generated, say, with zero-mean unit-variance Gaussian entries. Then, for each hm, the
label γ(m) is set to either +1 or −1 according to the following construction:

γ(m) = +1 if
( 1

1 + e−h
T
mw

a

)
≥ 0.5; otherwise γ(m) = −1 (16.48)

A total of K = 500 epochs are run over the data. The learning curves are plotted in
normalized logarithmic scale in line with construction (11.65), namely,

ln

(
P (wn)− P (w?)

maxn{P (wn)− P (w?)}

)
(16.49)

where w? is approximated by the limit value of the weight iterate after sufficient con-
vergence. The mini-batch implementation employs mini-batches of size B = 5 samples.
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Each learning curve is generated by plotting the value of the risk function at the start
of each epoch, namely, P (wk−1).
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Figure 16.2 (Top left) Learning curves P (wk−1) relative to the minimum risk value
P (w?) in normalized logarithmic scale for the stochastic-gradient implementation
(16.47) under uniform sampling and random reshuffling, in addition to the learning
curve for the mini-batch implementation. (Top right) The learning curves are
smoothed over L = 100 experiments. (Bottom) Limiting values for the weight iterates
under three data sampling policies.

The plot on the left in the top row of the figure shows the evolution of these values
relative to the minimum risk value P (w?) for one experiment using K = 500 epochs.
The noisy variations in these learning curves are a reflection of the stochastic nature of
the updates. We repeat this experiment for a total of L = 100 times and average the
learning curves; with each experiment starting from the same initial condition w−1.
The result leads to the smoother curves shown in the plot on the right in the top row
of the figure. The curves illustrate the improved performance that is delivered by the
mini-batch and random reshuffling versions of the stochastic-gradient algorithm; these
observations will be established analytically in our future derivations — see Table 16.2.
The plots in the bottom row show the limiting value of the weight iterates under the
three data sampling policies at the end of one experiment involving K = 500 runs.

Example 16.6 (Polyak-Ruppert averaging) Sometimes a running average step is cou-
pled with the stochastic gradient implementation (16.27) in order to smooth the iter-
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ates. Let

w̄n−2
∆
=

1

n

n−1∑
m=0

wm−1, n ≥ 0 (16.50)

which averages all iterates up to wn−1. The smoothed variable w̄n can be computed
recursively as follows:

w̄n = w̄n−1 +
1

n+ 2
(wn − w̄n−1), w̄−1 = w−1 (16.51)

andthe stochastic gradient recursion (16.27) is adjusted to

(stochastic-gradient algorithm with Polyak-Ruppert averaging)
wn = wn−1 − µ∇wT Q(wn−1;γ(n),hn), n ≥ 0

w̄n = w̄n−1 +
1

n+ 2
(wn − w̄n−1)

(16.52)

where w̄n is taken as the output variable.

Example 16.7 (Recommender systems and matrix factorization) We provide an ex-
ample with a non-convex risk function, which is widely used in the design of recom-
mender systems. These are automated systems used to suggest recommendations to
users for products based on their past preferences and the preferences of other similar
users. Such systems are widely used by online business sites. We motivate the approach
by considering the example of a streaming movie service.

Assume there are U users, labeled u = 1, 2, . . . , U , and I items (such as movies), labeled
i = 1, 2, . . . , I. Based on past interactions between the users and the service provider,
the users have provided ratings for different movies (say, on a numerical scale from
1=poor to 5=excellent). Table 16.1 shows one example of the type of information that
is available. Each row corresponds to a user u, and each column corresponds to a movie
item, i. The table is showing data for 9 movies and 7 users. Usually, users rate only
some of the movies; they may not have watched all movies and they may not provide
feedback on all movies they watch. For this reason, some entries in the table are marked
with question marks to indicate that these ratings are missing.

Table 16.1 Ratings provided by users for some movie items from the service provider.
user M1 M2 M3 M4 M5 M6 M7 M8 M9

U1 3 ? 4 ? 1 5 ? ? 1
U2 3 4 ? ? 2 ? 4 4 ?
U3 ? 5 2 1 1 2 4 5 3
U4 ? ? ? 4 ? ? ? 2 5
U5 3 2 4 ? 3 3 3 3 ?
U6 ? 3 3 2 2 ? 1 ? 1
U7 ? 1 ? ? ? 3 ? 2 4

We collect all ratings into a U × I user-item (or ratings) matrix R = [rui]; it contains
all the scores from the table with rui representing the score given by user u for item i.
Some entries in the matrix R will be missing and we mark them by a question mark.
We denote the set of available entries in R by R. Thus, when we write (u, i) ∈ R we
mean that entry rui has a valid ratings score. The objective of a recommender system
is to predict what ratings users are likely to provide in place of the question marks. For
example, referring to the table, we would like to know what ratings user U1 is likely
to provide to movies M2, M4, M7, and M8. Based on these predictions, the service
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provider will then recommend some movies to the user. There are several methods that
can be used to predict the numerical values for the missing entries (i.e., to perform what
is known as imputation or matrix completion). Here, we follow one approach known as
collaborative filtering. It is based on exploiting relationships between users and using a
convenient matrix factorization.

We assume that each item i can be represented by a feature vector hi ∈ IRM ; the
entries of this vector are called latent variables because they are hidden and will need
to be discovered or learned. For example, for the case of movies, the entries of hi could
be some explicit attributes that relate to the type of movie (comedy, action, thriller,
...), the duration of the movie, if the movie has won any awards, or other more implicit
attributes. Since the latent variables will be discovered by the matrix factorization ap-
proach, they may not relate directly to explicit attributes.

We further assume that each user u employs a weight vector wu ∈ IRM to arrive at
its ratings. The entries of this vector scale different attributes for the item (or movie)
differently. Some users prefer comedy movies over suspense movies, or shorter movies
over longer movies. If we happen to know the feature representation hi for some item
i, then we model the rating process used by user u as computing the inner product

rui ≈ hT
i wu − θ (16.53)

where θ models some bias term. For example, some users may provide consistently
higher-than-average ratings, or some items (movies) may be perceived consistently as
being superior to other movies. These perceptions can bias the rating process. To be
more specific, we should split the bias into two sources: one arises from user-related
biases (users behave differently) and the second arises from item-related biases (some
items elicit different types of reactions from users; perhaps because they are promoted
more strongly than other movies). For this reason, it is common to replace the above
ratings generation model by one of the form

rui ≈ hT
i wu − θu − αi, u = 1, 2, . . . , U, i = 1, 2, . . . I (16.54)

with two scalar bias terms {θu, αi}; one by the user and the other by the item. If we
collect the feature vectors into an M × I matrix H and all user models into a U ×M
matrix W , a U × 1 vector θU , and an I × 1 vector α:

H =
[
h1 h2 . . . hI

]
, W =


wT

1

wT
2

...
wT
U

 , θ =


θ1

θ2

...
θU

 , α =


α1

α2

...
αI

 (16.55)

then expression (16.54) amounts to assuming that the ratings matrix R is generated
according to the model:

R ≈WH − θ1T
I − 1UαT =

[
W −θ 1U

]  H
1T
I

−αT

 (16.56)

This expression factors R into the product of two matrices: the first hasM+2 columns
and the second hasM+2 rows. If we succeed in determining the quantities {W,H, θ, α},
then we can use relation (16.56) to predict the ratings at all locations in R. For this
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purpose, we will minimize the following regularized least-squares risk function:{
ŵu, ĥi, θ̂u, α̂i

}
= argmin
{wu,hi,θu,αi}

{
U∑
u=1

ρ‖wu‖2 +

I∑
i=1

ρ‖hi‖2 +

∑
(u,i)∈R

(
rui − hT

i wu + θu + αi
)2
}

(16.57)

where the last sum is over the valid indexes (u, i) ∈ R. The above risk function is
nonconvex because of the products hT

i wu. We can approximate the solution by means
of a stochastic gradient implementation, which takes the form shown in listing (16.58).
The entries of the initial iterateswu,−1 and hi,−1 are selected at random from a uniform
distribution in the range [0, 1/

√
M ].

Stochastic gradient algorithm applied to recommender problem (16.57)

given valid ratings in locations (u, i) ∈ R;
start from arbitrary {wu,−1,hi,−1,θu(−1),αi(−1)}.
repeat until convergence over m ≥ 0

select a random entry (u, i) ∈ R

e(m) = rui − hT
i,m−1wu,m−1 + θu(m− 1) +αi(m− 1)

wu,m = (1− 2µρ)wu,m−1 + 2µhi,m−1e(m)

hi,m = (1− 2µρ)hi,m−1 + 2µwu,m−1e(m)

θu(m) = θu(m− 1)− 2µe(m)

αi(m) = αi(m− 1)− 2µe(m)
end
return {w?u, h?i , θ?u, α?i }.

(16.58)

In the above listing, the term wu,m represents the estimate for wu at iteration m; like-
wise for hi,m, θu(m), and αi(m). It is useful to note that although the recursions for
updating θu and αi look similar, these variables will generally be updated at different
instants. This is because the same i will appear under different u values, and the same
u will appear with different i values. Later in Example 50.6 we revisit this problem
and solve it by applying an alternating least-squares solution. We also revisit the same
problem in Example 68.2 and solve it by employing variational autoencoders.

We simulate recursions (16.58) by generating a random ratings matrix R with U = 10
users and I = 10 items. The scores are integer numbers in the range 1 ≤ r ≤ 5, and
unavailable scores are indicated by the symbol ?:

R =



5 3 2 2 ? 3 4 ? 3 3
5 4 1 3 1 4 4 ? 3 ?
3 5 ? 2 1 5 4 1 4 1
? 2 3 4 4 5 2 5 1 1
2 1 2 2 1 5 1 4 1 ?
? 2 1 3 ? ? 5 3 3 5
3 4 ? 2 5 5 3 2 ? 4
4 5 3 4 2 2 1 ? 5 5
2 4 2 5 ? 1 1 3 1 4
? 1 4 4 3 ? 5 2 4 3


(16.59)

We setM = 5 (feature vectors of size 5) and generate uniform random initial conditions
for the variables {wu,−1,hi,−1,θu(−1),αi(−1)} in the open interval (0, 1). We set
µ = 0.0001 and ρ = 0 (no regularization). We normalize the entries of R to lie in the
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range [0, 1] by replacing each numerical entry r by the value r ← (r− 1)/4 where the
denominator is the score range (highest value minus smallest value) and the smallest
score is subtracted from the numerator. We run a large number of iterations until
sufficient convergence is attained. Specifically, we run K = 50, 000 epochs with the
data randomly reshuffled at the beginning of each run. At the end of the simulation,
we use the parameters {w?u, h?i , θ?u, α?i } to estimate each entry of R using

r̂ui = (h?i )
Tw?u − θ?u − α?i (16.60)

We undo the normalization by replacing each of these predicted values by r̂ui ← 4 r̂ui+1
and rounding each value to the closest integer; scores above 5 are saturated at 5 and
scores below 1 are fixed at 1. The result is the matrix R̂ shown below, where we
indicate the scores predicted for the unknown entries in red; we also indicate in blue
those locations where the estimated scores differ by one level from the original scores:

R̂ =



5 3 2 2 2 3 4 2 3 3
5 4 1 3 1 4 4 3 3 3
3 4 4 2 1 5 3 1 4 1
2 2 3 4 4 5 2 5 1 1
2 2 2 2 1 5 2 4 1 1
4 2 1 3 5 3 5 3 3 5
3 4 2 2 5 5 3 2 4 4
3 5 3 4 2 2 2 1 5 5
2 4 2 5 2 1 1 3 1 4
4 1 4 4 3 1 5 2 4 3


(16.61)

Figure 16.3 provides a color-coded representation of the entries of the original matrix
R on the left with the locations of the missing entries highlighted by red squares, and
the recovered matrix R̂ on the right.
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Figure 16.3 Color coded representation of the entries of the original matrix R with
missing entries (left) and the recovered matrix R̂ (right).

We further denote the risk value at the start of each epoch of index k by

P (k)
∆
=

U∑
u=1

ρ‖wu‖2 +

I∑
i=1

ρ‖hi‖2 +
∑

(u,i)∈R

(
rui − hT

i wu + θu + αi
)2

(16.62)

where the parameters on the right-hand side are set to the values at the start of epoch
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k. Figure 16.4 plots the evolution of the risk curve (normalized by its maximum value
so that its peak value is set to one).
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Figure 16.4 Evolution of the risk curve (16.62) with its peak value normalized to one.

16.2 STOCHASTIC SUBGRADIENT ALGORITHM

The same arguments used for the derivation of the stochastic gradient algorithm
and its mini-batch version can be applied to nonsmooth risks (i.e., risks with
points of non-differentiability) to arrive at the stochastic subgradient algorithm.
The main difference is that gradients will now be replaced by subgradients:

∇wT Q(w; γ, h) replaced by sQ(w; γ, h) (16.63)

where sQ(w; γ, h) refers to a subgradient construction for the loss functionQ(w, ·)
evaluated at the data point (γ, h). The substitution leads to listings (16.27) and
(16.65) for the minimization of empirical or stochastic risks using instantaneous
or mini-batch subgradient approximations.

Stochastic subgradient algorithm for minimizing (16.2a) or (16.2b)

given dataset {γ(m), hm}N−1
m=0 or streaming data (γ(n), hn);

start from an arbitrary initial condition, w−1.

repeat until convergence over n ≥ 0 :

select at random or receive a sample (γ(n),hn) at iteration n;

wn = wn−1 − µ sQ(wn−1;γ(n),hn)

end
return w? ← wn.

(16.64)
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Mini-batch stochastic subgradient alg. for minimizing (16.2a) or (16.2b)

given dataset {γ(m), hm}N−1
m=0 or streaming data (γ(n), hn);

given a mini-batch size, B;
start from an arbitrary initial condition, w−1.

repeat until convergence over n ≥ 0 :

select at random or receive B samples {γ(b),hb}B−1
b=0 at iteration n;

wn = wn−1 − µ
(

1

B

B−1∑

b=0

sQ(wn−1;γ(b),hb)

)

end
return w? ← wn.

(16.65)

If desired, and was explained earlier in (14.99), we can incorporate exponential
smoothing into the operation of the stochastic subgradient algorithm. The result
is shown in listing (16.66) where the value of the positive scalar κ is smaller than
but close to one.

Mini-batch stochastic subgradient algorithm with exponential

smoothing for minimizing (16.2a) or (16.2b)

given dataset {γ(m), hm}N−1
m=0 or streaming data (γ(n), hn);

given a mini-batch size, B;
select a positive scalar κ close to but smaller than one;
start from an arbitrary initial condition, w−1;

start from w̄0 = w−1;

start from S0 = 0;
repeat until convergence over n ≥ 0 :

select at random or receive B samples {γ(b),hb}B−1
b=0 at iteration n;

wn = wn−1 − µ
(

1

B

B−1∑

b=0

sQ(wn−1;γ(b),hb)

)

Sn+1 = κSn + 1;

w̄n+1 =

(
1− 1

Sn+1

)
w̄n +

1

Sn+1
wn

end
return w? ← w̄n+1.

(16.66)
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Example 16.8 (`2−regularized hinge loss) Consider the `2−regularized hinge loss func-
tion:

Q(w; γ, h) = ρ‖w‖2 + max
{

0, 1− γhTw
}

(16.67)

We already know that one subgradient construction for it is

sQ(w; γ, h) = 2ρw − γh I
[
γhTw ≤ 1

]
(16.68)

Substituting into (16.64), we arrive at the stochastic subgradient implementation:

wn = (1− 2µρ)wn−1 + µγ(n)hn I
[
γ(n)hT

nwn−1 ≤ 1
]

(16.69)

We illustrate the performance of algorithm (16.69) in Fig. 16.5, which shows the nor-
malized learning curves in logarithmic scale under both random reshuffling and uniform
sampling with and without smoothing, in addition to the mini-batch implementation.
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Figure 16.5 (Top row) Learning curves P (wk−1) relative to the minimum risk value
P (w?) in normalized logarithmic scale for the stochastic subgradient implementation
(16.64) under random reshuffling and uniform sampling with and without smoothing,
in addition to a mini-batch implementation. (Bottom rows) Limit values for the
weight iterates obtained under different data sampling policies.

The simulation uses ρ = 1, µ = 0.001, κ = 0.95, and M = 10. It generates N = 500
random pairs of data {γ(m), hm} according to the logistic model described earlier in
Example 16.5. A total of K = 500 epochs are run over the data. The learning curves are
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plotted in normalized logarithmic scale in line with construction (16.49), where w? is
approximated by the limit value of the weight iterate after sufficient convergence. The
mini-batch implementation employs mini-batches of size B = 5 samples. Each learning
curve is generated by plotting the values of the risk function at the start of each epoch,
namely, P (wk−1). The plot on the left in the top row of the figure shows the evolution of
these values relative to the minimum risk value P (w?) for one run of the algorithm over
the first 100 epochs. The noisy variations in these learning curves are a reflection of
the stochastic nature of the updates. We repeat this experiment for a total of L = 100
times and average the learning curves over these experiments. Each experiment starts
from the same initial condition w−1. The result leads to the smoother curves shown
in the plot on the right in the top row of the figure (for the first 50 epochs). The
curves illustrate that the mini-batch and random reshuffling versions of the stochastic
subgradient algorithm lead to improved steady-state performance. The plots in the bot-
tom row show the limiting value of the weight iterates under four data sampling policies.

Consider next a variation of the hinge loss that incorporates an offset parameter θ:

Q(w, θ; γ, h) = ρ‖w‖2 + max
{

0, 1− γ(hTw − θ)
}

(16.70)

If we compute subgradients relative to θ and w and write down the corresponding
subgradient iterations we would get:

θ(n) = θ(n− 1) − µγ(n) I
[
γ(n)

(
hT
nwn−1 − θ(n− 1)

)
≤ 1
]

(16.71a)

wn = (1− 2µρ)wn−1 + µγ(n)hn I
[
γ(n)

(
hT
nwn−1 − θ(n− 1)

)
≤ 1
]

(16.71b)

We can combine these iterations by appealing to the augmented notation w′ ← col{−θ, w}
and h′ ← col{1, h} to arrive at:

w′n =

[
1 0
0 (1− 2µρ)IM

]
w′n−1 + µγ(n)h′n I

[
γ(n)

(
h′n
)T
w′n−1 ≤ 1

]
(16.72)

Example 16.9 (Perceptron recursion) Consider the `2−regularized Perceptron loss:

Q(w;γ,h) = ρ‖w‖2 + max
{

0, −γhTw
}

(16.73)

One subgradient construction for it is

sQ(w; γ, h) = 2ρw − γh I
[
γhTw ≤ 0

]
(16.74)

so that substituting into (16.64) we arrive at the stochastic subgradient implementation:

wn = (1− 2µρ)wn−1 + µγ(n)hn I
[
γ(n)hT

nwn−1 ≤ 0
]

(16.75)

We can also consider a variation with an offset parameter:

Q(w, θ;γ,h) = ρ‖w‖2 + max
{

0, −γ(hTw − θ)
}

(16.76)

If we compute subgradients relative to θ and w and write down the corresponding
subgradient iterations we get:

θ(n) = θ(n− 1) − µγ(n) I
[
γ(n)

(
hT
nwn−1 − θ(n− 1)

)
≤ 0
]

(16.77a)

wn = (1− 2µρ)wn−1 + µγ(n)hn I
[
γ(n)

(
hT
nwn−1 − θ(n− 1)

)
≤ 0
]

(16.77b)
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We can combine these iterations by appealing to the augmented notation w′ ← col{−θ, w}
and h′ ← col{1, h} to arrive at:

w′n =

[
1 0
0 (1− 2µρ)IM

]
w′n−1 + µγ(n)h′n I

[
γ(n)

(
h′n
)T
w′n−1 ≤ 0

]
(16.78)

Example 16.10 (LASSO or basis pursuit) Consider the `1−regularized quadratic loss:

Q(w; γ, h) = α‖w‖1 + (γ − hTw)2 (16.79)

One subgradient construction for it is

sQ(w; γ, h) = α sign(w)− 2h(γ − hTw) (16.80)

so that substituting into (16.64), we arrive at:

wn = wn−1 − µ sign(wn−1) + 2µhn(γ(n)− hT
nwn−1) (16.81)

Example 16.11 (Switching expectation and sub-differentiation) The stochastic algo-
rithms of this section are applicable to empirical and stochastic risks, as in (16.3a) and
(16.3b). In the latter case, we need to justify switching the order of the expectation
and sub-differentiation operators in order to write (in a manner similar to (16.4)):

∂w P (w) = ∂w
(
EQ(w;γ,h)

)
(a)
= E

(
∂w Q(w;γ,h)

)
(16.82)

Step (a) is possible under conditions that are generally valid for our cases of interest
— see the explanation in Lemma 16.1 in the appendix. In essence, the switching is
possible when the loss function Q(w; ·) is convex and bounded in neighborhoods where
the subgradients are evaluated.

16.3 STOCHASTIC PROXIMAL GRADIENT ALGORITHM

We motivate next stochastic approximations for the proximal gradient method
by following similar arguments to those used for gradient-descent and the sub-
gradient method in the last two sections. First, recall from the discussion in
Sec. 15.1 that the proximal gradient algorithm is suitable for minimizing risk
functions P (w) that can be split into the sum of two convex components:

P (w) = q(w) + E(w) (16.83)

where E(w) is first-order differentiable and q(w) is non-smooth. In the empirical
case, the component E(w) is expressed as the sample average

E(w) =
1

N

N−1∑

m=0

Qu

(
w; γ(m), hm

)
(16.84)

in terms of some convex loss function Qu(w, ·). The proximal gradient algorithms
was listed in (15.10) and had the following form:
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{
zn = wn−1 − µ∇wT E(wn−1)

wn = proxµq(zn)
(16.85a)

where

∇wT E(w)
∆
=

1

N

N−1∑

m=0

∇wT Qu

(
w; γ(m), hm

)
(16.85b)

When the size N of the dataset is large, we observe again that it becomes im-
practical to evaluate the gradient of E(w). We therefore resort to stochastic
approximations, where this gradient is approximated either by an instantaneous
value or by a mini-batch calculation. In the first case, we arrive at the stochastic
proximal gradient algorithm listed in (16.87), and in the second case we arrive
at (16.88). The same listings apply to the minimization of stochastic risks when
E(w) is defined instead as

E(w) = EQu(w;γ,h) (16.86)

Stochastic proximal gradient for minimizing P (w) = q(w) + E(w)

given dataset {γ(m), hm}N−1
m=0 or streaming data (γ(n), hn);

start from an arbitrary initial condition, w−1.

repeat until convergence over n ≥ 0 :

select at random or receive a sample (γ(n),hn) at iteration n;

zn = wn−1 − µ∇wT Qu(wn−1;γ(n),hn)

wn = proxµq(zn)

end
return w? ← wn.

(16.87)

Mini-batch stochastic proximal gradient for minimizing P (w) = q(w) + E(w)

given dataset {γ(m), hm}N−1
m=0 or streaming data (γ(n), hn);

given a mini-batch size, B;

start from an arbitrary initial condition, w−1.

repeat until convergence over n ≥ 0 :

select at random or receive B samples {γ(b),hb}B−1
b=0 at iteration n;

zn = wn−1 − µ
(

1

B

B−1∑

b=0

∇wT Qu(wn−1;γ(b),hb)

)

wn = proxµq(zn)

end
return w? ← wn.

(16.88)
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Example 16.12 (LASSO or basis pursuit) Consider the quadratic risk with elastic-net
regularization:

P (w) = α‖w‖1 + ρ‖w‖2 +
1

N

N−1∑
m=0

(
γ(m)− hT

mw
)2

, w ∈ IRM (16.89)

so that

q(w) = α‖w‖1, Qu(w; γ(n), hn) = ρ‖w‖2 + (γ(n)− hT
nw)2 (16.90)

In this case, the stochastic proximal recursion (16.87) becomes

zn = (1− 2µρ)wn−1 + 2µhn(γ(n)− hT
nwn−1) (16.91a)

wn = Tµα(zn) (16.91b)

in terms of the soft-thresholding operator applied to zn.

We illustrate the performance of the algorithm in Fig. 16.6, which shows the normalized
learning curve in logarithmic scale under uniform sampling using ρ = 0, α = 1, µ =
0.001, andM = 10. The simulation generatesN = 500 random pairs of data {γ(m), hm}
according to the same linear model (16.39). The minimizer w? for the risk (16.89) is
estimated by running the batch proximal algorithm (16.85a), which employs the full
gradient vector of P (w), for a sufficient number of iterations. The plot on the left in
the top row of the figure shows the normalized learning curve in logarithmic scale,
where P (w) is evaluated at the start of each epoch. The plot on the right in the first
row averages these learning curves over L = 100 experiments to generate a smoother
curve. The lower plot in the figure shows the limit value of wn resulting from (16.91a)–
(16.91b) and obtained after running K = 300 epochs over the data. It is seen that wn
approaches w? and that it also exhibits sparsity.

Example 16.13 (Logistic regression) Consider an empirical logistic regression risk with
elastic-net regularization:

P (w) = α‖w‖1 + ρ‖w‖2 +
1

N

N−1∑
n=0

ln
(

1 + e−γ(n)hT
nw
)
, w ∈ IRM (16.92)

so that

q(w) = α‖w‖1, Qu(w; γ(n), hn) = ρ‖w‖2 + ln
(

1 + e−γ(n)hT
nw
)

(16.93)

In this case, the stochastic proximal recursion (16.87) becomes

zn = (1− 2µρ)wn−1 + µ
γ(n)hn

1 + eγ(n)hT
nwn−1

(16.94a)

wn = Tµα(zn) (16.94b)

in terms of the soft-thresholding operator applied to zn.

Example 16.14 (Stochastic projection gradient) Consider the constrained optimiza-
tion problem

w? = argmin
w∈IRM

{
E(w)

∆
=

1

N

N−1∑
m=0

Qu(w; γ(m), hm)

}
, subject to w ∈ C (16.95)
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Figure 16.6 (Top left) Learning curve P (wk−1) relative to the minimum risk value
P (w?) in normalized logarithmic scale for the stochastic proximal gradient
implementation (16.91a)–(16.91b) under uniform sampling. (Top right) Learning
curve obtained by averaging over 100 experiments. (Bottom) The limiting value of the
weight iterate in comparison to the minimizer w?.

where C is a closed convex set. The projection gradient algorithm (15.51) was shown
to be a special case of the proximal gradient method and it uses the gradient of E(w).
We can approximate this gradient by using either an instantaneous sample or a mini-
batch calculation. The former case leads to listing (16.96), where PC(x) denotes the
projection of x ∈ IRM onto C.

Stochastic projection gradient algorithm for solving (16.95) and (16.97)

given dataset {γ(m), hm}N−1
m=0 or streaming data (γ(n), hn);

start from any initial condition, w−1.
repeat until convergence over n ≥ 0 :

select at random or receive (γ(n),hn)

wn = PC

(
wn−1 − µ∇wTQu(wn−1;γ(n),hn)

)
end
return w? ← wn.

(16.96)
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This algorithm can also handle stochastic risks of the form

wo = argmin
w∈IRM

{
E(w)

∆
= EQu(w;γ,h)

}
, subject to w ∈ C (16.97)

In this case, the data samples (γ(n), hn) would stream in successively over time.

Example 16.15 (Stochastic mirror descent) Consider the same constrained optimiza-
tion problems (16.95) or (16.97). The mirror-descent algorithm (15.103) also relies on
the gradient of E(w). We can again approximate this gradient by using either an instan-
taneous sample or a mini-batch calculation. The former case leads to listing (16.98).
The listing can be specialized for particular choices of the mirror function φ(x), such
as choosing it as the negative entropy function or as a quadratic function. In a similar
manner, we can write down stochastic versions for the lazy mirror descent and mirror
prox algorithms.

Stochastic mirror-descent for solving (16.95) or (16.97)

given dataset {γ(m), hm}N−1
m=0 or streaming data (γ(n), hn);

choose νφ−strongly convex mirror function φ(w) : Cφ → IR;
let φ?(x) = supw{wTx− φ(w)} denote its conjugate function;
let C′ = C ∩ Cφ;
start from an initial condition, w−1 ∈ C′.
repeat until convergence over n ≥ 0 :

select at random or receive (γ(n),hn)
bn = ∇wT φ(wn−1)− µ∇wT Qu(wn−1;γ(n),hn)
zn = ∇xT φ?(bn)
wn = PC′,φ(zn), (Bregman projection)

end
return w? ← wn.

(16.98)

Example 16.16 (Stochastic coordinate-descent) The same stochastic approximation
approach can be applied to coordinate-descent algorithms. It is sufficient to illus-
trate the construction by considering the randomized proximal version listed earlier
in (15.31); similar constructions apply to other variants of coordinate-descent. Thus,
consider an empirical risk P (w) that separates into the form:

P (w) = E(w) +

M∑
m=1

qm(wm) (16.99a)

where the second component is separable over the individual coordinates of w denoted
by {wm}. Moreover, the smooth component E(w) is expressed as the sample average
of loss values:

E(w) =
1

N

N−1∑
m=0

Qu(w; γm, hm) (16.99b)

We approximate the gradient of E(w) by using either an instantaneous approximation
or a mini-batch calculation. The former case leads to (16.101), which is applicable to
both empirical risks as in (16.99a)–(16.99b), or to stochastic risks where

E(w) = EQu(w;γ,h) (16.100)

The main difference is that (γ(n),hn) will now stream in successively over time.



574 Stochastic Optimization

Stochastic randomized proximal coordinate descent
for minimizing (16.99a).

given dataset {γ(m), hm}N−1
m=0 or streaming data (γ(n), hn);

start with an arbitrary initial condition w−1.
repeat until convergence over n ≥ 0 :

iterate is wn−1 = col{wn−1,m}Mm=1

select at random or receive (γ(n),hn);
select a random index 1 ≤ mo ≤M ;
zn,mo = wn−1,mo − µ ∂Qu(wn−1;γ(n),hn)/∂wmo
wn,mo = proxµqmo (zn,mo)
keep wn,m = wn−1,m for all m 6= mo

end
return w? ← wn.

(16.101)

Example 16.17 (Stochastic conjugate gradient) We can similarly devise a stochastic
implementation for the Fletcher-Reeves conjugate gradient algorithm (13.87) by ap-
proximating the gradient of P (w) using an instantaneous or mini-batch calculation.
The former case is listed in (16.102), which can handle both empirical and stochastic
risk minimization. In the latter case, the data samples (γ(n), hn) stream in successively
over time.

Stochastic Fletcher-Reeves algorithm for minimizing (16.2a) or (16.2b)

given dataset {γ(m), hm}N−1
m=0 or streaming data (γ(n), hn);

start with an arbitrary initial condition w−1;
set q−1 = 0;
repeat until convergence over n ≥ 0 :

select at random or receive (γ(n),hn);
rn−1 = −∇wT Q(wn−1;γ(n),hn)
if n = 0 then β−1 = 0
else βn−1 = ‖rn−1‖2/‖rn−2‖2

end
qn = rn−1 + βn−1 qn−1

find αn by solving min
α∈IR

Q(wn−1 + αqn) using line search.

wn = wn−1 +αnqn
end
return w? ← wn

(16.102)

16.4 GRADIENT NOISE

In all stochastic algorithms studied in this chapter, the desired gradient or sub-
gradient search direction is approximated by using either instantaneous or mini-
batch calculations. For example, when P (w) is smooth, we used approximations
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of the form:

(instantaneous) : ∇̂wT P (w) = ∇wT Q(w;γ,h) (16.103a)

(mini-batch) : ∇̂wT P (w) =
1

B

B−1∑

b=0

∇wT Q
(
w;γ(b),hb

)
(16.103b)

and when P (w) is nonsmooth we replaced the gradients of Q(w; ·) by subgra-
dients, sQ(w;γ,h). We continue with the smooth case for illustration purposes.
The difference between the true gradient and its approximation is called gradient
noise and denoted by

g(w)
∆
= ∇̂wT P (w)−∇wT P (w) (16.104)

The presence of this noise alters the dynamics of optimization algorithms. To
see this, the following two relations highlight the difference between the original
gradient-descent method and its stochastic version:

(gradient descent) : wn = wn−1 − µ∇wT P (wn−1) (16.105a)

(stochastic version) : wn = wn−1 − µ∇wT P (wn−1)− µg(wn−1)

(16.105b)

where the gradient noise process appears as a driving term in the second recur-
sion. The noise seeps into the operation of the algorithm and some degradation
in performance is expected. For instance, while we were able to show in a pre-
vious chapter that the gradient-descent implementation (16.105a) converges to
the exact minimizer w? for sufficiently small step-sizes, we will discover that the
stochastic version (16.105b) can only approach a small neighborhood around w?.
Specifically, we will prove in later chapters that, for this case, the mean-square-
deviation E‖w̃n‖2 approaches O(µ):

lim sup
n→∞

E‖w̃n‖2 = O(µ) (16.106)

Obviously, the smaller µ is, the smaller the size of the limiting error will
be. However, small step-sizes slow down convergence and there is a need to
strike a balance between convergence rate and error size. One way to reduce
the size of the error is to employ decaying step-sizes; in this case, future results
will show that it is possible for stochastic algorithms to converge to the exact
minimizer even in the presence of gradient noise. Nevertheless, vanishing step-
sizes reduce the ability of an optimization algorithm to continue to update and
learn, which is problematic for scenarios involving drifting minimizers. Another
way to reduce the limiting error, even with constant step-sizes, is to resort to
variance-reduction techniques. We will discuss these various elements in future
chapters and establish performance limits. The derivations are demanding and
are not necessary at this stage.

For illustration and comparison purposes, we collect in Tables 16.2 and 16.3
some of the results that will be derived in future analyses for strongly-convex
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risks. The first table assumes constant step-sizes, while the second table assumes
a vanishing step-size of the form µ(k) = τ/k with its value decaying with the
epoch index k ≥ 1. The tables also list the conditions under which the results
will be derived; these conditions are generally satisfied for our problems of inter-
est. The tables further indicate the locations in the text where the results can
be found. Observe that all algorithms deliver exponential (i.e., linear) conver-
gence rates under strong convexity conditions, and that the size of the limiting
neighborhood depends on several factors including whether uniform sampling
or random reshuffling is used, whether the risk function is smooth or not, and
on whether mini-batch processing is employed. More results will be discussed in
future Chapters 19 through 22.

Remark 16.1. (Big-O and little-o notation) The results in the tables employ the
Big-O notation with its argument being either a sequence, such as λk, or a function
of the step-size parameter µ. We already explained in Remark 12.3 what the notation
means for sequences, namely, it compares the asymptotic growth rate of two sequences.
Thus, writing ak = O(bk), with a big O for a sequence bk with positive entries, means
that there exists some constant c > 0 and index ko such that |ak| ≤ cbk for k > ko.
This also means that the decay rate of ak is at least as fast or faster than bk. On
the other hand, the notation f(µ) ∈ O(g(µ)) for some positive function g(µ) means
that there exists a constant c independent of µ such that limµ→0 |f(µ)|/g(µ) ≤ c.
In a similar vein, using the little-o notation and writing f(µ) ∈ o(g(µ)) means that
limµ→0 |f(µ)|/g(µ) = 0. Using these definition, we note for example that

µ ∈ O(
√
µ ), 10µ ∈ O(µ), µ ∈ o(√µ ), µ2 ∈ o(µ), µ−1/2 ∈ o(µ−1) (16.107)

We will use the compact symbols O(g(µ)) and o(g(µ)) as placeholders for the more
explicit notation f(µ) ∈ O(g(µ)) and f(µ) ∈ o(g(µ)), respectively. Also, writing a(µ) ≤
b(µ) + o(g(µ)) means that there exists f(µ) ∈ o(g(µ)) such that a(µ) ≤ b(µ) + f(µ).

�

16.5 REGRET ANALYSIS

We will examine the convergence performance of stochastic approximation algo-
rithms in some detail in future chapters by studying the behavior of the mean-
square-error, E‖w̃n‖2, and the mean excess risk, EP (wn)− P (w?). In this sec-
tion, we comment on another approach for the study of these algorithms, which
is based on regret analysis. We explain the value of this type of analysis and also
some of its limitations.

We have already encountered the regret measure in earlier chapters — see,
e.g., expression (12.58) for the gradient-descent algorithm. The definition of the
regret needs to be adjusted for stochastic approximation methods. It is sufficient
to illustrate the construction for the case of smooth loss functions and for the
stochastic gradient algorithm.
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Consider the empirical risk minimization problem:

w?
∆
= argmin

w∈C

{
P (w)

∆
=

1

N

N−1∑

m=0

Q(w; γ(m), hm)

}
(16.108)

where Q(w, ·) is a smooth convex function over w, and where we are now adding
a constraint by requiring w to belong to some convex set C. The reason for the
addition of this constraint will become evident soon. One way to solve constrained
problems of this type is to resort to the stochastic projection method (16.96):

wn = PC

{
wn−1 − µ(n)∇wT Q(wn−1;γ(n),hn)

}
(16.109)

where, for generality, we are allowing for an iteration-dependent step-size, µ(n).
In this description, the operator PC(x) projects the vector x ∈ IRM onto the con-
vex set C. We already know from the non-expansive property (9.70) of projection
operators that

‖w − PC(x)‖ ≤ ‖w − x‖, for any x ∈ IRM , w ∈ C (16.110)

in terms of Euclidean distances.
Observe next that the gradient vector in (16.109) changes with n. We simplify

the notation and introduce

Qn(w)
∆
= Q(w; γ(n), hn) (16.111)

so that the stochastic algorithm can be rewritten more compactly as

wn = PC

{
wn−1 − µ(n)∇wT Qn(wn−1)

}
, n ≥ 0 (16.112)

For such stochastic optimization procedures, the average regret is defined directly
in terms of the loss function Qn(w; ·); this is in contrast to the earlier definition
in the gradient-descent case (12.57) where the regret was defined in terms of
the risk function itself. This is because the updates there involved the gradient
of the risk function whereas the updates here involve the gradient of the loss
function and sampled data points (γ(n), hn). Thus, for stochastic optimization
algorithms, we define the average regret that is based on a dataset of size N as
the difference between the accumulated loss and the smallest possible value for
it:

R(N)
∆
=

1

N

N−1∑

n=0

Qn(wn−1)−min
w∈C

{
1

N

N−1∑

n=0

Qn(w)

}
(16.113)

where the iterate wn−1 changes with the iteration index within the first sum. In
a manner similar to (16.108), we denote the minimizer for the rightmost term
in the above expression by w?. Observe that this term involves the samples



580 Stochastic Optimization

{γ(n), hn} that were used during the N iterations of the stochastic algorithms.
We then have

R(N)
∆
=

1

N

N−1∑

n=0

{
Qn(wn−1)−Qn(w?)

}
(16.114)

The boldface notation for R is meant to reflect the random nature of the regret
due to its dependence on the random iterates, {wn−1}. We will show below that,
in the process of bounding the regret, the weight iterates will disappear and we
will be able to bound the regret by some deterministic value.

The purpose of regret analysis is to examine how the regret evolves with N , for
any sequence of iterates {wn−1}. For example, if it can be shown that the average
regret decays to zero at the rate R(N) = O(1/

√
N), then this would imply the

desirable conclusion that, asymptotically, the average accumulated loss by the
algorithm is able to approach the smallest possible risk value. We can bound the
regret as follows.

Regret bound
First, we rewrite the stochastic gradient algorithm (16.112) in the following
equivalent form involving an intermediate variable zn:

{
zn = wn−1 − µ(n)∇wTQn(wn−1)

wn = PC(zn)
(16.115)

where, using property (16.110), it holds that

‖w −wn‖ ≤ ‖w − zn‖, for any w ∈ C (16.116)

Subtracting w? from both sides of the first relation in (16.115) gives

(w? − zn) = (w? −wn−1) + µ(n)∇wTQn(wn−1) (16.117)

Let w̃n = w?−wn. Squaring both sides of the above equation and using (16.116)
leads to

‖w̃n‖2 ≤ ‖w̃n−1‖2 + 2µ(n)
(
∇wT Q(wn−1)

)T
w̃n−1 +

µ2(n)‖∇wTQn(wn−1)‖2 (16.118)

Invoking the convexity of Q(w, ·) over w and using property (8.5) for convex
functions we have

Qn(wn−1)−Qn(w?) ≤ −
(
∇wT Qn(wn−1)

)T
w̃n−1 (16.119)
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Substituting into the regret expression (16.114), we obtain

NR(N) ≤ −
N−1∑

n=0

(
∇wT Qn(wn−1)

)T
w̃n−1

(16.118)

≤
N−1∑

n=0

{
1

2µ(n)

(
‖w̃n−1‖2 − ‖w̃n‖2

)
+
µ(n)

2
‖∇wT Qn(wn−1)‖2

}

=
1

2µ(0)
‖w̃−1‖2 −

1

2µ(N − 1)
‖w̃N−1‖2 +

1

2

N−1∑

n=1

( 1

µ(n)
− 1

µ(n− 1)

)
‖w̃n−1‖2 +

1

2

N−1∑

n=0

µ(n)‖∇wT Qn(wn−1)‖2 (16.120)

Introduce the two constants:

d
∆
= max

x,y∈C
‖x− y‖ (16.121a)

c
∆
= max

w∈C,0≤n≤N−1
‖∇wT Qn(w)‖ (16.121b)

where d is the largest distance between any two points in the convex set C, and c
is the largest norm of the gradient of the loss function over both C and the data.
Then, we can simplify the bound (16.120) on the regret function by noting that

NR(N) ≤ d2

2

{
1

µ(0)
+

N−1∑

n=1

(
1

µ(n)
− 1

µ(n− 1)

)}
+
c2

2

N−1∑

n=0

µ(n) (16.122)

and, consequently,

R(N) ≤ 1

N

{
d2

2µ(N − 1)
+
c2

2

N−1∑

n=0

µ(n)

}
(16.123)

Vanishing step-size
For illustration purposes, assume the step-size sequence decays as µ(n) = 1/

√
n+ 1.

Then,

N−1∑

n=0

µ(n) =

N∑

n=1

1√
n
≤ 1 +

ˆ N

1

1√
x
dx = 2

√
N − 1 (16.124)

and we arrive at

R(N) ≤ 1

N

{
d2
√
N

2
+
c2

2

(
2
√
N − 1

)}
(16.125)
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It follows that the average regret converges to zero as N →∞ at the rate

R(N) ≤ O(1/
√
N ) (16.126)

Constant step-size
On the other hand, when the step-size is constant, say, µ(n) = µ, then the bound
(16.123) leads to

R(N) ≤ O(1/N ) + O(µ) (16.127)

which shows that the average regret approaches a small value on the order of
µ and the convergence rate towards this region is O(1/N). We will encounter a
more detailed example of regret analysis in future Appendix 17.A when we apply
it to examine the performance of adaptive gradient algorithms.

There are at least two differences in the regret analysis approach in compar-
ison to the mean-square-error analysis performed in future chapters; see also
Prob. 16.2. First, the regret argument relies on a worst-case scenario in the sense
that the effect of the random trajectory {w̃−1, w̃0, . . . , w̃N−1} is removed com-
pletely by replacing their norms by d. Second, the size of the constants d and c
can be very large. For example, if we were to remove the constraint w ∈ C and
replace C by IRM , then the above argument would not carry through since d or
c will become unbounded.

16.6 COMMENTARIES AND DISCUSSION

Stochastic approximation theory. The idea of using data realizations to approximate
actual gradient or subgradient vectors is at the core of stochastic approximation theory.
According to Tsypkin (1971, p. 70) and Lai (2003), the pioneering work in the field is
the landmark paper by Robbins and Monro (1951), which developed a recursive method
for finding roots of functions, i.e., points w? where P (w?) = 0. Their procedure was
a variation of a scheme developed two decades earlier by von Mises and Pollaczek-
Geiringer (1929), and it can be succinctly described as follows. Consider a risk function
P (w), of a scalar parameter w, and assume P (w) is represented as the mean of some
loss function, say, in the form:

P (w)
∆
= EQ(w;x) (16.128)

Robbins and Monro (1951) argued that the root w? can be approximated by evaluating
the loss function at successive realizations xn and employing the update relation:

wn = wn−1 − µ(n)Q(wn−1;xn), n ≥ 0 (16.129)

where µ(n) is a step-size sequence that satisfies:

∞∑
n=0

µ(n) =∞,
∞∑
n=0

µ2(n) <∞ (16.130)
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They showed that the algorithm converges in the mean-square-error sense, and also in
probability, namely, E w̃2

n → 0 and, for any ε > 0:

lim
n→∞

P
(
|w̃n| ≥ ε

)
= 0 (16.131)

Stronger almost-sure convergence results were later given by Blum (1954), Dvoretzky
(1956), and Gladyshev (1965), among others, showing that under certain technical
conditions:

P
(

lim
n→∞

w̃n = 0
)

= 1 (16.132)

The same construction can be extended from root-finding to the solution of minimiza-
tion problems. Assume P (w) is convex and has a unique minimum at some location
w?. Then, finding w? is equivalent to finding the root of dP (w)/dw = 0, which suggests
using the stochastic gradient recursion:

wn = wn−1 − µ(n)
dQ(w;xn)

dw

∣∣∣∣
w=wn−1

(16.133)

Motivated by the work of Robbins and Monro (1951), an alternative stochastic con-
struction was proposed by Kiefer and Wolfowitz (1952) to solve minimization problems
from noisy measurements. Their procedure relies on the same general concept of us-
ing data to approximate unknown quantities but took a different form, namely, they
proposed using the recursion:

w+
n−1 = wn−1 + τ(n) (16.134a)

w−n−1 = wn−1 − τ(n) (16.134b)

∆Q(n) = Q(w+
n−1;xn)−Q(w−n−1;xn) (16.134c)

wn = wn−1 − µ(n)
∆Q(n)

τ(n)
(16.134d)

In this recursion, a first-order finite difference calculation is used to approximate the
derivative of Q(w) with τ(n) denoting the interval width. The nonnegative sequences
{µ(n), τ(n)} are chosen to tend asymptotically to zero and to satisfy the conditions:

∞∑
n=0

µ(n) =∞,
∞∑
n=0

(
µ(n)

τ(n)

)2

<∞ (16.135)

The work by Robbins and Monro (1951) generated tremendous interest in the statis-
tical, optimization, and engineering literature and led to many subsequent studies and
extensions. While their work dealt primarily with a scalar weight w, Blum (1954) and
Schmetterer (1961) extended the procedure to weight vectors. A description of these
developments can be found in the book by Wetherhill (1966). Further discussions on
stochastic approximation methods, including some detailed treatments of their con-
vergence properties, can be found in the works by Albert and Gardner (1967), Wasan
(1969), Mendel and Fu (1970), Tsypkin (1971), Ljung (1977), Kushner and Clark (1978),
Kushner (1984), Polyak (1987), Benveniste, Métivier, and Priouret (1990), Bertsekas
and Tsitsiklis (1997,2000), Kushner and Yin (2003), Spall (2003), Marti (2005), and
Sayed (2003,2008,2014a). The use of averaged iterates as in (16.52) was proposed in-
dependently by Ruppert (1988) and Polyak and Juditsky (1992).

Stochastic gradient and subgradient algorithms have become commonplace in online
inference and learning solutions for at least three reasons. First, the explosive interest
in large-scale and big data scenarios favors the use of simple algorithmic structures, of
which these methods are prime examples. Second, as shown in future chapters, these
algorithms are able to deliver solid performance guarantees, with the mean-square error
E ‖w̃n‖2 and the excess risk EP (wn)−P (w?) approaching small neighborhoods on the
order of O(µ). Third, and importantly, it is increasingly evident that employing more
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sophisticated optimization techniques do not necessarily ensure improved performance
— see, e.g., Bousquet and Bottou (2008) and Bottou (2012). This is because the as-
sumed data models or risk functions do not always capture faithfully the underlying
data structure anyway. In addition, the presence of noise in the data generally implies
that a solution that may be perceived to be optimal is actually sub-optimal due to the
perturbations in the data and models.

Adaline and Perceptron. During the 1950s, stochastic approximation theory did not re-
ceive much attention in the engineering community until the landmark work by Widrow
and Hoff (1960) in which they developed the delta or adaline recursion (16.32). Using
a target sequence γ(n), the algorithm enabled the adjusting of the weight parameter
wn in order to close the gap between the target signal and its prediction given by
γ̂(n) = hT

nwn−1. Their filter launched the design of adaptive systems with adjustable
structures and has found applications in a remarkable range of areas — see, e.g., the
treatments by Widrow and Stearns (1985), Haykin (2001), and Sayed (2003,2008). A
useful interpretation for the LMS algorithm (or delta rule) as the solution to a min-max
optimization problem was given by Hassibi, Sayed, and Kailath (1994a, 1996). The al-
gorithm was further studied by Sayed and Rupp (1996) and Sayed (2003,2008) using
energy arguments to establish several robustness properties.

Besides adaline and LMS, there have been other notable works on stochastic gradient
algorithms in the early 1960s. One example is the Perceptron algorithm (16.75), which
was developed by Rosenblatt (1957,1958,1962) for pattern classification problems and
which we will study in greater detail in future Chapter 60.

Early examples of stochastic approximation structures. There are other examples of
adjustable designs from the 1950s that bear resemblance to stochastic approximation
constructions. One such contribution are the works by Mattson (1959a,b) in the con-
text of pattern classifiers. According to Widrow and Hoff (1960, p. 97), these works
were among the first to apply adjustable structures to classification problems. How-
ever, unlike Rosenblatt (1957), the construction proposed in Mattson (1959b) was a
trial-and-error procedure based on varying the weight entries and a threshold value
until satisfactory performance is attained. There was no explicit optimization problem
guiding the design procedure. This is reflected in the description by Mattson (1959b),
where it is stated that “it is the purpose of this paper to define a model for a self-
organizing logical system which determines, by an iterative trial-and-error procedure,
the proper Boolean function for a process.”

According to the presentation in Sayed (2003,2008), another example of early work
on stochastic algorithms is a procedure that minimizes the mean-square error between
an input signal and a reference signal developed by Gabor, Wilby and Woodcock (1961);
their filter is described in Tsypkin (1971, p. 156). This latter reference also contains
on pages 172–173 commentaries on works on adaptation and learning during the early
sixties, including a description of a stochastic gradient algorithm by Sefl (1960) that
is the continuous-time counterpart of the delta or LMS rule; it employs a differential
update equation of the form

dw(t)

dt
= 2µ(t)h(t)

(
γ(t)− (h(t))Tw(t)

)
(16.136)

with continuous-time vector variables {w(t),h(t)} and scalar variables {γ(t), µ(t)}.
Other noteworthy works on stochastic gradient algorithms in the 1960s are those by
Applebaum (1966) and Widrow et al. (1967) on adaptive antenna arrays and Amari
(1967) on pattern classification. In Applebaum (1966), a stochastic gradient algorithm
is derived that is based on maximizing a signal-to-noise ratio measure, while Widrow
et al. (1967) focus on mean-square error performance and use the LMS algorithm. The
work by Amari (1967) uses a stochastic gradient recursion to learn the weight vector
in a pattern classification problem.

For further readings and discussion on online learning techniques, the reader may
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consult the books by Sayed (2003,2008, 2014a), Cesa-Bianchi and Lugosi (2006), Shalev-
Shwartz (2011), and Theodoridis (2015), and the articles by Bottou (1998,2012), Cesa-
Bianchi, Conconi, and Gentile (2004), Bottou and Bousquet (2008), Bach and Moulines
(2011), and Agarwal et al. (2012).

Zeroth-order learning algorithms. We can also develop stochastic versions for the
zeroth-order optimization algorithms described earlier in Appendix 12.A. In this case,
we would sample directional vectors u in order to approximate the gradient vector of
the loss (rather than the risk) function by using either instantaneous or mini-batch
calculations. For instance, the stochastic gradient algorithm (16.27) would be replaced
by listing (16.137) for instantaneous gradient approximations or by listing (16.138) for
mini-batch approximations. In either listing, we denote the distribution from which the
directional vectors u are sampled by fu(u); it can refer to either the Gaussian distribu-
tion Nu(0, IM ) or the uniform distribution U(S), as described by (12.213a)–(12.213b).

Zeroth-order stochastic gradient algorithm for minimizing (16.2a) or (16.2b)

given dataset {γ(m), hm}N−1
m=0 or streaming data (γ(n), hn);

given a small smoothing factor α > 0;
select the sampling distribution fu(u) and set β ∈ {1,M};
start from an arbitrary initial condition, w−1.
repeat until sufficient convergence over n ≥ 0 :

select at random or receive a sample (γ(n),hn) at iteration n;
sample u ∼ fu(u);

∇̂wTQ(wn−1;u) =
β

α

{
Q
(
wn−1 + αu;γ(n),hn

)
−Q

(
wn−1;γ(n),hn

)}
u

wn = wn−1 − µ ∇̂wT Q(wn−1;u)
end
return w? ← wn.

(16.137)

Zeroth-order mini-batch stochastic algorithm for minimizing (16.2a) or (16.2b)

given dataset {γ(m), hm}N−1
m=0 or streaming data (γ(n), hn);

given a mini-batch size, B;
given a small smoothing factor α > 0;
select the sampling distribution fu(u) and set β ∈ {1,M};
start from an arbitrary initial condition, w−1.
repeat until sufficient convergence over n ≥ 0 :

select at random or receive B samples {γ(b),hb}B−1
b=0 at iteration n;

sample direction u ∼ fu(u)

∇̂wTQ(wn−1;u)
∆
=

β

α

(
Q(wn−1 + αu;γ(b),hb)−Q(wn−1;γ(b),hb)

)
u

wn = wn−1 − µ
(

1

B

B−1∑
b=0

∇̂wT Q(wn−1;u)

)
end
return w? ← wn.

(16.138)

There are many variations by which the gradient vector of the loss function can be ap-
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proximated. The mini-batch listing assume that, for each iteration n, a single direction
u is sampled and used for all entries in the minibatch. Alternatively, we could consider
sampling J directions uj , computing the minibatch gradient approximation for each
one of them, and then averaging over the J directions, namely,



sample J directions uj ∼ fu(u), j = 0, 1, . . . , J − 1;
for each j, compute B gradients:

∇̂wTQ(wn−1;uj , b) =
β

α

{
Q
(
wn−1 + αuj ;γ(b),hb

)
−Q

(
wn−1;γ(b),hb

)}
uj

b = 0, 1, . . . , B − 1
end

set ∇̂wTQ(wn−1) =
1

J

J−1∑
j=0

{
1

B

B−1∑
b=0

∇̂wQ(wn−1;uj , b)

}
;

update wn = wn−1 − µ∇̂wTQ(wn−1).
(16.139)

Other constructions are possible.

Collaborative filtering. The stochastic gradient implementation (16.58) for solving the
matrix factorization problem (16.57) is motivated by the works of Funk (2006), Paterek
(2007), Takacs et al. (2007), and Koren (2008). The alternating least-squares version
described later in future Example 50.6 is motivated by Bell and Koren (2007a), Hu,
Koren, and Volinsky (2008), Zhou et al. (2008), and Pilaszy, Zibriczky, and Tikk (2010).
Most of these works were driven by the Netflix prize challenge, which was an open com-
petition during the period 2006-2009 offering a prize of 1 million US Dollars for the best
collaborative filtering solution to predict user ratings of movies — overviews appear in
Bell, Koren, and Volinsky (2007) and Bell and Koren (2007b). Netflix provided training
data consisting of over 100 million ratings from close to 500 thousand users for about 18
thousand movies. For more details on the Netflix challenge and on matrix factorization
methods, readers may consult the tutorial by Koren, Bell, and Volinsky (2009) and
the text by Symeonidis and Zioupos (2017). The stochastic gradient algorithm (16.58)
was also among the top solutions in the KDDCup 2011 challenge, which dealt with the
problem of recommending music items to users from the Yahoo music dataset. This
challenge released about 250 million ratings from over 1 million anonymized users —
see the account by Dror et al. (2012).

PROBLEMS

16.1 Consider an empirical risk minimization problem with uniform data sampling.
Given a finite number of data samples {(γ(0), h0), (γ(1), h1), . . . , (γ(N−1), hN−1)}, we
define discrete random variables {γ,h} that are generated according to the following
probability distribution:

P(γ = γ,h = h) =


1/N, if γ = γ(0), h = h0

1/N, if γ = γ(1), h = h1

...
...

1/N, if γ = γ(N − 1), h = hN−1
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Verify that, under this construction, it holds:

EQ(w;γ,h) =
1

N

N−1∑
m=0

Q(w; γ(m), hm)

Conclude that the solutions to the following stochastic and empirical risk problems
coincide:

wo
∆
= argmin

w∈IRM
EQ(w;γ,h) = argmin

w∈IRM

1

N

N−1∑
m=0

Q(w; γ(m), hm)
∆
= w?

16.2 Refer to the empirical risk minimization problem (16.2a) with minimizer de-
noted by w?. Assume the minimization is restricted over a bounded convex set, w ∈ C.
Refer further to the rightmost term in (16.113) in the definition of the average re-
gret. Assuming a stochastic gradient implementation, how does the minimizer of this
rightmost term compare to w??
16.3 Consider the `1−regularized mean-square-error risk:

wo = argmin
w∈IRM

{
α‖w‖1 + E (γ − hTw)2

}
(a) Write down a stochastic subgradient algorithm for its solution.
(b) Write down a stochastic proximal algorithm for the same problem.
(c) Write down a stochastic coordinate descent solution.
16.4 The total-variation denoising problem involves solving a regularized least-squares
problem of the following form:

min
w

{
α

M−1∑
m′=1

∣∣∣w[m′ + 1]− w[m′]
∣∣∣ +

1

N

N−1∑
m=0

(
γ(m)− hT

mw
)2
}

where the {w[m′]}, for m′ = 1, 2, . . . ,M , denote the individual entries of w ∈ IRM .
(a) Derive a stochastic subgradient solution for this problem.
(b) Derive a stochastic proximal solution for the same problem.
16.5 The fused LASSO problem adds `1−regularization to the total variation formu-
lation in Prob. 16.4 and considers instead

min
w

{
α1‖w‖1 + α2

M−1∑
m′=1

∣∣∣w[m′ + 1]− w[m′]
∣∣∣ +

1

N

N−1∑
m=0

(
γ(m)− hT

mw
)2
}

(a) Derive a stochastic subgradient solution for this problem.
(b) Derive a stochastic proximal solution for the same problem.
16.6 The group LASSO problem involves solving a regularized least-squares problem
of the following form. We partition each observation vector into K sub-vectors, say,
hm = col{hmk} for k = 1, 2, . . . ,K. We similarly partition the weight vector into K
sub-vectors, w = col{wk}, of similar dimensions to hmk. Now consider the problem:

min
w

α
K∑
k=1

‖wk‖ +
1

N

N−1∑
m=0

(
γ(m)−

K∑
k=1

hT
mkwk

)2


(a) Derive a stochastic subgradient solution for this problem.
(b) Derive a stochastic proximal solution for the same problem.
16.7 Consider a collection of N−data pairs {γ(m), hm} where γ(m) ∈ IR and hm ∈
IRM , and formulate the least-squares problem:

w? = argmax
w∈IRM

{
1

N

N−1∑
m=0

(
γ(m)− hT

mw
)2
}



588 Stochastic Optimization

One stochastic gradient method for minimizing this risk function can be devised as
follows (this method is known as a randomized Kaczmarz method):

select an index 0 ≤ n ≤ N − 1 at random
consider the corresponding data pair {γ(n),hn}
update wn = wn−1 +

hn
‖hn‖2

(γ(n)− hT
nwn−1)

Collect all vectors {hm} into the N ×M matrix H = row{hT
m} and all target values

into the N×1 vector d = col{γ(m)}. Assume H has full rank. Assume also the random
index n is selected according to the following importance sampling procedure P(n =
m) = ‖hm‖2/‖H‖2F. Note that the vectors hn are selected independently of each other
and of any other random variable in the problem. Let w? denote the solution to the
least-squares problem, i.e., it satisfies HTHw? = HTd, and introduce the weight-error
vector w̃n = w? −wn. Show that

E ‖w̃n‖2 ≤
(

1− σ2
min(H)

‖H‖2F

)
E ‖w̃n−1‖2, n ≥ 0

in terms of the smallest singular value of H. Remark. See the work by Strohmer and
Vershynin (2009), who studied this randomized version of a popular method by Kacz-
marz (1937) for the solution of linear systems of equations. The traditional Kaczmarz
method studied earlier in Prob. 12.34 cycles through the rows of H, whereas the ran-
domized version described here samples the rows of H at random as described above.
16.8 Continuing with Prob. 16.7, let w? denote the minimum-norm solution in the
over-parameterized case when N < M . Show that E ‖w̃n‖2 converges to zero.
16.9 Let {x(n), n = 1, . . . , N} denote N independent realizations with mean µ and
and finite variance, σ2

x = E (x(n) − µ)2 < ∞. Introduce the sample average µ̂N =
1
N

∑N
n=1 x(n).

(a) Verify that µ̂N = µ̂N−1 + 1
N

(
x(N)− µ̂N−1

)
with µ̂0 = 0 and N ≥ 1.

(b) Assume that the sample average is approximated recursively as follows (written
now as µN to distinguish it from µ̂N ):

µN = µN−1 + α(N)
(
x(N)− µN−1

)
, µ0 = 0, N ≥ 1

where the scalar sequence {α(n)} satisfies

0 ≤ α(N) < 1, lim
N→∞

α(N) = 0, lim
N→∞

N∑
n=1

α(n) =∞

We want to verify that µN tends to µ in probability. Let σ2
N denote the variance

of µN , i.e., σ
2
N = E (µN − EµN )2.

(b.1) Verify that (EµN − µ) = (1− α(N)) (EµN−1 − µ), N ≥ 1.
(b.2) Show that σ2

N satisfies σ2
N = (1− α(N))2σ2

N−1 + α2(N)σ2
x.

(b.3) Compare the recursion in (b.2) with (14.136) and conclude that σ2
N → 0 as

N →∞. Conclude also that EµN → µ as N →∞.
16.10 Consider the regularized logistic risk

P (w) = ρ‖w‖2 + E
{

ln
(

1 + e−γhTw
)}

where γ is a binary random variable assuming the values ±1 and Rh = EhhT. Let wo
denote the minimizer of P (w). Show that
(a) ‖wo‖ ≤ E ‖h‖/2ρ.
(b) ‖wo‖2 ≤ Tr(Rh)/4ρ2.



16.6 Commentaries and Discussion 589

16.11 Consider the mean-square-error cost P (w) = E (γ(n)−hT
nw)2, where γ(n) de-

notes a streaming sequence of zero-mean random variables with variance σ2
γ = Eγ2(n)

and hn ∈ IRM is a streaming sequence of independent zero-mean Gaussian random vec-
tors with covariance matrix Rh = EhnhT

n > 0. Both processes {γ(n),hn} are assumed
to be jointly wide-sense stationary. The cross-covariance vector between γ(n) and hn
is denoted by rhγ = Eγ(n)hn. The data {γ(n),hn} are assumed to be related via a
linear regression model of the form γ(n) = hT

nw
•+ v(n), for some unknown parameter

vector w•, and where v(n) is a zero-mean white-noise process with power σ2
v = Ev2(n)

and assumed independent of hm for all n,m.
(a) Let wo denote the minimizer for P (w). Show that wo = w•.
(b) Consider the stochastic gradient algorithm for estimating wo from streaming data,

wn = wn−1 + 2µhn(γ(n)− hT
nwn−1). Let w̃n = wo −wn. Verify that

w̃n = (1− 2µhnh
T
n)w̃n−1 + 2µhnv(n)

(c) Determine a necessary and sufficient condition on µ to ensure convergence in the
mean, i.e., for E w̃n → 0 as n→∞.

(d) Determine a recursion for E ‖w̃n‖2.
(e) Find a necessary and sufficient condition on µ to ensure that E ‖w̃n‖2 converges.

How does this condition compare to the one in part (c)?
(f) Find an expression for the limiting value of E ‖w̃n‖2 (also referred to as the

mean-square-deviation (MSD) of the algorithm).
16.12 Consider the same setting of Prob. 16.11 albeit with Rh = σ2

hIM . Assume the
limits exist and define the mean-square-deviation (MSD) and excess mean-square-error
(EMSE) figures of merit:

MSD = lim
n→∞

E ‖w̃n‖2, EMSE = lim
n→∞

E |hT
nw̃n−1|2

(a) Verify that P (wo) = σ2
v and R(wn−1) = R(wo)+EMSE. Justify the name “excess

mean-square-error.”
(b) Determine expressions for the MSD and EMSE.
(c) Define the convergence time, K, as the number of iterations it takes for the mean-

square-error, P (wn−1), to be within ε% of its steady-state value. Find a closed
form expression for K.

16.13 Consider the regret bound (16.123) and assume µ(n) = 1/(n + 1). At what
rate does the regret approach its limiting behavior?
16.14 Consider a stochastic gradient recursion of the form:

wn = wn−1 + µ(n)hn
(
γ(n)− hT

nwn−1

)
where γ(n) ∈ IR and hn ∈ IRM . The step-size µ(n) is an independent and identically
distributed (i.i.d.) random process with mean µ̄ and variance σ2

µ. The feature vectors
{hn} are i.i.d. Gaussian with zero mean and covariance matrix Rh = σ2

hIM > 0.
Moreover, the data {γ(n),hn} is assumed to arise from the stationary data model
γ(n) = hT

nw
o + v(n), where hn and v(m) are independent of each other for all n and

m. The variance of the zero-mean process v(n) is denoted by σ2
v. In addition, the step-

size variable µ(n) is assumed to be independent of all random variables in the learning
algorithm for any time instant.
(a) Determine conditions to ensure mean convergence of wn towards wo.
(b) Determine a recursion for E ‖w̃n‖2, where w̃n = wo −wn.
(c) Determine conditions to ensure the convergence of E ‖w̃n‖2 to a steady-state

value.
(d) Use the recursion of part (b) to determine an exact closed-form expression for

the limiting mean-square-deviation (MSD) of the algorithm, which is defined as
the limiting value of E ‖w̃n‖2 as n→∞.

(e) Determine an approximation for the MSD metric to first-order in µ̄.
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(f) Determine an approximation for the convergence rate to first-order in µ̄.
(g) Assume µ(n) is Bernoulli and assumes the values µ and 0 with probabilities p

and 1−p, respectively. What are the values of µ̄ and σ2
µ in this case? Consider the

alternative stochastic gradient implementation with µ(n) replaced by a constant
value µ. How do the MSD values for these two implementations, with µ(n) and
µ, compare to each other?

16.15 Consider the stochastic mirror descent algorithm and apply it to the solution
of the following optimization problem:

w? = argmin
w∈C∩Cφ

1

N

N−1∑
n=0

Qn(w)

Here, each loss term Qn(w) : IRM → IR is convex over C and δ−Lipschitz relative
to some norm ‖ · ‖. Observe that in this case the objective function is the average of
several loss values changing with n. Consider a mirror function φ(w) : Cφ → IR that is
ν−strongly convex relative to the same norm, and where C ⊂ C̄φ. Repeat the argument
used in the proof of Theorem 15.5 to show that

0 ≤ 1

N

N−1∑
n=0

(
Qn(wn−1)−Qn(w?)

)
≤ 1

Nµ
Dφ(w?, w−1) +

µ

2Nν

N−1∑
n=0

‖gn‖2?

where gn is a subgradient for Qn(w) at wn−1 and ‖ · ‖? is the dual norm.
16.16 Continuing with the setting of Prob. 16.15, assume ‖ · ‖ is the `1−norm and
δ = 1. Choose φ(x) as the negative entropy function for which we already know from
the discussion in the body of the chapter that ν = 1. Choose w−1 = 1

M
1 and µ =√

(2/N) lnM . Conclude that

0 ≤ 1

N

N−1∑
n=0

(
Qn(wn−1)−Qn(w?)

)
≤
√

2 lnM

N

16.A SWITCHING EXPECTATION AND DIFFERENTIATION

We encountered in the body of the chapter instances where it is necessary to switch the
order of the expectation and differentiation operators. The switching can be justified
by appealing to the dominated convergence theorem from measure theory, which we
state under conditions that are sufficient for our purposes.

Dominated convergence theorem (e.g., Rudin (1976), Royden (1988)). Assume
Rn(x) is a sequence of real-valued functions parameterized by n and converging
pointwise to a limit as n→∞. Assume that Rn(x) is dominated by another function
independent of n, i.e., |Rn(x)| ≤ a(x) for all x ∈ D in the domain of Rn(x) and
where a(x) is integrable, i.e.,

´
D
a(x)dx <∞. Then, it holds that

lim
n→∞

(ˆ
D

Rn(x)dx

)
=

ˆ
D

(
lim
n→∞

Rn(x)
)
dx (16.140)

That is, we can switch the limit and integral signs.

We can use the above result to justify exchanging derivatives (which are limit opera-
tions) with expectations (which are integral operations). We provide three statement
variations that lead to similar conclusions under related but different conditions. In
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the proofs, we follow the same line of reasoning that is used to establish the classical
Leibniz integral rule from calculus for the derivative of an integral expression by means
of the dominated convergence theorem — see, e.g., Natanson (1961), Buck (1965), He-
witt and Stromberg (1969), Dieudonné (1969), Apostol (1974), Lewin (1987), Bartle,
(1995), Troutman (1996), or Norris (2013).

Theorem 16.1. (Switching expectation and gradient operations I) Consider a func-
tion Q(w;x) : IRM × IRP → IR, where x is a random vector. Assume Q is first-order
differentiable with respect to w, and that for any w ∈ domQ(w;x) there exists a function
b(w;x) : IRM × IRP → [0,∞) satisfying E b(w;x) <∞ and

‖∇w Q(w + δw;x)‖ ≤ b(w;x), for any ‖δw‖ ≤ ε (16.141)

Then, assuming the expectations over the distribution of x exist, it holds that

∇w
(
EQ(w;x)

)
= E

(
∇w Q(w;x)

)
(16.142)

Proof: The argument is motivated by the discussion in Hewitt and Stromberg (1969,
pp.172–173), Bartle (1995, Corollary 5.7), and also by the derivation used in the proof
of Theorem 3.5.1 from Norris (2013) extended to vector variables. Let w[m] denote
the m−th entry of w ∈ IRM . Then, from the definition of the gradient vector of a
multi-variable function we know that:

∇wT EQ(w;x)
∆
= col

{
∂EQ(w;x)

∂w[1]
,
∂EQ(w;x)

∂w[2]
, . . . ,

∂EQ(w;x)

∂w[M ]

}
(16.143)

We establish result (16.142) by considering the individual entries of the gradient vector.
Let α > 0 denote a small positive scalar and let em denote the m−th basis vector in
IRM with all its entries equal to zero except for the m−th entry, which is equal to one.
According to the definition of the differentiation operation, we have

∂EQ(w;x)

∂w[m]
= lim

α→0

1

α

(
EQ(w + αem;x) − EQ(w;x)

)
= lim

α→0

1

α
E
(
Q(w + αem;x) − Q(w;x)

)
(a)
= lim

α→0

1

α
E
(
∇w Q(w + tmαem;x)

)T
αem

(b)
= lim

α→0
E
(
∂Q(w + tmαem;x)

∂w[m]

)
(16.144)

for some constant tm ∈ (0, 1). Equality (a) holds because of the mean-value theorem,
while equality (b) holds because the elements in em are all zero except for the m−th
entry. We next introduce the function

gm(w;x)
∆
=

∂Q(w;x)

∂w[m]
(16.145)

so that (16.144) becomes

∂EQ(w;x)

∂w[m]
= lim

α→0
E gm(w + tmαem;x) = lim

α→0

(ˆ
x∈D

gm(w + tmαem;x)fx(x)dx

)
(16.146)

where D is the domain of x. Now consider any scalar sequence α(n) → 0. We define
α(n)em ∈ IRM as the vector in which all the elements are zero except for the m−entry
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set to α(n). With this notation, expression (16.144) becomes

∂EQ(w;x)

∂w[m]
= lim

n→+∞

(ˆ
x∈D

gm
(
w + tmα

(n)em;x
)
fx(x)dx

)
(16.147)

Next, we define

Rn(x;w)
∆
= gm

(
w + tmα

(n)em;x
)
fx(x), w ∈ dom(Q) (16.148)

In Rn(x;w), the symbol x is the variable and w is a parameter. The function Rn(x;w)
is dominated. Indeed, using condition (16.141) we have

∣∣∣gm(w + tmα
(n)em;x

)∣∣∣ =

∣∣∣∣∣∣
∂Q
(
w + tmα

(n)em;x
)

∂w[m]

∣∣∣∣∣∣
≤
∥∥∥∇w Q(w + tmα

(n)em;x
)∥∥∥

≤ b(w;x) (16.149)

for any n ≥ No whereNo is sufficiently large. Therefore, for any x ∈ D and w ∈ dom(Q),
it holds that

|Rn(x;w)| ≤ b(w;x)fx(x) (16.150)

Since, by assumption, E b(w;x) < +∞, we know that b(w;x)fx(x) is integrable. Finally,
applying the dominated convergence theorem, we know that for any w ∈ dom (Q), it
holds that

lim
n→+∞

ˆ
x∈D

Rn(x;w)dx =

ˆ
x∈D

lim
n→+∞

Rn(x;w)dx

=

ˆ
x∈D

∂Q(w;x)

∂w[m]
fx(x)dx

= E
(
∂Q(w;x)

∂w[m]

)
(16.151)

which also implies from (16.147) that

∂EQ(w;x)

∂w[m]
= E

(
∂Q(w;x)

∂w[m]

)
(16.152)

From (16.143) and (16.152) we arrive at (16.142).
�

We state a second related variation of the theorem, which holds when ∇wQ(w;x) is
continuous in w and the distribution of x is such that the means of the absolute entries
of ∇wQ(w;x) are bounded — see, e.g., the statement for the dominated convergence
theorem for bounded functions in Natanson (1961), Luxemburg (1971), Lewin (1987),
and the brief note by Ene (1999). We continue with the same notation used in the proof
of the previous version.
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Theorem 16.2. (Switching expectation and gradient operations II) Consider a func-
tion Q(w;x) : IRM × IRP → IR, where x is a random vector. Assume Q is first-order
differentiable with respect to w, ∇w Q(w;x) is continuous over w, and

E
∣∣∣∣∂Q(w;x)

∂w[m]

∣∣∣∣ < +∞, m = 1, 2, . . . ,M (16.153)

Then, it holds that

∇w
(
EQ(w;x)

)
= E

(
∇w Q(w;x)

)
(16.154)

where the expectations are over the distribution of x.

Proof: We repeat similar arguments, We start from (16.146):

∂EQ(w;x)

∂w[m]
= lim

α→0
E gm(w + tmαem;x) = lim

α→0

(ˆ
x∈D

gm(w + tmαem;x)fx(x)dx

)
(16.155)

Since ∇w Q(w;x) is continuous with respect to w, we know that gm(w;x) is continuous
with respect to w. Using the same sequence α(n) defined in the previous proof, this
property implies that

lim
α→0

gm
(
w + tmα

(n)em;x
)

= gm(w;x) (16.156)

which also means that for any ε > 0, there exists a positive integer No such that for all
n > No, it holds that ∣∣∣gm(w + tmα

(n)em;x
)
− gm(w;x)

∣∣∣ < ε (16.157)

As a result, for any n > No, we have∣∣∣gm(w + tmα
(n)em;x

)∣∣∣ =
∣∣∣gm(w + tmα

(n)em;x
)
− gm(w;x) + gm(w;x)

∣∣∣
=

∣∣∣gm(w + tmα
(n)em;x

)
− gm(w;x)

∣∣∣ + |gm(w;x)|
(16.157)

≤ |gm(w;x)| + ε (16.158)

Next, we define, for any w ∈ dom(Q),

Rn(x;w)
∆
= gm

(
w + tmα

(n+N)em;x
)
fx(x) (16.159a)

b(w;x)
∆
= (|gm(w;x)| + ε) fx(x) (16.159b)

It follows from (16.158) and the fact that fx(x) ≥ 0 that |Rn(x)| ≤ b(w;x) for all n.
Moreover, under assumption (16.153):

ˆ
x∈D

b(w;x)dx =

ˆ
x∈D

(|gm(w;x)| + ε) fx(x)dx

= ε+

ˆ
x∈D
|gm(w;x)| fx(x)dx

= ε+ E
∣∣∣∣∂Q(w;x)

∂w[m]

∣∣∣∣ < +∞ (16.160)

which implies that b(w;x) is integrable. We conclude that Rn(x) is dominated by an
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integrable function b(w;x). Using (16.155) and the dominated convergence theorem we
know that for any w ∈ domQ, it holds that

∂EQ(w;x)

∂w[m]
= lim
n→+∞

ˆ
x∈D

Rn(x;w)dx

=

ˆ
x∈D

lim
n→+∞

Rn(x;w)dx

=

ˆ
x∈D

lim
n→+∞

gm
(
w + tmα

(n+N)em;x
)
fx(x)dx

=

ˆ
x∈D

gm(w;x)fx(x)dx

=

ˆ
x∈D

∂Q(w;x)

∂w[m]
fx(x)dx

= E
(
∂Q(w;x)

∂w[m]

)
(16.161)

From this result and (16.143) we arrive at (16.154).
�

A straightforward corollary follows if the random variable x takes values in a compact
(i.e., closed and bounded) set.

Corollary 16.1. (Switching expectation and gradient operations III) Consider a
function Q(w;x) : IRM × IRP → IR, where x is a random vector variable taking on
values in a compact set, D. Assume Q is first-order differentiable with respect to w and
∇w Q(w;x) is continuous with respect to w and x, respectively. Then, it holds that

∇w
(
EQ(w;x)

)
= E

(
∇w Q(w;x)

)
(16.162)

where the expectations are over the distribution of x.

Proof: Recall that gm(w;x) = ∂Q(w;x)/∂w[m], which is continuous with respect to x
since we are assuming that ∇wQ(w;x) is continuous with respect to x. Now, given that
x is defined over a compact set, we know that

|gm(w;x)| < C, ∀ x ∈ D (16.163)

Therefore, it holds that

ˆ
x∈D
|gm(w;x)|fx(x)dx ≤ C

(ˆ
x∈D

fx(x)dx

)
= C < +∞. (16.164)

In other words, the expectation E |gm(w;x)| = E |∂Q(w;x)/∂w[m]| exists for any m ∈
{1, · · · ,M}. Since all conditions of Theorem 16.2 are satisfied, we conclude that (16.162)
holds.

�

There are similar results allowing the exchange of expectation and subgradient opera-
tions when the function Q(w;x) is non-differentiable at some locations. The proof of
the following statement is given in Rockafellar and Wets (1981, Eq. 20) and also Wets
(1989, Prop. 2.10).
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Lemma 16.1. (Switching expectation and subgradient operations) Consider a convex
function Q(w;x) : IRM × IRP → IR, where x is a random vector variable, and assume
EQ(w;x) is finite in a neighborhood of w where the subgradient is computed. Then, it
holds that

∂w
(
EQ(w;x)

)
= E

(
∂w Q(w;x)

)
(16.165)

where ∂w refers to the subdifferential operator.

REFERENCES

Agarwal, A., P. L. Bartlett, P. Ravikumar, and M. J. Wainwright (2012), “Information-
theoretic lower bounds on the oracle complexity of convex optimization,” IEEE
Trans. Inf. Thy,, vol. 58, no. 5, pp. 3235–3249.

Albert, A. E. and L. A. Gardner (1967), Stochastic Approximation and Nonlinear Re-
gression, MIT Press, Cambridge, MA.

Amari, S. I. (1967), “A theory of adaptive pattern classifiers,” IEEE Trans. Elec. Com-
put., vol. 16, pp. 299–307.

Apostol, T. (1974), Mathematical Analysis, 2nd edition, Addison-Wesley, Reading, MA.
Applebaum, S. P. (1966), Adaptive Arrays, Rep. SPLTR 66-1, Syracuse University
Research Corporation.

Bach, F. and E. Moulines (2011), “Non-asymptotic analysis of stochastic approxima-
tion algorithms for machine learning,” Proc. Advances Neural Information Processing
Systems (NIPS), pp. 451–459, Granada, Spain, 2011.

Bartle, R. G. (1995), The Elements of Integration and Lebesgue Measure, Wiley, NY.
Bell, R. and Y. Koren (2007a), “Scalable collaborative filtering with jointly derived
neighborhood interpolation weights,” Proc. IEEE International Conference on Data
Mining (ICDM), pp. 43–52, Omaha, NE.

Bell, R. and Y. Koren (2007b), “Lessons from the Netflix prize challenge,” ACM SIGKDD
Explorations Newsletter, vol. 9, no. 2, pp. 75–79.

Bell, R., Y. Koren, and C. Volinsky (2007), “The BellKor solution to the Netflix Prize,”
available at https://www.netflixprize.com/assets/ProgressPrize2007_KorBell.pdf

Benveniste, A., M. Métivier, and P. Priouret (1987), Adaptive Algorithms and Stochastic
Approximations, Springer-Verlag, NY.

Bertsekas, D. P. and J. N. Tsitsiklis (1996), Neuro-Dynamic Programming, Athena
Scientific, MA.

Bertsekas, D. P. and J. N. Tsitsiklis (1997), Parallel and Distributed Computation:
Numerical Methods, Athena Scientific, Singapore.

Bertsekas, D. P. and J. N. Tsitsiklis (2000), “Gradient convergence in gradient methods
with errors,” SIAM J. Optim., vol. 10, no. 3, pp. 627–642.

Blum, J. R. (1954), “Multidimensional stochastic approximation methods,” Ann. Math.
Stat., vol. 25, pp. 737–744.

Bottou, L. (1998), “Online algorithms and stochastic approximations,” in Online Learn-
ing and Neural Networks, D. Saad, Ed., Cambridge University Press.

Bottou, L. (2012), “Stochastic gradient descent tricks,” in Neural Networks: Tricks of
the Trade, G. Montavon, G. B. Orr, and K-R. Muller, Eds., 2nd edition, Lecture
Notes in Computer Science, vol. 7700, pp. 421–436, Springer, NY.

Bottou, L. and O. Bousquet (2008),“The tradeoffs of large scale learning,” Proc. Ad-
vances Neural Information Processing Systems (NIPS), vol. 20, pp. 161–168, Van-
couver, Canada.

Bousquet, O. and L. Bottou (2008), “The tradeoffs of large scale learning,” in Proc.
Advances Neural Information Processing Systems, (NIPS), pp. 161–168, Vancouver,
BC.

Buck, R. C. (1965), Advanced Calculus, McGraw-Hill, NY.



596 Stochastic Optimization

Cesa-Bianchi, N., A. Conconi, and C. Gentile (2004), “On the generalization ability of
on-line learning algorithms,” IEEE Trans. Inf. Thy, vol. 50, no. 9, pp. 2050–2057.

Cesa-Bianchi, N. and G. Lugosi (2006), Prediction, Learning, and Games, Cambridge
University Press.

Dieudonné, J. (1969), Foundations of Modern Analysis, vol. 1, Academic Press, NY.
Dror, G., N. Koenigstein, Y. Koren, and M. Weimer (2012), “The Yahoo! music dataset
and KDDCup 11,” Journal of Machine Learning Research, vol. 18, pp. 8–18, 2012.

Dvoretzky, A. (1956), “On stochastic approximation,” Proc. 3rd Berkeley Symp. Math.
Statist. Probab., vol. 1, pp. 39–56, University of California Press.

Ene, V. (1999), “Some queries concerning convergence theorems,” Real Anal. Exchange,
vol. 25, no. 2, pp. 955–958.

Funk, S. (2006), “Netflix update: Try this at home,” blog post available at the link
https://sifter.org/ simon/journal/20061211.html

Gabor, D., W. P. Z. Wilby, and R. Woodcock (1961), “An universal nonlinear filter,
predictor, and simulator which optimizes itself by a learning process,” Proc. IEE,
vol. 108, no. 40, pp. 422-436.

Gladyshev, E. G. (1965), “On stochastic approximations,” Theory of Probability and its
Applications, vol. 10, pp. 275–278.

Hassibi, B., A. H. Sayed and T. Kailath (1994a), “H∞−optimality criteria for LMS and
backpropagation,” Proc. Advances Neural Information Processing Systems (NIPS),
vol. 6, pp. 351–358, Denver, CO.

Hassibi, B., A. H. Sayed, and T. Kailath (1996), “H∞-optimality of the LMS algorithm,”
IEEE Trans. Signal Processing, vol. 44, no. 2, pp. 267–280.

Haykin, S. (2001), Adaptive Filter Theory, 4th edition, Prentice Hall, NJ.
Hewitt, E. and K. Stromberg (1969), Real and Abstract Analysis, Springer Verlag.
Hu, Y. F., Y. Koren, and C. Volinsky (2008), “Collaborative filtering for implicit feed-
back datasets,” Proc. IEEE International Conference on Data Mining (ICDM), pp.
263–272, Pisa, Italy.

Kaczmarz, S. (1937), “Angenäherte Auflösung von Systemen linearer Gleichungen,”
Bull. Int. Acad. Polon. Sci. Lett. A, pp. 335–357.

Kiefer, J. and J. Wolfowitz (1952), “Stochastic estimation of the maximum of a regres-
sion function,” The Annals of Mathematical Statistics, vol. 23, no. 3, pp. 462–466.

Koren, Y. (2008), “Factorization meets the neighborhood: A multifaceted collabora-
tive filtering model,” Proc. ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 426–434, Las Vegas, NV.

Koren, Y., R. Bell, and C. Volinsky (2009), “Matrix factorization techniques for recom-
mender systems,” Computer, vol. 42, no. 8, pp. 30–37.

Kushner, H. J. (1984), Approximation and Weak Convergence Methods for Random
Processes, with Applications to Stochastic System Theory, MIT Press, Cambridge,
MA.

Kushner, H. J. and D. S. Clark (1978), Stochastic Approximation for Constrained and
Unconstrained Systems, Springer-Verlag, NY.

Kushner, H. J. and G. G. Yin (2003), Stochastic Approximation and Recursive Algo-
rithms and Applications, Springer, NY.

Lai, T. L. (2003), “Stochastic approximation,” Annals of Statistics, vol. 31, no. 2, pp.
391–406.

Lewin, J. W. (1987), “Some applications of the bounded convergence theorem for an
introductory course in analysis,” The American Mathematical Monthly, vol. 94, no.
10, pp. 988–993.

Ljung, L. (1977), “Analysis of recursive stochastic algorithms,” IEEE Trans. Automat.
Contr., vol. 22, pp. 551–575.

Luxemburg, W. A. J. (1971), “Arzelà’s dominated convergence theorem for the Riemann
integral,” Amer. Math. Monthly, vol. 78, pp. 970–979.

Norris, J. R. (2013), Probability and Measure, unpublished notes. Available online at
http://www.statslab.cam.ac.uk/ james/Lectures/pm.pdf

Marti, K. (2005), Stochastic Optimization Methods, Springer, NY.



16.A Switching Expectation and Differentiation 597

Mattson, R. L. (1959a), The Design and Analysis of an Adaptive System for Statitiscal
Classification, S. M. Thesis, MIT.

Mattson, R. L. (1959b), “A self-organizing binary system,” Proc. Eastern Joint IRE-
AIEE-ACM Computer Conference, pp. 212–217, Boston, MA.

Mendel, J. M. and K. S. Fu (1970), Adaptive, Learning, and Pattern Recognition Sys-
tems: Theory and Applications, Academic Press, NY.

Natanson, I. P. (1961), Theory of Functions of a Real Variable, 2nd edition, Frederick
Ungar Publishing Co., NY.

Paterek, A. (2007), “Improving regularized singular value decomposition for collabora-
tive filtering,” Proc. KDD Cup and Workshop, pp. 39–42, ACM Press.

Pilaszy, I., D. Zibriczky, and D. Tikk (2010), “Fast ALS-based matrix factorization
for explicit and implicit feedback datasets,” Proc. ACM conference on Recommender
Systems, pp. 71–78, Barcelona, Spain.

Polyak, B. T. (1987), Introduction to Optimization, Optimization Software, NY.
Polyak, B. T. and A. Juditsky (1992), “Acceleration of stochastic approximation by
averaging,” SIAM J. Control and Optim., vol. 30, no. 4, pp. 838–855.

Robbins, H. and S. Monro (1951), “A stochastic approximation method,” Ann. Math. Stat.,
vol. 22, pp. 400–407.

Rockafellar, R. T. and R. Wets (1981), “On the interchange of sudifferentiation and
conditional expectation for convex functionals,” International Institute for Applied
Systems Analysis, IIASA working paper WP-81-089, Laxenburg, Austria.

Rosenblatt, F. (1957), The Perceptron: A Perceiving and Recognizing Automaton, Tech-
nical Report 85-460-1, Project PARA, Cornell Aeronautical Lab.

Rosenblatt, F.(1958), “The Perceptron: A probabilistic model for information storage
and organization in the brain,” Psychological Review, vol. 65, no. 6, pp. 386–408.

Rosenblatt, F. (1962), Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms, Spartan Press, Washington, DC.

Royden, H. L. (1988), Real Analysis, Prentice Hall, NJ.
Rudin, W. (1976), Principles of Mathematical Analysis, 3rd edition, McGraw-Hill, NY.
Ruppert, D. (1988), Efficient Estimation From a Slowly Convergent Robbins-Monro
Process, Technical Report 781, Cornell University, School of Operations Research
and Industrial Engineering.

Sayed, A. H. (2003), Fundamentals of Adaptive Filtering, Wiley, NJ.
Sayed, A. H. (2008), Adaptive Filters, Wiley, NJ.
Sayed, A. H. (2014a), Adaptation, Learning, and Optimization over Networks, Founda-
tions and Trends in Machine Learning, NOW Publishers, vol. 7, no. 4–5, pp. 311–801.

Sayed, A. H. and M. Rupp (1996),“Error energy bounds for adaptive gradient algo-
rithms,” IEEE Trans. Signal Processing, vol. 44, no. 8, pp. 1982–1989.

Schmetterer, L. (1961), “Stochastic approximation,” Proc. Berkeley Symp. Math. Statist.
Probab., pp. 587–609, Berkeley, CA.

Sefl, O. (1960), “Filters and predictors which adapt their values to unknown parameters
of the input process,” Trans. 2nd Conference on Information Theory, Czechoslovak
Academy of Sciences, Prague.

Shalev-Shwartz, S. (2011), “Online learning and online convex optimization,” Founda-
tions and Trends in Machine Learning, vol. 4, no. 2, pp. 107–194.

Spall, J. C. (2003), Introduction to Stochastic Search and Optimization: Estimation,
Simulation and Control, Wiley, NJ.

Strohmer, T. and R. Vershynin (2009), “A randomized Kaczmarz algorithm with ex-
ponential convergence,” J. Fourier Analysis and Applications, vol. 15, no. 2, pp.
262–278.

Symeonidis, P. and A. Zioupos (2017), Matrix and Tensor Factorization Techniques for
Recommender Systems, Springer, NY.

Takacs, G., I. Pilaszy, B. Nemeh, and D. Tikk (2007), “Major components of the gravity
recommendation system,” SIGKDD Explorations, vol. 9, pp. 80–84.

Theodoridis, S. (2015), Machine Learning: A Bayesian and Optimization Perspective,
Academic Press.



598 Stochastic Optimization

Troutman, J. L. (1996), Variational Calculus and Optimal Control, Springer, NY.
Tsypkin, Y. Z. (1971), Adaptation and Learning in Automatic Systems, Academic Press,
New York.

von Mises, R. and H. Pollaczek-Geiringer (1929), “Praktische verfahren der gleichungs-
auflösung,” Z. Agnew. Math. Mech., vol. 9.

Wasan, M. T. (1969), Stochastic Approximation, Cambridge University Press, London.
Wetherhill, G. B. (1966), Sequential Methods in Statistics, Methuen, London.
Wets, R. (1989), “Stochastic programming,” in Handbook for Operations Research and
Management Sciences, G. Nemhauser and A. Rinnnooy Kan, Eds., vol. 1, pp. 573–
629.

Widrow, B. and M. E. Hoff (1960), “Adaptive switching circuits,” IRE WESCON
Conv. Rec., Institute of Radio Engineers, pt. 4, pp. 96–104.

Widrow, B., P. Mantey, L. J. Griffiths, and B. Goode (1967), “Adaptive antenna sys-
tems,” Proc. IEEE, vol. 55, no. 12, pp. 2143–2159.

Widrow, B. and S. D. Stearns (1985), Adaptive Signal Processing, Prentice Hall, NJ.
Zhou, Y., D. Wilkinson, R. Schreiber, and R. Pan (2008), “Large-scale parallel col-
laborative filtering for the Netflix prize,” in Algorithmic Aspects in Information and
Management, pp. 337–348, Springer, NY.


