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11.1

11.1.1

Proximal Operator

Proximal projection is a useful procedure for the minimization of nonsmooth
convex functions. Its main power lies in transforming the minimization of convex
functions into the equivalent problem of determining fixed points for contractive
operators. The purpose of this chapter is to introduce proximal operators, high-
light some of their properties, and explain the role that soft-thresholding or
shrinkage plays in this context.

DEFINITION AND PROPERTIES

Let h(w) : RM — TR denote a convex function of real arguments, w € IR,
Since h(w) is convex, it can only have minimizers and all of them will be global
minimizers. We are interested in locating a minimizer for h(w). The function
h(w) may be non-differentiable at some locations.

Definition

Let z € RM denote some given vector. We add a quadratic term to h(w) that
measures the squared distance from w to z and define:

1

hy(w) £ h(w) + ﬂﬂwfz”z, Yuw € dom(h) (11.1)
for some positive scalar p > 0 chosen by the designer. The proximal operator of
h(w), also called the prozimity operator, is denoted by the notation prox,,,(z)
and defined as the mapping that transforms z into the vector @ computed as
follows:

>

W = argmin hy,(w) (11.2)

welRM
We will refer to w as the proximal projection of z relative to h. The function
h,(w) is strongly-convex in w since h(w) is convex and ||w — z||? is strongly-
convex. It follows that h,(w) has a unique global minimizer and, therefore, the
proximal projection, @, exists and is unique. Obviously, the vector @ is a function
of z and we express the transformation from z to @ by writing

W = prox,,(2) (11.3)
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where the role of h(w) is highlighted in the subscript notation, and where the
proximal operator is defined by

A
Prox,, () =
welRM

argmin {h(w) + 2i||w z||2} (11.4)
L

In the trivial case when h(w) = 0, we get @ = z so that
prox,(z) = z (11.5)

Using (11.3), the minimum value of h,(w), when w is replaced by w, is called
the Moreau envelope, written as

Mun(2) 2

~ 1 . 2

h(w) + ﬂﬂw —z|| (11.6)
Intuitively, the proximal construction (11.3) approximates z by the vector @ that
is “close” to it under the squared Euclidean norm and subject to the “penalty”
h(w) on the “size” of w. The Moreau value at @ serves as a measure of a “gen-
eralized” distance between z and its proximal projection, w. The reason for the
qualification “projection” is because the proximal operation (11.3) can be inter-
preted as a generalization of the notion of projection, as the following example
illustrates for a particular choice of h(w).

Example 11.1 (Projection onto a convex set) Let C denote some convex set and in-
troduce the indicator function:

A { 0, wee (1L.7)

Ie,co[w] = 00, otherwise

That is, the function assumes the value zero whenever w belongs to the set € and
is infinite otherwise. It is straightforward to verify that when h(w) = Igc[w], the
definition

. 1 2
TOX z) = argmin I w) + —||lw—z 11.8
pros. () = agmin {loocw) + ol =17} (118)
reduces to
. 2
proxuﬂc,m(z) = argrenc}n lw — z|| (11.9)

In other words, the proximal operator (11.8) corresponds to projecting onto the set €
and determining the closest element in C to the vector z. We express the result in the
form:

prox,;, (z) = Pc(z) (11.10)

If we compare (11.8) with the general definition (11.4), it becomes clear why the prox-
imal operation is viewed as a generalization of the concept of projection onto convex
sets. The generalization results from replacing the indicator function, I¢ . [w], by an
arbitrary convex function, h(w).
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Optimality condition
When h(w) is differentiable, the minimizer @ of (11.4) should satisfy
PO Y . _
Voot h(w)—l—;(fw—z) =0 < W=2z—pV, h(0) (11.11)

On the other hand, when h(w) is not differentiable, the minimizer @ should
satisfy

0c Oy h(@) + %(ﬂ)\—z) e (2— @) € pdyr h(®) (11.12)

This is a critical property and we rewrite it more generically as follows for ease
of reference in terms of two vectors a and b:

a = prox,;(b) <= (b—a) € pd,r h(a) (11.13)

Soft Thresholding
One useful choice for the proximal function is
h(w) = aljwl||; (11.14)

in terms of the ¢;—norm of the vector w and where o > 0. In this case, the
function h(w) is non-differentiable at w = 0 and the function h,(w) becomes
1
hp(w) = afjwlly + ﬂllw—ZH2 (11.15)

It turns out that a closed form expression exists for the corresponding proximal
operator:

A
W = ProX,q |, (2) (11.16)

We show below that @ is obtained by applying a soft-thresholding (or shrinkage)
operation to z as follows. Let z,, denote the m—th entry of z € R™. Then,
the corresponding entry of @, denoted by @,,, is found by shrinking z,, in the
following manner:

Wy = Tpa (zm), m=12,...,M (11.17)
where the soft-thresholding function, denoted by Tg(x) : R — IR, with threshold
B >0, is defined as

0, if —pf<zx<f (11.18)
r+p, ifx<-4

Ts(x) =

This can also be written in the alternative form:
Ts(z) = sign(z) x max{(), |z| — B}

— sign(z) (|x| - ﬁ>+ (11.19)
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where (a)4 = max{0,a}. Figure 11.1 plots the function Tg(z) defined by
(11.18); observe how values of = outside the interval (-3, 3) have their magni-
tudes reduced by the amount 3, while values of x within this interval are set to
Z€ro.

v

Figure 11.1 The soft-thresholding function, Tg(z), reduces the value of = gradually.
Small values of z within the interval (—f3, 8) are set to zero, while values of = outside
this interval have their size reduced by an amount equal to 8. The dotted curve
corresponds to the line y = x, where y is the vertical coordinate.

We will replace notation (11.17) by the more compact representation:

@ = Tpal(2) (11.20)

in terms of the vector arguments {@, z}, with the understanding that T, (-) is
applied to the individual entries of z to construct the corresponding entries of @
according to (11.18).

Proof of (11.17): To determine @ we need to minimize the function h,(w) defined by
(11.15). We rewrite (11.15) in terms of the individual entries {wm, zm } as follows:

M Mo
hy(w) = Z a|wm| + Z ﬂ(wm — zm)’ (11.21)
m=1 m=1

It follows from this expression that the minimization of h,(w) over w decouples into
M separate minimization problems:
P . 1
B 2 argmin {a|wm| + —(wm — zm)2} (11.22)
wmEIR 2.“’
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For ease of reference, we denote the function that appears on the right-hand side by

1
B (i) 2 Mwm|+§p@mn—sz (11.23)

This cost is convex in w.,, but is not differentiable at w,, = 0. We can arrive at a
closed-form expression for the minimizer by examining the behavior of the function
separately over the ranges w,, > 0 and w,, < 0O:

(1) wm > 0: In this case, we can use the expression for hp, (wm) to write

2phm (Wm) = 2pwWm + (W — zm)2
= (w"L - (ZnL - Ma))Z + Z72n - (Z7n - /LOé)2 (1124)

It follows that the minimizer of h, (wy,) over the range wy, > 0 is given by

+ A . 0, if zm < po
wyh = aiirglon hm (Wm) = {zm o, if 2 > pa (11.25)
(2) wm < 0: In this case, we get
2phm (W) = —2p0wWn + (Wm — zm)2
= (Wm = (zm + p))* + 23 = (2m + pa)” (11.26)

It follows that the minimizer of hp, (wm) over the range wy, < 0 is given by

o
0, Ham > —pa (11.27)

Wiy <0 Zm + po, if 2, < —p

Wy, a argmin hm, (wm) = {
We conclude that the optimal value for each wy, is given by

Zm — pe, iz > po
Wm =} 0, if —pa<zm <po (11.28)
Zm + po, if zm < —pa

which agrees with (11.17).

Example 11.2 (A second useful choice) Let
h(w) = allw|: + gHsz, a>0, p>0 (11.29)

which involves a combination of ¢; and ¢2—norms. For this choice of h(w), a similar
derivation leads to the expression — see Prob. 11.4:

~ 4
w = T% <1+/Ap) (11.30)

Compared with (11.20), we see that the value of z is scaled by (14 pp) and the threshold
value is also scaled by the same amount.

Example 11.3 (General statement |) It is useful to state the main conclusion that
follows from the derivation leading to (11.17). This conclusion is of general interest and
will be called upon later in different contexts, especially when we study regularization
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problems. Thus, consider a generic optimization problem of the following form (compare
with (11.15)):

. . 1
o 2 argmin {a||w\|1 + —Jw—z|* + qb} (11.31)
welRM 2'“’

for some constants a > 0, u > 0, ¢, and vector z € IRM. Then, the solution is unique
and given by the following expression:

@ = Tua(z) = sign(z) ® (\z| —uaIL)+ (11.32)

in terms of the soft-thresholding function whose entry-wise operation is defined by
(11.18), and where ® denotes the Hadamard elementwise product.

Example 11.4 (General statement IlI) Consider a diagonal scaling matrix

D=diag{af7ag,...70§/[} (11.33)
with o2, > 0 and replace (11.31) by
A . 1 2
@ 2 argmin {a||DwH1 b fw—z)? + ¢} (11.34)
wE]RM 2”’

Repeating the arguments that led to (11.32), it can be verified that — see Prob. 11.11:

@ = sign(z) ® D (D_1|z| —Ma]l) (11.35)
+

where the operations sign(z), |z|, and (a)+ are applied element-wise.

We collect in Table 11.1 several proximal operators established before and in the
problems at the end of the chapter. In the table, the notation (a); = max{0,a}
and I[z] = 1 when statement x is true; otherwise, it is equal to zero.

Fixed Points

One main motivation for introducing proximal operators is the fact that fixed
points for the proximal mapping coincide with global minimizers for the convex
function h(w). Specifically, if we let w® denote any global minimum for h(w),
i.e., a point where

0 € Dy h(w°) (11.36)

then w? will be a fixed point for prox,, (), namely, it holds that:

w? = prox,,, (w’) <= 0€ dy h(w®) (11.37)
—_— —

fixed point global minimum
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Table 11.1 Some useful proximal operators along with some properties.

convex function, h(w) proximal operator, @ = prox,; (2) reference
1. | Io,eo[w] (C convex set) | @ = Pc(z) (projection operator) Eq. (11.10)
2. | ofjw]j1, >0 W = T,q(z) (soft thresholding) Eq. (11.20)
2 lwlf? D =T pa (—2 )
3. | allwlh + 2w @ =T uo_ (1 o Eq. (11.30)
4. | afwl @ = (1 - m) P Prob. 11.7
+
5. | aflw]o W= zH[|z| > \/2ua]l} Prob. 11.8
6. | g(w) =h(w)+c prox,, (z) = prox,,, (2) Prob. 11.1
7. | g(w) =h(cw+1D) prox,(z) = é(proxazh(az +b) — b) Prob. 11.2
— P 2 _ z )
8. | g(w) = h(w) + 5wl prox,, (2) ProX_un_ (1 o Prob. 11.6

This fact follows immediately from property (11.13). Consequently, iterative pro-
cedures for finding fixed points of prox,,(z) can be used to find minimizers for
h(w). Although unnecessary, we will generally be dealing with the case when
there is a unique minimizer, w®, for h(w) and, correspondingly, a unique fixed
point for prox,,, (2).

PROXIMAL POINT ALGORITHM

We now exploit property (11.37) to motivate iterative procedures that converge
to global minima w® for h(w). We know from (11.37) that these minima as fixed
points for the proximal operator, i.e., they satisfy

w’ = prox,,, (w’) (11.38)

There are many iterative constructions that can be used to seek fixed points for
operators of this type. We examine in this section the proximal point algorithm.

Let w = f(z) : RM — IRM denote some generic strictly contractive operator,
i.e., a mapping from z to w that satisfies

If(z1) = f(z2)]| < Allz1 — 22, for some0 <\ <1 (11.39)

with strict inequality for any vectors z1, 2z € dom(f). Then, a result known as
the Banach fixed-point theorem ensures that such operators have unique fixed
points, i.e., a unique w® satisfying w® = f(w®) and, moreover, this point can be
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determined by iterating:
wp, = flwp—1), n>0 (11.40)

starting from any initial condition w_;. Then, w,, — w® as n — oo — see
Prob. 11.18.

REMARK 11.1. (Convention for initial conditions) Throughout our treatment, most
recursive implementations will run over n > 0, as in (11.40), which means that the
initial condition for the recursion will be specified at n = —1. This is simply a matter
of convention; one can of course run recursions for n > 0 and specify the initial condition
at n = 0. We adopt n = —1 as the time instant for the initial condition, w_;.

|
The main challenge in using (11.40) for proximal operators is that the function

prox,;(z) is not strictly contractive. It is shown in Prob. 11.19 that prox,,(2)
satisfies

Iprox,(z1) - prox,(z2)ll < fl21 — 2| (11.41)

with inequality rather than strict inequality as required by (11.39). In this case,
we say that the operator prox,,(z) is non-erpansive. Nevertheless, an iterative
procedure can still be developed for determining fixed points for prox,,(z) by
exploiting the fact that the operator is, in addition, firmly non-expansive. This
means that prox,,, (z) satisfies the stronger property — see again Prob. 11.19:

Iprox, (1) = prox, (22)|I* < (21 = 22)T (prox,, (1) = prox,, (22))

(11.42)

This relation implies (11.41); it also implies the following conclusion, in view of
the Cauchy-Schwarz relation for inner products:

lz1 = 22| = [lprox,,;,(21) — prox,; (22)||
(11.42) B
&= 21— 22 = pProx,;(z1) — prox,;(22) (11.43)

By using this fact, along with (11.41), it is shown in Prob. 11.20 that for such
(firmly non-expansive) operators, an iteration similar to (11.40) will converge to
a fixed point w? of prox,,,(z), namely,

wy, = Pprox,,(w,—1), n>0 (proximal iteration) (11.44)

Recursion (11.44) is known as the prozimal point algorithm, which is summarized
in (11.45).
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Proximal point algorithm for minimizing h(w).

function h(w) is convex;
given the proximal operator for h(w);
start from an arbitrary initial condition w_q. (11.45)
repeat over n > 0 until convergence:
wp = Prox,,(wn—1)
end
return minimizer w® < w,,.

By appealing to cases where the proximal projection has a closed-form expres-
sion in terms of the entries of w,_1, we arrive at a realizable implementation for
(11.45). For example, when h(w) = a|lw||;, we already know from (11.20) that
the proximal step in (11.45) can be replaced by:

wp = Tpa(wn—1), n>0 (11.46)

On the other hand, when h(w) = aljw|); + §|lw||*, we would use instead:

wy = T na ( Ln-l ) n>0 (11.47)
T+up 1 -|—up

based on the result of Prob. 11.6. Procedures of the form (11.46) and (11.47) are
called iterative soft-thresholding algorithms for obvious reasons.

PROXIMAL GRADIENT ALGORITHM

The proximal iteration (11.45) is useful for seeking global minimizers of stand-
alone convex functions h(w). However, the algorithm requires the proximal op-
erator for h(w), which is not always available in closed form. We now consider
an extension of the method for situations where the objective function h(w) can
be expressed as the sum of two components, and where the proximal operator
for one of the components is available in closed form. The extension leads to the
prozimal gradient algorithm. In preparation for the notation used in subsequent
chapters where the optimization objective is denoted by P(w), we will henceforth
replace the notation h(w) by P(w) and seek to minimize P(w).
Thus, assume that we are faced with an optimization problem of the form:

min {P(w) 2 q(w)+E(w)} (11.48)

welRM

involving the sum of two convex components, E(w) and g(w). Usually, E(w) is
differentiable and ¢(w) is non-smooth. For example, we will encounter in later
chapters, while studying the LASSO and basis pursuit problems, optimization
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problems of the following form:

min_ {O¢||w||1 + ||d—Hw||2} (11.49)

welR

where d € RY*! and H € RV, For this case, we have ¢(w) = a||wl||; and
E(w) = ||d — Hwl||?>. At first sight, we could consider applying the proximal
iteration (11.44) directly to the aggregate function P(w) and write

wy, = prox,p(wy-1), n>0 (11.50)

The difficulty with this approach is that, in general, the proximal operator for
P(w) may not be available in closed form. We now derive an alternative proce-
dure for situations when the form of prox,,(z) is known.

Thus, note first that a minimizer for P(w) is a fixed point for the operator
prox,,(z — pV,v E(2)). Indeed, let w® denote a fixed point for this operator so
that

w? = prox,, (w" — puV ot E(wo)) (11.51a)
Then, we know from property (11.13) that
(wo — uV,r E(w®) — wo) € i, q(w’) (11.51b)
from which we conclude that
0 € V,r E(w®) 4 0, q(w®) (11.51c¢)

or, equivalently,

0 € 9, P(w°) (11.51d)

We therefore find, as claimed, that the fixed point w® is a minimizer for P(w).
We can then focus on finding fixed points for prox,,(z — uV,7 E(z)) by using
the recursion (cf. (11.44)):

Wy, = Prox,, (wn,l — 1Vt E(wn,l)), n>0 (11.52)

We refer to this implementation as the prozimal gradient algorithm, which we
rewrite in expanded form in (11.53) by introducing an intermediate variable z,,.
The algorithm involves two steps: a gradient-descent step on the differentiable
component F(w) to obtain z,, followed by a proximal projection step relative to
the nonsmooth component g(w).
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Proximal gradient algorithm for minimizing P(w) = q(w) + E(w).

¢(w) and E(w) are convex functions;
given the proximal operator for the nonsmooth component, g(w);
given the gradient operator for the smooth component, F(w);
start from an arbitrary initial condition w_;. (11.53)
repeat over n > 0 until convergence:
Zn = Wp—1 — pVr E(wp_1)
Wy = proxuq(zn)
end
return minimizer w® < w,,.

REMARK 11.2. (Forward-backward splitting) In view of property (11.13), the proxi-
mal step in (11.53) implies the following relation:

Wn = prox,,,(zn) <= (2n —wn) € w0, q(wn) (11.54)

which in turn implies that we can rewrite the algorithm in the form:

(forward-backward splitting) { “n Wno1 = pVyr E(wn1) (11.55)

W, = zn — wO,Tq(wn)

where 0,7 ¢(wn) denotes some subgradient for g(w) at location wy. In this form, the
first step corresponds to a forward update step moving from w,—_1 to z,, while the
second step corresponds to a backward (or implicit) update since it involves w, on
both sides. For these reasons, recursion (11.53) is sometimes referred to as a forward-
backward splitting implementation.

Example 11.5 (Two useful cases) Let us consider two special instances of formulation
(11.48). When ¢g(w) = a||w||1, the proximal gradient algorithm reduces to

Zn == Wn—-1 — vaT E(wn—l)
{ Wy = Toa(zn (11.56)
and when g(w) = allw|1 + £|lw||*, we get
Zn = Wn-o1 — puV,1 E(wn—1)
v — Zn (11.57)

T pa
e \ 1+ pp

Example 11.6 (Logistic cost function) Consider a situation where F(w) is chosen as
the logistic loss function, i.e.,

E(w) = In (1+e7"") (11.58)

where v € IR and h € RM. Note that we are using here the notation h to refer to the
column vectors that appear in the exponent expression; this is in line with our future
notation for feature vectors in subsequent chapters. Let

q(w) = allwlly + gllwn2 (11.59)
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so that the function that we wish to minimize is
.
P(w) = aljw|: + guwn2 +1n (1 te w) (11.60)

The function E(w) is differentiable everywhere with

1

V,r E(w) = —vh x Troimw

(11.61)

and we find that the proximal gradient recursion (11.53) reduces to

1
Zn = Wn— h x
n n—1 + 128 1+57’1Twn—1

< Zn ) (11.62)
Wy =T _peo
e \ 1+ pup

contour curves for the logistic function with elastic-net regularization
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Figure 11.2 (Top) Contour curves of a regularized logistic function P(w) of the form
(11.60) with « = 0.2, p =2, v = 1 and h = col{1, 2}. The successive locations of the
weight iterates generated by the proximal gradient recursion (11.62) are shown in
circles moving from left to right towards the minimizer location of P(w). (Bottom
left) Trajectory of the successive weight iterates in IR?, moving from left to right, as
they approach the location of the minimizer w® of P(w). (Bottom right) Normalized
learning curve in logarithmic scale. The curve illustrates the expected “linear
convergence” rate for the successive iterate values towards P(w?).

Figure 11.2 plots the contour curves for the regularized logistic function P(w) : R? — IR
with parameters

V:I,h:[;],a:Ol p=2 (11.63)
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The location of the minimizer w® for P(w) and the corresponding minimum value are
determined to be approximately:

~ | 0.2564

o { 0.0782 } . P(w®) ~ 0.5795 (11.64)

These values are obtained by running the proximal gradient recursion (11.62) for 500
iterations starting from a random initial condition w_; and using g = 0.01. The top
plot in the figure illustrates the trajectory of the successive weight iterates, moving
from left to right, in relation to the contour curves of P(w); this same trajectory is
shown in the lower left plot of the same figure. The lower right plot shows the evolution
of the learning curve P(wy) — P(w®) over the iteration index n in logarithmic scale for
the vertical axis. Specifically, the figure shows the evolution of the normalized quantity

n< Pwn) = P(w’) > (11.65)

max,{P(w,) — P(w°)}

where the curve is normalized by its maximum value so that the peak value in the
logarithmic scale is zero. This will be our standing assumption in plots for learning
curves in the logarithmic scale; the peak values will be normalized to zero. It is clear
from the figure, due to its decaying “linear form” that the convergence of P(w,) to-
wards P(w?) occurs at an exponential rate, as predicted further ahead by result (11.74).

learning curve (e =10.1) . learning curve (e =0.4)
25 8
5
2
= =
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A a3
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2
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Figure 11.3 (Top) Learning curves for the proximal gradient recursion (11.62) using
1 = 0.03 when applied to P(w) = aflw|j1 + In(1 + e”’hTw) using o = 0.1 and o = 0.4.
We use v = 1 and generate a random h with entries selected uniformly from within
the interval [—1,1]. (Bottom) Form of resulting minimizers, w®, for both choices of a.
Observe how the minimizer w® is more sparse for a = 0.4 than for a« = 0.1.
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Figure 11.3 illustrates the influence of the parameter o on the sparsity of the minimizer
w®. We set p = 0 and plot the learning curves and the resulting minimizers for P(w)
with w € IR?°, i.e., M = 20. We continue to use v = 1 but generate a random h with
entries selected uniformly from within the interval [—1, 1]. The curves in the figure are
the result of running the proximal gradient recursion (11.62) for 1500 iterations using
p = 0.03. The learning curves tend towards the minimum values P(w®) ~ 0.3747 for
a = 0.1 and P(w°) ~ 0.6924 for v = 0.4. Observe how the minimizer w’ is more sparse
for @« = 0.4 than for a = 0.1.

Example 11.7 (LASSO or basis pursuit) Consider the optimization problem

w° = argmin {P(w) 2 aflwl: + ||dew|\2} (11.66)
welRM

where d € RV*! and H € RY*M | We will encounter this problem later when we study
sparsity-inducing solutions and, in particular, the LASSO and basis pursuit algorithms.
The function E(w) = ||d — Hw||? is differentiable everywhere with

V., E(w) = —2H"(d — Hw) (11.67)

so that the proximal gradient recursion (11.53) reduces to

Zn
Wn,

Figure 11.4 plots the contour curves for P(w) : IR? — R with o = 0.5, M = 2, and
N = 50. The quantities {d, H} are generated randomly; their entries are zero-mean
Gaussian distributed with unit variance. The location of the minimizer w° for P(w)
and the corresponding minimum value are determined to be approximately

Wn—1 + 2uH " (d — Hwn—1)
Tha(2n)

(11.68)

o _ [ 0.0205
w= 0

} ., P(w°) ~ 42.0375 (11.69)

These values are obtained by running the proximal gradient recursion (11.68) for 400
iterations starting from a random initial condition wo and using g = 0.001. The top
plot in the figure illustrates the trajectory of the successive weight iterates, moving from
left to right, in relation to the contour curves of P(w); this same trajectory is shown
in the lower left plot of the same figure. The lower right plot shows the evolution of
the normalized learning curve P(w,)— P(w®) over the iteration index n in logarithmic
scale according to the same construction from (11.65).

CONVERGENCE RESULTS

We list two convergence results for the proximal gradient algorithm (11.53) for
small enough p. We examine two cases: (a) E(w) is convex and (b) E(w) is
strongly convex. The latter case has faster convergence rate. The proof of the
following first result appears in Appendix 11.A.
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Figure 11.4 (Top) Contour curves of a regularized LASSO function P(w) of the form
(11.66) with a = 0.5, M = 2, and N = 50. The quantities (d, H) are generated
randomly; their entries are zero-mean Gaussian distributed with unit variance. The
successive locations of the weight iterates generated by the proximal gradient
recursion (11.68) are shown in circles moving from left to right towards the minimizer
location of P(w). (Bottom left) Trajectory of the successive weight iterates in IR?,
moving from left to right, as they approach the location of the minimizer w® of P(w).
(Bottom right) Normalized learning curve in logarithmic scale.

THEOREM 11.1. (Convergence of proximal gradient algorithm) Consider the
problem of minimizing P(w) = q(w) + E(w) where ¢(w) and E(w) are both
convex functions, with E(w) differentiable and having 6— Lipschitz gradients. If

w<1/o6 (11.70)
then the prozimal gradient algorithm (11.58) converges to a global minimizer w®

of P(w) at the following rate

P(w,) — P(w°) < |w® —w_1]|> = O(1/n) (11.71)

1
T 2(n+1)p

where w_1 is an arbitrary initial condition.

REMARK 11.3 (Big-O notation). Statement (11.71) uses the big-O notation, which
we already encountered in the earlier expression (3.226). This notation will appear
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regularly in our presentation and it is used to compare the asymptotic growth rates of
sequences. Thus, recall that writing a, = O(b,) means |a,| < cby, for some constant
¢ > 0 and for large enough n, say, n > n, for some n,. For example, writing a, = O(1/n)
means that the sequence a, decays asymptotically at a rate that is comparable to or
faster than 1/n.

|
Theorem 11.1 establishes that for convex E(w), the cost P(w,) approaches the
minimum value P(w®) at the rate O(1/n). Faster convergence at exponential

rate is possible when E(w) is v—strongly convex, i.e., when
v
E(’wz) 2 E(wl) + (V“)T E(wl))T (’LUQ — ’LUl) + 5”'11}2 — w1||2 (1172)
for any wy, wy € dom(FE). The proof of this second result appears in Appendix 11.B.

THEOREM 11.2. (Exponential convergence under strong convexity) Con-
sider the same setting of Theorem 11.1 except that E(w) is now assumed to be
v—strongly convex. If

w<2v/8? (11.73)

then the proximal gradient algorithm (11.53) converges to the global minimizer
w® of P(w) at the exponential rate

P(wy,) — P(w®) < BA*||w® —w_1]|> = O(\™) (11.74)

for some constant 8 and where

A2 12+ p28% €0,1) (11.75)

REMARK 11.4. (A more relaxed bound on p1) The result of Theorem 11.2 establishes
the exponential convergence of the excess risk to zero for sufficiently small step-sizes,
. In most instances, this result is sufficient for our purposes since our objective will
generally be to verify whether the iterative algorithms approach their desired limit.
This conclusion is established in Theorem 11.2 under the bound p < 2v/6%. We can
relax the bound and show that convergence will continue to occur for the more relaxed
bound g < 2/8 at the rate O((X)™), where X = 1 —2uv + p*v§. We explain in the same
Appendix 11.B. that this can be achieved by exploiting a certain co-coercivity property
that is satisfied by convex functions with d—Lipschitz gradients — see Example 11.8.

|

DOUGLAS-RACHFORD ALGORITHM

We continue with the optimization problem (11.48) except that we now allow
for both functions g(w) and E(w) to be non-smooth and present a splitting
algorithm for minimizing their aggregate sum. This second algorithm will involve
the proximal operators for both functions and is therefore suitable when these
proximal operators can be determined beforehand. There are several variations



11.5 Douglas—Rachford Algorithm 357

of the Douglas—Rachford algorithm — see Probs. 11.22 and 11.23. We list one
form in (11.76).

Douglas—Rachford algorithm for minimizing P(w) = ¢(w) + E(w).

g(w) and E(w) are (possibly nonsmooth) convex functions;
given the proximal operator for g(w);
given the proximal operator for E(w);
start from an arbitrary initial condition z_;
repeat over n > ( until convergence:
w, = proxuq(zn,l)
ty, = prox#E(an — Zp—1)
Zn =tn — Wy + 2n_1
end

(11.76)

return minimizer w° < w,,.

The main motivation for the algorithm lies in the fact that the mapping from
Zn—1 t0 2z, in (11.76) can be shown to be firmly non-expansive and that fixed
points for this mapping determine the desired minimizer(s) for (11.48). Let us
comment on the second property first. For this purpose, we write down the fixed-
point relations:

w’ = prox,,(z°)
t° = prox,p(2w’ — z°) (11.77)
20 = 19 — O 4 2°

where we replaced the variables {wy, wn—_1, 2n, 2n—1,tn} by fixed-point values
{w?, 2°,t°}. Using property (11.13) for proximal projections, these relations
translate into:

(22 —w?) € p0,rq(w)
(2w —2° —t°) € pd, E(t°) (11.78)
,LUO J— tO
which imply that
(w® —2°) € ud,rE(w®) and (2°—w’) € pd,rq(w®) (11.79)

Using the result of Prob. 8.31 we conclude that
0 € dyr (E(w") + q(wo)) (11.80)

which confirms that w® is a minimizer for the sum E(w)+ q(w), as claimed. This
argument establishes that if z° is a fixed point for the mapping from z,_; to
2z in (11.76), then w® = prox,,,(2°) is a minimizer for the P(w). We still need
to establish that the mapping from z,_1 to z, is firmly non-expansive, in which
case algorithm (11.76) would correspond to a fixed-point iteration applied to this
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mapping. If we group the three relations appearing in (11.76) we find that the
mapping from z,_1 to z, is given by

Zp = Zp—1 + ProX,p <2proxuq(zn_1) — zn_l) — prox,,,(z,-1) (11.81)

which we denote more compactly by writing z, = R(z,-1) with the mapping
R(z) defined by

R(z) = Z+ prox,p (2proxuq(z) - z) — prox,,(z) (11.82)

By exploiting the fact that proximal operators are themselves firmly non-expansive,
it is shown in Prob. 11.21 that R(z) is also firmly non-expansive, meaning that
it satisfies:

IR(z1) = R(22)II” < (21— 22) T (R(21) = R(z2)) (11.83)

for any zi,z2. In this case, recursion (11.81) can be viewed as a fixed-point
iteration for this mapping and implementation (11.76) amounts to unfolding
this iteration into three successive steps.

COMMENTARIES AND DISCUSSION

Proximal operators. The proximal projection of a convex function h(w) was defined in
(11.4) as the mapping that transforms a vector z € IR into the vector:

A

@ = prox,,(z) 2 argmin {h(w) + i”w—zHQ} (11.84)

welRM

with the resulting minimum value given by its Moreau envelope from (11.6):

A L 2
M) 2 min, {n(w) + 5w oI} (11.55)

This envelope is also called the Moreau-Yosida envelope in recognition of the contri-
butions by Moreau (1965) and Yosida (1968). Intuitively, the proximal construction
approximates z by some vector, w, that is close to it under the squared Euclidean
norm but subject to the penalty h(w). The Moreau value at @ serves as a measure of
a (generalized) distance between z and its proximal projection.

We discussed several properties of proximal projections in Sec. 11.1. The form of the
soft-thresholding operator (11.18) appeared in the works by Donoho and Johnstone
(1994,1995) on the recovery of signals embedded in additive Laplace-distributed noise.
Other useful interpretations and properties of proximal operators can be found in the
treatments by Lemaire (1989a,b), Rockafellar and Wets (1998), Combettes and Pesquet
(2011), and Parikh and Boyd (2013). In Prob. 11.7 we highlight one useful connection of
proximal operators to the Huber function, which is a popular tool in robust statistics
used to reduce the effect of data outliers — see Huber (1981). We explain in that
problem that the Moreau envelope that corresponds to the choice h(w) = ||w]| is the
Huber loss function, denoted by

£ ||z 2, z|| <
Hﬂ(z)_{ P 2l < g 1156

=l =& llzll > p
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where z,w € R™. The Huber function is linear in ||z|| over the range |z|| > u, for
some parameter p > 0 and, therefore, it penalizes less drastically large values for ||z||
in comparison to the quadratic loss, ||z||*.

Moreau decomposition. The concept of the proximal operator (11.84) and its envelope
were introduced and studied in a series of works by Moreau (1962,1963a,b,1965). One
of the main driving themes in the work by Moreau (1965) was to establish the following
interesting decomposition. Consider a convex function h(w) defined over w € IRM, and
let h*(z) denote its conjugate function defined earlier by (8.83), i.e.,

h*(z) = sup (mTw - h(w)) , z€X (11.87)

where X denotes the set of all x where the supremum operation is finite. It is shown in
Prob. 8.47 that X is a convex set. Then, any vector z € IR™ can be decomposed as —
see Prob. 11.24:

z = proxy(z) + prox,.(z) (11.88a)
1
31211 = M (2) + Mo (2) (11.88b)

These expressions provide an interesting generalization of the orthogonal projection
decomposition that is familiar from Euclidean geometry, namely, for any closed vector
space @ C IRM | every vector z can be decomposed as

z2=Pc(z) + Pei(z) (11.89a)
I21* = [1Pc()I* + [1Pcs ()] (11.89b)

where Pc(z) denotes the orthogonal projection of z onto €, and similarly P (z) de-
notes the orthogonal projection of z onto the orthogonal complement space, G, namely,

Po(z) 2 min [|w — 2 (11.90)

where for any = € € and y € C*, it holds that 'y = 0.

Two other critical properties established by Moreau (1965) are that (a) the proximal
operator is a firmly non-expansive mapping (cf. (11.42)) and (b) the Moreau envelope
is differentiable over z, regardless of whether the original function h(w) is differentiable
or not over w. Actually, the gradient vector of the Moreau envelope is given by — see
Prob. 11.25:

V. Mun(z) = i (z — prox,,;,(2)) (11.91)

It is then clear from property (11.37) relating minimizers of h(w) to fixed points of
prox,,;, (2) that it also holds

w? = prox,,, (w’) <= 0€duwh(w’) <= V.Mu(w’)=0 (11.92)
— S—
fixed point global minimum

In this way, the problem of determining the minimizer(s) of a possibly non-smooth (i.e.,
non-differentiable) convex function h(w) can be reduced to the equivalent problems
of determining the fixed point(s) of a firmly non-expansive proximal operator or the
stationary point(s) of a smooth (i.e., differentiable) Moreau envelope. This observation
is further reinforced by noting that we can rewrite (11.91) as

prox,;(2) = z — uV, 1 Mun(2) (11.93)

which shows that the proximal operation amounts to performing a gradient-descent
step over the Moreau envelope.
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Fixed-point iterations. In future chapters, we will derive several algorithms for on-
line learning by relying on the use of proximal projections to deal with optimization
problems that involve non-smooth components. There are two key properties that make
proximal operators particularly suitable for solving non-smooth optimization problems.
The first property is the fact, established in (11.37), that their fixed points coincide
with the minimizers of the functions defining them, namely,

w’ = prox,,, (w’) <= 0 € dy h(w’) (11.94)
—_— S——
fixed point global minimum

The second property is the fact that proximal operators are firmly non-expansive, mean-
ing that they satisfy property (11.42). Consequently, as shown by (11.44), a convergent
iteration can be used to determine their fixed points, which leads to the proximal point
algorithm:

Wn = Prox,;(wn—1), n >0 (11.95)

These observations have motivated broad research efforts into constructing new families
of algorithms for the solution of non-smooth convex optimization problems by exploiting
the theory of fixed-point iterations for firmly non-expansive operators — see, e.g., the
works by Minty (1962), Browder (1965,1967), Bruck and Reich (1977), and Combettes
(2004), as well as the texts by Brezis (1973), Granas and Dugundji (2003), and Bauschke
and Combettes (2011). One of the earliest contributions in this regard is the proximal
point algorithm (11.95). It was proposed by Martinet (1970,1972) as a way to construct
iterates for minimizing a convex function h(w) by solving successive problems of the
type (using our notation):

. 1 2
L = h —lw — wn_ 11.96
w, = argmin { (w) + gl = } (11.96)

where the variable z is replaced by the prior iterate w,—1. According to (11.84), this
leads to wn = prox,; (wn—1), which is the proximal iteration (11.95). Two other early
influential works in the area of proximal operators for non-smooth optimization, with
stronger convergence results, are the articles by Rockafellar (1976a,b) on the proximal
point algorithm and generalizations. Two early works on the proximal gradient method
(11.52) are Sibony (1970) and Mercier (1979). Since then, several important advances
have occurred in the development of techniques for the optimization of non-smooth
problems. The presentation and convergence analysis in the chapter and appendices
are motivated by the useful overviews given by Polyak (1987), Combettes and Pesquet
(2011), Parikh and Boyd (2013), Polson, Scott, and Willard (2015), and Beck (2017),
in addition to the contributions by Luo and Tseng (1992b,1993), Nesterov (2004,2005),
Combettes and Wajs (2005), Figueiredo, Bioucas-Dias, and Nowak (2007), and Beck
and Teboulle (20092,2012).

Resolvents and splitting techniques. Motivated by expression (11.12) for w, it is cus-
tomary in the literature to express the proximal operator of a convex function h(w) by
writing

prox,,,(z) = (I +pd,rh) ' (2) (11.97)

The notation on the right-hand side means that the point z is mapped to its proximal
projection w. The operation that performs this mapping is denoted either by proxuh(z),

which is our standard notation, or more broadly by the operator notation (I4ud,vh) ™" .
This latter notation is called the resolvent of the operator pd,,th. Observe that although
the subdifferential of a function at any particular location is not uniquely defined (i.e.,
it generally maps one point in space to multiple points since there can be many choices
for the subgradient vector), the result of the resolvent operation is always unique since
we already know that proximal projections are unique. In this way, notation (11.97)
maps z to a unique point w.
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We can employ the resolvent notation to motivate splitting algorithms, along the
lines of Lions and Mercier (1979) and Eckstein and Bertsekas (1992). For instance, one
other way to motivate the Douglas—Rachford splitting procedure (11.76) is to consider
initially the simpler but related problem of determining vectors w € IRM that lie in the
nullspace of the sum of two nonnegative-definite matrices, i.e., vectors w that satisfy

(A+B)w=0 < Aw+ Bw =0 (11.98)
for some matrices A > 0, B > 0. If we consider the equivalent form
w = pAw + pBw + w (11.99)
for some p > 0, or
w=(I+uA+B)) 'w (11.100)

then the solution can be pursued by considering a fixed-point iteration of the form:
wn = (I + p(A+ B)) 'w,y (11.101)

This recursion requires inverting a matrix consisting of the sum A + B. We would like
to replace it by an alternative procedure that requires inverting the terms (I 4+ pA) and
(I 4+ puB) separately. This can be achieved by introducing auxiliary variables as follows.
From (11.99), the vector w is a fixed-point for the equation:

2w = (I + pA)w+ (I + uB)w (11.102)
We next introduce the variable:
22 I+puBw < w=(+puB) 'z (11.103)

and note from (11.102) that
2w—z=I+pAw <= w= 1+ pA) (2w - 2) (11.104)

We therefore have two separate expressions in (11.103)—(11.104) involving the inverses
(I +pA)~" and (I + pB)~". Now observe from the trivial equality:

z=z4+w-—w (11.105)
that we can write using (11.103)—(11.104):
z=z + (I+pA) 'Qw—2) — I+pB) 'z
=z + (I+pA) (20 +pB) '2—2) — (I+uB) 'z (11.106)

The mapping on the right-hand side has a form similar to (11.82) if we make the
identifications:

(I+pA)~" « (I+pd,rE)"" = prox,g(") (11.107)
(I+pB)~" « (I+pd,rq)~" = prox,,(") (11.108)

Indeed, the same argument can be repeated to arrive at (11.82) by noting that mini-
mizers of (11.48) should satisfy, for any nonzero pu:

0 € pud,v E(w) + pd, 7 q(w) (11.109)
or, equivalently,
2w € (I + pd,mE)(w)+ (I + pd,tq)(w) (11.110)

If we now introduce the variable:

2 2 (I + pdyrq)(w) <= w= I+ pd,rq) "(2) = prox,, . (2) (11.111)
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and note from (11.110) that

2w —z = (I + pd,7E)(w) <= w=(I+ud,+E) " (2w—z2) = prox,, (2w — 2)
(11.112)

then the same argument ends up leading to the mapping (11.82).

Discussions on, and variations of, the forward-backward proximal splitting technique
(11.55) can be found in Combettes and Wajs (2005), Combettes and Pesquet (2011),
and the many references therein, as well as in the articles by Lions and Mercier (1979),
Passty (1979), Fukushima and Mine (1981), Guler (1991), Tseng (1991), Chen and
Rockafellar (1997), Daubechies, Defrise, and De Mol (2004), Hale, Yin, and Zhang
(2008), Bredies (2009), Beck and Teboulle (2009a,b), and Duchi and Singer (2009).
The proximal Douglas—Rachford splitting algorithm (11.76) was introduced by Lions
and Mercier (1979), who were motivated by the original work of Douglas and Rachford
(1956) on a numerical discretized solution for the heat conduction problem. More dis-
cussion on this algorithm can be found in Eckstein and Bertsekas (1992), Combettes
(2004), Combettes and Pesquet (2011), and O’Connor and Vandenberghe (2014), as
well as in the lecture notes by Vandenderghe (2010).

PROBLEMS

11.1 Consider two convex functions h(w) and f(w) related by h(w) = f(w) + ¢, for
some constant c. Show that prox,,(2) = prox,;(z) for any z € R™ and p > 0.

11.2 Let h(w) : R™ — IR denote a convex function and introduce the transformation
g(w) = h(aw + b), where a # 0 and b € RM. Show that

1
prox,(z) = S (proxazh(ozz +b) — b)
11.3 Let h(w) = a|lw]||. Show that

_ po .
prox,;,(z) = (1 ||zn> 2z, iff|z]] = pa
0, otherwise

11.4 Establish the validity of expression (11.30).

11.5 Show that the soft-thresholding function (11.18) satisfies the property T,s(pz) =
pTs(x), for any scalars p > 0,8 > 0.

11.6 Let h(w) : R™ — IR denote a convex function and introduce the transformation
g(w) = h(w) + £||w||?, where p # 0. Show that

z
prox, (z) = proxliﬁp <1+MP)

Conclude that the proximal operator of f(w) = alw||1 + £||wl|* is given by

z
prox, ;(z) = 'H‘% <1+NP>

11.7 Assume we select h(w) = ||wl||, where w € R™. Show that

1 2
p LIzl el <
prox z)=(1- *) z, M iz :{ 24
un(?) ( EIR @ =T 2] >



11.6 Commentaries and Discussion 363

where (x)4+ = max{x,0}. Verify that when M = 1, the above expression for the prox-
imal projection reduces to the soft-thresholding operation (11.18); the corresponding
Moreau envelope will be the Huber function.

11.8 Let h(w) = a|lw|lo, where the notation ||z||o counts the number of nonzero
elements in vector x. Show that prox;(z) = zI[|z| > v2a]. That is, all values of
z larger in magnitude than /2« are retained otherwise they are set to zero. This
function is sometimes referred to as the hard-thresholding mapping as opposed to soft-
thresholding.

11.9 Let w € RM with entries {w(m)} and M even. Consider the function

h(w) = Jw(l) —w(2)] + |wB) —w)| + ... + |[w(M —1) —w(M)|

Introduce the & x M matrix (e.g., for M = 10)

I
coocor
cocoocow
cocor~oO
cocoroO
coroo

0
0
-1
0
0

OO OO
OO OO
OO OoOOo
_HOOoOOoOOo

Verify that DD = 2Ij;/> and h(w) = |[Dw||1. Show that the proximal operator can
be expressed in terms of the soft-thresholding operator as follows:

1
prox,,(z) = z + ﬂDT (proxmzuwul(uDz) - ,u,Dz)

Remark. For more information on this problem and the next, the reader may refer to
Beck (2017, Ch. 6).
11.10 Let w € R with entries {w(m)} and M even. Consider the function

h(w) = [V2w(1) = 1] + |w(2) —~w(3)| + [w() —w@E)|+ ... + [w(M -2) - w(M -1)|
Introduce the & x M matrix D and basis vector e; € RM/? (e.g., for M = 10)
V2
D =

cocoor~oO
cocoroO
coroo
coococo

®

kS

I
coocor

0
0
-1
0
0

(el e NN
OO OO
[Nl e en]
[l el e an]

0
0
0
0

Verify that DD = 21,7/, and h(w) = ||Dw — e1]|1. Show that the proximal operator
can be expressed in terms of the soft-thresholding operator as follows:

1
prox,,(z) = z + ﬂDT (prolelzuwul(uDz —e1) —p(Dz— 61))
11.11 Establish the validity of expression (11.35).

11.12 Consider a matrix W € IRV *M and introduce the following matrix-based prox-
imal function definition:

A

1
prox,(Z) £ argmin {anwn + 2|WZ|1%}, a >0
M

wWelRN X
where ||W]||. denotes the nuclear norm of W (sum of its nonzero singular values).

Introduce the singular value decomposition Z = ULV, and replace I by a new matrix
3o whose diagonal entries are computed from the nonzero singular values in X as
follows:

[Ea}kk = max{O, Zkk — Ot}
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That is, nonzero singular values in ¥ larger than « are reduced by «, while nonzero
singular values smaller than « are set to zero. Show that the proximal solution is given
by

o~

W =prox(Z) = US.V' £ S.(2)

where we are also using the notation S, (Z) to refer to the singular value soft-thresholding
operation defined above. Remark. This result appears in Cai, Candes, and Shen (2010),
Mazumder, Hastie, and Tibshirani (2010), and Ma, Goldfarb and Chen (2011).

11.13 Consider a full rank matrix H € RM*™ with N > M and a vector d € RM.
We introduce the least-squares problem

W = argmin {Hw—1DH2 + ||d—Hw||2}
welRM

where @ € IRM is some given vector.

(a) Determine the solution .

(b) Determine the proximal projection of @ using h(w) = %||[d — Hw||* and p = 1.
Show that the result agrees with the solution to part (a).

11.14 Consider the proximal projection problem

N . 1 1
W = argmin {fwTAw + Z|lw— z||2}
welRM 2 2

where A > 0. Show that the solution is given by @ = (Ins + A) ™ '2.
11.15 Consider the proximal projection problem

1 1
argmin {7 ()" Aw® + Z|jw® — ze||2}
wecRM+1 2
where A = diag{0, pIar} with p > 0, w® = col{—0,w}, and z° = col{—¢, z}. Both w®
and 2° are extended vectors of size M + 1 each, and {6, ¢} are scalars. Show that the
solution is given by

z

1+p

0=¢, @©=
11.16 Consider the proximal projection problem

1
argmin {oe||AweH1 + B(we)TAwe + f||we—ze||2}
wecRM+1 2 2

where A = diag{0, pIp} with p > 0, w® = col{—0,w}, and z° = col{—¢, z}. Both w®
and z¢ are extended vectors of size M + 1 each, and {0, ¢} are scalars. Show that the

solution is given by
o~ - z

11.17 (True or False). A firmly non-expansive operator is also non-expansive.
11.18 Refer to the fixed-point iteration (11.40) for a strictly contractive operator,
f(2). Show that f(z) has a unique fixed point, z°, and that z, — z° as n — co.

11.19 Let h(w) : RM — IR denote a convex function. Establish the following proper-
ties for the proximal operator of h(w), for any vectors a,b € RM:

(a) [[prox,,(a) — prox,, (b)|| < [la —b]|.

(b) [[prox,;,(a) — prox,, (b)[* < (a —b)T (prox,,(a) — prox,;, (b)).

(¢) llprox,,(a) — prox,, (O)[* + [|(a — prox,,(a)) — (b — prox,,, (0)|I* < lla —b]|*.

(d) lla— bl = [[prox,,,(a) — prox,, (b)|| <= a — b = prox,,, (a) — prox,,, (b).
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Property (a) means that the proximal operator is non-expansive. Property (b) means

that the operator is firmly non-expansive. Property (c) is equivalent to (b). Property

(d) follows from (c).

11.20 Refer to the proximal iteration (11.44).

(a) Let w® denote a fixed point for the proximal operator, i.e., w’ = prox,;(w°).
Show that ||w’ — wy || < ||wW° — wr—1]|.

(b) Let a(n) = ||w®—wny]|. Since the sequence {a(n)} is bounded from below, conclude
from the monotone convergence theorem that a(n) converges to some limit value
@ as n — oo. Conclude further that |prox,,(w®) — prox,, (wn—1)|| converges to
the same value a.

(¢) Use the analogue of property (11.43) for pg(w) and the result of part (b) to
conclude that w, converges to a fixed point of prox,, (w).

11.21 Refer to the Douglas—Rachford algorithm (11.76) and the mapping R(z) defined

by (11.82). The purpose of this problem is to establish that R(z) is firmly non-expansive.

For any z1, z2, introduce the variables:

wy = prox#q(zl), t1 = proqu(2w1 —z1)
Wy = proxuq(zg), to = proqu(2w2 — 22)

(a) Use the fact that proximal operators are firmly non-expansive to conclude that
l[wr = wal* < (21 — 22) " (w1 — w2)
Htl — tz”z < (211}1 — 21 — 2ws + ZQ)T(tl — tz)
(b) Verify that
(z1 — 22)" (R(21) — R(22)) > (21 — 22) (t1 — w1 + 21 — t2 + wo — 22) +
|wr — wa* = (21 — Zz)T(wl — w2)
(c) Simplify the expression in part (b) to verify that
(21— 22)" (R(21) = R(22)) > | R(z1) — R(z2)|” +
(211)1 — 21 — 2ws + ZQ)T(t] — tg) — Ht1 — t2H2

Conclude that R(z) is firmly non-expansive.
11.22 Consider the following variation of the Douglas-Rachford algorithm, starting
from any w_; and z_1:

tn, = proqu(an_l — Zn—1)
Zn = tn+t2Zn-1—Wn-1
W, = proxuq(zn)

Show that fixed points of the mapping from w,_1 to w,, are minimizers of the aggregate
cost in (11.48). Show further that the mapping from wy—1 to ws, is firmly non-expansive.

11.23 Consider the following variation of the Douglas-Rachford algorithm:

Wy = proxuq(zn,l)
tn = prox,p(2w, — zn—1)
zn = (1=p)zn—1+ p(tn —wn + 2n-1)

where 0 < p < 2 is called a relaxation parameter. Comparing with (11.76), we see that
the last step is now a linear combination of z,_1 with the original quantity ¢, — w, +
zn—1 with the combination coefficients adding up to one. Show that w,, converges to a
minimizer of (11.48).
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11.24 Establish the validity of decomposition (11.88a)—(11.88b). More generally, show
that

= = prox, () + ppro.1 . (2/)

11.25 Refer to the definition of the Moreau envelope in (11.85). Is the Moreau envelope
a convex function over z? Show that M, (z) is differentiable with respect to z and that
its gradient vector is given by expression (11.91).

11.26 Consider a convex function h(w) and its Fenchel conjugate h*(z) as defined by
(8.83). Show that prox, (z) = V_ 1t Mp+(2).

11.27 Consider a convex function h(w) and its Fenchel conjugate h*(z) as defined by
(8.83). Show that the Moreau envelope satisfies:

/.L *
Mun(z) = (*(w) + & Jwl?)
That is, the Moreau envelope is obtained by perturbing the Fenchel conjugate of h(w)
by a quadratic term and then computing the Fenchel conjugate of the result.

11.28 Using the Bregman divergence, assume we extend the definition of the proximal
operator by replacing the quadratic measure in the original definition (11.4) by

prox,,; () 2 argmin {h(w) + lD¢(w,z)}
welRM H

(a) Verify that the optimality condition (11.13) is replaced by
a =prox,,(b) <= (VwTd)(a) - VwTd)(b)) € 9,7 h(a)

(b) Let € denote some closed convex set and introduce its indicator function I¢, oo [w],
which is equal to zero when w € € and 400 otherwise. Verify that

proxy (z) = argmin Dy (w, 2)
wel

which amounts to finding the projection of z onto € using the Bregman measure.

CONVERGENCE UNDER CONVEXITY

The convergence analyses in the two appendices to this chapter benefit from the presen-
tations in Polyak (1987), Combettes and Wajs (2005), Combettes and Pesquet (2011),
Polson, Scott, and Willard (2015), and Beck (2017). In this first appendix, we establish
the statement of Theorem 11.1, which relates to the convergence of the proximal gra-
dient algorithm under convexity of the smooth component, E(w). In preparation for
the argument we establish three useful facts. First, we rewrite algorithm (11.53) in the
form:

Wn = Wn—1 — pGu(Wn-1) (11.113)

where

gu(w) i(w — prox,,,(w — ,quTE(w))) (11.114)

Form (11.113) shows that the proximal gradient algorithm adjusts w,—1 by adding a
correction along the direction of —g, (wn—1); the size of the correction is modulated by
w. Observe in particular that evaluating g, (w) at a minimizer w® for P(w) we get

gu(w®) =0 (11.115)
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This is because w? is a fixed point for the proximal operator by (11.51a).
Second, we have from (11.114) that

w— pgu(w) = prox,, (w - ,quTE(w)) (11.116)
Therefore, using (11.13) with the identifications

a—w—pgu(w), b w—pV, rEWw) (11.117)
we find that

gu(w) = Vo1 E(w) € 0,7 q(w — pgy(w)) (11.118)

Third, the smooth component E(w) : R — IR is assumed to be convex differen-
tiable with §—Lipschitz gradients, i.e.,

IVw E(a) — Vo ED)|| < dla— b (11.119)
for any a,b € dom(FE) and some ¢ > 0. It then follows from property (10.13) that

B(a) < B(b) + Vs B(b) (0~ b) + 3 la ~ b|? (11.120)
We are now ready to establish Theorem 11.1.

Proof of Theorem 11.1: The argument involves several steps:

(step 1) We use property (11.120) and select a < wy, and b + w,—1 to write

0
E(wn) S E(wnfl)‘i‘vw E(wnfl)(wn _wn71)+§”wn _wn71H2

(11.113) w2

E(wn-1) = pVw E(wn-1) gu(wn-1) + 7||gu(wn—1)||2

(11.70) L 9
< B(wn-1) = pVe E(wn-1) gu(wn-1) + 5 l|gu(wn-1)
(11.121)

(step 2) We use the inequality from the first step to establish that, for any z €
dom(h),

P(wy) < P(2) + (gu(wn-1))" (wn-1 = 2) = g”gu(wn—l)HQ (11.122)
Indeed, note that

P(w,) = q(wn)+ E(wy)
(11.121) m 9
< g(wa) + E(wao1) = 0V Bwn-1) gu(wn1) + 5 llgu(wn1)|

(a)
<

4(2) + (s(wn)) (wn — 2) + E(2) + Voo E(wn_1)(wn_1 — 2)
Vo E(wn1)gu (wn1) + Fllgu(wa—)]* (11.123)

where in step (a) we used the convexity of ¢(w) and E(w) and properties (8.4) and
(8.43). Moreover, the notation s(w, ) refers to a subgradient of q(w) relative to w:

s(wn) € Oy, q(wn) (11.124)
Now, appealing to (11.118) and letting w = w,—1 we find that
gu(Wn—1) = V1 E(wn-1) € 0yrq(wn) (11.125)



368 Proximal Operator

where the argument of ¢(-) becomes w, under (11.113). This relation implies that
we can select the subgradient s(wy) as the difference on the left so that

Vot E(wn_1) = gu(wn-1) — s(wn) (11.126)
We can now evaluate three terms appearing (11.123) as follows:
(s(wn) T (wn = 2) = (8(wn)) (a1 = g, (wn—1) — 2) (11.127a)
= (s(wn)) (wn-1 = 2) = u(s(wn))" gu(wn-1)
and
Vi B(wn 1)~ 2) = (gu(wn 1) — s(wn)) (wns —2) (11.127b)
= (guwam0)) (s = 2) = () (s —2)
and

iV B wn1)gu (1) =~ (Gun 1 — s(wn)) guwn 1) (11127¢)
= —pllgu(warl* + p(s(wn)) gu(wn-1)
Substituting into (11.123) and simplifying gives
P(wy) < q(z) + E(2) + (gu(wn-1))" (wn-1 — 2) — %l|9u(7~0n71)||2
= P(2) + (9u(wn-1))" (wn-1 - 2) = %ng(wn—l)H2 (11.128)
(step 3) Using z = w,—1 in the last inequality we get
P(wn) < Pwn-1) = &llgu(wn)’ (11.129)

which shows that P(w,) is a non-increasing sequence. If we use instead z = w° in
(11.128) we get

0< P(wn) = P(w’) < (gu(wn-1)) (wn1—w’) — %Ilgu(wn—l)ll2
(@)

o2 o 2
(Hwnmr = I = oy = w® = g (wn-1)|”)

1

2%
(11.113) 1 oo oo
< @(Hwnﬂ —w[|” = [Jwn — w[]%) (11.130)

where step (a) follows by expanding the terms in the second line and noting that
they coincide with those in the first line. It follows that
0 = wall < [ = woo] (11.131)

so that ||w® — wn]| is a non-increasing sequence.

(step 4) Adding from n = 0 up to some N — 1 gives

N-—1 1 N-—-1
S (P(wn) = P@?) < — 3 (lw° = woea|* = [0° = wa]]?)
n=0 2“ n=0
= L (w® — w1 = Jw® — wna]?)
2p
1
< —Jjw® —w_1]? (11.132)

2p
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Now since P(wx) is non-increasing we get

o 1 - o 1 o 2
Pluv-1) = P(u) < 3 32 (Plun) = P@) < gl —wnall” (11139

CONVERGENCE UNDER STRONG CONVEXITY

In this appendix, we establish the statement of Theorem 11.2, which relates to the
convergence of the proximal gradient algorithm under strong convexity of the smooth
component, F(w). Theorem 11.1 shows that under a convezity condition on F(w), the
cost value P(w,) approaches the minimum P(w?°) at the rate O(1/n). Faster conver-
gence at an exponential rate is possible when F(w) is v—strongly convex.

Proof of Theorem 11.2: From the proximal gradient recursion (11.53) and the fixed-
point relation (11.51a) we have

Wn = Prox,,, (wn_l — puV,7 E(wn_l)) (11.134a)
w® = prox,, (w“ UV E(w")) (11.134b)
Applying the non-expansive property (11.41) of the proximal operator we get

[w” = wa
= ||prox,,, (w® — pV v E(w®)) — prox,,, (wn—1 — pV,, E(u)n,l))H2

(11.41)

< lw® = Vot B(w®) = wa—1 + pV 1 B(w,—1)|?
= [lw® = wn1|* -

2 (V1 E(w®) = Vot E(wn—1))" (0° — wn_1) +

12|Vt E(w®) — V1 E(wn_1)]?

(a

< Jlw® = wnal* = 2p0|w® = wa|* + 4267 |w” = wn—1|?

= (1= 2uv + p6%)||w’ — wn 1 |*

2 w® — wq|? (11.135)

where ) is defined by (11.75) and step (a) is because of the Lipschitz condition (11.119)
and the assumed strong-convexity of E(w), which implies in view of property (8.24)
the relation:

.
(va B(w®) — V7 E(wn_l)) (0° — wn_1) > V][w® — wa1]]? (11.136)

We conclude from (11.135) that the squared error vector converges exponentially fast
to zero at a rate dictated by A. To verify that condition (11.73) ensures 0 < A < 1, we
refer to Figure 11.5 where we plot the coefficient A(u) as a function of x. The minimum
value of A(u), which occurs at the location p = v/§% and is equal to 1 — v2/42, is
nonnegative since 0 < v < 4. It is clear from the figure that 0 < A < 1 for u € (0, (2;—5)

We next establish the exponential convergence of the excess cost value as shown by
(11.74). For this purpose, we first note from the convexity of P(w) and property (8.43)
for non-smooth convex functions that

P(wn) = P(w?) < (s(wn))" (wn — w”) (11.137)
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Figure 11.5 Plot of the function A\(u1) = 1 — 2vp + p26? given by (11.75). Tt shows that
the function \(u) assumes values below one in the range 0 < p < 2v/§°.

where s5(w,,) denotes a subgradient vector for P(w) relative to w' at location wy,. Using
(11.54), and the fact that P(w) = g(w) + E(w), we know that this subgradient vector

can be chosen as:

s(wn) = i(zn —wp) + VorE(w,) (11.138)

Substituting into (11.137) gives
P(wy,) — P(w°)
< (1(2' wn) + VyrE(w ))T(w w?)
—\An — Wn wT n n —
W

= (i(zn — prox,,,(zx)) + VwTE(wn)>T(w" —w?)

(i(zn — prox,, (2n)) + Vur E@w®) + Vo E(wn) — VwTE(wo))T(wn — )
(11.139)

so that using (11.119):
P(wn) — P(w’)
1 o T o o2
< (;(zn — prox,,, (zn)) + V1 E(w )) (wn — w®) + 6]wn — w°||

(11.140)

[wn = 1w + 6w, — w|?

1
< H;(zn — prox,,,(zn)) + V,7E(w®)

To continue, we substitute V v E(w°) by an equivalent expression as follows. We know
from the first part of the proof that w, converges to w’, which satisfies the fixed-point
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relation (11.134b). Let

° 2w — uV,r B(w®) (11.141a)
w’ = prox,, (2°) (11.141Db)

©
I

Combining these two relations we get
1
Vo E(w’) = —;(zo —w’) = —— (2° — prox,, (%)) (11.142)

Substituting into (11.140) we obtain

P(wn) — P(w®)

1
< m Zp — Prox,,,(zn) — 2° + prox,,, (zo)H lwn — w°|| 4 6|jwn — w°|?
(11.41) 9

< ;Ilzn = 2°|| lwn — | + 8ljwn —w°||?

(a) 2 o o o o
< llwn—y =l flwn =0l 4 20|V yr B(wn—1) = Vyr E@)] flwn = wl| +

8ljwn — w|®
(11.119) 9 R . R . oo
< plhwn—y = w llwn = w4 20lwn—y = w7} awn = w4 8lfwn — w7l

(11.135) 2\/X Y Y .
< TIIwn—l —w°|? + 2VA6|lwn—1 — w’||* + AS || w1 — w|®

<2 (14 ud)
2

+ (5> AX JJwp—1 — w’|?

1>

B
b
L I—
(11235) T )
< B w® — wo | (11.143)

where in step (a) we used the relation
zn — 27 = (Wn—1 — uV1 E(wn-1)) — (w° — uV,r E(w’)) (11.144)

and in step (b) we introduced the scalar 3.

Example 11.8 (A more relaxed bound on p) We revisit Remark 11.4 and explain that
the bound on p for convergence can be relaxed to u < 2/4. For this purpose, we exploit
the co-coercivity property of convex functions with §—Lipschitz gradients. We know
from Prob. 10.4 that:

(vasz)—vaE(wl))T(wz—w1>z IV E(wz) = Vi E(wn)[? (11.145)

1
5
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We use this inequality in the third line of (11.135) as follows:

o (1145) 5 o T_
[@al? < @I = 20( V1 B(w?) = Vo1 E(wno1)) @ +
)
+ /L25(va E(wo) — va E(’wn71)) Wn—1
~ 2 2 ° T_
= @l = @ — 128) (Vur B(w?) = V1 B(wn-1)) @t
(11.136)

[@n1* = (21 — 1*8)v||@n—1®
(1 = 2pv + 4*v0) [ ||
N—— —

=SV
= \)""Mw® —w_1|? (11.146)
This result is consistent with (11.135) since A’ < X in view of v < §. Working with

)\ instead of A\ and repeating the argument leading to (11.143), we will arrive at the
bound 0 < u < 2/4 for stability with convergence occurring at O((A\')™).
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