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12.1

12.1.1

GRADIENT DESCENT METHOD

The gradient-descent method is the backbone of learning algorithms. It is a
powerful iterative procedure that allows us to approach minimizers of objec-
tive functions when closed-form expressions for these minimizers are not pos-
sible. Several variations will be described in this and the following chapters.
We focus initially on objective functions that are first-order differentiable. In
subsequent chapters we consider non-smooth functions that may have points of
non-differentiability and introduce subgradient and proximal algorithms for their
minimization. Although gradient-descent algorithms can be applied to both con-
vex and non-convex functions, we will focus largely on convex objectives and
examine their convergence properties. Later, in Chapter 24, we consider non-
convex optimization problems.

EMPIRICAL AND STOCHASTIC RISKS

We consider an optimization problem of the following generic form:

x & argmin P(w) (12.1)

welRM

w

where P(w) refers to the objective function that we wish to minimize, w € RM is
the independent variable, and w* denotes a minimizing argument. In the context
of learning algorithms, objective functions are called risks because they provide
a measure of how much error or risk is incurred in using a solution w to make
inference decisions.

Empirical Risks

The results in this chapter are applicable to convex risk functions, P(w). In
learning problems, P(w) will generally be some function of N data points denoted
by the notation {y(m), hm, m =0,1,..., N—1}, where v € IR is a scalar referred
to as the target or label variable and h € IR is a vector referred to as the feature
vector. In particular, P(w) will often take the form of a sample average over this
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data, written as
| Nl

P(w) = + mzo Q(w;'y(m), hm), y(m) € R, hn, € RM (12.2)
for some convex function Q(w; -, -), referred to as the loss. The value Q(w;y(m), hu,)
represents the loss at the m—th data pair (y(m), hy, ). When P(w) has the sample
average form (12.2), we refer to it as an empirical risk; one that is defined directly
from data measurements. In this way, problem (12.1) becomes an empirical risk
minimization (ERM) problem of the form:

N-1
*

1
w* = argmin — Z Q(w;fy(m),hm> (empirical risk minimization)
welRM N m=0

>

(12.3)
We will encounter several choices for the loss function in future chapters such
as:

q(w) + (y(m) = hyw)?, (quadratic)
q(w) + In (1 + e‘V(T”)hInw) , (logistic)

Q(w;’y(m),hm> - q(w) + max 0,—'y(m)h,an}7 (Perceptron)
q(w) + maxq0,1— V(m)h,an}, (hinge)

(12.4)
The (also convex) function g(w) is called the regularization factor and it usually
takes one of several forms, such as:

0, (no regularization)
2 {y—regularizati
g(w) = pllw||?, (la—regu atiza }on) (12.5)
allwl|1, (¢1—regularization)

al|lwl|ls + pllw||?, (elastic-net regularization)

where o > 0 and p > 0. Other choices for g(w) are possible. We explain in future
Chapter 51 that the choice of ¢(w) plays an important role in determining the
form of the minimizer w*, such as forcing it to have a small norm or forcing
it to be sparse and have many zero entries. Table 12.1 lists the empirical risk
functions described so far.

Note that all loss functions in (12.4) depend on {h,,,w} through the inner
product A w. Although unnecessary, this property will hold for most loss func-
tions of interest in our treatment. It is customary to interpret this inner product
as an estimate or prediction for v(m), written as

A(m) = hl w, (prediction) (12.6)

In this way, the loss functions in (12.4) can be interpreted as measuring the
discrepancy between the labels {v(m)} and their predictions {¥(m)}. By seeking
a minimizer w* in (12.3), we are in effect seeking a model that “best” matches

the {(m)} to the {y(m)}.
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Table 12.1 Examples of empirical risks based on N data pairs {y(m), hm}, and where
g(w) denotes a convex regularization factor.

name | empirical risk, P(w)
N-1
1 T2
least-squares | g(w) + N (’y(m) — hmw)
m=0
L Nl .
logistic q(w) + i In (1 + eiW(m)hmw)
m=0
L N
Perceptron q(w) + N max {07 —’y(m)hTan}
m=0
| N1
hinge q(w) + N max {0, 1- '\/(m)hjnw}
m=0

Stochastic Risks

In many instances, the objective function P(w) will not have an empirical form
but will instead be stochastic in nature. In these cases, P(w) will be defined as
the expectation of the loss function:

P(w) =EQ(w;~,h) (12.7)

Here, the expectation operator E is relative to the distribution of the data {~, h},
now assumed to be randomly distributed according to some joint probability
density function, fy n(7,h). In this way, problem (12.1) becomes one of the
form:

o & argmin EQ(w;~, h) (stochastic risk minimization) (12.8)

welRM

w

where we are denoting the minimizing argument by w®. In analogy with Ta-
ble 12.1, we list examples of stochastic risks in Table 12.2. Note that all loss
functions in the table depend again on {h,w} through the inner product hTw,
which we also interpret as a prediction for 4, written as 4 = h'w. In this way,
the loss functions in Table 12.2 measure the average discrepancy between the
label & and its prediction 4 over the distribution of the data. By seeking the
minimizer w® in (12.8), we are in effect seeking a model w® that “best” matches
4 to 4 in some average loss sense.

REMARK 12.1. (Notation for minimizers) We will employ the following convention
throughout our treatment to distinguish between the empirical and stochastic scenar-
ios. We will denote the minimizer of an empirical risk by w* and the minimizer of a
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stochastic risk by w?:

w” : minimizers for empirical risks (12.9a)
w® : minimizers for stochastic risks (12.9Db)
In general though, when we are dealing with a generic optimization problem where

P(w) can refer to either an empirical or stochastic risk, we will denote the minimizing
argument generically by w*, as was already done in (12.1).

Table 12.2 Examples of stochastic risks defined over the joint distribution of the data
{7, h}, and where ¢(w) denotes the regularization factor.

name [ stochastic risk, P(w)
mean-square-error | q(w) +E (v — hTw)2

logistic q(w)+E In (1 + eJYhT“’)
Perceptron g¢(w) + E max {0, —’yhTw}
hinge q(w) + E max {0, 1 —yhTw}

One difficulty that arises in the minimization of stochastic risks of the form
(12.8) is that the joint distribution of the data {-, h} is rarely known beforehand.
This means that the expectation in (12.7) cannot be computed, which in turn
means that the risk function P(w) itself is not known! This situation is different
from the empirical risk case (12.2) where P(w) is defined in terms of N data
pairs {y(m), hy,, } and is therefore known. However, motivated by the ergodicity
property (7.18), we can approximate the expectation in (12.7) and replace it
by a sample average computed over a good number of data samples {y(m), hp,}
arising from the unknown distribution. Using these samples, we can approximate
the stochastic risk (12.7) by the empirical risk (12.2). For this reason, gradient-
descent methods for minimizing empirical risks are equally applicable to the
minimization of stochastic risks, as our presentation will reveal.

Generalization

The models {w*,w°} that result from minimizing empirical or stochastic risks
will be used to perform inference on new feature vectors. If we denote a generic
feature vector by h, then w* can be used to predict its target or label by using
A = hTw*; likewise, for w®. One important distinction arises in the performance
of the two models {w*, w°}:

(a) An empirical risk formulation of the form (12.3) determines the optimizer w*
that is implied by the given collection of N data points, {y(m), Ay, }. As such,
the performance of the empirical model w* in predicting future labels will be
strongly dependent on how representative the original dataset {y(m), hp,}
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is of the space from which features and labels arise. This issue relates to the
important question of “generalization,” and will be discussed in greater detail
in future Chapter 64. Intuitively, one model w, is said to generalize better
than another model wy if w, is able to perform more accurate predictions
than wy, for new feature data. The concept of “generalization” is also referred
to as inductive inference or inductive reasoning because it endows models
with the ability to reason about new feature data based on experience learned
from training data.

In contrast, the stochastic risk formulation (12.8) seeks the optimizer w®
that is defined by the joint probability distribution of the data {~,h}, and
not by any finite collection of data points arising from this distribution.
This is because the optimization criterion seeks to minimize the average loss
over the joint pdf. The resulting model w® is expected to perform better on
average in predicting new labels. The challenge, however, as we are going to
see, is that it is not possible to minimize stochastic risks directly because
they require knowledge of the joint pdf of the data, and this information
is rarely available. For this reason, solutions for the stochastic risk problem
will often involve a step that reduces it to an empirical risk problem through
an ergodic approximation, which is then minimized from a collection of data
points. The bottom line is that, either way, whether we are dealing with
empirical or stochastic risks, it is important to examine how well inference
models generalize. We defer the technical details to Chapter 64.

CONDITIONS ON RISK FUNCTION

Three observations that are warranted at this stage:

(a)

(b)

(c)

First, in many cases of interest in this and subsequent chapters, the risk
P(w) will have a unique global minimizer w* since P(w) will generally be
strongly-convex. This is because the addition of regularization factors will
often ensure strong convexity. We will examine this case in some detail. We
will also comment on the case when P(w) is only convex, as well as study
nonconvex risks in future Chapter 24.

Second, the development in this chapter is not limited to the risks and losses
shown in the previous tables.

Third, the risk function P(w) need not be smooth (i.e., it need not be dif-
ferentiable everywhere). For example, for the logistic risk in Table 12.1 we
have

N-1
1 T
— = —y(m)h,,w
P(w) = q(w) + mgzo In (1 +e ) (12.10)
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This function is differentiable for all w when q(w) = p|lw||? but is not differ-
entiable at w = 0 when ¢(w) = afwl|; or ¢(w) = a|jw||; + p|lw||?. Likewise,
for the hinge risk in Table 12.1 we have
L Nl
P(w) = q(w) + N Z max{O, 1- y(m)h;w} (12.11)
m=0
This function is not differentiable at all points w satisfying 1 = y(m)h} w.
The function is also not differentiable at w = 0 when ¢(w) = af|w|; or
q(w) = afjw||1 + pljw||*>. Observe that non-differentiability can arise either
from the regularization term or from the unregularized component of the
risk. The recursive techniques for determining w* will need to account for
the possibility of points of non-differentiability. We focus in this chapter on
the case in which P(w) is first-order differentiable, and defer the case of
non-smooth risks to future chapters.

Motivated by these considerations, we will consider in this chapter optimization
problems of the form (12.1) where the risk function P(w) satisfies two conditions:

(A1) (Strong convexity). P(w) is v—strongly convex and first-order differentiable
at all w so that, from definition (8.21),

P(wy) > P(w1) + Vy Plwy)(we —wy) + gsz —wi|?  (12.12a)
for every wi,wy € dom(P) and some v > 0.
(A2) (d—Lipschitz gradients). The gradient vectors of P(w) are §—Lipschitz:
IV P(ws) — Vo Plwr)|| < 6|lwe —wi] (12.12b)

for any wy, wy € dom(P), and where || - || denotes the Euclidean norm of its
vector argument.

For reference, we know from the earlier results (8.29) and (10.20) derived for
strongly-convex and J—Lipschitz functions that conditions A1l and A2 imply
respectively:

(A1) = 2|5 < P(w) - P(w") < iyuqu (12.13a)
L~ 2 * [y 2
(A2) = o<[|@* < P(w) - P(w") < S|@] (12.13Db)

where w = w* —w. The upper bounds in both expressions indicate that whenever
we bound |[w||?> we will also be automatically bounding the excess risk, P(w) —
P(w*).

Example 12.1 (Second-order differentiability) Conditions (12.12a)—(12.12b) only re-
quire P(w) to be first-order differentiable since the conditions are stated in terms of
the gradient of the risk function. However, if P(w) happens to be second-order differ-
entiable over w, then we can combine both conditions into a single statement involving
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the Hessian matrix of P(w). Recall from property (8.30) that strong-convexity is equiv-
alent to P(w) having a Hessian matrix that is uniformly bounded from below by v, i.e.,

0<viy <V Pw), Ywe dom(P) (12.14a)

We also know from (10.32) that the d—Lipschitz condition (12.12b) is equivalent to the
Hessian matrix being uniformly bounded from above by 9, i.e.,

V2 P(w) < 8In, Y w € dom(P) (12.14b)
Therefore, combining (12.14a) and (12.14b) we find that under second-order differen-

tiability of P(w), the two conditions (12.12a)—(12.12b) are equivalent to requiring the
Hessian matrix of P(w) to be uniformly bounded from below and from above as follows:

0<viy <V Pw) < 8y (12.15)

Clearly, condition (12.15) requires v < §. Several risks from Table 12.1 satisfy property
(12.15). Here is one example — see also Prob. 12.2.

Example 12.2 (Logistic empirical risk) Consider the ¢>—regularized logistic risk from
Table 12.1, namely,

N-1

1 —_ m T w
P(w) = pllwl* + & > In (1+e A (mh, ) (12.16)
m=0

It can be verified that

2 P(w) LY ], (1217
Vo P(w) =2pIy + — hm P, 12.17
N'm:O (1+€7W(m)h;rnw)2
<1
from which we conclude that

| Nl
0 < 20 In < Vo P(w) < 2pIns + Amax | ¢ D honha | Int (12.18)

—~ N =

2,
a

)

where the notation Amax(-) denotes the maximum eigenvalue of its symmetric matrix
argument.

CONSTANT STEP-SIZES

We are now ready to motivate the gradient-descent method. We consider first
the case in which a constant step-size is employed in the implementation of
the algorithm. In a future section, we examine the case of iteration-dependent
step-sizes.
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Derivation of Algorithm

When P(w) is first-order differentiable and strongly-convex, its unique global
minimizer w* satisfies:

Vot P(w) =0 (12.19)

w=w*
We are differentiating relative to w' and not w in order to be consistent with our
earlier convention from Chapter 2 that differentiation relative to a row vector
results in a column vector. Equality (12.19) does not change if we scale the

gradient vector by any positive scalar u > 0 and add and subtract w*, so that it
also holds

w* = w* — puV,r P(w) (12.20)

This relation indicates that we can view the solution w* as a fized point for the
mapping f(w) : RM — IRM defined by
Ffw) & w— puVyr P(w) (12.21)

The idea of the gradient-descent method is based on transforming the fixed-point
equality (12.20) into a recursion, written as:

Wy, = Wp—1 — pVur Plwp—1), n>0 (12.22)

where the w* on the left-hand side of (12.20) is replaced by w,, while the w*
on the right-hand side of the same expression is replaced by w,_1. The vectors
{wn—1,w,} represent two successive iterates that serve as estimates for w*. The
scalar p > 0 is known as the step-size parameter and it is usually a small number.
The gradient-descent algorithm is listed in (12.24). It is iterated over n until a
maximum number of iterations is reached, or until the change in the weight
iterate is small, or until the norm of the gradient vector is small:

N < Nmax (12.23a)
llwn — wn_1]|*> <€, for some small ¢ (12.23b)
[Vr P(wy,)|] <€, for some small € (12.23¢)

Gradient-descent method for minimizing P(w).

given gradient operator, Vv P(w);
given a small step-size parameter p > 0;
start from an arbitrary initial condition, w_1; (12.24)
repeat until convergence over n > 0:
Wy, = Wp—1 — 1 Vot Plwp—1)
end
return w* < w,,.
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Recursion (12.24) starts from some initial condition, denoted by w_; (usually
the zero vector), and updates the iterate w,_; along the negative direction of
the gradient vector of P(w) at w,_;. The reason for the negative sign in front
of p in (12.22) is to ensure that the update to w,_; is in the direction of the
minimizer w*. This is because, by definition, the gradient vector of a function
points in the direction towards which the function is increasing and, hence, the
negative gradient points in the opposite direction. This is illustrated in Fig. 12.1.
The panel on the left shows the mechanics of one update step, while the panel
on the right shows the result of several successive steps.

/ | X
P(w) P(w)
—uV v P(wp_1)
P(wp—-1)
e I I (554119 SN
wr e Wy Wy W w w
K - /

Figure 12.1 The panel on the left shows the mechanics of one update step where w,_1
is updated in the direction of the minimizer w*. The panel on the right shows the
result of several successive steps with the iterates approaching w*.

Example 12.3 (Quadratic approximation) There are many ways by which the gradient-
descent method can be motivated. For example, we can motivate the same gradient-
descent recursion (12.22) by minimizing a quadratic approximation to P(w). Let wn—1
denote an estimate for w* that is available at iteration n — 1 and approximate the
Hessian matrix by ViP(wnfl) ~ %IM7 for some p > 0. We consider a second-order
expansion for P(w) around w,—1 and pose the problem of updating w,—1 to w, by
solving:

Wy = argmin {P(wn_l) + VP (wn—1)(w — wp—1) + i||w — wn_1||2} (12.25)

weRM 2p

Differentiating the right-hand side relative to w we find that the solution w, is given
by the relation:

Wn = Wn-1 — UV, 7T P(Wn-1) (12.26)

Example 12.4 (Batch gradient-descent) If we apply the gradient-descent algorithm
(12.22) to empirical risk functions of the form (12.2), then the gradient vector will have
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the form of a sample average expression:

V7 P(w Z y(m), hm) (12.27)

m=0

In this case, we can be more explicit about the description of the gradient-descent

method and write it in the form shown in (12.28). The reason for the designation

“batch algorithm” is because each iteration of (12.28) employs the entire set of data,

i.e., all N data pairs {y(m), hm}. Moreover, this dataset is used repeatedly until the

algorithm approaches its limiting behavior. There are at least two disadvantages for

these types of batch implementations:

(a) First, the entire set of N data pairs {y(m), hm } needs to be available beforehand to
be used at every iteration. For this reason, batch implementations cannot respond
to streaming data, i.e., to data that arrive sequentially at every time instant.

(b) Second, the rightmost sum in (12.28) needs to be computed repeatedly at every
iteration since its argument w,_1 is continuously changing. The computational
cost can be prohibitive for large N.

Batch gradient-descent for minimizing empirical risks, P(w).

given N data pairs {y(m), hm}, m_O,l,..,,N—l

risk has empirical form P(w =N Z Q(w;y(m), hm);

given gradient operator, V,rQ(w;~, h);

given a small step-size parameter p > 0; (12.28)
start from an arbitrary initial condition, w_;

repeat until convergence over n > 0 :

Wy = Wp—1 — f ( ZV T Q(wn—1;7(m), hm ))

end
return w* < wn,.

We will explain in Chapter 16 how difficulties (a) and (b) can be addressed by resorting
to stochastic gradient algorithms. In one implementation, the gradient sum in (12.27)
is approximated by a single term, Vv Q(wn—1,~(n), hy), where the pair (y(n), h,) is
selected at random from the dataset. In a second implementation, the gradient sum is
approximated by a mini-batch where a small subset of the N—long data {y(m), hm} is
selected at random at every iteration and used in the update from wy,—1 to ws,.

Example 12.5 (Batch logistic regression) Consider the £>—regularized logistic empir-
ical risk from Table 12.1 along with its gradient vector:

N—-1
Plw) = pllwlf + 5 3 In (14¢770M) (12.200)
m=0
1 o v(mhm
Vo Pw) = 2pw — & ZOW (12.29b)

The corresponding gradient-descent recursion (12.22) is given by:

1 e 'y(m)h

The reason for the designation “logistic” is because the logistic loss in (12.29a) will arise
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when we study logistic regression problems in future Chapters 28 and 59. When p is
zero, the above recursion simplifies to:

N—-1

1 v (m)him
= _ — _ > .
Wn, Wn—1+ p (N E ST e n>0 (12.31)

m=0

Example 12.6 (Mean-square-error stochastic risk) Consider next an example involv-
ing a stochastic risk, say, one of the form:

P(w) = pllwl® + E(y - hTw)? (12.32)

where v € R and h € IRM are assumed to have zero means with second-order moments
denoted by 02 = E~°, R, = Ehh', and 74, = Eh~. Then, it holds that

P(w) = pllwl|* + o3 — 2rpw +w' Ryw (12.33a)
V.1 P(w) =2pw —2rpy + 2Rpw (12.33b)

and the gradient-descent recursion (12.22) leads to
wn = (1 —2pp) wn—1+2p (rny — Rhwn—1), n>0 (12.34)

Example 12.7 (Batch least-squares) Consider the ¢3—regularized least-squares em-
pirical risk from Table 12.1 where

N-1
— 2 i T2
P =pllel? + 3y 32 m) L (12.35)
g V=1
V.1 Pw) =2pw — i B (y(m) — By, w) (12.35b)
m=0

and the gradient-descent method reduces to

wn = (1 —2up) wn-1+2p (

where ¢ > 0 is a small step-size.

Example 12.8 (Batch least-squares with offset) In many inference problems, there
will be a need to incorporate an offset parameter 6 into the problem formulation. We
illustrate this fact by considering a variation of the ¢s—regularized least-squares risk
from the previous example:

N-1
* . 1 2
(w*,0%) 2 argmin {prH? + ~ § (fy(m) —h;rnw—|—0) } (12.37)

welRM pelR =0

where 6 represents the scalar offset parameter. In this case, the prediction for the
target v corresponding to a feature h is computed by means of the affine relation
7 = hTw — 6. Observe that regularization is applied to w only and not to 6. We now
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have two parameters {w, 0} and, therefore,

N-1
Pw,6) = pllwl? + 5 3~ ((m) — L) (12.38)
m=0
2 —1
V7 P(w) =2pw — Z B (y(m) — hhyw + 0) (12.38b)
7n:0
9 N-—-1
0 P(w,0)/00 = + — hy,w + 0) (12.38¢)
m=0
The batch iteration (12.28) then becomes
N-1
1 T
9(n) = 6(n — 1) — 2u (N ('y(m) — BT wn_1 + 0(n — 1))) (12.39a)
m=0
1 N-1
— — P — T B
wn = (1= 2pp) wnr + 20 | mZ:Ohm (v(m) hopwn—1 + 0(n 1))>

(12.39b)

We can combine the two recursions into a single relation by introducing the augmented
variables of size M + 1 each:

r A —0 1 A 1
wa[ 2] we ]l w2
and writing
N-—-1
12 1 :| 1 ’ I N\NT 7
Wn = _ n 1+2H ( h'm W(m)i(hﬁn) Wp—1 )
(1—2pp) I N — ( )
(12.41)

12.3.2  Convergence Analysis

The size of the step taken in (12.22) along the (negative) gradient direction is
determined by p. A small p helps the iterates {w,} approach w* in small steps,
while a large p can result in unstable behavior with the iterates bouncing back
and forth around w*. Most convergence analysis specify bounds on how large p
can be to ensure the convergence of w, to w* as n — oc.
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THEOREM 12.1. (Convergence under constant step-sizes) Consider the
gradient-descent recursion (12.22) for minimizing a first-order differentiable risk
function P(w), where P(w) is v—strongly-convex with 6— Lipschitz gradients ac-
cording to (12.12a)—(12.12b). Introduce the error vector w, = w* — wy,, which
measures the difference between the n—th iterate and the global minimizer of
P(w). If the step-size p satisfies (i.e., is small enough):

0<p<2v/§? (12.42)

then w, and the excess risk converge exponentially fast in the following sense:
[@all? < X[ @p-1? 7 >0 (12.43a)
P(w,) — P(w*) < gA”“H&Lle = O(\"), n>0 (12.43b)

where

A2 - 2w+ 282 €0,1) (12.44)

Proof: We subtract w* from both sides of (12.22) to get
Wn = Wp_1 + ,vaT P(wn_1) (12.45)

We compute the squared Euclidean norms (or energies) of both sides of the above
equality and use the fact that V ,r P(w*) = 0 to write

[
= l[@n-1]* + 20 (Vo P(wn-1))T @n1 + p? |V yyr Plwn-1)|?
= [ @n—rl|* + 21 (Vo P(wn—1))" @+ p* [ Vo1 P(@*) = Vo1 Pwn—1)|”

(12.12b) 5 T 921~ 5
< @l 4+ 20 (V1 Plwn1))T @1 + 126 | | (12.46)

We appeal to the strong-convexity property (12.12a) and use w2 = w*, w1 = wp—_1 in
step (a) below and w2 = wn—1, w1 = w” in step (b) to find that

(a)
(Vo Plwa—1))" @ < P(w”) = Plwao) = 2 |@1

(®)

~ 2@ all® — 2|l
= 2 n—1 2 Wn—1
= —||@n—1]* (12.47)
Substituting into (12.46) gives
[@n]* < (1= 2u0 + p°6%) || @n—1|® (12.48)

which coincides with (12.43a)—(12.44). Iterating we find that
l@all? < A @ (12.49)

which highlights the exponential convergence of ||@y||* to zero. We next verify that
condition (12.42) ensures 0 < A < 1 using the same argument from Fig. 11.5. We plot
the coefficient A(p) as a function of p in Fig. 12.2. The minimum value of A(p) occurs at
location p = v/6? and is equal to 1 — 1?/§. This value is nonnegative since 0 < v < 4.
It is clear from the figure that 0 < A <1 for p € (0, 2%).
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Figure 12.2 Plot of the function A(u) = 1 — 2vp + u?6? given by (12.44). It shows that
the function \(u) assumes values below one in the range 0 < p < 2v/§°.

To establish (12.43b), we first note that P(w,) > P(w*) since w* is the minimizer
of P(w). Using the upper bound (12.13b) we have

(12.48)
i é

. [ n ~
0 < P(wn) = P(w") < S|l@nl® < SA™ @l (12.50)

REMARK 12.2 (Exponential or linear convergence). Recursions evolving according
to a dynamics of the form (12.43a), such as a(n) < Aa(n — 1) for some X € [0,1), are
said to converge exponentially fast since, by iterating, we get a(n) < A""a(—1). This
expression shows that a(n) decays to zero exponentially at the rate A™. This mode
of convergence is also referred to as linear convergence because, when plotted on a
semi-log scale, the curve Ina(n) x n will be linear in n with slope In A, namely,

Ina(n) < (n+1)In A+ cte (12.51)
|

REMARK 12.3 (Big-O, little-o, and big-® notation). The statement (12.43b) uses
the big-O notation. In other locations, we will employ the little-o notation. We therefore
compare their meanings in this remark. We already explained in the earlier Remark 11.3
that the big-O notation is used to compare the asymptotic growth rate of two sequences.
Thus, writing a, = O(b,), with a big O for a sequence b,, with positive entries, means
that there exists some constant ¢ > 0 and index m, such that |an\ < c¢b, for all
n > ne. This also means that the decay rate of a, is at least as fast or faster than b,,.
For example, writing a, = O(1/n) means that the samples of the sequence a, decay
asymptotically at a rate that is comparable to or faster than 1/n. Sometimes, one may
use the big-© notation, which is more specific than the big-O notation in that it bounds
the sequence |a(n)| both from above and from below. Thus, writing a, = ©(b,) now
means that there exist two constants ¢; > 0 and c2 > 0, and an index n,, such that
c1bn < |an| < c2by, for all n > n,. This means that the decay rate of the sequence a,
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is comparable to the decay rate of b,. For instance, writing a, = ©(1/n) would now
mean that the samples of the sequence a,, decay asymptotically at the rate 1/n.

On the other hand, the little-o notation, a, = o(b,), means that, asymptotically, the
sequence a, decays faster than the sequence b, so that it should hold |an|/b, — 0 as
n — oo. In this case, the notation a, = o(1/n) implies that the samples of a, decay at
a faster rate than 1/n. Table 12.3 summarizes these definitions.

Table 12.3 Interpretation of the big-O, little-o, and big-© notation.
notation | interpretation

an = 0(by) | lan| < cbny, 1> nyo
an =0O(b

an = o(by) |an|/bp — 0as n — oo

n) | cibn < lan] < cobn, 1> N,

Example 12.9 (A more relaxed bound on p) The result of Theorem 12.1 establishes

the exponential convergence of the squared weight-error, ||@,||?, and the excess risk,
P(wyn) — P(w*), towards zero for sufficiently small step-sizes, p. In most instances,
these results are sufficient since our objective is often to verify whether the iterative
algorithms approach their desired limits. This conclusion is established in Theorem 12.1
under the bound p < 2v/§%. We can relax the result and show that convergence will
continue to occur for p < 2/§. We do by exploiting a certain co-coercivity property
that is satisfied by convex functions with d—Lipschitz gradients. Specifically, we know
from the result of Prob. 10.4 that:

T 1
(va P(ws) — V7 P(wl)) (w2 —w1) > 5 [V Plwz) = Vu Plwn) P (12:52)
We use this inequality in (12.46) as follows:
1501

:
= @]’ = 20( Vot Pw") = V1 P(wn1)) @1 + 4 [V Plwas)]”

(12.52) R . T
< @ _2u(vaP(w I v P(wn_l)) W1 +

2 * T~
o 5(va P(w*) — V1 P(wn_l)) W1
~ 2 2 * T~
B ||? — (2p — 125) (va P(w*) — V= P(wn_l)) T

= |@n—1* + 2p = 4?6)(V o1 P(wn—1)) Wn
(12.47)

< N @ua|® = 2p = 28| Tn—1 |
= (1 = 2uv + p°v6) | Wn_1|? (12.53)
— —o

EPY

This result is consistent with (12.48) since A’ < X in view of v < §. Working with ',
we obtain the bound 0 < u < 2/§ for stability with convergence occurring at O((\")™).

Example 12.10 (Convergence analysis based on excess-risk) The convergence analy-
sis used to establish Theorem 12.1 was based on examining the evolution of the squared
error, ||y ||?, and from there we were able to conclude how the excess risk term evolves
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with time. We will adopt this approach uniformly throughout our presentation. How-
ever, we remark here that we can arrive at similar conclusions by working directly with
the risk function. To do so, we exploit two properties of the risk function: its strong
convexity and the fact that it has Lipschitz gradients. These properties were shown
before to induce certain bounds on the risk.

For instance, using the v—strong convexity of P(w), we use property (8.29) to deduce
that

. 1
P(w”) 2 P(wn-1) = 5[V P(wn-1)|* (12.54)
On the other hand, from the d—Lipschitz property on the gradients of P(w), we use
result (10.13) to write
1)
P(w’n) S P(wnfl) + (vw P(’U}n71)) (wn - w'nfl) + §Hwn - wnlez

(12.22)

é
Plwn-1) = p(1 = 52) IV Plwa)|? (12.55)
Subtracting P(w*) from both sides of this inequality and using (12.54) we obtain
Pwn) — P(w*) < (1 — 2uw + 1i2v0) (P(wn_l) - P(w*)) (12.56)
|\
>\/

This result is consistent with (12.53) and convergence again occurs for 0 < g < 2/§ at
the rate O((\")™).

Regret analysis

The statement of Theorem 12.1 examines the convergence behavior of the squared
weight error, |w,||?, and the risk value P(w,). Another common performance
measure for learning algorithms is the average regret. It is defined over a window
of N iterations and computes the deviation of the accumulated risk relative to
the minimal risk:

1>

N-1
R(N) % > P(w,1) — P(w*) (average regret) (12.57)
n=0

The sum involves all risk values over the first N iterations. Using (12.43b) we
find that the regret decays at the rate of 1/N since

N-1

1 5flw_y? nt1

v

_ LS (1= AM)A

TN 2 1—)\

= O(1/N) (12.58)

R(N) <

This calculation shows that we can transform bounds on the excess risk P(w,,) —
P(w*) into bounds on the average regret. For this reason, we will continue to
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derive excess risk bounds throughout our analysis of learning algorithms, with
the understanding that they can be easily transformed into regret bounds.

REMARK 12.4. (Regret analysis and convexity) There is another useful bound for
the average regret for convex risk functions. Using property (8.4) we have

P(wn_1) — P(w*) < =(Vy1 P(wn_1)) Wn_1 (12.59)
so that we can bound (12.57) by

N-1
1 ~ .
R(N) < N ng:o (Vo P(wn_1)) @Wn_1, (for convex risks) (12.60)

For this reason, it is also customary to study R(N) by bounding the inner product

(Voo P(wn—1))"Wn—1 and its cumulative sum. Examples to this effect will be encoun-
tered later in Sec. 16.5 and Appendix 17.A in the context of stochastic optimization
algorithms.

Example 12.11 (Dependence of convergence on problem dimension) Result (12.58)
may suggest at first sight that the regret bound is not dependent on the parameter
dimension, M. However, the bound is scaled by the Lipschitz constant § and this
constant is implicitly dependent on M. This is because the value of § depends on the
norm used in (12.12b). For most of our treatment, we will be working with the Euclidean
norm, but there are important cases where the gradient Lipschitz property will hold
for other norms. For example, assume for the sake of argument that the gradients of
the risk function P(w) happen to be §—Lipschitz relative to some other norm, such as
the £oo—norm. In this case, expression (12.12b) will be replaced by

[V P(w2) = Vi P(wi)|lec < 6wz — willoo (12.61)

Using the norm inequalities:
[zll2 < VM ||zlloo, |Zlloo < [l]|2 (12.62)

for any « € IRM | relation (12.61) can be transformed into an inequality involving the
¢2—norm, as in (12.12b):

IV Plws) — Vi Plw)|| < VMG ||lw — w1 | (12.63)

with a new & value that is scaled by v/M. If we were to write the regret and performance
bounds derived so far in the chapter using this new §, then the results will be scaled
by v'M and become dependent on the problem dimension. This fact is problematic for
large dimensional inference problems. Later, in Sec. 15.3, we will motivate the mirror-
descent algorithm, which addresses this problem for a class of constrained optimization
problems and leads to performance bounds that are independent of M.

Convexity versus strong-convexity

The statement of Theorem 12.1 assumes strongly-convez risk functions P(w) with
d—Lipschitz gradients satisfying (12.12a)—(12.12b). The theorem establishes in
(12.43a) the exponential convergence of ||w,||? to zero at the rate A". It also
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establishes in (12.43b) that P(w,) converges exponentially at the same rate to
P(w*). We will express these conclusions by adopting the following notation:

[ < O(G"),

{ P(w,) — P(w*) < OO, (for strongly-convex P(w)) (12.64a)

This means that O(In(1/€)) iterations are needed for the risk value P(wy,) to get
e—close to P(w*). We will be dealing largely with strongly-convex risks P(w),
especially since regularization will ensure strong convexity in many cases of in-
terest. Nevertheless, when P(w) happens to be only convex (but not necessarily
strongly-convex) then, following an argument similar to the derivation of (11.71),
we can establish that convergence in this case will be sublinear (rather than lin-
ear). Specifically, it will hold for u < 1/§ that the successive risk values approach
the minimum value at the slower rate of 1/n:

P(w,) — P(w*) < O(1/n), (for convex P(w)) (12.64b)

This result is established in Prob. 12.13. In this case, O(1/¢) iterations will be
needed for the risk value P(w,,) to get e—close to P(w*).

ITERATION-DEPENDENT STEP-SIZES

Although recursion (12.22) employs a constant step-size i, one can also consider
iteration-dependent step-sizes, denoted by p(n), and write:

Wy, = Wp—1 — p(N)Vyr P(wyp—1), n>0 (12.65)

The ability to vary the step-size with n provides an opportunity to control the
size of the gradient step, for example, by using larger steps during the initial
stages of learning and smaller steps later. There are several ways by which the
step-size sequence u(n) can be selected.

Vanishing Step-Sizes

The convergence analysis in the next Theorem 12.2 assumes step-sizes that sat-
isfy either one of the following two conditions:

(condition 1) i p*(n) < oo and i u(n) = oo (12.66a)
n=0 n=0

(condition I1) lim u(n) =0 and Y pu(n)=oo (12.66b)
n=0

n—oo

Clearly, any sequence that satisfies (12.66a) also satisfies (12.66b). In either case,
the step-size sequence vanishes asymptotically but the rate of decay of u(n) to



12.4 Iteration-Dependent Step-Sizes 393

zero should not be too fast (so that the sequence is not absolutely summable).
For example, step-size sequences of the form:

win) = ﬁ, forany 7> 0and § <c<1 (12.67)
satisfy (12.66b). The choice ¢ = 1 is common. There are other choices for p(n),
besides sequences that satisfy (12.66a) or (12.66b), that can ensure convergence
of the gradient-descent method. We will illustrate this fact further ahead when
we examine backtracking in Sec. 12.4.2. There, we will introduce another suffi-
cient requirement on p(n) to guarantee convergence known as the Armijo con-
dition. Other examples of convergent gradient-descent methods with iteration-
dependent step-sizes include the alternating projection algorithm from Sec. 12.6
and Kaczmarz’s method from Prob. 12.34. For now, we continue with the popular
conditions (12.66a)— (12.66b). The following result shows that the convergence
rate is not exponential any longer and is slower than under constant step-sizes.

THEOREM 12.2. (Convergence under vanishing step-sizes) Consider the
gradient-descent recursion (12.65) for minimizing a first-order differentiable risk
function P(w), where P(w) is v—strongly-convex with d— Lipschitz gradients
according to (12.12a)—(12.12b). If the step-size sequence u(n) satisfies either
(12.66a) or (12.66b), then w, converges to the global minimizer, w*. In partic-
ular, when the step-size sequence is chosen as pu(n) = 7/(n+1), the convergence
rate is on the order of

|, ||* < O(1/n?7) (12.68a)
P(wy,) — P(w*) < O(1/n*7) (12.68b)

for large enough n.

Proof: The argument that led to (12.48) will similarly lead to
1@all? < A [T I (12.69)

where now A(n) = 1 — 2vu(n) + 62u%(n). We split 2vu(n) into the sum of two factors
and write

A(n) =1 —wvu(n) —vu(n) + 624 (n) (12.70)

Now, since p(n) — 0 under (12.66a) or (12.66b), we conclude that for large enough
n > n,, the value of p?(n) will be smaller than p(n). Therefore, a large enough time
index, n,, exists such that the following two conditions are satisfied:

vu(n) > 8%u*(n), 0<1—vu(n) <1, n>n, (12.71)

It follows that
An) < 1—vu(n), n>ne (12.72)

and, hence,

[@all* < (1 =vpu(n) [Taaall® 1> n (12.73)
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Iterating over n we can write (assuming a finite n, exists for which ||wn, || # 0, otherwise
the algorithm would have converged):

[ |

Jim (uwnon?) : n}li (L= vuln) (1274)

or, equivalently,

lim In (HH{?LHHZ> < i In(1—wvu(n)) (12.75)

n— oo
n=ney+1

Now, using the following property for the natural logarithm function:

Inl—y) < —y, foral0<y<1 (12.76)
and letting y = vu(n), we have that

In(1 —vu(n)) < —vup(n), n>ne (12.77)

so that

Z In(1 —vu(n)) < — Z vp(n) = 1/< Z ,u(n)) = —oo (12.78)

n=ny+1 n=ny+1 n=ny+1

since the step-size series is assumed to be divergent under (12.66a) or (12.66b) . We
conclude that

~ 2
lim ln< 1| ) = —0 (12.79)

n—oo -\ [|Wn, |12

so that w, — 0 as n — oo.

We next examine the rate at which this convergence occurs for step-size sequences
of the form p(n) = 7/(n + 1). Note first that these sequences satisfy the following two
conditions

Zu(n) = 00, Z/ﬁ(n) = 7’ <Z n12> = 77 < 0 (12.80)

for B = 7%/6. Again, since u(n) — 0 and p?(n) decays faster than u(n), we know that
for some large enough n > ni, it will hold that

wp(n) > 6°p*(n) (12.81)

and, hence,

0<A(n) <1, n>mn (12.82)

We can now repeat the same steps up to (12.79) using y = 2vu(n)—3§%u?(n) to conclude
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that
In I | < E”: In(1-2v 522
) < p(m) +6°p*(m))
laml?) = 2=,
<= 3 (unlm) - 8 m)
m=ni+1
- —21/< > u(m)> +52< > MQ(m)>
m=ni+1 m=ni+1
< —2u< Z u(m)) + p7°6°
m=ni+1
n+1 1
_ el 2¢2
= 21/T< Z m>—|—/37'5
m=ni+2
(a)
<

"n+2 1
—uT < / —dm) + Br28°
ni+2 x

2
2vT In (7;1_:—2 > + ,67'2(52

ni + 2 T 22
= 12.
n<n+2) + 8776 (12.83)

where in step (a) we used the following integral bound, which reflects the fact that the
area under the curve f(z) = 1/x over the interval € [n1 + 2,n + 2] is upper bounded
by the sum of the areas of the rectangles shown in Figure 12.3:

n+2 q n+1 1
—dzr < — (12.84)
/n,1+2 z m:;l+2 m

We conclude from (12.83) that

. In(2LE2)* 74 252) _
HwnH2 S {e(n( n+2 ) T Hwn1H27 P> i

202 n +2 2vT
= i, | (22

n+2
=0(1/n*") (12.85)
as claimed. Result (12.68b) follows by noting from (12.50) that
0 < P(wn) — P(w*) < g||{5n||2 (12.86)

Convexity versus strong-convexity

The statement of Theorem 12.2 assumes strongly-convexrisks P(w) with §—Lipschitz
gradients. In Prob. 12.15 we relax these conditions and limit P(w) to being
convex (as opposed to strongly-convex) and Lipschitz as opposed to gradient-
Lipschitz, i.e.,

|1P(wy) — Plws)|| < 6llwy —wsl|, YV wi,wy € dom(P) (12.87)
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flx) =1/x

v

ny + 2 n+1

n+ 2

Figure 12.3 The area under the curve f(z) = 1/x over the interval = € [n1 + 2,n + 2]
is upper bounded by the sum of the areas of the rectangles shown in the figure.

We know from property (10.41) that the condition of a Lipschitz function trans-
lates into bounded gradient vectors, so that we are in effect requiring ||V, P(w)]| <
0. Assume we run the gradient-descent recursion (12.65) for N iterations using a
decaying step-size sequence of the form u(n) = ¢/y/n + 1 for some positive con-
stant ¢, and let wP®t denote the iterate that results in the smallest risk value,
namely,

wbest 2 argmin P (wy,) (12.88)
0<n<N-1

Then, we show in Prob. 12.15 that

P(wP™) — P(w*) = O(ln(N) /N) (12.89)

Example 12.12 (Steepest-descent algorithm) We motivate another choice for the step-
size sequence p(n) by seeking the steepest-descent direction along which the update of
wp—1 should be performed. We use the same reasoning from Example 6.13, which dealt
with the line search method.

Starting from an iterate w,_1, our objective is to determine a small adjustment to it,
say, Wn = Wn—1 + dw, by solving

dw’ = argmin {P(wn_l + 5w)}, subject to 1H5w||2 <e (12.90)
swelRM 2
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We introduce a Lagrange multiplier A > 0 and consider the unconstrained formulation

dw’ = argmin ¢ P(wp—1 + dw) + )\(1||5w\|2 - e) (12.91)
swelRM 2

To solve the problem, we introduce the first-order Taylor series expansion:
P(wy) = P(wn-1) + VP (wn_1)dw (12.92)
so that the cost appearing in (12.91) is approximated by

cost & P(wn—1) + Vi Pltwn_1)5w + /\(%HéwHQ ~¢) (12.93)

To minimize the right-hand side over dw, and to find A\, we repeat the argument from
Example 6.13 to arrive at the same conclusion:

e
Vo1 P(wn—1)
| .

Wn = Wn-1

VT P(wWn-1) (12.94)

2 Ju(n)

The term multiplying Vv P(wn—1) plays the role of an iteration-dependent step-size. In
this case, the step-size is chosen to result in the “largest” descent possible per iteration.

Example 12.13 (Comparing constant and vanishing step-sizes) We return to the lo-
gistic algorithm (12.31) and simulate its performance under both constant and vanish-
ing step-sizes. Figure 12.4 plots a learning curve for the algorithm using parameters

p=2,M=10,N =200, p=0.001 (12.95)

For this simulation, the data {vy(m),hm} are generated randomly as follows. First, a
random parameter model w® € IR is selected, and a random collection of feature
vectors {h.,} are generated, say, with zero-mean and unit-variance Gaussian entries.
Then, for each h,, the label v(m) is set to either +1 or —1 according to the following
construction:

y(m) = +1 if ( > 0.5; otherwise v(m) = —1 (12.96)

1
1+ e_hjnwa' )
We will explain in future expression (59.5a) that construction (12.96) amounts to gen-
erating data {y(m), hm } that satisfy a logistic probability model. The gradient-descent
recursion (12.30) is run for 2000 iterations on the data {y(m), h., }. The resulting weight
iterate, denoted by w*, is shown in the bottom plot of the figure and the value of the
risk function at this weight iterate is found to be

P(w*) =~ 0.6732 (12.97)

The two plots in the top row display the learning curve P(wy) relative to the minimum
value P(w*), both in linear scale (on the left) and in normalized logarithmic scale on
the right (according to construction (11.65)). The plot on the right in the top row
reveals the linear convergence of P(w,) towards P(w*) under constant step-sizes, as
anticipated by result (12.43b).

Figure 12.5 repeats the simulation using the same logistic data {~y(m), hn } albeit with
a decaying step-size sequence of the form:

p(n)=7/(n+1), 7=0.1 (12.98)

The gradient-descent recursion (12.65) is now repeated for 4000 iterations with p re-
placed by u(n), and the resulting learning curve is compared against the curve generated
under the constant step-size regime from the previous simulation. The plot on the left
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Figure 12.4 (Top) Learning curves P(w,) relative to the minimum risk value P(w*) in
linear scale (on the left) and in normalized logarithmic scale (on the right). This
latter plot confirms the linear convergence of the risk value towards P(w*). (Bottom)
Limiting value of the weight iterate w,, which tends to the minimizer w* according to
result (12.43a).

shows the learning curves in normalized logarithmic scale; it is clear that the conver-
gence rate under decaying step-sizes is much slower (it starts converging faster but
ultimately becomes slower). The plot on the right illustrates this effect; it shows the
limiting value w* that was determined under constant step-size learning in Fig. 12.4
after 2000 iterations along with the weight iterate that is obtained under the decaying
step-size after 4000 iterations. It is clear that convergence has not been attained yet
in the latter case, and many more iterations would be needed; this is because u(n)
becomes vanishingly small as n increases.

Backtracking Line Search

There are other methods to select the step-size sequence u(n), besides (12.66a)
or (12.66b). One method is the backtracking line search technique. Recall that
the intent is to move from w,,_1 to w,, in a manner that reduces the risk function
at w,_1 + dw; it is also desirable to take “larger” steps when possible. Motivated
by these considerations, at every iteration n, the backtracking method runs a
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Figure 12.5 (Left) Learning curves P(wy) relative to the minimum risk value P(w*) in
normalized logarithmic scale for both cases of constant and decaying step-sizes.
(Right) After 4000 iterations, the weight iterate w, in the decaying step-size
implementation has not converged yet.

separate search to select u(n) for that iteration. It starts from some large initial
value and repeatedly shrinks it until a convenient value is found. The procedure
is motivated as follows.

Starting from the iterate w,_1, we introduce a first-order Taylor series ap-
proximation for the risk function around w,_1:

P(w) =~ P(wp—1) + Vi Plwp—1)(w — wp_1) (12.99)

If we take a gradient-descent step from w,_1 to w, with some generic step-size

value p, i.e.,
Wy, = Wp—1 — pV oyt P(wp_1) (12.100)
then, substituting into (12.99), the new risk value is approximately
P(wy) & P(wn-1) = i ||V P(wn1)|” (12.101)

The backtracking line search method selects p to ensure that the decrease in the
risk value is at least a fraction of the amount suggested above, say,

P(wn,l UVt P(wn,l)) < Plwn_y) — apl|Ve Plwn_1)|>  (12.102)

for some 0 < @ < 1. This is achieved as shown in listing (12.103). Typical values
for the parameters are 5 = 0.2, « = 0.01, and pg = 1.
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Gradient-descent with backtracking line search for minimizing P(w).

given gradient operator, Vv P(w);

given 0< 8<1,0<a<1/2, puo>0;

start from an arbitrary initial condition, w_;

repeat until convergence over n > 0:

J=0;

while P(wn_l - ujvaP(wn_l)) > P(wn_1) — ;|| Ve P(wn1 )|
shrink step-size to w;+1 = Bu;;

JeitL
end
set ju(n) = 3

Wy, = Wp—1 — w(N)Vyr Plw,—1);
end
return w* < w,.

(12.103)

Once p(n) is selected at step n (say, u(n) = u for some value p), the risk function
will satisfy

P(wy,) < P(wn_1) — ot Ve P(wn1)]? (12.104)

This result is known as the Armijo condition, which is usually stated in the
following more abstract form. Consider an update step dw and introduce the
function:

A

o) P(w + pow) (12.105)

where p is some step-size parameter that we wish to determine in order to update
w to w + pdw. The Armijo condition chooses u to satisfy:

(Armijo condition)

(1) < ¢(0) + o ¢'(0), for some 0 < o < 1/2 (12.106)

where ¢’ (1) denotes the derivative of ¢(u) relative to p. It is easy to verify that
this condition reduces to (12.104) for the case of the gradient-descent algorithm
where dw = —V ;7 P(w). The step-sizes p(n) that result from the backtracking
procedure (12.103) satisfy the above Armijo condition at every step, n. We show
next that the Armijo condition is sufficient to ensure convergence of the gradient-
descent algorithm.
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THEOREM 12.3. (Convergence under Armijo condition) Consider the
gradient-descent recursion (12.65) for minimizing a first-order differentiable risk
function P(w), where P(w) is v—strongly-convex with 6— Lipschitz gradients ac-
cording to (12.12a)-(12.12b). If the step-size sequence u(n) is chosen to satisfy
the Armijo condition (12.104) at every step, then the excess risk converges ex-
ponentially fast, namely,

P(w,) — P(w*) <O(\"), (for strongly-convex P(w)) (12.107)
for some A € [0,1). If P(w) is only convez, then
P(w,) — P(w*) <O(1/n), (for convex P(w)) (12.108)

Proof: First, we call upon property (10.13) for the —Lipschitz gradient of P(w), which
allows us to write (using z <— wn, 21 < Wn—1, and z — z1 < —p; V,,7P(wn—1)):

6 .
P(w,kl - uijTP(w7L,1)) S P(wnfl) - ,uj( - %) va P(wn,1|\2 (12.109)

According to the backtracking construction (12.103), the search for the step-size pa-
rameter will stop when

P(wn_l - ujvaP(wn_l)) < Plwn1) — ;| Vo Plwn_1)|? (12.110)

Combining with (12.109), we find that for the search to stop it is sufficient to require
wi(1- 5%) > a; (12.111)

Since, by choice, a < 1/2, the search is guaranteed to stop when
u]-( - 5%) > %uj — < 1/8 (12.112)

This argument shows that the exit condition for the backtracking construction will
be satisfied whenever p; < 1/6. Using this condition in (12.109), and noting that the
argument of P(-) on the left-hand side becomes w, at the exit point, we find that at
that point:

P(wn) < P(wn_1) — %uvw P(wn 1| (12.113)

On the other hand, using the v—strong convexity of P(w), we apply the upper bound
from property (8.29) to deduce that:

P(w*) > P(wn_1) — %va Plwn_1)|? (12.114)

Subtracting P(w*) from both sides of inequality (12.113) and using (12.114) we obtain
Pwn) — P(w*) < (1 — pv) (P(wn_l) - P(w*)) (12.115)

Now recall that we launch the backtracking search from the initial condition po = 1.
Two scenarios are possible: either 1/§ > 1 or 1/6 < 1. In the first case, the backtracking

search will stop right away at p1; = po = 1 since the condition p; < 1/6 will be met. In
the second case, the step-size will be scaled down repeatedly by 8 until the first time
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it goes below 1/4, at which point the search stops. In this case, the final p; will satisfy
u; > B/8. Therefore, it holds that

;> min{1, 3/6} (12.116)

Substituting into (12.115) we obtain

P(wy) — P(w*) < (1 — min{v, uﬁ/d}) (P(wn_l) - P(w*)) (12.117)

1>

A

from which we deduce exponential convergence of P(w,) to P(w"). For convex risk
functions P(w), we can establish a conclusion similar to (12.64b) by following an argu-
ment similar to the derivation of (11.71). This result is established in Prob. 12.16.

COORDINATE-DESCENT METHOD

The gradient-descent algorithm described in the earlier sections minimizes the
risk function P(w) over the entire vector w € IR™. One alternative technique is
the coordinate-descent approach, which optimizes P(w) over a single entry of w
at a time while keeping all other entries fixed. The individual entries of w are
called coordinates and, hence, the designation “coordinate-descent.”

Derivation of Algorithm

In its traditional form, the coordinate-descent technique writes P(w) as an ex-
plicit function of the individual entries of w = col{w,,} for m =1,2,..., M:

P(w) = P(wy, . ., . ., wrr) (12.118)

and minimizes it over each argument separately. Listing (12.119) describes the
algorithm when the minimization can be carried out in closed-form. The weight
iterate at iteration n—1 is denoted by w,,—1 and its coordinates by {wy,—_1,m}. At
every iteration n, the algorithm cycles through the coordinates and updates each
Wp—1,m t0 Wy, m by minimizing P(w) over w,, while keeping all other coordinates
of indexes m’ # m fixed at their most recent values. Observe in particular that
once the first coordinate w, is updated to wy ; in the first step, this new value is
used as argument in the second step that updates the second coordinate to wy, 2.
The process continues in this manner by using the updated coordinates from the
previous steps as arguments in subsequent steps.
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Traditional coordinate-descent for minimizing P(w).

let w = col{w,,}, m=1,2,..., M;
start from an arbitrary initial condition w_; = col{wy,, _1}.
repeat until convergence over n > 0:

Wp—1 = col{w,_1,m} is available at start of iteration;
for each coordinate m =1,2,..., M compute:
Wy,1 = argmin P(wi, Wn—1,2,Wn—1,3,- -+, Wn—1,M)
wi€R
Wy,2 = argmin P(wp, 1, W2, Wn—1,3, Wn—1,4, - , Wrn—1,M) (12.119)
wo€IR
Wn,3 = argmin P(wn,h Wn,2, W3, Wn—1,4,- - - 7wn71,1b[)
w3z €R
[ ]
[ )
Wy, v = argmin P(wy 1, W2, - ., Wn, M—1, War )
wy €EIR
end
end

_ M
wn, = co{wn,m fm=1
return w* < w,,.

The coordinate-descent procedure can be motivated as follows. Consider a
convex risk P(w) and let w* denote a global minimizer so that V,, P(w*) = 0.
This also means that

dP(w)

oWy,

—0 (12.120)

Wm=w},

so that P(w) is minimized over each coordinate. Specifically, for any step A and
basis vector e,, € R™, it will hold that:

P(w* + Xep,) > P(w*), m=1,2,....M (12.121)

which justifies searching for w* by optimizing separately over the coordinates
of w. Unfortunately, this property is lost when P(w) is not differentiable — see
Prob. 12.27. This fact highlights one of the weaknesses of the coordinate-descent
method. We will revisit this issue in the next chapter and explain for what type
of non-differentiable risks the coordinate-descent construction will continue to
work.
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Example 12.14 (Coordinate-descent for /> —regularized least-squares) Consider the reg-

ularized least-squares problem:

N-1
* A . 2 1 T 2

= m — l)—h 12.122
w2 argmin {mwn + oy 2 (- nlw) } (12.122)

welR

We are using the subscript ¢ to index the data points {v(¢), h¢} to avoid confusion
with the subscript m used to index the individual coordinates of w. We denote the
individual entries of h; by col{hsm} for m = 1,2,..., M. We also use the notation
W_pm and hg ., to refer to the vectors w and h, with their m—th entries excluded.
Then, as a function of w,, the risk can be written in the form:

N-1
2 1 T 2
Pw) = plwl® + 5 > (10 = bl -mto-m = hemom )
=0
N-1
a 1
(:)pwm + <N hfm) Wy, —
=0
24
5 [N-1
N ( Z he,m (fy(é) - hzmw_m)) W + cte
=0
22,
@ (p + am)wi, — 2¢mwm + cte (12.123)

where terms independent of wy, are collected into the constant factor in step (a). In step
(b), we introduced the scalars a. > 0 and ¢, for compactness of notation. Minimizing
P(w) over wm, we get

Wi, = Cm /(P + am) (12.124)
and arrive at listing (12.125).

Traditional coordinate-descent algorithm for solving (12.122).

given N data points {y(¢), h¢}, £=0,1,...,N —1;
start from an arbitrary initial condition w_1 = 0.
repeat until convergence over n > 0 :

iterate is wn—1 = col{wnfl,m}%zl

repeat for each coordinate m =1,2,..., M:

1 N—-1
am = N Z h%,m

o~
—~ O

(12.125)

Z

Cm =

Y CIG R T ——

=2[ =
~
Il
o

Wn,m = Cm/(p + am)

Wn—1,m < Wn,m, (use updated coordinate in next step)
end

end

wn, = col{wn,m }M_4

return w* < wy.
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Observe that the expressions for a,, and ¢, depend on all data points. Moreover, at each
iteration n, all coordinates of w, are updated. We discuss next some simplifications.

Randomized Implementation

In practice, the minimization of P(w) over the coordinates {w;, } is often difficult
to solve in closed-form. In these cases, it is customary to replace the minimization
in (12.119) by a gradient-descent step of the form:

OP(w
Wn,m = Wp—1,m — Y 815 ) , m=1,2,....M (12.126)

W=Wn—1

While implementation (12.119) cycles through all coordinates of w at each iter-
ation n, there are popular variants that limit the update to a single coordinate
per iteration. The coordinate may be selected in different ways, for example, uni-
formly at random or as the coordinate corresponding to the maximal absolute
gradient value. Description (12.127) is the randomized version of coordinate-
descent.

Randomized coordinate-descent for minimizing P(w).

let w = col{wy,}, m=1,2,...,M;

start from an arbitrary initial condition w_;.

repeat until convergence over n > 0:

Wp—1 = col{wy_1,,} is available at start of iteration

select an index m?° at random within 1 <m < M (12.127)
OP(w
08t
W0

W=Wp —1

update Wy, me = Wp—1,me

keep Wy, m = Wp—_1,m, for all m # m°
end
_ M
wn, = col{wn,m}m=1
return w* < w,,.

This implementation can be viewed as a variation of gradient descent. At every
iteration n, we select some basis vector e, at random with probability 1/M and
use it to construct the scaling diagonal matrix D,, = diag{e,,.}, with a single
unit entry on its diagonal at the m°—th location. Note that D, is a random
matrix, and therefore we will write D,, using the boldface notation to highlight
this fact. The selection of D, at iteration n is performed independently of any
other variables in the optimization problem. Then, the update generated by the
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algorithm can be written in vector form as follows:
Wy, = Wy—1 — DRV r P(w,_1) (12.128)

where the variables {w,,,w,_1} are also random in view of the randomness in
D,,. In particular, observe that on average:

M
1 . 1 9
EDn = M mE:1 dlag{em} = MIN[ = EDn (12129)

The following statement establishes the convergence of the randomized algo-
rithm. In contrast to the earlier arguments in this chapter on the convergence
of the gradient-descent implementation, we now need to take the randomness of
the weight iterates into account.

THEOREM 12.4. (Convergence of randomized coordinate-descent) Consider
the randomized coordinate-descent algorithm (12.127) for minimizing a first-
order differentiable risk function P(w), where P(w) is v—strongly-convex with
d—Lipschitz gradients according to (12.12a)-(12.12b). Introduce the error vector
w, = w* — w,, which measures the difference between the n—th iterate and the
global minimizer of P(w). If the step-size u satisfies (i.e., is small enough):

0<p<20/8? (12.130)

then the mean-square-error, E ||w,||?, and the average excess risk converge ex-
ponentially fast in the sense that

E|w.|? < AE|wn_1|? n>0 (12.131a)
EP(w,) — P(w*) < g)\n+1||@71||2 = O(\") (12.131b)

where
o= 1—2‘%+ 1 o) (12.132)

Proof: We subtract w* from both sides of (12.128) to get
W, = Wp—1 + D, V1 Plwn_1) (12.133)

We compute the squared Euclidean norms (or energies) of both sides and use the fact
that V,,r P(w*) = 0 to write

[@n]* = [[wn-1]* + 21 (Vy7 P(wn-1))" Dan-1 + p* |V ,yr P(wn-1)| 2
(12.134)

where the notation ||z||% stands for " Az. Conditioning on @,—; and taking expecta-
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tions of both sides gives
E (|l |@-1)
< @ |7 + 201 (V1 P )T (B Do) + 1 [V Pl

12.129) | - 2 ~ 2
L @ I + 2 (Vi Pwa1)T s + 52 1V Plwa)|?

(12.47) 2y 252
< @naall® = SF a4+ B (12.135)

Taking expectations again to eliminate the conditioning over w,,—1 we arrive at

. 2 252 .
E|[@.|? < (1 - % + “7) E [ @1 (12.136)

Comparing with (12.48) we find that the recursion is in terms of the mean-square
error. The structure of the above recursion is similar to (12.43a) and we arrive at the
conclusions stated in the theorem.

We conclude fthat the weight iterate w, converges in the mean-square-error
sense to w*. Referring to the earlier diagram from Fig. 3.11 on the convergence
of random sequences, we conclude that this fact implies that w,, converges to
w* in probability. Moreover, comparing expression (12.132) for A with (12.44) in
the gradient-descent case we find that

A1 —2uv, (for gradient-descent) (12.137a)
2
Al — %, (for randomized coordinate-descent)  (12.137b)

which suggests that randomized coordinate descent converges at a slower pace.
This is understandable because only one entry of the weight iterate is updated
at every iteration. However, if we compare the performance of both algorithms
by considering one iteration for gradient descent against M iterations for ran-
domized coordinate descent, then the decay of the squared weight-error vectors
will occur at comparable rates.

REMARK 12.5. (Bound on step-size) If we follow the argument from Example 12.10
based on the risk function, we can relax the upper bound on p in (12.130) to u < 2/6
and replace A\ by
2uv | pPvd
A=1——+
M + M
This fact is exploited in the proof of convergence for the Gauss-Southwell variant in
the next section.

e[0,1) (12.138)

Example 12.15 (Randomized coordinate-descent for regularized least-squares) Con-
sider the f3—regularized least-squares problem (12.122). In this case, we can determine
the optimal coordinate wy, ,,, in closed-form at every iteration n. Using

OP(w)/0wm = 2(p+ am)wm — 2¢m, m=1,2,.... M (12.139)
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we find that the corresponding randomized coordinate-descent implementation is given
by listing (12.140).

Randomized coordinate-descent for solving (12.122).

given N data points {v(¢), h¢}, £=0,1,...,N —1;
start from an arbitrary initial condition w_; = 0.
repeat until convergence over n > 0:

iterate is wn—1 = col{wn_l,m}%zl

select an index m° at random within 1 <m < M

N-1
1 Z 2
QAmo = N he’mo
=0

1 N-1
Cmo = N z_:o he’mo (’7(6) — hz,mown—l,—mo)

(=
update Wn,me = cmo /(p + ameo)

(12.140)

o
keep Wn,m = Wn—1,m, for all m #m
end
M
Wy, = COl{Wn,m Fm=1
return w* < wy,.

We can describe the algorithm in vector form by introducing the vector and matrix
quantities:

7(0) hg
A 7(1) hi
N = : . Hy = . (12.141)
Y(N —1) hy_ 1

where yn is N x 1 and Hy is N x M. We let 2,0 denote the column of index m® in Hy
and write Hy, —mo to refer to the data matrix Hy with its m°—th column excluded.
That is, Hn,—mo has dimensions N x (M — 1). Then, it can be verified that — see
Prob. 12.30:

1

1 T (
Wamo = ————— x o (yn — Hy—mo wn_l,_mo) (12.142)
p+ yllzmel? — N7

We illustrate the operation of the algorithm by generating a random model w° € IR°
with M = 10, and a collection of N = 200 random feature vectors {hy}. The entries
of w® are selected randomly from a Gaussian distribution with mean zero and unit
variance; likewise for the entries of the feature vectors. We also generate noisy target
signals:

v(n) = hpw’ 4 v(n) (12.143)

where v(n) are realizations of zero-mean Gaussian noise with variance o2 = 0.01. We set
the step-size parameter to = 0.01 and the regularization parameter to p = 2/N. If we
differentiate the risk function (12.122) relative to w, it is straightforward to determine
that the minimizer is given by:

w* = (pNIy + HYHy) "HNyn (12.144)

Substituting w* into the risk function we find the minimal risk value, P(w*) = 0.0638.
The learning curves in Fig. 12.6 are plotted relative to this value; the curves in the right
plot in the first row are normalized by the maximum value of P(w,, )—P(w*) so that they
start from the value one. The learning curves for the coordinate descent implementation
are downsampled by a factor M = 10 since, on average, it takes 10 iterations for
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all entries of the weight vector to be updated (whereas, under the gradient-descent
implementation, all entries are updated at every single iteration). The downsampling
allows for a fair comparison of the convergence rates of the two methods. It is observed
from the results in the figure that both methods are able to estimate w* and that their
learning curves practically coincide with each other.

learning curves normalized learning curves (log scale)
10°
gradient-descent - gradient-descent
coordinate descent | | 101k coordinate descent | |
N
3
A 107
|
£ 107
a8
104
0 L h 10-5 L L L L L
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
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T T T
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w(m)|
o
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T
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o—
|
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entry index

©
©

10

Figure 12.6 (7Top) Learning curves P(w,) relative to the minimum risk value P(w*) in
regular and normalized logarithmic scales for gradient-descent and randomized
coordinate-descent; the learning curve for the latter is downsampled and plotted every
M = 10 iterations. (Bottom) The original and estimated parameter models.

12.5.3  Gauss-Southwell Implementation

We consider next a coordinate-descent implementation where at every iteration
n, the coordinate corresponding to the maximal absolute gradient is updated.
This variant is known as the Gauss-Southwell (GS) rule.



410

Gradient Descent Method

Gauss-Southwell coordinate-descent for minimizing P(w).

let w = col{w,,}, m=1,2,..., M;

start from an arbitrary initial condition w_1.

repeat until convergence over n > 0:

Wp—1 = col{wy_1,,} is available at start of iteration

OP(w)
select m® = argmax ‘ ‘ evaluated at w = w, 1 (12.145)
1<m<M 6wm
oP
update Wy, me = Wp—1,me — I 3 (w)
Wino
W=Wn—1

keep Wy, m = Wn—1,m, for all m # m?
end
_ M
wn = col{wn m =y
return w* < wy,.

Motivation
We motivate implementation (12.145) by explaining that the update direction
corresponds to a steepest-descent choice. We follow an argument similar to Ex-
ample 12.12 except that the bound is now imposed on the ¢;—norm of the per-
turbation rather than on its Euclidean norm.

Specifically, starting from an iterate w,_1, we seek to determine a small ad-
justment to it, say,

Wy, = Wp_1 + 0w (12.146)
by solving

dw® = argmin {P(wn,l + 5w)}, subject to [[dw|; < i’ (12.147)
SwelRM

for some u’ > 0. We introduce the first-order Taylor series expansion:

P(wy) =~ P(wp—1) + Vi P(wp—1)dw (12.148)
and approximate the problem by solving
y° = argmin {// VwP(wn,l)y}, subject to |ly||; <1 (12.149)
yEIRIW

where we introduced the change of variables y = dw/pu’. We recall from the result
of part (c) in Prob. 1.26 that for any vectors {z, y} of matching dimensions, the
{1 and £, norms satisfy:

|z]lco = sup {xTy} (12.150)
lyll <1
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Problem (12.149) has the same form (if we negate the argument and replace max
by min):

y° = argmax {—,u’ VwP(wn,l)y} (12.151)

lylli<1

It follows that the optimal value of (12.151) is equal to ' ||V P(wn—1) |00, which
is the maximum absolute entry of the gradient vector scaled by p’. Let m® denote
the index of this maximum absolute entry. Then, the maximal value of (12.151)
is attained if we select

OP(wy,—
y° = — emo sign (a(;”l)> (12.152)
Taking a step along this direction leads to the update
P(w,—
Whmo = Wn—1mo — ' sign(a(w1)> (12.153)
(9wmo

which updates w,,_1 along the descent direction determined by the maximal
absolute entry of the gradient vector; in a manner “similar” to (12.145).

Convergence

The Gauss-Southwell implementation (12.145) can again be viewed as a variation
of gradient-descent. At every iteration n, we construct the diagonal matrix D,, =
diag{emo}, where m?° is the index of the entry in the gradient vector at wy,_1
with the largest absolute value. The matrix D,, is not random anymore, as was
the case in the randomized coordinate-descent implementation. Instead, its value
depends on w,,_; and the update can be written in vector form as follows:

Wy, = Wy—1 + Dy Vym P(w,—1) (12.154)

In the analysis for the randomized algorithm, we were able to remove the effect
of the matrix D,, through expectation. This is not possible here because D,, is
now deterministic and dependent on w,,_1. Nevertheless, a similar convergence
analysis is applicable with one minor adjustment. We continue to assume that
the risk function P(w) is v—strongly convex as in (12.12a), but require P(w) to
have §—Lipschitz gradients relative to each coordinate, namely,

(1) (Strong convexity). P(w) is v—strongly convex and first-order differentiable:

Plws) > P(wy) + Vir P(wy)(ws —wy) + gnwg—wl\\? (12.155a)

for every wy,ws € dom(P) and some v > 0.

(2) (d—Lipschitz gradients relative to each coordinate). The gradient vectors
of P(w) are 6—Lipschitz relative to each coordinate, meaning that:

0 0
_ < .
” P(w+ aep) ” P(w)| < o (12.155b)
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for any w € dom(P), o € IR, and where e, denotes the m—th basis vector
: M
in IR™.

THEOREM 12.5. (Convergence of Gauss-Southwell coordinate-descent)
Consider the Gauss-Southwell coordinate-descent algorithm (12.145) for mini-
mizing a first-order differentiable risk function P(w), where P(w) is v—strongly-
conver with 6— Lipschitz gradients relative to each coordinate according to
(12.155a)-(12.155b). Introduce the error vector w, = w* — wy,, which measures
the difference between the n—th iterate and the global minimizer of P(w). If the
step-size p satisfies (i.e., is small enough):

0<p<2/8 (12.156)
then the risk value converges exponentially fast as follows:
P(wn) = P(w*) < A(P(wnfl) - P(w*)) (12.157)
where
2uv  pvd
A=1—— 0,1 12.158

Proof: We follow an argument similar to Example 12.10 based on the risk function. In
view of the v—strong convexity of P(w), we first use property (8.29) to deduce that

Pw’) > Plwn1) ~ 5[V Plwn 1) (12.159)

Next, using the coordinate-wide d—Lipschitz property (12.155b) and the result of
Prob. 10.1 we write

OP(w, —
P(wn) S P(wn71) + %(wn,mo - wnfl,mo) + i(w’ﬂ,’m" _ wn717m0)2
2 2
(12.127) OP(w,,_ 25 (9P (w,_
= P(wn—l) - u(a(w,,l)> + HT <8(wnl)>
2
O\ [ OP(wn—
= Pl =1 - %) (W) (12.160)
Now note the bound
2
OP(wp— a ® 1

(55;)) @Yy P ) S Ve P I3 (12161)

where step (a) is by construction and step (b) is the property of norms ||z|l2 < VM ||z s
for any M —dimensional vector z. Subtracting P(w*) from both sides of (12.160) and
using (12.159) we obtain after grouping terms:

2uv | pPvé

P(w,) — P(w*) < (1 - ) (P(wn,l) - P(w*)) (12.162)
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ALTERNATING PROJECTION ALGORITHM!

We end this chapter with one application of the gradient-descent methodology
to the derivation of a popular alternating projection algorithm. The method can
be used to check whether two convex sets have a nontrivial intersection and to
retrieve points from that intersection. It can also be used to verify whether a
convex optimization problem with constraints has feasible solutions.

Consider two closed convex sets G; and Gy in RM and assume we are interested
in determining a point w* in their intersection, €; N Cy. Let w denote some
arbitrary point. The distance from w to any of the sets is denoted by dist(w, C)
and defined as the smallest Euclidean distance to the elements in C:

dist(w, €) 2 min [le - wl, (12.163)
ce

To determine w*, we formulate the optimization problem — see Prob. 12.22:

P(w) £ max{dist(w,@l), dist(w, 62)} (12.164a)
w* = argmin P(w) (12.164b)
welRM

For every w, the cost function P(w) measures its distance to the set that is fur-
thest away from it. The minimization seeks a point w with the smallest maximal
distance. This formulation is motivated by the result of Prob. 9.13, which showed
that provided the sets intersect:

P(’LU*) =0 < w' el Nty (12165)

That is, we will succeed in finding a point in the intersection if, and only if, the
minimal cost value turns out to be zero.

Now, for any w outside the intersection set, it will generally be further away
from one of the sets. Let £ be the index of this set so that P(w) = dist(w, Cy). Let
Pe, (w) denote the projection of w onto €,. We can now evaluate the gradient
of P(w) by using the result of Prob. 8.32, which shows that the gradient of
dist(w, Cp) relative to w is given by

w — Pe, (W)

V1 dist(w, Cp) = lw = Pe, (w)]l2

(12.166)

We can therefore use this expression to write the following gradient-descent re-

I This section can be skipped on a first reading.
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cursion to minimize P(w) with an iteration-dependent step-size:

for each iteration n do:
wy,_1 is the iterate at step n — 1;
let ¢ denote the index of the convex set furthest from it;
let Pe, (wn—1) denote the projection of w,_; onto this set;
set the step-size to p(n) = ||lwn—1 — Po, (wp—1)|| (=distance to Cy);
update w,, = wy—1 — p(n) Vv dist(w,—1, Cf);

end
(12.167)
We can simplify the last step as follows:
Wy, = Wp—1 — p(n) V,r dist(w,—1, Cp)
Wp—1 — :PC (wnfl)
= Wnp-1 — ||wn71 - TC@(“’nfl)H x [wn_1 — :])Cl(w DI
n— VA n—

= Wn_1 — (wn_l — P, (wn_l)) (12.168)

That is, the gradient-descent step reduces to the following projection step:

Wy = 9DC'z(wn—l) (12'169>

Thus, for example, if ¢, happens to be the convex set that is furthest from w,,_1,
then w,, will be its projection onto C;. For the next iteration, Cs will be the set
that is furthest away from w,, and we will project onto C5. In this way, we arrive
at a procedure that involves projecting onto the two convex sets alternately until
w* is attained. This construction is illustrated in Fig. 12.7.

We can describe the alternating projection procedure as generating two se-
quences of vectors, {an,by,}, one in C; and the other in Cy. Assume we start
from an initial condition a_; € Cy; if the initial condition is outside G, we can
always project it onto C; first and take that projection as the initial condition.
Then, we can alternate as shown in listing (12.171) for n > 0 or, equivalently,

an = Pe, (?02 (an_1)>, n>0 (12.170)

In this way, the sequence of vectors {a,, n > —1} will belong to €; while the
sequence of vectors {b,, n > 0} will belong to Cs.



12.6 Alternating Projection Algorithm

w_1
o

initial ~__
condition S~ \

o

415

Figure 12.7 Illustration of the alternating projection procedure over two convex sets.

Starting from an initial condition, the algorithm successively alternates the

projections on the sets.

Alternating projection algorithm.

given two closed convex sets C; and Co;
given projection operators onto €; and Cs;
start from arbitrary a_; € Cy;
objective:
if € N Cs # ): find a point w* in the intersection;
else find points {a* € C1,b* € Ca} closest to each other;
repeat until convergence over n > 0:
bn = Pey(an—1)
an = Pc, (by)
end
if ||a, — b,|| small, return w* < ay;
else return a* < a,, b* < b,.
end

(12.171)

We examine next the convergence of the algorithm; its behavior will depend on

whether the sets C; and €5 have a nontrivial intersection:

(a) Assume first that €; N Cy # 0. Then, we will verify that the sequences a,,
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(b)

and b, will converge to the same limit point w* € €1 N Cy. That is, both
sequences will converge to a point in the intersection set.
Assume next that G;NCy = @ so that the sets €; and Gy do not intersect. The
algorithm converges now in a different manner. To describe the behavior, we
define the distance between the two convex sets as the smallest distance
attainable between any points in the sets, namely,

dist(€1,C) 2 min |z —y| (12.172)

r€Cy1,yeCsy

Then, we show below that the sequences a, and b,, will converge to limit
points a* € C; and b* € C,, respectively, such that the distance between
them attains the distance between the sets:

la* — b*|| = dist(€;, C) (12.173)

This fact is illustrated schematically in Fig. 12.8.

sequence

sequence
bn

Figure 12.8 The sequences {an, bn} generated by the alternating projection algorithm
converge to limit points {a*,b*} that are closest to each other from both convex sets.

THEOREM 12.6. (Convergence of alternating projection) Consider the alter-
nating projection algorithm (12.171) and two closed conver sets €1 and Cq:

(a) When €1 N Cy # 0, the sequences {an, by} converge to the same limit point

w* € € N Cy.

(b) When €1 N Cy = 0, the sequences {an,b,} converge to limit points {a* €

C1, b* € Gy} that are closest to each other.
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Proof: Assume initially that the sets intersect and let w* denote some arbitrary point
in their intersection. Then, obviously, projecting w* onto either set results in w* again:

w* = Pe, (W), w* = Pe,(w") (12.174)

We now call upon the non-expansive property (9.70) of projection operators, namely,
the fact that, for any convex set C:

[Pe(z) = Pe@) < llz—yll, Va,yel (12.175)

Applying this property to the sequences {an, b, } generated by (12.171) we get (using
Z = ap—1 in the first line and = = b, in the second line while y = w* in both lines):

1Pes (an—1) = w'l| = [lbn — w"|| < flan—1 — w’|| (12.176a)
[Pe, (bn) = w™[| = llan — w*[] < [lbn — w”|| (12.176b)

It follows that a, is closer to w* than b,, and b, is closer to w* than a,—_1. More
importantly, by combining both inequalities, we observe that the sequence of squared
distances ||an — w*||? is decreasing and bounded from below by zero since it satisfies

0 < |lan —w*]]® < [Jan—1 —w*||* < ... < Jlao1 —w*|? (12.177)

We conclude that the sequence of projections a,, € C1 converges to some limit point
denoted by a*. Since C; is closed by assumption, this point belongs to Cy, i.e., a* € C;.
A similar argument shows that

0 < lbn — w*|]® < oot —w*]]® < ... < |lbo —w"|| < |la—1 —w*||*  (12.178)

so that the sequence of projections b,, € C2 converges to some limit point denoted by
b* € @2. The limit points satisfy

a* =Pe, (b), b =Pe,(a”) (12.179)
We next apply the inner-product property (9.66) for projections, namely, the fact that
(x — Pe(z)) (¢ — Pe(z)) <0, Veel (12.180)

Therefore, the limit points {a*, b*} satisfy

(b —a*)(c1—a*) <0, Ve et (12.181a)
(@* =b*) (2 —b") <0, Ves€Co (12.181b)
Adding gives
()
6" — @[> < (0" —a") (2 — 1) < [Ib* —a”[|[|ez — x| (12.182)

where step (a) is by Cauchy-Schwarz. It follows that
Hb* — a*H < ||C2 — C1||, Ve € 61, co € Co (12.183)

When the sets C; and C2 have a nontrivial intersection, the right-hand side can be
made equal to zero by selecting ¢; = ¢a = w*, from which we conclude that b* = a*.
But since b* € €2 and a* € €; by construction, the limit point satisfying b* = a* must
belong to the intersection of both sets. On the other hand, when the intersection is an
empty set, we conclude that ||b* — a*|| attains the smallest distance between any two
points in C; and Cs.

The alternating projection method suffers from one inconvenience when the
intersection set €1 N G2 has more than one point. Starting from an initial vector
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a_1, the method generates two sequences {a, € Ci} and {b, € Gy} that are
only guaranteed to converge to some arbitrary point in the intersection. We
describe a modification in the comments at the end of the chapter, known as
Dykstra method, which allows the algorithm to converge to the point w* in the
intersection that is closest to the initial condition a_; — see listing (12.208).

COMMENTARIES AND DISCUSSION

Method of gradient descent. In Sec. 12.3 we motivated the gradient-descent recursion
(12.22) for minimizing differentiable convex functions. The method is credited to the
French mathematician Augustine Cauchy (1789-1857), who proposed it as an it-
erative procedure for locating the roots of a function. Consider a function P(z,y, z) of
three scalar parameters (z,y, z), and assume that P(z,vy, z) has a unique root at some
location (z*,y*,z*) where P(z*,y*,2*) = 0. The objective is to identify this location.
Cauchy (1847) worked with nonnegative and continuous functions P(z,y,z) so that
finding their roots corresponds to finding minimizers for the function. He argued that
starting from some initial guess for (z*,y*, 2*), one can repeatedly move to new loca-
tions (z,y, z) where the values of the function continue to decrease — a description
of Cauchy’s argument is given by Lemaréchal (2012). Cauchy identified the direction
of the update in terms of the negative gradient of the function. If we let (Py, Py, P)
denote the partial derivatives of P(x,y,z) relative to its individual arguments, then
Cauchy proposed the following recursive form:

z(n)=xz(n—1) —pu P, (x(n —1),y(n—1),z(n — 1)) (12.184a)
y(n) =y(n—1) — u P, (m(n ~1),y(n—1),2(n — 1)) (12.184b)
zn)=2z(n—1)— p P, (w(n —1),y(n—1),2(n — 1)) (12.184c)

where p is a small positive parameter. If we introduce the vector notation w = col{z, y, z},
this construction can be rewritten as

Wn = Wn—1 — 4V ,TP(Wn-1) (12.185)

which is the gradient-descent step we considered in (12.22). Cauchy did not analyze
the convergence of his procedure. Convergence studies appeared later, e.g., in works
by Curry (1944) and Goldstein (1962). For further discussion on gradient and steepest-
descent methods, the reader may refer to Polyak (1987), Fletcher (1987), Nash and Sofer
(1996), Luenberger and Ye (2008), Bertsekas (1995), Bertsekas and Tsitsiklis (1997),
and Sayed (2014a). The convergence analysis given in the text for gradient-descent al-
gorithms for both constant and decaying step-sizes follows the presentations by Polyak
(1987) and Sayed (2014a). The argument in Sec. 12.4.2 for the convergence of the
backtracking method is based on the analysis in Boyd and Vandenberghe (2004); see
also Curry (1944), Wolfe (1969,1971), Goldstein (1966), and Kelley (1996). The Armijo
condition (12.106) is from Armijo (1966). Some further applications of gradient-descent
to batch algorithms appear in Bottou (1998), Bottou and LeCun (2004), Le Roux,
Schmidt, and Bach (2012), and Cevher, Becker, and Schmidt (2014).

Momentum acceleration methods. In Probs. 12.9 and 12.11 we describe two popular
methods to accelerate the convergence of gradient-descent methods by incorporating
momentum terms into the update recursion. One method is known as the heavy-ball
implementation or Polyak momentum acceleration and is due to Polyak (1964,1987)
and Polyak and Juditsky (1992). This method modifies the gradient-descent recursion
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(12.185) by adding a driving term that is proportional to the difference of the last two
iterates, namely,

Wn = Wn—1 — V1 P(Wn-1) + B(Wn-1 — Wn-2), n>0 (12.186)

The scalar 0 < 8 < 1 is called the momentum parameter. It is shown in Prob. 12.10
that recursion (12.186) can be described in the equivalent form:

(Polyak momentum acceleration)

lzn = VJUT P(wn,1)7
b = Bbn_1+ by, b1 =0 (12.187)
Wnp = Wn—-1 — Mbn

which helps clarify the role of the momentum term. In this description, the gradient
vector is denoted by b,. It is seen that b, is smoothed over time into b,, and the
smoothed direction b, is used to update the weight iterate from wy,_1 to wy,. By doing
so, momentum helps reinforce search directions with more pronounced progress towards
the location of the sought-after minimizer.

A second momentum method is known as Nesterov momentum acceleration and is
due to Nesterov (1983,2004,2005). It modifies the gradient-descent recursion in the
following manner:

Wn = Wn—1 — 4V, P(wnfl + B(wn—1 — wn72)) + B(wn—1 —wp—2), n>0
(12.188)

Compared with Polyak momentum (12.186), we find that the main difference is that
the gradient vector is evaluated at the intermediate iterate wn—1 + B(wWn—1 — Wn—2).
It is shown in Prob. 12.12 that recursion (12.188) can be described in the equivalent
form:

(Nesterov momentum acceleration)

'uj;l—l = Wn-1 7 ﬂﬁ6n71

l_’n = v_wT P(wnil)_

bn = Bbn-1+by, b1=0 (12.189)
Wn, = Wn—1 — fbn

That is, we first adjust w,_1 to the intermediate value w),_; and denote the gradient at
this location by b},. We smooth this gradient over time and use the smoothed direction
b, to update the weight iterate.

When the risk function P(w) is v-strongly convex and has d-Lipschitz gradients, both
momentum methods succeed in accelerating the gradient descent method to attain a
faster exponential convergence rate, and this rate has been proven to be optimal for
problems with smooth P(w) and cannot be attained by the standard gradient descent
method — see Polyak (1987) and Nesterov (2004). Specifically, it is shown in these
references that the convergence of the squared error |[@,||* to zero occurs for these
acceleration methods at the rate — see Prob. 12.9:

@) < <m> [ @11 (12.190)

In contrast, in Theorem 2.1.15 of Nesterov (2005) and Theorem 4 in Section 1.4 of
Polyak (1987), the fastest rate for the gradient-descent method is shown to be — see
Prob. 12.5:

§—v\’
0 ||? < Wn—1]|? 12.191
N = (12.101)
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It can be verified that
Vo—\v _s—v
<
Vot 4w
for v < 8. This inequality confirms that the momentum algorithms can achieve faster

rates in minimizing strongly-convex risks P(w) with Lipschitz gradients and that this
faster rate cannot be attained by standard gradient descent.

(12.192)

Newton and quasi-Newton methods. In Sec. 12.3 we motivated the gradient-descent
recursion for minimizing a first-order differentiable convex risk function. This technique
is a first-order method since it relies solely on gradient calculations. There are other
iterative techniques that can be used for the same purpose. If we examine the derivation
that led to the gradient-descent recursion (12.22) starting from (12.20), we observe that
the search direction may be scaled by any positive-definite matrix, say, by A™*, so that
the corresponding iteration (12.22) would become

Wy = Wn—1 — p A Vyr P(wn_1), n>0 (12.193)

The step-size parameter p can be incorporated into A if desired. This construction
is referred to as the quasi-Newton method. If A is diagonal with individual positive
entries, A = diag{a(1),a(2),...,a(M)}, one for each entry of w, then we end up with a
gradient-descent implementation where a separate step-size is used for each individual
entry of the weight iterate. The value of A can also vary with n. A second popular
procedure is Newton method (also called Newton-Raphson) described below, which is
a second-order method since it uses the Hessian matrix of the risk function. A third
procedure is the natural gradient method encountered in (6.131), and which replaces
the Hessian matrix by the Fisher information matrix. We elaborate here on Newton
method.

The Newton-Raphson method is named after the English mathematician and physi-
cist Isaac Newton (1643-1727), whose contribution appeared in Wallis (1685), and
also after Newton’s contemporary Raphson (1697). Both Newton and Raphson were
interested in finding roots of polynomials. According to the account by Kollerstrom
(1992), Newton’s original method was not iterative, while Raphson’s method was not
expressed in differential form. It was the British mathematician Thomas Simpson
(1710-1761) who introduced the current form of the method in Simpson (1740) — see
the account by Christensen (1996). Thus, consider a v—strongly convex second-order
differentiable risk function, P(w). Let dw denote a small perturbation vector. We ap-
proximate the value P(w + dw) in terms of a second-order Taylor series expansion of
P(w) around w as follows:

P(w + dw) =~ P(w) + (VwTP(w))Téw + % (6w)" VE P(w)dw (12.194)

We select dw to minimize the difference P(w 4 dw) — P(w). We differentiate the ex-
pression on the right-hand side with respect to dw and set the result to zero leading
to:

V7 P(w) + V2, P(w)dw = 0 (12.195)

When P(w) is v—strongly convex, its Hessian matrix satisfies V2 P(w) > vI and is
therefore positive-definite and invertible. It follows that the optimal perturbation is
given by

su® = — (V2 P(w)) ' V1 P(w) (12.196)

Starting from the iterate wy,—1, Newton method updates it to w, = w,—1 + 0w’ leading
to listing (12.197). Often, a small correction el is added to the Hessian matrix to avoid
degenerate situations and ensure the inverse operation is valid.
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Newton method for minimizing a risk function P(w).

given gradient operator, V v P(w);
given Hessian operator, V2 P(w);
given small € > 0;
start from arbitrary w_i. (12.197)
repeat until convergence over n > 0:
An—l = EIM + ViP(wn_l)
Wp = Wn—-1 — A;ilvaP(wn—l)
end
return w* < w,.

We can verify that dw® plays the role of a “descent” direction by noting that — see also
Prob. 12.7:

Pw +8u’) - P(w)

= (Vo Pw)) u” + & (0w) V2 P(w)du®

) Vi P(w) +

w)) " V2 P(w) (V2 Pw)) " V7 P(w)

<0 (12.198)

BFGS method. Newton method (12.197) selects the update term dw® in terms of the
inverse of the Hessian matrix of the risk function, namely,

Sw® = — (V3 P(wn-1)) " V1 P(wn_1) (12.199)
The BFGS method, named after the initials of its independent developers Broyden
(1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970), is a quasi-Newton method
that approximates the Hessian matrix. It employs instead
dw® = —B;, 'V 1 P(wn_1) (12.200)
for some positive-definite matrix B,,—1 updated recursively:
B = Bn_1 + aana, + Bbab,! (12.201)

through the addition of two rank-one matrices to Bn,—1. The scalars {«, 3} are chosen
to enforce a certain constraint on the successive matrices {B,} as follows. Introduce
first the vectors:

an £ V1 P(wn) — Vot P(w,_1) (12.202a)
Zn 2 Wn — W1 (12.202b)
bn 2 Bn_1zn (12.202¢)

Note that a,, is the difference between two successive gradient vectors, while z, is the
difference between two successive iterates. The vector b, is the result of transforming
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zn by Br—1. The scalars {«, 8} are selected to ensure the following constraint (also
called the secant equation):

By (wp —wp—1) = V1 P(wyn) — V7 P(wp—1) (12.203)
That is, Bnzn = an. This condition is reminiscent of the classical secant method for
finding the roots of a function f(x) over x € IR, which is described by the recursion
Tp — Tn—1
flan) = f(@n-1)

The BFGS method seeks a root for the equation Vv P(w) = 0. It does so by extending
construction (12.204) to the vector case through the imposition of (12.203). It is easily
verified, by multiplying the update relation for B,, from the left by z,, that (12.203) is
satisfied for the choices:

Tnt1 = Tn — f(Tn) X (12.204)

o=t g1 (12.205)

zray’ 21 Bn_12n
We arrive at listing (12.206) where the initial matrix can be selected as B_1 = In.
Problem 12.35 derives an expression that update B, ', to B, ' directly and shows that

the successive matrices B, are positive-definite. For more details, see Fletcher (1987),
Kelley (1996), and Nocedal and Wright (2006).

BFGS method for minimizing a risk function P(w).

given gradient operator, Vv P(w);
given small step-size, u > 0;
start from arbitrary w_; and B_; > 0.
repeat until convergence over n > 0:
Wp = Wn_1 — uB;_llvaP(wn,1)
Zn = Wn — Wn-1
an = VwTP(’LUn) - vaP(wnfl)
bn - anlzn

T 1 T
Bn = anl + Tianan - Tib’nbn
23 an, z) Bn—12zn

(12.206)

end
return w* < wy,.

Method of coordinate-descent. The coordinate-descent method is a simple and ef-
fective technique for the solution of optimization problems; it relies on a sequence
of coordinate-wise steps to reduce an M —dimensional problem to M one-dimensional
problems. In each step, the optimization is carried out over a single entry (or coordi-
nate) of the parameter vector w, while holding all other entries fixed at their current
estimated values. Ideally, when the optimization can be carried out in closed form,
the coordinate-descent construction minimizes P(w) over its individual coordinates in
sequence before repeating the iteration, as was shown in listing (12.119). In practice
though, the optimization step is generally difficult to compute analytically and it is re-
placed by a gradient-descent step. The classical implementation of coordinate-descent
cycles through all coordinates, while more popular variants update one coordinate per
iteration. This coordinate is selected either uniformly at random, which is one of the
most popular variants, or as the coordinate that corresponds to the maximal absolute
gradient value. For more details, the reader may refer to Nesterov (2012), which stud-
ies the case of smooth functions under both convexity and strong convexity conditions.
The work by Richtarik and Takac (2011) simplifies the results and considers the case
of smooth plus separable risks. There are many variants of coordinate-descent imple-
mentations, including the important case where blocks of coordinates (rather than a
single coordinate) are updated at the same time — see, e.g., the convergence analysis



12.7 Commentaries and Discussion 423

in Tseng (2001) where the future separable form (14.123) for non-smooth risks is stud-
ied in some detail. In the block case, the parameter w is divided into sub-blocks, say,
w = blkcol{w, w2, ..., wp} where each ws is now a sub-vector with multiple entries
in it. Then, the same constructions we described in the body of the chapter will apply
working with block sub-vectors rather than single coordinates as shown, for example,
in listing (12.207).

Block coordinate-descent for minimizing a risk function P(w).

let w = blkcol{w1, w2, ..., wp};
start from an arbitrary initial condition w_;.
repeat until convergence over n > 0:
wn—1 with B blocks blkcol{w,_1,} is available at start of iteration;

for each block b =1,2,..., B compute: (12.207)
Wp,p = argmin P(wn_l,l, o [We), - - ,wn_l,B)
Wp
end
end

return w* < wn,.

The idea of estimating one component at a time while fixing all other components at
their current values appears already in the classical Gauss-Seidel approach to solving
linear systems of equations — see, e.g., Golub and Van Loan (1996). The Gauss-Seidel
approach is accredited to the German mathematicians Carl Friedrich Gauss (1777-
1855) and Seidel (1874). Gauss described the method 50 years prior to Seidel in a
correspondence from 1823 — see the collection of works by Gauss (1903). In more
recent times, some of the earliest references on the use of coordinate-descent in opti-
mization include Hildreth (1957), where block coordinate descent was first introduced,
in addition to Warga (1963) and Ortega and Rheinboldt (1970). The Gauss-Southwell
(GS) rule that amounts to selecting the gradient component with the largest absolute
value in (12.145) is also due to Gauss (1903) and Southwell (1940). Some analysis on
comparing the convergence rates of the GS and randomized rules appear in Nutini
et al. (2015), where it is argued that the GS rule leads to improved convergence —
see Prob. 12.19; this argument is consistent with the steepest-descent derivation of
the GS rule in Sec. 12.5.3 and is related to the derivation used in the proof of The-
orem 12.5. More recent applications of coordinate-descent in computer tomography,
machine learning, statistics, and multi-agent optimization appear, for example, in Luo
and Tseng (1992a), Sauer and Bouman (1993), Fu (1998), Daubechies, Defrise, and
De Mol (2004), Friedman et al. (2007), Wu and Lange (2008), Chang, Hsieh, and Lin
(2008), Tseng and Yun (2009, 2010), Beck and Tetruashvili (2013), Lange, Chi, and
Zhou (2014), Wright (2015), Shi et al. (2017), Wang et al. (2018), Fercoq and Bianchi
(2019), and the many references therein.

Alternating projection method. We described in Sec. 12.6 the alternating projection
algorithm (12.171) for finding points in the intersection of two closed convex sets,
C1 and Cz; the technique is also known as the successive projection method. It has
found applications in a wide range of fields including statistics, optimization, medical
imaging, machine learning, and finance. The algorithm was originally developed by the
Hungarian-American mathematician John von Neumann (1903-1957) in 1933 in
unpublished lecture notes, which appeared later in press in the works by von Neumann
(1949,1950) on operator theory. von Neumann’s work focused on the intersection of
two affine subspaces in Hilbert space (such as hyperplanes), and it was subsequently
extended by Halperin (1962) to the intersection of multiple affine subspaces and by
Bregman (1965) to the intersection of multiple closed convex sets. For the benefit of
the reader, a set § C IRM is an affine subspace if every element s € 8§ can be written
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as s = p + v, for some fixed p and where v € V denotes an arbitrary element from a
vector space. For example, the set 8 = {z|a"x = b} is an affine subspace. If we let
denote any solution to a'x = b, then any element s € 8 can be written as s = Z+ v for
any v € N(a).

The proof of Theorem 12.6 assumes initially that the convex sets have a nontrivial
intersection. When the sets do not intersect, the argument reveals through expression
(12.183), as was discovered by Cheney and Goldstein (1959), that the alternating pro-
jection algorithm converges to points that are closest to each other from both sets.
This fact was illustrated schematically in Fig. 12.8 and it has many useful applications.
In particular, the result shows that the alternating projection method can be used to
check whether a collection of convex sets intersect or not (such as checking whether
the constraints in a convex optimization problem of the form (9.1) admit feasible so-
lutions). It can also be used to determine the minimum distance between two convex
sets. Moreover,we can use any hyperplane that is orthogonal to the segment connect-
ing a* and b* to separate the two convex sets from each other: one set will be on one
side of the hyperplane while the other set will be on the other side. This observation
is useful for classification problems, as we will explain in later chapters when we dis-
cuss linearly separable datasets. The presentation in the chapter benefited from useful
overviews on the alternating projection method, including proofs for its convergence
properties, given in the works by Cheney and Goldstein (1959), Bregman (1967), Gubin,
Polyak, and Raik (1967), Combettes (1993), Bauschke and Borwein (1996), Escalante
and Raydan (2011), and Dattoro (2016). Although we have focused on finding points in
the intersection of two convex sets, the algorithm can be applied to a larger number of
sets by projecting sequentially onto the sets, one at a time, with minimal adjustments
to the arguments, leading to what is known as the cyclic projection algorithm — see
Prob. 12.34.

The alternating projection method suffers from one inconvenience when the inter-
section set 1 N C2 has more than one point. Starting from an initial vector a_1, the
method generates two sequences {a, € C1} and {b, € C2} that are only guaranteed to
converge to some arbitrary point in the intersection. An elegant variation is Dykstra
algorithm listed in (12.208) and which was developed by Dysktra (1983); see also Boyle
and Dykstra (1986). The same method was rediscovered by Han (1988).

Dykstra alternating projection algorithm.

given two closed convex sets C; and Cg;

given projection operators onto C; and Ca;

start from a_1 € C1, and set c_1 = dp = 0;

objective:
if €1 N €2 # (: find projection w* of a—1 onto the intersection;
else find points {a* € €1,b* € C2} closest to each other;

repeat until convergence over n > 0: (12.208)
bn = ?Cg (anfl + Cnfl)
Cn = Gn-1+ Cn—1 — bn, (residual)
ant1 = Pcy (bn + dn)
dn+1 = bp +dn — ant1, (residual)
end

if |an — by || small, return w*  an;
else return a* < an, b* < b,.
end

The Dykstra method ensures convergence to the point w* in the intersection that is
closest to a_1, namely,

la—1 —w*[] < Jla—1 —w|, for any w € C1 N €2 (12.209)
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That is, the method ends up determining the projection of a_1 onto €1 NC2. Compared
with the classical formulation (12.171), the Dykstra method (12.208) introduces two
auxiliary vectors {cn,dr} and performs the calculations shown in the table repeatedly
starting from the same initial vector a_1 € €; and using c_1 = do = 0.

Using the traditional alternating projection recursions, and the Dykstra variation,
we are able to solve the following two types of problems:

(feasibility problem) : finding w* € €1 N Cs (12.210)
(projection problem) : finding Pc,nc, (), for a given z. (12.211)

Both problems are solved by working independently with the projection operators
Pe, (z) and Pe,(z), and by applying them alternately starting from x.

Zeroth-order optimization. The gradient-descent algorithm described in the body of the
chapter is an example of a first-order optimization method, which requires the avail-
ability of the gradient information, V,, P(w), in order to perform the update (12.22).
In some situations of interest, it may not be possible to evaluate the gradient function
either because the risk P(w) may not have a closed analytical form or is unknown to
the designer altogether — see, e.g., Brent (2002) and Conn, Scheinberg, and Vicente
(2009) for examples. The latter situation arises, for example, in adversarial learning
scenarios, studied in future Chapter 71, where the designer wishes to misguide the
operation of a learning algorithm and is only able to perform function evaluations of
the risk function, P(w), at different data samples. We provide a brief review of zeroth-
order optimization, also known as derivative-free optimization in Appendix 12.A. This
technique enables the designer to approximate the gradient vector by relying solely
on function evaluations. One of the earliest references on the use of finite difference
approximations for gradient evaluations is Kiefer and Wolfowitz (1952). We explain
in the appendix how gradient vectors can be approximated by means of two function
evaluations in a manner that satisfies the useful unbiasedness property (12.218). The
proof given for this latter property follows Nesterov and Spokoiny (2017) and Flax-
man, Kalai, and McMahan (2005). There have been several works in more recent years
on the performance of optimization algorithms based on such constructions. They are
slower to converge than traditional gradient descent and have been shown to require at
least M times more iterations to converge. The slowdown in performance is due to the
error variance in estimating the true gradient vector. Results along these lines can be
found in Wibisono et al. (2012), Nesterov and Spokoiny (2017), and Liu et al. (2018).
Overviews of gradient-free optimization appear in Rios and Sahinidis (2013), Duchi et
al. (2015), Larson, Menickelly, and Wild (2019), and Liu et al. (2020).

PROBLEMS

12.1 Establish that for v—strongly convex risk functions P(w) with d—Lipschitz gra-
dients it holds that

2 (Pw) ~ P") < @]° < 2 (Pw) - P(w))

[\

12.2 Show that the ¢>—regularized least-squares risk listed in Table 12.1 satisfies
condition (12.15). Determine the values for {v, §}.

12.3  Assume all we know is that P(w) is twice-differentiable over w and satisfies
condition (12.15). Establish the validity of Theorem 12.1.

12.4  Assume that P(w) is twice-differentiable over w and satisfies (12.15).

(a) Use the mean-value relation (10.10) to show that the error vector satisfies a
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recursion of the form w, = (Ins — pHp—1)Wn—1 where
A [
Hoy 2 / V2 P(w — ti,_)dt
0

(b)  Show that the conclusions of Theorem 12.1 continue to hold over the wider step-
size interval p < 2/§, which is independent of v.

12.5 Problems 12.5-12.9 are motivated by results from Polyak (1987, Chs. 1, 3).

Consider the same setting of Prob. 12.4. Show that convergence of ||@y||* to zero also

occurs at an exponential rate that is given by A» = max{(1—pu8)?, (1—puv)?}. Conclude

that the convergence rate is fastest when the step-size is chosen as u° = 2/(v + 9) for

which A\§ = (6§ —v)?/(6 4+ v)?. Roughly, how many iterations are needed for the squared

error, ||wn||?, to fall below a small threshold value, €?

12.6 Let P(w) be a real-valued first-order differentiable risk function whose gradient

vector satisfies the  —Lipschitz condition (12.12b). The risk P(w) is not assumed con-

vex. Instead, we assume that it is lower-bounded, namely, P(w) > L for all w and for

some finite value L. Consider the gradient-descent algorithm (12.22). Show that if the

step-size p satisfies u < 2/, then the sequence of iterates {w,} satisfies the following

two properties:

(a)  P(wn) < P(wn-1).

(b)  limp—oo VwP(wy) = 0.

12.7 Let P(w) denote a real-valued v—strongly convex and twice-differentiable cost

function with w € R. Assume the Hessian matrix of P(w) is §—Lipschitz continuous,

ie., HV,ZUP(wg) — Vsz(wl)H < d|lwz — wi]|. The global minimizer of P(w) is sought

by means of Newton method:

Wn = Wn-1 — (vi; P(w7zfl))7lva P(wn71)7 n>0

which employs the inverse of the Hessian matrix. The initial condition is denoted by
w_y. Let A 2 (6/2u2)2 |VwP(w_1)|?, and assume A < 1. Show that ||@y||* converges

to zero at the rate
. 202 n
i@l < (%)

Conclude that the convergence rate is now dependent on the quality of the initial
condition.
12.8 Consider the gradient-descent recursion (12.65) where the step-size sequence is
selected as
r
= 1/2<qg<1, >0
p(n) CESE /2<q<1, T

(a)  Verify that the step-size sequence satisfies conditions (12.66b).

(b)  Follow the proof of Theorem 12.2 to determine the rate of convergence of ||, ||*
to zero.

(¢) For a fixed 7, which value of ¢ in the range 1/2 < ¢ < 1 results in the fastest
convergence rate?

12.9 Let P(w) be a real-valued risk function, assumed v—strongly convex, first-order

differentiable at all w € dom(P), and with d—Lipschitz gradients as in (12.12a)-

(12.12b). Consider a heavy-ball implementation of gradient-descent algorithm, which

is a form of momentum acceleration, also known as Polyak momentum method, and

given by:

Wn, = Wn—1 — V7 P(wn—1) + B(Wn-1 —wn—2), n>0
where the past iterate w,—2 is also used in the update equation, and 0 < § < 1 is called

the momentum parameter. Assume the initial conditions w_1 and w_z lie sufficiently
close to w*, i.e., ||W_1]|* < ¢ and ||@—_2||* < ¢ for some small enough e.
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(a) Show that if 0 < p < 2(1+43)/8, then ||iwn||? converges to zero at the exponential
rate O(\%). Identify A3 and show that optimal values for {u, 3, A\s} are

o4 o (Vi-vr\T
)y <¢3+ﬁ>’ ney

(b) Let x = §/v. Large values for « indicate ill-conditioned Hessian matrices, V2, P(w),
since their spectra will lie over wider intervals. Let A$ denote the optimal rate
of convergence when 3 = 0. We already know from Prob. 12.5 that A3 = (§ —
v)?/(8 4+ v)?. Argue that for large x:

Ao~ 1—2/k, ANx~1-2/Vk

Compare the number of iterations that are needed for ||@,||> to fall below a
threshold e for both cases of 8 =0 and 8 = °.
12.10 Show that the momentum method that updates w,—1 to w, in Prob. 12.9 can
be described in the equivalent form:

n é VwT P(wn—l)

n — ﬁgn—l +bn7 E—l =0
Wn = wnflfﬂl;n

o

Remark. We will encounter this construction later in Sec. 17.5 when we study adaptive
gradient methods with momentum acceleration.

12.11 Consider the same setting of Prob. 12.9. A second momentum implementation
is Nesterov momentum method, which is given by the following recursion:

Wn = Wn_1 — UV, P(wnﬂ + Bwn—1 — wn72)> + B(wn-—1 — wn-2), >0

Compared with Polyak momentum from Prob. 12.10 we find that the main difference is
that the gradient vector is evaluated at the intermediate iterate wn—1+8(wWn—1—wn—2).
Study the convergence properties of Nesterov method in a manner similar to Prob. 12.9.
Remark. For more details on this implementation and its convergence properties, see
Nesterov (1983,2004) and Yu, Jin, and Yang (2019).

12.12 Show that the Nesterov momentum method that updates w,—1 to w, in
Prob. 12.11 can be described in the equivalent form:

w’:L—l é Wn—1 — ,U/ﬁgnfl
by, Vot P(w),_1)
En = ,Bgn—l + b'/na 6—1 =0

Wn

Wn—-1 — ,UBn

Remark. We will encounter this construction later in Sec. 17.5 when we study adaptive

gradient methods with momentum acceleration.

12.13 Refer to the gradient-descent recursion (12.22) and assume that P(w) is only

convex (but not necessarily strongly-convex) with a d—Lipschitz gradient satisfying

(12.12b). Let p < 1/4.

(a) Use property (11.120) for convex functions with §—Lipschitz gradients to argue
that

P(wn) < Plwn1) = 51| VuPwn )|

Conclude that P(wy) is non-increasing.
(b)  Use part (a) to show that, for any z € IR™, it holds

P(wa) < P() + (VyrP(wanr)) (waor = 2) = 8 [V Plwa)|
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(c) Show that P(wn) — P(w*) < 2 ([a_1]* — |@ull?).
(d) Conclude that P(w,) — P(w*) < 2‘%1”{50“2 so that (12.64b) holds.

12.14 Refer to the gradient-descent recursion (12.22) and assume that P(w) is only
convex and d—Lipschitz, namely,

IP(w:) = P(ws)]| < 8llws — wall, Vs, ws € dom(P)

Observe that we are now assuming that P(w) itself is Lipschitz rather than its gradient.

We know from property (10.41) that the condition of a Lipschitz function translates

into bounded gradient vectors, so that ||V, P(w)|| < . Let w* be a minimizer for P(w)

and assume ||[W_1|| < W, where w_; is the initial condition for the gradient-descent

recursion.

(a)  Use the convexity of P(w), the gradient-descent recursion, and the bounded gra-
dients, to verify that

o pd 1 1
P n— - P < a n— - 5. n
(wnt) = P@?) < 5 + 51Tt = 5 1]
(b)  Sum over the first N iterations to verify that
N-1
1 . ud? w2
— P(w,) — P < —
N 2 Pl Pw) < P54
(¢) Show that the upper bound is minimized for p° = % and and apply Jensen
inequality to P(w) to conclude that
L Nl
P(+ E wn) = P(w*) < Wé/VN

In other words, the risk value evaluated at the average iterate approaches the
minimal value P(w*) at the rate O(1/v/N).
(d) Let w*" denote the iterate value that results in the smallest risk from among
all iterates, namely, w** = argmin P(w,). Conclude further that
0<n<N-1

P(w*") — P(w*) < W§/VN

12.15 Refer to the gradient-descent algorithm (12.65) with decaying step-sizes. Re-
peat the argument from parts (a) and (b) of Prob. 12.14 to establish that

N-1

5= w2
u(n) (Plwn) = Pw?)) < 5 3" W) + -
n=0 n=0
Select pu(n) = == for some constant c and show that

P(w™) — P(w*) = O(ln(N) VN )

12.16 Refer to the backtracking line search method (12.103) and assume now that
P(w) is only convex. Repeat the argument of Prob. 12.13 to establish that

P(wy,) — P(w*) <

2
ol
where une = min{1, 5/6}.

12.17 Show that step-size sequences of the form (12.67) satisfy condition (12.66b).
12.18 Consider the gradient-descent recursion (12.65) with the step-size sequence
selected as p(n) = 7/(n+ 1)* where 3 < ¢ <1 and 7> 0.
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(a) Verify that the step-size sequence satisfies condition (12.66b).

(b)  Follow the proof of Theorem 12.2 to determine the rate of convergence of ||wn,||?
to zero.

(¢) For a fixed 7, which value of g results in the fastest rate of convergence?

12.19 Refer to the statement of Theorem 12.5 for the Gauss-Southwell coordinate

descent algorithm. The value of A € [0,1) determines the convergence rate of the

algorithm. We can establish a tighter result with a smaller A" € [0,1), which would

imply a faster rate than the one suggested by the theorem as follows. We know from

the result of Prob. 8.60 that P(w) is also 1 —strongly convex relative to the infinity

norm, i.e., expression (12.155a) implies

T V1 2
Pwn) > P(wr) + (Vyr Pwn)) (w2 —w1) + 5wz —wi

where vy satisfies 17 < v1 < v. Repeat the argument in the proof of Theorem 12.5 to
show that the algorithm continues to be stable for p < 2/§ with the excess risk now
evolving according to

P(w,) — P(w*) < X (P(wn) - P(w*))

where \' 2 1—2pwv1 4?1 8. Verify that ' < A when v1 > v/M, and conclude that this
result suggests a faster rate of convergence for the Gauss-Southwell coordinate descent
recursion than the randomized coordinate-descent recursion. Remark. The reader may
see Nutini et al. (2015) for a related discussion.

12.20 Consider a risk function P(w) and let w,—1 denote an estimate for the mini-
mizer of P(w) at iteration n—1. Assume we are able to construct a function G(w, wn—1)
that satisfies the two conditions:

G(w,wn-1) = P(w), G(w,wn—1) > P(wp—1), Yw

We say that G(w,wn—1) “majorizes” P(w) by bounding it from above. Note that the
definition of G(w) depends on w,—1. Now set w,, to the minimizer of G(w, wn—_1), i.e.,

wy, = argmin G(w, wn—1)
welRM

Show that P(wy) < P(wn—1). That is, the updates constructed in this manner lead to
non-increasing risks. This method of design is referred to as majorization-minimization;
one example is encountered in future Example 58.2 in the context of the multiplicative
update algorithm for nonnegative matrix factorization.

12.21 Consider the ¢2—regularized mean-square-error risk:

w’ = argmin (prH2 + E(v- hTu))Q)
M

welR

(a) Denote the risk in the above optimization problem by P(w). Verify that P(w) is
quadratic in w and given by P(w) = 02 — 2r],w+w' (pl + Rp)w.
) Show that P(w) is v—strongly-convex and find a value for v.
(¢) Show that P(w) has d—Lipschitz gradients and find a value for 4.
) Show that w® = (pI 4+ Rp) ™ 'rp.

) In this case we know a closed-form expression for the optimal solution w®. Still,
let us determine its value iteratively. Show that the gradient-descent recursion
(12.22) applied to the above P(w) leads to

wn, = (1 = 2pp)wn—1 + 2u(rhy — Rpwn—1), n >0

(f) Let wy, = w® — wy. Verify that w, = ((1 — 2pu) Iy — 2uRp)Wn—1.

(g) Show that wy, converges to zero for step-sizes p satisfying u < 2/(p+Amax), where
Amax denotes the maximum eigenvalue of R, (which is also equal to its spectral
radius).
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12.22 Is the objective function P(w) defined by (12.164a) convex in w?

12.23 Refer to Newton recursion (12.197) for the minimization of P(w) with € =
0. Introduce the change of variables w = Az and write down Newton method for
minimizing the function Q(z) = P(Az) over z, namely,

Zn = Zn—1 — (V?UQ(Z’nfl))il VZTQ(anl)

Multiply by A from the left and show that the result reduces to Newton’s original
recursion over w,, for minimizing P(w). Conclude that Newton method is invariant to
affine scaling.

12.24  Consider the optimization problem (9.42) with linear equality constraints and
the corresponding saddle-point formulation (9.44). Apply gradient-descent on w and
gradient-ascent on the dual variable 8 by using

Wn = Wn—-1 — /Jwva P(wn—l) - ,uwBTBn—lv n > 0
Brn = Bn-1 + ps(Bwn — )

where p,, > 0 and pug > 0 are step-size parameters and w_; and S_; are arbitrary
initial conditions satisfying f—1 = Bw_; or f—1 = 0. Note that the updated iterate
wy, is used in the recursion for 3, instead of w,_1; we say that we are implementing
the recursions in an incremental form. Assume P(w) is v—strongly convex and has
d—Lipschitz gradients, i.e., for any wi, wa:

[Vt P(wi) = Vr P(w2)]] < 8w — wa|

Consider the unique saddle-point (w*,}) defined by Lemma 9.2 and introduce the
error quantities w, = w* — wy, and B, = B — Bn. Show that, for u, < 1/6 and
wp < v/02a(B), the above recursions converge linearly to (w*, 83), namely,

l@al2, +1Bal, < p (1Barl2, +1Ba-sl2,)
where ¢g = pw/tg > 0, ¢w = 1 — pwpsoia(B) > 0, and

p 2 max{l — pwv(1 — pwd), 1 — uwugaﬁ,in(B)} <1

where omin(B) is the smallest nonzero singular value of B. Remark. For more details,
the reader may refer to Alghunaim and Sayed (2020) and the discussion therein.
12.25 Consider the same setting of Prob. 12.24 except that the saddle-point (w*, 83)
is now sought by means of the following recursions

Wp = Wn—-1 — ,Uwva P(wn—l) - ,UfwBT/Bn—h n >0
Bn = Brn-1 + pg(Bwn—1 —c)

The main difference is that w,—1 is used in the recursion for 3, instead of w,. The

above recursions, with w,_1 instead of wy, are due to Arrow and Hurwicz (1956) and

are known as the Arrow-Hurwicz algorithm. We will encounter an instance of it in
future Example 44.10 when studying Markov decision processes. We will also comment
on the history of the algorithm at the concluding remarks of that future chapter.

(a) Introduce the modified cost function P, (w) = P(w) — £2|[Bw — c||*. Write down
the incremental recursions of Prob. 12.24 that would correspond to the problem
of minimizing P,(w) subject to Bw = c. Verify that these recursions can be
transformed into the Arrow-Hurwicz algorithm for P(w) given above.

(b)  Use the result of Prob. 12.24 to conclude that the Arrow-Hurwicz recursions also
converge linearly to the unique saddle-point (w*, 83) for pw < 1/(8+ psoz.x(B))
and pg < v/20%.(B).
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12.26 Consider a v—strongly convex risk function P(w) and apply the following
gradient-descent algorithm for its minimization:

Wy = Wn—1 — uDRV 7 P(Wn-1)

where D, is a diagonal matrix; each of its diagonal entries is either one with probability
p or zero with probability 1 —p. Repeat an analysis similar to the proof of Theorem 12.4
to determine conditions for the convergence of this scheme.
12.27 Consider a non-smooth convex risk function P(w) : R® — IR for which a
point w* is found that satisfies (12.121). Does it follow that w* is a global minimizer
for P(w)? Consider the risk P(w) = |Jw]||*4-|w1 —w2| and the point (w1, ws) = (0.5,0.5).
12.28 The following example is from Powell (1973). Consider a risk function over IR®
of the form
3 2
P(w) = —wiws — wawz — wiws + Z(\wﬂ — 1)+

k=1

where the notation (z)+ = x if z > 0 and zero otherwise.

(a) Is P(w) convex over w?

(b)  Verify that P(w) has two minimizers at locations col{1,1,1} and col{—1, -1, —1}.

(¢) Choose the initial condition w_; close to other vertices of the unit cube, other
than the minimizers. Write down the corresponding coordinate-descent algorithm
(12.119). Does it converge?

(d) Write down the corresponding gradient-descent algorithm. Does it converge?

12.29 Consider the optimization problem

W* = argmin || X — WZ||7
w

where X is M x N, Wis M x K, and Z is K x N.
(a)  Verify that the cost function can be rewritten as

quzﬁﬂX—WmWX—Wm}

(b) Let B=XZ"and A= ZZ". Let also W,,, denote the estimate for T at iteration
m. Follow a coordinate-descent argument similar to the one leading to (12.125)
to estimate the individual columns of W and show that the resulting algorithm
involves an update of the form:

W'm = m—1 1 (B - WmflA)diag(Ail)

12.30 Refer to expression (12.142) and assume p = 0. Show that it can be rewritten
in the equivalent form:

= Tpo (’YN - Han—l)

Wn,me = Wn—1,m° + —
[[me ||

12.31 The alternating projection algorithm (12.171) can be written in the equiva-
lent form a,, = Pe, (Pe,(an—1)). Show that the cascade projection operator P(z) =
Pe, (Pe, (z)) is non-expansive, i.e.,

[P(@) =PI < llz—yll, Ve,yelu

12.32 The method of averaged projections is an alternative to the alternating projec-
tion algorithm (12.171). It starts from an initial vector w_; and updates it recursively
as follows by averaging its projections on the two convex sets:

1
Wy = §(Tel(wn_1) + TGQ(wn_l)), n>0

Assume the intersection €; N Gz is non-empty. Establish convergence of the sequence
wy, to some point w* in this intersection.
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12.33  The Dykstra method (12.208) is a variation of the alternating projection algo-
rithm. Show that starting from an initial vector a—_1, it converges to the unique point
w* € C1NECs that is closest to a_; from within the intersection set. Remark. The reader
may refer to Dykstra (1983), Boyle and Dykstra (1986), Combettes and Pesquet (2011),
and Dattoro (2016) for a related discussion.

12.34 We wish to determine a solution to the linear system of equations Hw = d,
where H € RM*M | This objective can be recast as the problem of determining the
intersection of a collection of affine subspaces. We denote the rows of H by {h}}
and the entries of d by {6} for k = 1,2,..., N, and consider the hyperplanes H;, =
{z| hiz— 0, = 0}. Starting from an initial condition w_1, assume we apply a cyclic
projection algorithm and project successively onto the H; and keep repeating the
procedure. Use the result of Prob. 9.3 for projections onto hyperplanes to verify that
this construction leads to the following so-called Kaczmarz algorithm:

current projection is wp—1
current selected row of H is hy and selected entry of d is 6y,
(h-llc—wn—l - 91@)

update w, = wn_1 — 3
llwn—1]l

n—1

Remark. These recursions correspond to the classical method of Kaczmarz (1937) for
the solution of linear systems of equations. We will encounter a randomized version
later in Prob. 16.7 and apply it to the solution of least-squares problems.

12.35 Refer to the BFGS algorithm (12.206). Verify that z, a, > 0 for strictly convex
risks P(w). Use the matrix inversion lemma to show that

.
-1 1 T -1 1 T 1 T
By, = (Im— w—2znan | By21 | IM — —5—2nan | + 5—2n2n
Zp Qn ZpnQn ZpQn
n n n

Conclude that B,, > 0 when P(w) is strictly convex and z, # 0.
12.36  Continuing with the BFGS algorithm (12.206), introduce the second-order ap-
proximation for the risk function around ws:

P(w) = P(wy) 4 Va P(wn ) (w — wn) + %(w —wy) B (w — wy)

Use the secant condition to show that the gradient vectors of P(w) and its approxima-
tion coincide at the locations w,, and wy,_1, i.e.,

VuP(wn) = VuP(wn), VeP(wn 1)=VeP(wn_ 1)

12.37 The material in Probs. 12.37-12.39 is motivated by results from Nesterov and

Spokoiny (2017). Refer to the smoothed function (12.216) relative to the Gaussian

distribution fz(x) = Nz (0, Irr). Verify that:

(a)  Pa(w) > P(w) for any o > 0.

(b)  Pa(w) is convex when P(w) is convex.

(¢c) If P(w) is —Lipschitz then P,(w) is do—Lipschitz with o < 4.

(d) If P(w) has —Lipschitz gradients then P,(w) has do—Lipschitz gradients with
0a < 6.

12.38 Refer to the smoothed function (12.216) relative to the Gaussian distribution

Je(x) = Nz (0, Inr). Assume P(w) is §—Lipschitz, i.e., |P(w1) — P(w2)| < 8]lwi — w2]|

for all w1, w2 € dom(P). Show that P,(w) is first-order differentiable and its gradient

vector is d,—Lipschitz, i.e.,

IVwPa(w1) = Vi Pa(w2)|| < dallwr — w2l

with 00 = 5\/M/a.
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12.39  Refer to the smoothed function (12.216) relative to the Gaussian distribution
Jfe(x) = Ng(0, Inr). Assume P(w) has d—Lipschitz gradients, i.e.,

[V P(w1) = Vi P(w2)]| < 8w — wo|

for all w1, w2 € dom(P). Establish the following inequalities:

(a) |Pa(w) — P(w)| < a®?M§/2.

(b)  |VwPa(w) — Vo P(w)|| < ad(M + 3)3/2/2.

(©  IVuP@)|? < 2[VwPa(w)|* + a6* (M + 6)° /2.

Show further that the second-order moment of the gradient approximation (12.214)
satisfies

E o[V P(w)||* < 2(M + 4)[|V P(w)||* + 06> (M +6)*/2

Conclude that the error variance in estimating the gradient vector is bounded by the
sum of two components: one varies with o and decays with a while the other is
independent of o but depends on the problem dimension M.

12.40 Verify equality (12.226), which relates the integral over a ball to the integral
over its spherical surface.

12.41 Consider the following one-point estimate for the gradient vector in place of
(12.214):

S TF B

V., Pw) = aP(w + au)u

w

Verify that the unbiasedness property (12.218) continues to hold.

ZEROTH-ORDER OPTIMIZATION

The gradient-descent algorithm described in the body of the chapter is an example
of a first-order optimization method, which requires the availability of the gradient
information, V., P(w), in order to perform the update:

Wn = Wn—-1 — MvaP(wn71)7 n > 0 (12212)

where we are assuming a constant step-size for illustration purposes. In some situations
of interest, it may not be possible to evaluate the gradient function either because
the risk P(w) may not have a closed analytical form or is unknown to the designer
altogether. This latter situation will arise, for example, in adversarial learning scenarios,
studied in future Chapter 71, where the designer wishes to misguide the operation of a
learning algorithm but is only able to perform function evaluations, P(w). Zeroth-order
optimization is a technique that enables the designer to approximate the gradient vector
by relying on function evaluations. We provide a brief overview of the methodology in
this appendix.

Two-point gradient estimate

One way to approximate Vv P(w) is to construct a two-point estimate as follows. Let
u € RM denote a realization for a random vector that is selected according to some
predefined distribution. Two choices are common:

u ~ Ny (0,In), (Gaussian distribution) (12.213a)
u ~ U(S), (uniform distribution on the unit sphere, S) (12.213b)
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where S denotes the unit sphere in IR™ of radius one and centered at the origin. In
both cases, the variable u has zero mean. Let a > 0 denote a small parameter known
as the smoothing factor. Then, we construct

V/wT\P(w) = g(P(w +au) — P(w))u (12.214)

where the value of the scalar 8 depends on which mechanism is used to generate the
directional vector wu:

1, if w~ Ny(0, In)

= { M, ifu~US) (12.215)

Note that expression (12.214) requires two function evaluations to approximate the
gradient vector.

Smoothed risk function

Construction (12.214) has one useful property. We introduce the following smoothed
version of P(w), which is dependent on « and where the integration is over the domain
of the variable x:

Pa(w) & / Plw + az) fa(x)dzr = Em{P(w +aac)} (12.216)
zeX
The distribution of & € IR™ depends on the mechanism used to generate u, namely,

ful) A { le((((LI)M), (Gaussian distribution)

, (unit ball) (12.217)

where the symbol B denotes the unit ball in IR™ of radius one and centered at the
origin (all vectors z € B will have ||z|| < 1). The sphere S is the surface of this ball,
and the ball is the interior of the sphere. The smoothed function P, (w) is differentiable
(even when P(w) is not) with its gradient vector satisfying:

o —

Y, Pa(w) = Eu{vaP(w)} (12.218)

where the expectation is over the distribution used to generate w. This result shows
that construction (12.214) provides an unbiased estimate for the gradient of Py (w).
Additional properties for the smoothed function are listed in Prob. 12.37.

Proof of (12.218): Consider first the Gaussian case. Then, it holds that

(12.216) 1 1 2
P.(w = P(w + ax) ————exps —= ||z dx 12.219
@) 20 [ Pwtan) o pen{ e} (12:219)

dy, using y =w+ ax

o g |, o= gly i)
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Differentiating relative to w gives
1 1

_ 1 Y -
Vorhw) = o [ Pwee{ =gyl x 5wy

1 1. 1
= — P(w + ax)expy — = ||z x — (az)dx
T | P el x e
= l/ P(w + az)x Ng (0, In)dz
@ Jrex

= éEm {P(w + am)w}

= éEm {P(w + aac)x} — é]Em {P(w)m}

=0

= Ez{i(P(w + ax) — P(w))w}

(12:214) Eu{V/wT\P(w)} (12.220)

as claimed, where the last equality is because u and x have the same Gaussian distri-
bution.

Consider next the case in which u is selected uniformly from the unit sphere, S.
Then, in this case,

(12.216)

Pa(w) ]EEGB{P(w n a:c)}

EyEaB{P(w + y)}7 using change of variables y = ax

- L/ P(w +y)dy (12.221)
yeaB

vol(aB)
where vol(aB) denotes the volume of the ball of radius «; we recall that the volume of
a ball in IR centered at the origin with radius « is given by

M/2 =M
s / e

N +1)

vol(aB) = (12.222)

in terms of the Gamma function. Moreover, it also holds that

Eueg{P(w + au)u} = EZEQS{P(w + z)Z}7 using change of variables z = au

z .
= EzEDcS{P(’U) + z)m}, since ||z|| = «
1
= Pw+z)——dz (12.223)

swrf(a8) J.eas 12

where surf(aS) denotes the surface area of the ball of radius «; we recall that the surface
area of a ball in IR™ centered at the origin with radius « is given by
onM/2 [ M—1

L)

surf(aS) = (12.224)

Using the property I'(z + 1) = 2I'(z) for Gamma functions, we conclude that

surf(aS) = M
vol(aB)  « (12.225)
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From the divergence theorem in calculus, which allows us to relate integration over a
volume to the integral over its surface, it can be verified that — see Prob. 12.40:

VT / Plw+y)dy ; = / P(w+ z)idz (12.226)
yeaB zE€aS ||2H

Collecting terms we conclude that (12.218) holds.
|

An alternative two-point estimate for the gradient in place of (12.214) is the sym-
metric version
V/MT\P(w) = 2£ (P(w +au)— Pw— au))u (12.227)
@
where the arguments of the risk function are w 4 au and the factor in the denominator
is 2. In Prob. 12.41 we consider another example.

Zeroth-order algorithm

We can now list a zeroth-order algorithm for minimizing a risk function P(w) : RM —
IR. The original gradient-descent recursion (12.24) is replaced by (12.228). In the listing,
we denote the distribution from which the directional vectors u are sampled by fu(u);
it can refer either to the Gaussian distribution N (0, Ias) or the uniform distribution
U(S), as described by (12.213a)—(12.213b).

Zeroth-order gradient-based method for minimizing P(w).

given a small step-size parameter p > 0;

given a small smoothing factor a > 0;

select the sampling distribution fo,(u) and set 8 € {1, M};

start from an arbitrary initial condition, w_;.

repeat until sufficient convergence over n > 0 : (12.228)
sample uy, ~ fu(u) ’

_—

Vot Pwn—1) = g(P(wn,1 + aun) — P(wn,1))un

T
Wn = Wn—1 — p V, 7 P(Wn—1)
end
return w* < wn,.
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