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8.1

Convex Functions

Convex functions are prevalent in inference and learning, where optimization
problems involving convex risks are commonplace. In this chapter, we review
basic properties of smooth and nonsmooth convex functions and introduce the
concept of subgradient vectors. In the next chapter, we discuss projections onto
convex sets and the solution of convex optimization problems by duality argu-
ments.

CONVEX SETS

Let g(z) : RM™ — IR denote a real-valued function of a possibly vector argument,
z € RM. We consider initially the case in which g(z) is at least first- and second-
order differentiable, meaning that the gradient vector, V. ¢g(z), and the Hessian
matrix, V2 g(z), exist and are well-defined at all points in the domain of the
function. Later we comment on the case of nonsmooth convex functions, which
are not differentiable at some locations.

To begin with, a set 8 c IR is said to be convex if for any pair of points
z1, 29 € 8, all points that lie on the line segment connecting z; and z, also belong
to 8. Specifically,

Vzi,22€8 and 0<a <1l = azn+(1—-a)znes (8.1)

Figure 8.1 illustrates this definition by showing two convex sets and one non-
convex set in its first row. In the rightmost set, a segment is drawn between two
points inside the set and it is seen that some of the points on the segment lie
outside the set.

We will regularly deal with closed sets, including closed convex sets. A set 8 in
any metric space (i.e., in a space with a distance measure between its elements)
is said to be closed if any converging sequence of points in § converges to a point
in 8. This characterization is equivalent to stating that the complement of § is
an open set or that any point outside 8§ has a neighborhood around it that is
disjoint from 8. For example, the segment [—1,1] on the real line is a closed set,
while [—1,1) is an open set.
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Figure 8.1 The two sets on the left in the first row are examples of convex sets, while
the set on the right is nonconvex. The bottom row shows examples of a convex hull

on the left, a convex cone in the middle, and a normal cone on the right. The curved
line in the figure for the cones is meant to indicate that the cone extends indefinitely.

Example 8.1 (Convex hull, convex cone, and conic hull) Consider an arbitrary set § C
IRM that is not necessarily convex. The convezx hull of 8, denoted by conv(8), is the
set of all convex combinations of elements in 8. Intuitively, the convex hull of 8 is the
smallest convex set that contains 8. This situation is illustrated in the leftmost plot
in the bottom row of Fig. 8.1. The dark circles represent the elements of 8, and the
connected lines define the contour of the smallest convex set that contains 8.

A set @ ¢ IRM is said to be a cone if for any element z € € it holds that tz € @ for
any ¢t > 0. The cone is convex if az; 4+ (1 — a)z2 € € for any «a € [0,1] and z1, 22 € C.
One useful example of a convex cone is the normal cone. Consider a closed convex set
8 ¢ RM and pick an arbitrary point z € 8. We define the normal cone at point z,
denoted by Ng(z), by considering all vectors y that satisfy

Ng(z) = {y |such that y' (s — z) <0, for all s € S} (normal cone) (8.2)

If = happens to lie in the interior of 8, then Ng(z) = {0}.

The conic hull of a set § € IR™ is the set of all combinations of elements of § of the
form o121 + a2z2 + ... + aumzm for any finite m and any s, > 0. These are called

conic combinations because the result is a cone. The conic hull is a convex set — see
Prob. 8.4.
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CONVEXITY

Let dom(g) denote the domain of g(z), namely, the set of values z where g(z) is
well-defined (i.e., finite). The function g(z) is said to be convex if its domain is
a convex set and, for any points 21, 25 € dom(g) and for any scalar 0 < o < 1, it
holds that

g<a21 +(1- a)zg) < ag(z1) + (1—a)g(z2) (8.3)

In other words, all points belonging to the line segment connecting g(z1) to g(z2)
lie on or above the graph of g(z) — see the plot on the left side in Fig. 8.2. We will
be dealing primarily with proper convex functions, meaning that the function has
a finite value for at least one location z in its domain and, moreover, it is bounded
from below, i.e., g(z) > —oo for all z € dom(g). We will also be dealing with
closed functions. A general function g(z) : R — IR is said to be closed if for
every scalar ¢ € IR, the sublevel set defined by the points {z € dom(g) | g(z) < ¢}
is a closed set. It is easy to verify that if g(z) is continuous in z and dom(g) is a
closed set, then g(z) is a closed function.

" tangent plane at z,
with direction
defined by V7t g(z,).
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Figure 8.2 Two equivalent characterizations of convexity for differentiable functions
g(z) as defined by (8.3) and (8.4).

An equivalent characterization of the convexity definition (8.3) under first-
order differentiability is that for any z,, z € dom(g):

9(2) = 9(z) + (V2 9(2)) (z = 20) (8.4)

in terms of the inner product between the gradient vector at z, and the difference
(z—2,); recall from (2.2) that, by definition, the gradient vector V, g(z,) is a row
vector. Condition (8.4) means that the tangent plane at z, lies beneath the graph
of the function — see the plot on the right side of Fig. 8.2. For later reference,
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we rewrite (8.4) in the alternative form

9(z) > g(z0) + (V.1 g(ZO))T (2 = 20) (8.5)

in terms of the gradient of g(z) relative to 2T at location z,.

A useful property of every convex function is that, when a minimum exists,
it can only be a global minimum; there can be multiple global minima but no
local minima. That is, any stationary point at which the gradient vector of
g(z) is annihilated will correspond to a global minimum of the function; the
function cannot have local maxima, local minima, or saddle points. A second
useful property of convex functions, and which follows from characterization
(8.4), is that for any z1, 22 € dom(g):

g(z) convex <= (V, g(2z2) — V. g(z1)) (22 —21) >0 (8.6)

in terms of the inner product between two differences: the difference in the gra-
dient vectors and the difference in the vectors themselves. The inequality on
the right-hand side in (8.6) is equivalent to saying that the gradient function is
monotone.

Proof of (8.6): One direction is straightforward. Assume g(z) is convex. Using (8.4) we
have

g(22) > g(z1) + (V= g(21)) (22 — 21) (8.7)
g(z1) > g(z2) + (V= g(22)) (21 — 22) (8.8)

so that upon substitution of the second inequality into the right-hand side of the first
inequality we obtain

9(z2) = g(z2) + (V= g(22)) (21 — 22) + (V2 g(21)) (22 — 21) (8.9)
from which we obtain the inequality on the right-hand side of (8.6). We therefore showed
that convex functions have monotonic gradients.

Conversely, assume the gradient of g(z) is monotone and consider any zi,z2 €
dom(g). Let
h(a) 2 g((l —a)z1 + azz) (8.10)
for any 0 < o < 1. Differentiating h(«) with respect to « gives
W (a) = (vz g((1— @)z + 04,7,«2))(22 — 1) (8.11)
In particular, it holds that
R'(0) = V. g(z1)(z2 — 21) (8.12)
From the assumed monotonicity for the gradient vector we have, for a # 0,

{Vzg((l —a)z + a22) - V. 9(21)}(22 —21)>0 (8.13)

which implies that
h'(a) > Rh'(0), YVO<a<1 (8.14)
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We know from the fundamental theorem of calculus that

b))~ h0) = [ H(@)a (615)
and, hence,
9(2) = h(1)
= h(0) + / 1 ' (a)do
> h(0) + h?(()), (in view of (8.14))
=9g(21) + V= g(21)(22 — 21) (8.16)

so that g(z) is convex from (8.4).
|

Example 8.2 (Some useful operations that preserve convexity) It is straightforward
to verify from definition (8.3) that the following operations preserve convexity:

(1) If g(2) is convex then h(z) = g(Az + b) is also convex for any constant matrix A
and vector b. That is, affine transformations of z do not destroy convexity.

(2) If g1(2) and g2(z) are convex functions, then h(z) = max{g1(z), g2(2)} is convex.
That is, pointwise maximization does not destroy convexity.

(3) If gi(2) and g2(z) are convex functions, then h(z) = a1g1(z) + a2g2(z) is also
convex for any nonnegative coefficients a1 and as.

(4) If h(z) is convex and non-decreasing, and g(z) is convex, then the composite
function f(z) = h(g(z)) is convex.

(5) If h(z) is convex and nonincreasing, and g(z) is concave (i.e., —g(z) is convex),
then the composite function f(z) = h(g(z)) is convex.

STRICT CONVEXITY

The function g(z) is said to be strictly convex if the inequalities in (8.3) or (8.4)
are replaced by strict inequalities. More specifically, for any z; # 2o € dom(g)
and 0 < o < 1, a strictly convex function should satisfy:

g(azl Q1 fa)ZQ) < ag(z1) + (1—a)g(ze) (8.17)

A useful property of every strictly convex function is that, when a minimum
exists, then it is both unique and also the global minimum for the function. A
second useful property replaces (8.6) by the following statement with a strict
inequality for any z; # z3 € dom(g):

g(z) strictly convex <= (V. g(z2) — V, g(21)) (22 —z1) > 0 (8.18)

The inequality on the right-hand side in (8.18) is equivalent to saying that the
gradient function is now strictly monotone.
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STRONG CONVEXITY

The function g(z) is said to be strongly convex (or, more specifically, v—strongly
convex) if it satisfies the following stronger condition for any 0 < o < 1:

g(azl +(1- Q)ZQ) < ag(z1) + (1 —a)g(z) — ga(l — )|z — 2|)?
(8.19)

for some scalar v > 0, and where the notation || - || denotes the Euclidean norm
of its vector argument; other norms can be used — see Prob. 8.60. Comparing
(8.19) with (8.17) we conclude that strong convexity implies strict convexity.
Therefore, every strongly convex function has a unique global minimum as well.
Nevertheless, strong convexity is a stronger requirement than strict convexity so
that functions exist that are strictly convex but not necessarily strongly convex.
For example, for scalar arguments z, the function g(z) = z*
but not strongly convex. On the other hand, the function g(z) = 22 is strongly
convex — see Fig. 8.3. In summary, it holds that:

is strictly convex

strong convexity = strict convexity =—> convexity (8.20)

\
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Figure 8.3 The function g(z) = z* is strictly convex but not strongly convex, while the
function g(z) = 2? is strongly convex. Observe how g(z) = z* is more flat around its
global minimizer and moves away from it more slowly than in the quadratic case.

A useful property of strong convexity is that there exists a quadratic lower
bound on the function since an equivalent characterization of strong convexity
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is that for any z,, z € dom(g):

9(2) = 9(z0) + (V2 9(2)) (2 = 20) + gHZ*ZoII2 (8.21)

This means that the graph of g(z) is strictly above the tangent plane at location
z, and moreover, for any z, the distance between the graph and the corresponding
point on the tangent plane is at least as large as the quadratic term %|z—z,||*. In
particular, if we specialize (8.21) to the case in which z, is selected to correspond
to the global minimizer of g(z), i.e.,

zo =2°, where V,g(z°)=0 (8.22)

then we conclude that every strongly convex function satisfies the following useful
property for every z:

g9(z) — g(z°) > %Hz —2°||>  (2° is global minimizer) (8.23)

This property is illustrated in Fig. 8.4. Another useful property that follows from
(8.21) is that for any 21, 2o:

g(2) strongly convex <= (V. g(22) — V. g(21)) (22 — 21) > V|22 — 21|)?

(8.24)

The inequality on the right-hand side in (8.24) is equivalent to saying that the
gradient function is strongly monotone. Strong monotonicity is also called coer-
civity. This monotonicity property, along with the earlier conclusions (8.6) and
(8.18), are important properties of convex functions. We summarize them in
Table 8.1 for ease of reference.

Table 8.1 Useful monotonicity properties implied by the convexity, strict convexity, or
strong convexity of a real-valued function g(z) € IR of a real argument z € IR

g(z) convex <= (Vz g(z2) — V. 9(21))(22 —21)>0
g(z) strictly convex <= (Vz g(z2) — V2 g(zl))(zg —z1)>0

g(z) v—strongly convex < (VZ g(z2) = V2 g(zl))(zz —21) > V|22 — 212

Inequality (8.23) provides a bound from below for the difference g(z) — g(2°),
where z° is the global minimizer. We can establish a second bound from above,
which will be useful in the analysis of learning algorithms later in our treatment.
Referring to the general property (8.21) for v—strongly convex functions, we can
write for any zo, 21 € dom(g):

g(22) > g(z1) + (V2 g(21)) (22 — 21) + %sz -z (8.25)
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\\ global minimizer /

Figure 8.4 For v—strongly convex functions, the increment g(z1) — g(2°) grows at
least as fast as the quadratic term %||z1 — 2°||?, as indicated by (8.23) and where 2° is
the global minimizer of g(z).

The right-hand side is quadratic in zo; its minimum value occurs at
Vorglzr) +v(ze—21) =0 = (22— 21) = —%VZT g(z1) (8.26)
Substituting into the right-hand side of (8.25) gives
o(22) 2 gl=1) — 5 [V- 9() P (3.27)
Selecting z; = z and z2 = 2° (the global minimizer) leads to
9(2) ~ 9(=%) < o [V ()| (5.28)

Combining with (8.23) we arrive at the following useful lower and upper bounds
for v—strongly convex functions:

v o o 1
D=1 < 92— 9(=) < 5o lIVs 9(a)? (5.29)

HESSIAN MATRIX CONDITIONS

When g¢(z) is twice differentiable, the properties of convexity, strict convexity,
and strong convexity can be inferred directly from the inertia of the Hessian
matrix of g(z) as follows:
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(a) V2 g(z) >0 for all 2 <= ¢(z) is convex.
(b) V2 g(z) > 0 for all 2 = ¢g(z) is strictly convex. (8.30)
(c) V2 g(z) > viy >0 for all z <= g(z) is v—strongly convex.

where, by definition,
Vig(z) & Vir (Vzg(Z)) (8.31)

Observe from (8.30) that the positive-definiteness of the Hessian matrix is only
a sufficient condition for strict convexity (for example, the function g(z) = 2 is
strictly convex even though its second-order derivative is not strictly positive for
all z). One of the main advantages of working with strongly convex functions is

that their Hessian matrices are sufficiently bounded away from zero.

Example 8.3 (Strongly-convex functions) The following is a list of useful strongly
convex functions that appear in applications involving inference and learning:

(1) Consider the quadratic function
g9(z) = K+ 20"z + ZTCZ, a,z € IRM, k€R (8.32)

with a symmetric positive-definite matrix C. The Hessian matrix is V2 g(z) = 2C,
which is sufficiently bounded away from zero for all z since

V29(2) > 2Xmin(C) I > 0 (8.33)

in terms of the smallest eigenvalue of C. Therefore, such quadratic functions are strongly
convex.

The top row in Fig. 8.5 shows a surface plot for the quadratic function (8.32) for z € IR?
along with its contour lines for the following (randomly generated) parameter values:

o [ 33784 0 [ 0.4505
= 0 3.4963 |> *= | 0.0838

} , k=05 (8.34)

The minimum of the corresponding g(z) occurs at location:

o [ 01334
Z = 0.0240

:| , with ¢(2°) =~ 0.4379 (8.35)

The individual entries of z are denoted by z = col{z1, 22}. Recall that a contour line of
a function g(z) is a curve along which the value of the function remains invariant. In
this quadratic case, the location of the minimizer z° can be determined in closed form
and is given by 2° = C'a. In the plot, the surface curve is determined by evaluating
g(z) on a dense grid with values of (21, 22) varying in the range [—2,2] in small steps
of size 0.01. The location of z° is approximated by determining the grid location where
the surface attains its smallest value. This approximate numerical evaluation is applied
to the other two examples below involving logistic and hinge functions where closed
form expressions for z° are not readily available. In later chapters, we are going to
introduce recursive algorithms, of the gradient-descent type, and also of the subgradi-
ent and proximal gradient type, which will allow us to seek the minimizers of strongly
convex functions in a more systematic manner.



8.5 Hessian Matrix Conditions 271

quadratic function contour curves

hinge function

— 20 N6 2

O - Y
9 s ; \yﬁ___/_

-2
-2 -1 0 1 2

Figure 8.5 Examples of three strongly convex functions g(z) : IR? — IR with their
contour lines. (Top) Quadratic function, (Middle) regularized logistic function;
(Bottom) regularized hinge function. The locations of the minimizers are indicated by
the x notation with horizontal and vertical lines emanating from them in the plots on
the right.

(2) Consider next the regularized logistic (or log-)loss function:
g(z) = In (1 + e‘WhTz) + PllalP, zerM (8.36)

with a scalar 7, column vector h, and p > 0. This function is also strongly convex, as
can be seen from examining its Hessian matrix:

e—'yhTz

— | wh" > pIy >0 8.37
<1+ewz>2) = (547

Vigz) = pIu + (
The middle row in Fig. 8.5 shows a surface plot for the logistic function (8.36) for
z € IR? along with its contour lines for the following parameter values:

y=1, h:{ﬂ’ p=2 (8.38)

The minimum of the corresponding g(z) occurs roughly at location:

o [ 0.1568

2= | 3135 ] ,  with g(2°) =~ 0.4990 (8.39)
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(3) Now consider the regularized hinge loss function:
9(x) = max{0,1-yh"z} + £|jz|P (8.40)

with a scalar «, column vector h, and p > 0 is also strongly convex, although nondif-
ferentiable. This result can be verified by noting that the function max {O, 1-— 'yhTz}
is convex in z while the regularization term £|z||* is p—strongly convex in z — see
Prob. 8.23. The bottom row in Fig. 8.5 shows a surface plot for the hinge function
(8.40) for z € IR? along with its contour lines for the following parameter values:

v =1, h:[g]ypZQ (8.41)
The minimum of the corresponding g(z) occurs roughly at location:
o 0.1000 . o
PR { 0.1000 } ,  with ¢(z°) ~ 0.0204 (8.42)

Figure 8.6 shows an enlarged surface plot for the same regularized hinge function from a
different view angle, where it is possible to visualize the locations of nondifferentiability
in g(z); these consist of all points z where 1 = ~vh'z or, more explicitly, z1 + zo = 1/5
by using the assumed numerical values for « and h.

hinge function

25—

Figure 8.6 Surface plot for the same regularized hinge function from Fig. 8.5, albeit
from a different viewpoint. The points of nondifferentiability occur at the locations
satisfying z1 + z2 = 1/5.




8.6

8.6 Subgradient Vectors 273

SUBGRADIENT VECTORS

The characterization of convexity in (8.4) is stated in terms of the gradient vector
for g(z). This gradient exists because we have assumed so far that the function
g(z) is differentiable. There are, however, many situations of interest where the
function g(z) need not be differentiable at all points. For example, for scalar
arguments z, the function g(z) = |z| is convex but is not differentiable at z = 0.
For such nondifferentiable convex functions, the characterizations (8.4) or (8.5)
will need to be adjusted and replaced by the statement that the function g(z) is
convex if, and only if, for every z,, a column vector s, (dependent on z,) exists
such that

g(2) > g(zo) + s2(z —2,), forall z,,2 € dom(g) (8.43)

Expression (8.43) is in terms of the inner product between s, and the difference
(# — %o). Similarly, the characterization of strong convexity in (8.21) is replaced
by

9(2) > g(z0) + sT(z—2) + %Hz—zOHQ (8.44)

The vector s, is called a subgradient relative to 2T at location z = z,; equiva-
lently, sT is a subgradient relative to z at the same location. Note from (8.43)
that subgradients help define an affine lower bound to the convex function g(z).
Subgradients can be defined for arbitrary functions, not only convex functions;
however, they need not always exist for these general cases.

Subgradient vectors are not unique and we will use the notation 9,r g(z,) to
denote the set of all possible subgradients s, also called the subdifferential of g(z),
at z = z,. Thus, definition (8.43) is requiring the inequality to hold for

So € 0,719(2,) (column vectors) (8.45)

It is known that the subdifferential of a proper convex function is a bounded
nonempty set at every location z,, so that subgradients are guaranteed to exist.

REMARK 8.1. (Notation) We will also use the notation 9 g(z,) to denote the set that
includes the transposed subgradients, s], which are row vectors. The notation 9,7 g(z)
and 0, g(z) is consistent with our earlier convention in (2.2) and (2.5) for gradient
vectors (the subgradient relative to a column is a row and the subgradient relative to
a row is a column). Sometimes, for compactness, we may simply write 9 g(z) to refer
to the subdifferential 0,7 g(z), where every element in s € 9 g(2) is a column vector.

|

The concept of subgradients is illustrated in Fig. 8.7. When g¢(z) is differ-

entiable at z,, then there exists a unique subgradient at that location and it

coincides with V_r g(z,). In this case, statement (8.43) reduces to (8.4) or (8.5).
One useful property that follows from (8.43) is that for any z1, 2z € dom(g):

g(z) convex = (s — 1) (20— 21) > 0 (8.46)
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Figure 8.7 A nondifferentiable convex function admits a multitude of subgradient
directions at every point of nondifferentiability.

T at locations

where {s1,s2} correspond to subgradient vectors relative to z
{z1, 22}, respectively. A second useful property of subgradient vectors is the fol-

lowing condition for the global minimum of a convex function (see Prob. 8.41):

{ g(z) differentiable at z°: 2z° is a minimum <= 0=V, g(2°) (8.47)
g(z '

) nondifferentiable at 2°: z° is a minimum <= 0 € 9, g(z°)

The second condition states that the set of subgradients at z° must include the
zero vector. This condition reduces to the first statement when g(z) is differen-
tiable at z°.

Example 8.4 (Absolute value function) Let z € IR and consider the function

9(z) = || (8.48)

This function is differentiable everywhere except at z = 0 — see Fig. 8.8 (left). The
slope of the function is +1 over z > 0 and —1 over z < 0. At z = 0, any line passing
through the origin with slope in the range [—1,1] can serve as a valid subgradient
direction. Therefore, we find that

+1, z>0
0.9(z) = -1, z <0 (8.49)
[_17—’_1}7 z=0

where the third row means that any slope within the interval [—1,1] is a valid choice
for the subgradient at location z = 0. For ease of reference, we will denote this subdif-
ferential set by the notation:

Gabs(z) é 0- |Z|7 zeR (850&)
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If we select the subgradient to be always +1 at z = 0, then this particular subgradient
choice for g(z) = |z| reduces to the function:

s(z) = sign(z) (8.50b)
for all z where, by definition,
. +1, 2>0
sign(z) :{ 1 2<o0 (8.50¢)

This will be our default choice for the subgradient of the function g(z) = |z|. The
difference between Gabs(z) and sign(z) is that the former describes all subgradients of
g(z) = |z] at z = 0, while the latter describes one particular (but useful) choice.

4 N

H max{0,1 — z}

N

! Z W,

Figure 8.8 (Left) Absolute value function, ¢g(z) = |z|. (Right) Hinge function,
g(z) = max{0,1 — z}.

Consider next the case in which z is an M —dimensional vector and

9(z) = Nzl = Y lzml (8.51)

where the {z,,} denote the individual entries of z. The function is not differentiable at
all locations z € IRM with at least one zero entry zm,. It follows that the subdifferential
of g(z), which consists of vectors of size M x 1, can be constructed as follows:

G’z:'ubs(zl)
A Gabs(ZZ)
G(z) = : , (M x1) (8.52a)

Gabs (ZM)

where each Gabs(2zm) is given by (8.49). One particular subgradient for g(z) relative to
T .
z' is then
5(z) = sign(2) (8.52b)
where the sign function now returns an M x 1 vector consisting of £1 entries corre-
sponding to the signs of the individual entries of z.

Example 8.5 (Hinge function) Consider the hinge function

g(z) = max{0,1 — z} (8.53)
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shown in Fig. 8.8 (right). This function is differentiable everywhere except at z = 1.
The slope of the function is —1 over z < 1 and 0 over z > 1. At z = 1, any line passing
through this point with slope in the range [—1,0] can serve as a valid subgradient
direction. Therefore, we find that

0, z>1
0.9(z) = -1, z<1 (8.54)
[-1,0], z=1

For ease of reference, we denote this subdifferential set by the notation:

Gi(z) 2 9.max{0,1—z}, z€R (8.55)

If we select the subgradient to be always —1 at z = 1, then this particular subgradient
choice reduces to the (negative of the) indicator function:

s(z) = -1z < 1] (8.56)

for all z where, by definition,

o] = { 1, if statement a is true (8.57)

0, otherwise

This will be our default choice for the subgradient of the function g(z) = max{0,1—z}.
The difference between Gi(z) and —I[z < 1] is that the former describes all subgradi-
ents of g(z) = max{0,1 — z} at location z = 1, while the latter describes one particular
(but useful) choice.

Consider next a slight adjustment where the argument z is scaled by a nonzero constant
ﬁ7 SaY7

g(z) =max{0,1 -8z}, z€R, 8#0 (8.58)

Using similar arguments, it can be verified that the subdifferential for g(z) relative to
z is now given by

0, Bz>1
Gs(2) = 1 (50, prm1, 530 (8.59)
[0’_/8}7 62213 ﬂ<0

where we added 8 as a subscript in Gg(z). Moreover, one particular choice for the
subgradient is
s(z) = —BI[Bz < 1] (8.59b)

In the degenerate case when 8 = 0 in (8.58), we get g(z) = 1. Its derivative is zero
everywhere so that the above expression for s(z) continues to hold in this situation.

Consider a third example involving the hinge function where z is now an M —dimensional
vector:

g(z) = max{O, 1-— hTz} (8.60)

for some given h € RM. Let {hm, zm} denote the individual entries of {h,z}. The
function is not differentiable at all locations z € R™ where ATz = 1. It follows that



8.6 Subgradient Vectors 277

the subdifferential of g(z) consists of vectors of size M x 1 with entries constructed as
follows:

ﬁhl Ezlg 0, hTz>1
A ha |22 A —hm, h'z<1
G(z) - ‘ 5 Ahm (Zm) - [_hm70]7 hTZ _ 17 hm 2 0 (8613,)
Any (2m) [0, —hm], hTz=1, hy, <0

where each Ay, (zm) is defined as above using h., and h"z. One particular subgradient
for g(z) relative to 2" is

s(z) = —hI[h'z < 1] (8.61b)

Subgradients and subdifferentials will arise frequently in our study of inference
methods and optimization problems. They possess several useful properties, some
of which are collected in Table 8.2 for ease of reference. These properties are
established in the problems at the end of the chapter; the last column in the
table provides the relevant reference.

Table 8.2 Some useful properties of subgradients and subdifferentials for convex
functions g¢(z).

| Property | Prob.
1. | d:09(2) =ad.g(z), a>0 8.29
2. | 9,19(Az+b) = AT 01 g(2) 8.30
z+Az+b
3. | 0 01(2) + 01 2(2) € 01 (91(2) + 92(2) 8.31
_ 1 2/llzlle, z#0
4. azT HZHQ— { {a|||a||2 < 1}7 =0 8.32
5. | Our ll2ll, = argmax {=Ty}, pa>1, 1/p+1/g=1 8.33
llyllp<t
6. | 9,7 lc,0[2] = Ne(2) (normal cone to convex set C at z) | 8.34

For example, the first row in the table states that the subdifferential of the
scaled function ag(z) consists of all elements in the subdifferential of g(z) scaled
by «. The second row in the table shows what happens to the subdifferential
set when the argument of g(z) is replaced by the affine transformation Az + b.
The result shows that the subdifferential of g(z) should be evaluated at the
transformations Az + b and subsequently scaled by AT. The third row shows
that the subdifferential of the sum of two functions is not equal to the sum of
the individual subdifferentials; it is a larger set. We will use this result in the
following manner. Assume we wish to seek a minimizer z° for the sum of two
convex functions, g1(z) + g2(2). We know that the zero vector must satisfy

0€d.r (gl(z) + 92(2)) (8.62)

z2=2z°



278

Convex Functions

That is, the zero vector must belong to the subdifferential of the sum evaluated
at z = z°. We will seek instead a vector z° that ensures

. } (8.63)

If this step is successful then the zero vector will satisfy (8.62) by virtue of the
property in the third row of the table. The next example provides more details
on the subdifferential of sums of convex functions.

+ 9,7 g2(2)

z2=2z°

0e {ag 91(2)

Example 8.6 (Subdifferential of sums of convex functions) We will encounter in later
chapters functions that are expressed in the form of empirical averages of convex com-
ponents such as

g(z) & %Z ge(z), zeRM (8.64)
=1

where each g¢(z) is convex. The subdifferential set for g(z) will be characterized fully
by the relation:

0.19(2) = {i > o gz(z)} (8.65)
=1

under some conditions:

(a) First, from the third row in the table we know that whenever we combine sub-
differentials of individual convex functions we obtain a subgradient for g(z) so
that

{é S o gg(z)} C o g(2) (8.66)

=1

(b) The converse statement is more subtle, meaning that we should be able to express
every subgradient for g(z) in the same sample average form and ensure

d.19(z) C {i > o ge(Z)} (8.67)
=1

We provide a counterexample in Prob. 8.31 to show that this direction is not
always true, as already anticipated by the third row of Table 8.2. However, we
explain in the comments at the end of the chapter that equality of both sets
is possible under condition (8.113). The condition requires the domains of the
individual functions {g¢(2)} to have a nonempty intersection. This situation will
be satisfied in most cases of interest since the individual functions will have the
same form over z. For this reason, we will regularly assume that expression (8.65)
describes all subgradients for g(z). At the same time we remark that in most
applications we will not need to characterize the full subdifferential for g(z); it
will be sufficient to find one particular subgradient for it and this subgradient can
be obtained by adding individual subgradients for {g¢(z)}.

Example 8.7 (Sum of hinge functions) Consider the convex function

L
g(z) = %Zmax{o, 1—pez}, z€eR, Be#0 (8.68)
=1
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which involves a sum of individual hinge functions, g¢(z) = max{0,1 — B,z}. We know
from (8.59a) how to characterize the subdifferential of each of these terms:

0, Bez > 1
_ —Be, Bz <1
GBE (Z) - [_/BZ70]7 BZZ = 17 /BE >0 (869)
[03 7ﬁ[]a /8[2? = 15 54 <0
Moreover, one subgradient for each term can be chosen as s¢(z) = —S¢[[8,z < 1]. Using

the conclusions from parts (a) and (b) in Example 8.6, we find that the subdifferential
for g(z) is given by

2:9() = 1 Gs(2) (8.702)

while a subgradient for it can be chosen as

s(z) = *% ;/3@ Te[Bez < 1] (8.70D)

Consider next a situation in which z is M —dimensional:

L
9(z) = % ZmaX{O, 1- heTZ}, 2, he € RM (8.71)
=1

which again involves a sum of individual hinge functions, g¢(z) = max{0,1 — h} z}. We
know from (8.61a) how to characterize the subdifferential for each of these terms:

Ahﬂ‘l(zl)
A z2

Gelz) = hi”f( ) (8.72a)
Ahl,l\l’ (2m)

in terms of the individual entries {h¢,m} of he, and where each Ay, . (2m) is defined
according to (8.61a). The subdifferential for g(z) is then given by

L
1
0.19(2) = 7 ; Ge(z) (8.72b)
One particular subgradient for g(z) relative to 2! is then

s(z) = —% ; hel[hgz < 1] (8.72¢)

The last three rows in Table 8.2 provide some useful subdifferential expressions
for the f;—norm, ¢;,—norm, and for the indicator function of a convex set. In
particular, recall from the discussion on dual norms in Section 1.10 that the
maximum of 2Ty over the ball |y|l, < 1 is equal to the ¢,—norm, ||z||,. The
result in the table is therefore stating that the subdifferential of ||z||, consists of
the vectors y within the ball ||y||, < 1 that attain this maximum value (i.e., that
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attain the dual norm). The last row in the table deals with the subdifferential
of the indicator function of a convex set, denoted by I¢ o [2]. Given a set C, this
function indicates whether a point z lies in € or not as follows:

A 0 ifze@
I = ’ .
c00l2] { 00, otherwise (8.73)

The result in the table describes the subdifferential of the indicator function in
terms of the normal cone at location z; this conclusion is illustrated geometrically
in Fig. 8.9, where the normal cone is shown at one of the corner points.

Figure 8.9 Geometric illustration of the subdifferential for the indicator function of a
convex set at location z.

We collect, for ease of reference, in Table 8.3 some useful subdifferential and

subgradient expressions derived in the earlier examples for a couple of convex
functions that will arise in our study of learning problems.

JENSEN INEQUALITY

There are several variations and generalizations of the Jensen inequality, which
is a useful result associated with convex functions. One form is the following. Let
{z1, € RM k=1,2,... , N} denote a collection of N column vectors that lie in
the domain of a real-valued convex function g(z). Let {ax} denote a collection
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Table 8.3 Some useful subdifferentials and subgradients for convex functions g(z).

Function, g(z) | Subdifferential, 9,7 g(z) | Subgradient, s(z)
+1, z>0
g9(z) =z], ze R Gabs(z) = -1, z2<0 sign(z)
[713 +1]7 z2=0
9(2) = ||zlh, z € RM G(z) = col{Gabs(zm)} sign(z)
z=col{zm}
_ 0, z>1
9(z) = max{0,1 =z} Gi(z)={ -1, =<1 [z < 1]
i [~1,0], 2=1
0, Bz>1
-, Bz <1
= 0 1 — — 70 5 = 1
SR Bt =P G = § OO 25| g <)
[07 _13]7 62 =1
8<0
g(z) = mjg;{{O7 1-h"2} G(z) = col{Ahm(zm)} _RIATz < 1
z,h e R using Ap,, (zm) from (8.61a)
z = col{zm}
h = col{hm}
9(2) =
1 - T 1 L
ZZ:max{OJ—hgz} ZZGZ(z), where 1 & .
=1 —~ == hellhiz < 1]
2, he € RM Ge(z) = COI{A (= )} L =1
z = col{zm} hy m \Zm

h[ = COl{h(g,m}

of nonnegative real coefficients that add up to 1:
N
dap =1, 0<ap<1 (8.74)
k=1

The Jensen inequality states that

N N
g (Z Ozk%) < Zakg(zk) (8.75)

k=1 k=1
and equality holds if, and only if, z; = 2o = ... = zn. For example, if we select
g(2) = ||z]|? in terms of the squared Euclidean norm of z, then it follows from
(8.75) that

N 2 N
k=1 k=1
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There is also a stochastic version of Jensen inequality. If a € RM is a real-valued
random variable, then it holds that

g(Ea) <E(g(a)) (when g(z) € R is convex) (8.77)
g(Ea) >E(g(a)) (when g(z) € R is concave) (8.78)

where it is assumed that a and g(a) have bounded expectations. We remark that
a function g(z) is said to be concave if, and only if, —g(z) is convex.

Example 8.8 (Vector norm) For any vectors a,b,c € RM, we know from the triangle
inequality of norms that

la+b+cll < llall + (bl + |l (8.79)
Using the Jensen inequality (8.75), we can determine an upper bound for the quantity
la 4 b+ ¢||*. For this purpose, we consider the convex function g(z) = ||z||* and note
that
la+b+c)* = |3 1a—i—lb—i—lc '
- 3 3 3
1 1, 1!
= 81|l b+ -
H 3@ + 3 + 3¢

(8.75) 1 " 1 " 1 4
<81 (= = =
<71 (Ghall + 30l + 3lel
= 27 (llall* + 161" + llel*) (8.80)
Example 8.9 (Value at averaged arguments) Consider a convex function g(z) with

vector argument z € IR™, and assume we are able to establish that its average value
at a collection of points {z,} is upper bounded by some value £:

N
1
— n) < .
N;g(z) <8 (8.81)
From Jensen inequality (8.75), it follows that
1< 1«
o(2m) € w29 < 8 (8.82)
n=1 n=1

so that the value of the function at the averaged arguments is also bounded by (.

CONJUGATE FUNCTIONS

Conjugate functions play an important role in the solution of optimization prob-
lems. In this section, we define them, list several of their properties, and provide
some intuition for their role in convex analysis.

Consider a convex function h(w) defined over M —dimensional vectors w. We
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denote its conjugate function (also called the Fenchel conjugate) by the notation
h*(x) and define it as follows:

h*(x) 2 sup {xTw - h(w)}, zeX (8.83)

where X denotes the set of all x where the supremum operation is finite. It can
be verified that h*(x) is always a closed convex function regardless of whether
h(w) itself is convex or not. This is because, for every fixed w, the function
xTw — h(w) is linear in z (and, hence, convex) and the supremum of a set of
convex functions is convex. Likewise, the set X is a convex set — see Prob. 8.47.
The transformation from h(w) to h*(x) is useful in many domains and appears

frequently in optimization problems. We provide some intuition next.

Interpretation

Assume w and x are scalar variables. The situation is illustrated in Fig. 8.10
for some arbitrary function h(w). In the figure, the term ="
line passing through the origin with slope x. For the situation illustrated in the
figure, the difference zTw — h(w) is negative for all w, and the supremum will
occur at the location of minimal distance between the line 2w and the function.
That distance is the value —h*(z). If we move the line 2w up by that amount
it will become tangent to the function h(w). The tangent is the dotted line in
the figure; it is characterized by the pair (z, h*(z)): the value of x determines its

w corresponds to a

slope and the value —h*(z) determines its offset (i.e., the point where it crosses
the vertical axis). We can repeat this construction for many other values of z.
We find that the conjugate function provides an alternative characterization for
h(w): it identifies all lines (x, h*(x)) that serve as tangents to h(w).

More generally, when z and w are vector-valued, we can interpret z'w as
representing a hyperplane passing through the origin. The normal direction of
the plane is the vector z. The term x"w — h(w) measures the difference between
the convex function h(w) and the hyperplane. For each x, the conjugate function
is finding the largest possible difference between the hyperplane and the function.
And the value —h*(x) will correspond to the amount of offset that needs to be
added to the hyperplane x"w to make it tangent to h(w). For this reason, we
can interpret h*(z) as a mapping from normal directions x to offset values h*(x)
so that the pairs (z, h*(z)) define tangent hyperplanes to h(w).

Conjugate functions also arise in finance and economics in the form of con-
jugate utility or profit functions. In this context, h(w) measures the cost of
producing an amount w of some product. The variable = represents the market
price per unit so that xzTw is the total expected market price. The difference
27w — h(w) measures the profit that is expected if w items are produced. For
a fixed market price x, the conjugate value h*(x) then indicates the maximal
profit at this price level.



284

Convex Functions

tangent line

/ (@, 7 (x))
¥

-
—
-
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¥ line through
the origin

/T . w
origin

Figure 8.10 Illustration of the concept of a conjugate function for the case in which =
and w are scalars. In this case, & represents the slope of the line 2w passing through
the origin. The conjugate value —h*(z) is the amount of displacement needed for this
line to become tangent to the function h(w). The tangent line is characterized by the
pair (x, h*(x)): its slope is z and its offset is h*(x).

Relation to optimization problems
Conjugate functions are useful for the solution of optimization problems, as will
be illustrated in greater detail in Example 51.6. Here we motivate the procedure
and provide a couple of motivating examples.

Consider first a problem involving the unconstrained optimization of the sum
of two convex functions, say,

min {q(w) + E(w)} (primal problem) (8.84)

welRM

Problems of this type are commonplace when solving inference and learning
problems with regularization, as will be discussed in later chapters, where the
term ¢(w) will play the role of the regularizer. We can replace problems of the
above form by an equivalent formulation that involves working instead with
conjugate functions as follows. First, we transform the problem into a constrained
formulation by introducing a dummy variable z € R to write:

min {q(z) + E(w)}, subject to z = w (8.85)

w,zeRM
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The Lagrangian function associated with this problem is given by
L(w, z,\) = q(2) + E(w) + AT (z — w) (8.86)

where A € R is the Lagrange multiplier. The dual function D(N) is defined as
the function that results from minimizing £ over w and z:

D(A) = rglgl {q(z) + B(w) + AT(z — w)}
= rrgn{E(w) - )\Tw} + Inzin{q(z) + )\Tz}

= - max{)\Tw - E(w)} - maX{—)\TZ - CI(Z)}

w z

(8.83) N N
= —E*(A) —q"(=}) (8.87)
where in step (a) we separated the terms that depend on w only from those
that depend on z only, and in step (b) we used the definition of the conjugate
function given by (8.83). We therefore find that the dual problem, which involves
maximizing D(A) over J, is characterized by the conjugate functions E*(\) and

g (N):

ma, {—q*(—)\)—E*()\)} (dual problem) (8.88)

We will exploit this duality result later in Section 51.4.2, when we study sparsity-
inducing regularization problems.

A second application in the context of optimization problems is the following.
Consider a closed convex function h(w) and its conjugate h*(z). Assume we are
interested in solving the optimization problem:

w* = argmin h(w) (8.89)

welRM
Then, we know that the solution w* must satisfy
0 € Oyt h(w™) (8.90)

One challenge is that it is not always possible to solve this equation directly to
determine w*. Nevertheless, in Prob. 8.46 we establish one useful property that
explains how subgradients of h(w) are related to subgradients of its conjugate
function h*(x), namely,

v € Oyth(w) <= w € J,7h*(v) (8.91)

Applying this property to (8.90) we conclude that w* should satisfy

w* € B,rh*(0) (8.92)

In other words, w* should belong to the subdifferential of h*(z) at the origin.
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Relation to subdifferentials

Another useful application of conjugate functions arises in the characterization of
the subdifferential of convex functions. Thus, consider a convex function h(w) :
RM — IR. Its subdifferential at any point z is the set of all vectors s € RM such
that

drh(z) = {s |h(w) > h(z) +sT(w—2), Ywe dom(h)}
— {S |sTw—h(w) <s'z—h(z), Ywe dom(h)}

= {s | wEilOlIII)I(h) <3Tw - h(w)) = 5"z — h(z)} (8.93)

The upper bound is attained by selecting w = z in the sup operation. It follows
that the subdifferential of h(z) at a point z consists of the set of all vectors s
where the conjugate function evaluates to the following:

d.rh(z) = {5 |h*(s) = sT2 — h(z)} (8.94)

or, stated equivalently,

s €0, 7h(z) <= h*(s) =s"2z— h(2) (8.95)

Properties

Conjugate functions have several useful properties. We list them in Table 8.4 for
ease of reference and leave the proofs to the problems. The last column in the
table provides the relevant references.

BREGMAN DIVERGENCE

The Kullback-Leibler (KL) divergence studied earlier in Section 6.2 is a special
case of what is known as Bregman divergence, which serves as a measure of “dis-
tance” or “similarity” and is not limited to probability density functions (pdfs).
Its definition and properties rely on the notions of convexity and conjugate func-
tions, which explains our treatment of Bregman divergence at this location in
the text.

Definition

Consider a closed convex set I' and let ¢(w) : T' — IR be a differentiable and
strictly conver function. Let p and ¢ be two points in I". The Bregman divergence
between p and ¢ is defined as the difference:

Dy(p.q) 2 é(p) — (¢(Q) + Vuw é(q) (p — Q)) (8.96)

where V,, ¢(q) refers to the gradient of ¢(w) relative to w and evaluated at
w = ¢q. Note that the Bregman divergence measures the difference between the
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Table 8.4 Some useful properties of conjugate functions.
| Given conditions or name | Property | Prob.
1. closed convex function, h(w) v € Oh(w) <= w € Oh*(v) 8.46
2. closed v—strongly h*(z) is differentiable everywhere
convex, h(w) with 1/v—Lipschitz gradients and | 8.47
VvV, th*(x) :argmax{mTw — h(w)}
welRM
h(w) + ¢ h*(z) — ¢
ah(w), a >0 ah*(z/a)
h(oaw), a # 0 h*(m/a)
3 | B = ) ) ¢ T, 8.49
h(Aw), A invertible (A" Tx)
h(w) + 2w h*(x — 2)
4. Fenchel-Young inequality h(w) +h*(z) > w'z
with equality when 8.48
x € 9,7 h(w) or w € ,7h*(x)
5. g(wi,w2) = h(wi1) + h(w2) g (x1,22) = h*(x1) + h*(z2) 8.50
(separable function)
6. h(w) = w3, A >0 h*(z) = L||z||% -1 8.51
7. h(w) = 2w Aw +bTw + ¢ h*(z) =L(z—b)TA  (z —b) — 8.52
A>0
8. | Mw) = [[wl: W (z)=lc,ola], C=A{z|||z]lc <1} | 855
_v 2 * _ i 2
9. h(w) = 5 |w]|? h*(z) = 2l/||gr:||oo 8.53
N 1, ,,1 1
10. | A(w) = Ljwl2, p>1 W@ = Hlell3 L + 5 =1 .54
11. | h(w) = |Jw| h*(z) =loeolz], €= {z|||lz]l« <1} | 8.55
12. | h(w) = I¢,e0|w] h*(x) = sup xTw} 8.56
weC
M "
h(w) = Wi 1N Wi oo T —1
13. mzzl hi(z)=> e 8.61
Wan, 2 0 m=1
M M
14. | h(w) = — Zln Winy Wy > 0 = - Z In(—zm) — M 8.61
m=1 m=1
M u
w) = » wm(lnwmy —1) N T
15. Z::l hi(z)=> e 8.61
Wyn 2 0 m=1
M
UI) = Z Wm In Wm M
16. . W (@) =In( Y &) 8.61
W >0, wy =1 m=1
m=1
17. | (W) = — Indet(W) h*(X) = —Indet(—X) — M 8.59

WeRMM W >0
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value of the function ¢(-) at w = p and a first-order Taylor expansion around
point w = ¢. In this way, the divergence reflects the gap between the convex
function ¢(p) and the tangent plane at w = ¢ — see Fig. 8.11. Since ¢(w) is
strictly-convex, it will lie above the tangent plane and the difference will always
be nonnegative:

Dy(p,q) >0, Vp,qe dom(o) (8.97)

Equality to zero will hold if, and only if, p = ¢q. However, the Bregman divergence
is not symmetric in general, meaning that Dy (p, q) and Dy(g,p) need not agree
with each other.

It is clear from the definition that Dy (p, q) is strictly convex over p since ¢(p)
is strictly-convex by choice and V,¢(q) (p—q) is linear in p. Note that if we were
to approximate ¢(p) by a second-order Taylor expansion around the same point
w = q, we would get

o(p) =~ (q) + Vo (q)(p — q) + %(p - )"V o(Q)(p—q) (8.98)

so that by substituting into (8.96) we will find the Bregman divergence can be
interpreted as a locally weighted squared-Euclidean distance between p and g¢:

Dy(p,a) = Ip = alli vz () (8.99)

Bregman
divergence

s

0 S 2N
L 5 tangent plane at ¢
~“ 1 1 with direction V,r ¢(q).
qa p w

Figure 8.11 The Bregman divergence measures the gap between the function ¢(p) at
w = p and its tangent plane at w = q.
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Two examples
Consider the space of M —dimensional vectors and select

1
Hlw) = 3w (8.100)
Then, for any two vectors p,q € RM:

1 1 1
Dy(p,q) = §|IpH2 - §||Q||2 -q'(p—q) = 5l = q|]? (8.101)

which shows that the squared Euclidean distance between two vectors is a Breg-
man distance. In this case, the Bregman divergence is symmetric. Consider next
two probability mass functions (pmfs), with probability values {p,, ¢m }, defined
over the simplex:

M
F:{wEIRM’meOand Zwmzl} (8.102)

m=1

Choose ¢(w) as the (negative) entropy of {wy,}, which is the convex function:

M
d(w) = Z Wiy In(wpy,) (8.103)
m=1
Then, the gradient vector is given by

Vot ¢(w) = col{l +Inw, 1 +Inws,...,1 —|—1an} (8.104)

and the corresponding Bregman divergence reduces to the KL divergence between
the probability vectors p and ¢ since

M M M
D¢(p, Q) = Z Pm lnpm - Z dm IHQm - Z (1 + IHQm)(pm - Qm)
m=1 m=1 m=1
M
. Pm
= Z Pm ln(i)
m=1 qm
= Dkw(p,q) (8.105)

In this case, the Bregman divergence is not symmetric. We can use result (8.105)
to establish a useful property for the negative entropy function, namely, that it
is v-strongly convex relative to the ¢ —norm with v =1, i.e.,

5(9) = 6(0) + Vudla)p —0) + 3o —all, Vp.g€dom(s) | (8106)

Proof of (8.106): It follows from definition (8.96) that
o) = &)+ Vudl(q)(p—a)+ Ds(p,g)
C2 6(g) + Y 6(a) (p — 9) + Dice.(pl9)

(@)
2 90+ Vudla) - )+ 3 lp — al (5.107)
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where in step (a) we used the result of Prob. 6.16, which showed that the KL-divergence
of two distributions is lower bounded by %||p — ¢||7.

Some properties

The Bregman divergence has several useful properties, which facilitate the de-
velopment of inference methods. We list some of them in this section and leave
the arguments to the problems. One first property is the following interesting
interpretation.

THEOREM 8.1. (Average Bregman divergence) Let u ~ p,(u) be a ran-
dom variable defined over a domain w € U with pdf p,(u). Let Dg(u,x) denote
the Bregman divergence between any points u,x € U. Then, the solution to the
following optimization problem:

@ 2 argmin E, Dy(u,z) (8.108)
zeU
1s the mean value:
t=FEu= / UPay (u)du (8.109)
uelU

In other words, the mean of the distribution p,(u) is the point that minimizes
the average Bregman divergence to all points u € U.

Proof: Denote the cost function by P(x) = E+ Dg(u, ). Then,
P(z) - P(u)
= / pu(u)Dy(u, z)du — / pu(u) Dy (u, @)du
uel

ueU

- / palu) [D¢(u,z) - D¢(u,ﬂ)]du
ueU

= [ pulw) [ 6(2) ~ 9 o) = 2) — ]+ 0(0) + V. 0(0) (0~ )

— 9(a) - 6la) - V. (o) [ _ upul)du ) + V. () / _ upu(u)du — 1)
= ¢(a) — ¢(x) = Vo ¢(2) (@ — ) + Ve ¢(u) (4 — @)
= ¢(a) - ¢(z) — Ve ¢(z)(u — z)
= Dy(u,x)
>0 (8.110)
It follows that P(a) < P(z) for all x € U with equality only when = = 4.
]

We collect in Table 8.5 other useful properties, which are established in the
problems. The last column in the table provides the relevant reference. Observe
for the result in the first row of the table that the Bregman divergences are
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computed relative to ¢ and its conjugate ¢*, and that the order of the arguments
are reversed. The last two rows of the table extend the Bregman divergence to
matrix arguments. In Section 9.4 we describe the use of Bregman divergences in
the context of projections onto convex sets.

Table 8.5 Some useful properties of the Bregman divergence where ¢(z) is a
differentiable and strictly convex function and ¢*(x) is its conjugate function.

| Property | Reference
L | Ds(p,q) = Dg+ (Vwcb(q), Vm(p)) Prob. 8.64
(duality)

2. | Do(r,p) + Ds(p,q) = Do(r,q) + (WMQ) - Vw¢(p)) (r—p) | Prob. 8.65
(generalized triangle inequality)

1 1
3. | Do(pa) = 5llp = allg, $(w) = 5wl >0 Prob. 8.66
(Mahalanobis distance)
4. D¢(p7 ) DKL p7 Zp’m ln(pm)
M
Z Wi (W), Wi >0, Y wiy =1 Eq. (8.105)

m=1
(negatlve entropy)

5. | Do(P,Q) = Te(PInP — PInQ — P+ Q)
(W) =Te(WnW),W >0 Prob. 8.67
(von Neuman divergence)

6. | Dg(P,Q) =Tr(PQ™" — In) — Indet(PQ™Y)
H(W) = —Indet(W), W >0, W € RM*M Prob. 8.68

COMMENTARIES AND DISCUSSION

Convex functions. Excellent references on convex analysis are the texts by Rockafellar
(1970), Polyak (1987), Hiriart-Urruty and Lemaréchal (2001), Bertsekas (2003), Boyd
and Vandenberghe (2004), and Nesterov (2004). Useful accounts on the history of con-
vexity, dating back to the development of Greek geometry, appear in Fenchel (1983)
and Dwilewicz (2009). According to the latter reference and also Heath (1912, p. 8),
the first definition of convexity was apparently given by the ancient Greek mathemati-
cian Archimedes of Syracuse (ca 287 BC—212 BC) in the work by Archimedes
(225 BC) — see the exposition by Dunham (1990). Result (8.28) for v—strongly convex
functions is often referred to as the Polyak-Lojasiewicz bound due to Polyak (1963) and
Lojasiewicz (1963); it is useful in the study of the convergence behavior of gradient
descent algorithms — see, e.g., Example 12.10 and the proof of Theorem 12.3.

Subgradients. In future chapters we will encounter optimization problems that involve
nonsmooth functions with nondifferentiable terms. In these cases, iterative algorithms
for minimizing these functions will be constructed by replacing traditional gradient vec-
tors by subgradients whenever necessary. The idea of employing subgradient vectors
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was proposed by Shor (1962) in his work on maximizing piecewise linear concave func-
tions. The method was well-received at the time and generated tremendous interest due
to its simplicity and effectiveness. Some of the earliest works that helped solidify the
theoretical foundations of the method were published by Ermoliev (1966,1969,1983a,b),
Ermoliev and Shor (1967), and Polyak (1967,1969), culminating with the manuscripts
by Ermoliev (1976) and Shor (1979). Useful surveys on the history and development of
subgradient methods are given by Shor (1991) and Goffin (2012). Some additional
references include Rockafellar (1970), Bertsekas (1973), Held, Wolfe, and Crowder
(1974), Clarke (1983), Nemirovsky and Yudin (1983), Kiwiel (1985), Polyak (1987),
Shor (1998,2012), Bertsekas, Nedic, and Ozdaglar (2003), Nesterov (2004), Shalev-
Shwartz et al. (2011), Duchi, Hazan, and Singer (2011), Duchi, Bartlett, and Wain-
wright (2012), Shamir and Zhang (2013), and Ying and Sayed (2018).

Subgradients of sums of convex functions. It will be common in our treatment of
inference and learning methods in this text to encounter objective functions that are
expressed as the sum of a finite number of convex functions such as

g(z) = i(2) +...+ In(2) (8.111)

in terms of individual convex terms £, (z). These individual terms need not be differ-
entiable. Let 9, £,(z) denote the subdifferential set for £,(z) at location z. Then, the
result of Prob. 8.31 indicates that we can construct a subgradient for the sum g(z) by
adding individual subgradients for the {¢,(z)}. This is because

{azel(z) Y O.0(2) + ...+ B, eN(z)} C 9.g(2) (8.112)

A useful question is whether all elements of the subdifferential set of g(z) can be con-
structed from the sum of individual subgradient vectors for the {¢,(z)}}, i.e., whether
the two sets in (8.112) are actually equal to each other. We provide a counterexample
in Prob. 8.31 to show that these two sets are not generally equal. While establishing
property (8.112) is relatively straightforward, and is left as an exercise in Prob. 8.31,
the study of conditions under which both sets coincide is more challenging and can be
found, for example, in Rockafellar (1963). In particular, it is shown there that both
sets will coincide when the domains of the individual functions satisfy the following
condition:

(Nj ri(dom(én(z))) #0 (8.113)

in terms of the relative interior (ri) of the domains of the individual functions. Condition
(8.113) requires the domains of all individual functions to have a nonempty intersection.
This situation will be satisfied in most cases of interest to us since the individual
functions will have the same form over z, or their domains will generally be IR™. In
these situations, the following two directions will hold:

{azel(z) FO.00) + ...+ azeN(z)} C 0.g(2) (8.114a)
8. g(z) C {azzl(z) O la(2) ...+ azeN(z)} (8.114b)

To explain the notion of the relative interior, consider the segment {—1 < z < 1}
on the real axis. The interior of this set consists of all points {—1 < z < 1}. Recall
that a point is in the interior of a set 8 if a small e—size open interval around the
point continues to be in 8. Now, let us take the same interval {—1 < z < 1} and view
it as a set in the higher-dimensional space IR?. In this space, this interval does not
have an interior anymore. This is because, for any point in the interval, if we draw a
small circle of radius € around it, the circle will contain points outside the interval no
matter how small € is. Therefore, the interval {—1 < z < 1} does not have an interior
in IR?. However, one can extend the notion of interiors to allow for such intervals to
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have interiors in higher-dimensional spaces. This is what the notion of relative interior
does. Loosely, under this concept, to check whether a set § has an interior, we limit our
examination to the subspace where the set lies. For any set 8, we define its affine hull
as the collection of all points resulting from any affine combination of elements of §:

P
affine(8) 2 {Z apsp| for any integer P > 0, s, € S} (8.115a)
p=1
P
ap €R, > a,=1 (8.115b)
p=1

where the combination coefficients {a,} are real numbers and required to add up to
1; if these combination coefficients were further restricted to being nonnegative, then
the affine hull would become the convex hull of the set 8. For example, for the interval
8 = {—1 < x < 1}, its affine hull will be a line along the z—axis containing the interval.
Once affine(8) is identified, we then determine whether the interval 8§ has an interior
within this affine hull, which we already know is true and given by {—1 < = < 1}. This
interior is referred to as the relative interior of the set in IR?; the qualification “relative”
is referring to the fact that the interior is defined relative to the affine hull space and
not the entire IR? space where the interval lies.

Jensen inequality. We described deterministic and stochastic forms of Jensen inequality
in Section 8.7. They are useful in various contexts in probability theory, information the-
ory, and statistics. Inequality (8.75) is generally attributed to Jensen (1906), although
in an addendum on page 192 of his article, Jensen acknowledges that he discovered an
earlier instance of his inequality in the work by Holder (1889). In this latter reference,
the inequality appears in the following form:

N N
g <Zk7v1 Brzk > < Zk:1Nﬁkg(zk) (8.116)
Zz:l ﬁ[ ZE:l ﬂ(’.
where g(z) is a convex function and the {8} are positive scalars. If we redefine
A B
o & —F (8.117)
25:1 Be

then the {ax} become convex combination coefficients and the result reduces to (8.75).
More information on Jensen and Holder inequalities can be found in Hardy, Littlewood,
and Polya (1934) and Abramowitz and Stegun (1965).

Conjugate functions. These functions are also known as Fenchel conjugates after Fenchel
(1949); they play an important supporting role in the solution of optimization problems
through duality. For more details on their mathematical properties, the reader may re-
fer to Rockafellar (1970,1974), Boyd and Vandenberghe (2004), and Bertsekas (2009).
We explained in Section 8.8 that the transformation from h(w) to h*(z) defined by
(8.83) is useful in many scenarios, including in the solution of optimization problems.
We also indicated that conjugate functions arise in finance and economics in the form of
conjugate utility or profit functions — see, e.g., Eatwell, Newman, and Milgate (1987).
We will explain later in the commentaries to Chapter 11 the close relationship that
exists between conjugate functions and proximal operators in the form of the Moreau
decomposition established by Moreau (1965).

Bregman divergence. The KL divergence is a special case of the Bregman divergence
defined in (8.96) and introduced by Bregman (1967). As explained in the body of the
chapter, this divergence serves as a measure of “distance” or “similarity” and is not
limited to pdfs. However, when the arguments p and g correspond to pmfs and ¢(-) is
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selected as the negative entropy function (8.103), we get

Dy (p,q) = Dxr(p, q) (8.118)

The important result in Theorem 8.1 is due to Banerjee, Gou, and Wang (2005). It
states that for a collection of points randomly distributed within some space U, their
mean is the point that minimizes the average Bregman divergence to all of them. For
further details on Bregman divergences, the reader may refer to Censor and Zenios
(1998), Azoury and Warmuth (2001), Banerjee et al. (2005), Chen, Chen, and Rao
(2008), Adamcik (2014), Harremoés (2017), and Siahkamari et al. (2020). In Chapter 15
we will exploit properties of the Bregman divergence in the derivation of mirror-descent
learning algorithms.

PROBLEMS

8.1 Is the column span of any matrix A € RV*M a convex set? What about its row

span? What about its nullspace?

8.2 Consider a convex function g(z) : R — IR. Denote the individual entries of z

by {zm} for m = 1,2..., M. Select an arbitrary z, and fix all other entries. Is g(z)

convex over Zpy,?

8.3 Show that the intersection of convex sets is a convex set.

8.4 Show that the zero vector belongs to the conic hull of a set § € IR™. Show also

that the conic hull is a convex set.

8.5 Show that the normal cone defined by (8.2) is always a convex cone regardless of

the nature of the set 8.

8.6 Verify that each of the following sets is convex:

(a) The nonnegative orthant denoted by IR}, which consists of all M —dimensional
vectors with nonnegative entries.

(b) Any affine subspace consisting of all vectors z € IRM satisfying Az = b, where
AeRV*M and be RM.

(c) The halfspace consisting of all vectors 2 € IRM satisfying o'« < «, where a is a
vector and « is a scalar.

(d) Any polyhedron consisting of all vectors z € IRM satisfying Az < b, where A €
RY*M p e RY, and the notation = < y refers to component-wise inequalities for
the individual elements of the vectors {z,y}.

(e) The set of symmetric and nonnegative definite matrices, A € RNV*V.

8.7 Consider two convex functions h(z) and g(z). Is their composition f(z) = g(h(z))

convex?

8.8 Given any z, and a square matrix A > 0, show that the ellipsoid consisting of all

vectors © € RM such that (z — x,)T A(z — z,) < 1 is a convex set.

8.9 Show that the probability simplex defined by all vectors p € R™ with entries pr,

satisfying p,, > 0 and Zi‘f:l pm = 1 is a convex set.

8.10 Consider a convex function g(z) with z € IR™. The a—sublevel set of g(z) is

defined as the set of all vectors z € dom(g) that satisfy g(z) < a. Show that a—sublevel

sets are convex.

8.11 Consider a collection of convex functions, {g¢(z), £ = 1,..., L}, and introduce

the weighted combination (also called conic combination) g(z) = 25:1 aege(z), where

a¢ > 0. Show that g(z) is convex.

8.12 Show that definitions (8.3) and (8.4) are equivalent characterizations of convexity

when g(z) is differentiable.

8.13 A continuous function g(z) : R — TR is said to be midpoint convex if for any

z1,2z2 € dom(g), it holds that g (5 (21 + 22)) < 5(g(21)+g(22)). Show that a real-valued

continuous function ¢(z) is convex if, and only if, it is midpoint convex.
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8.14 Establish the three properties listed in Example 8.2.
8.15 Counsider the indicator function (8.73) for some set €. Show that I [z] is a
convex function if, and only if, the set C is convex.
8.16 Consider a function g(z;a) : R™ — IR that is parameterized by a vector a in
some set A. Show that if g(z;a) is convex in z for every a € A, then the following
function is also convex in z:

g(z) 2 max g(z; a)
8.17 Let z € IRM be a vector in the probability simplex and denote its entries by
{zm > 0}. Assume the convention 0 x In0 = 0. Consider the negative entropy function
9(2) = M 2 In zp,. Verify that g(2) is convex. Show further that g(z) is v—strongly
convex relative to the ¢1—norm, i.e., it satisfies the following relation with v = 1 for
any (z,20):

v 2
Slz =2l

9(2) 2 g(z0) + V2g(20) (2 — 20) + 5

8.18 Consider a function g(z) : R* — IR. Pick any z € dom(g) and any scalar ¢ and
vector w such that z + tw € dom(g). Show that g(z) is convex in z if, and only if, the
function h(t) = g(z + tw) is convex in ¢. In other words, a function g(z) is convex if,
and only if, its restriction to any line in its domain, namely, g(z + tw), is also convex.
8.19 Let 2° denote the global minimizer of a v—strongly convex function g(z). Use
(8.24) to show that v|z — 2°|| < ||V, g(2)||-

8.20 Consider a v—strongly convex function g(z) : IR — IR satisfying (8.19) . Denote
the individual entries of z by {zm} for m =1,2,..., M. Select an arbitrary z,, and fix
all other entries. Is g(z) v—strongly convex over zm,?

8.21 True or false. Refer to definition (8.19). A function g(z) is v-strongly convex if,
and only if, the function g(z) — %||z||* is convex.

8.22 Let z € IR™. Show that g(z) = ||z||* is strictly convex.

8.23 Show that the regularized hinge loss function (8.40) is strongly convex.

8.24 Establish (8.21) as an equivalent characterization for v—strong convexity for
differentiable functions g(z) : R — R.

8.25 Establish property (8.24) for v—strongly convex functions g(z) : R™ — R.
8.26 Let z € R™ and consider a full-rank matrix A € RV *M with N > M. Examine
the convexity, strict convexity, and strong-convexity of the function g(z) = ||Az||* for
all values of a in the range o € [1,00). How would your answers change if A were
nonzero but rank-deficient?

8.27 Consider a v—strongly convex function g(z) : R — IR, as defined by (8.19).
Relation (8.21) provides a useful property for such functions when they are differen-
tiable. Assume now that the function is not necessarily differentiable. For any arbitrary
points z and z,, let s and s, denote subgradients for g(z) at locations z and z,, re-
spectively, i.e., s € 0,7 g(z) and s, € 9,7 g(2,). Establish the validity of the following
properties:

v

9(2) 2 9(z0) + so0(z —20) + §\|Z*Zo\|2

1
9(2) < g(z0) + so5(z — 20) + ol = sol|?
1

Vllz = 2z|1* < (s = 50) (2 — 20) < s = Sol|®
8.28 Let g(z) be a strictly convex function and consider two distinct points z1 and 22
in its domain. Show that 9.g(z1) N d.g(z2) = 0.
8.29 For any o > 0, show that 9, ag(z) = a 9. g(2).

8.30 Let g(z) be a convex function and introduce the transformation h(z) = g(Az+0b)
where z € RM™, A € RV*M and b € RY. Show that 9,1 h(z) = AT 9,7 g(2)|se-az+b-
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8.31 Let g1(2) and ga2(2) be two convex functions with z € IR™. Show that

0.1 91(2) + 0.1 g2(2) € 0.1 (01(2) + 92(2) )

To verify that these two sets are not identical in general, consider the following two
functions with z € R:

z, z>0 +o0, 2>0
g1(2) = +o0, 2<0 92(2) = -z, 2z<0
(a) Let g(z) = g1(2) + g2(2). What is g(2)?
(b) Determine 9,7 g1(0), 9,7 g2(0), and 9,1 g(0).

8.32 Let g(z) = ||z||, in terms of the Euclidean norm of z € IR™. Show that the
subdifferential of g(z) is given by the following expression where a € IRM:

{2kl £0
0.1 9(2) = { fé ‘|Z||Ha|| <1}, :lg

8.33 Refer to the definition of the dual norm in (1.157). Let g(z) = ||z||q denote the
g—norm of vector z € IR™ and define p through 1/p 4+ 1/q = 1 for p,q > 1. Show that

9,7 |||l = argmax 2"y
lyllp<1

Explain how this characterization leads to the same conclusion in Prob. 8.32.

8.34 Consider a convex set C and its indicator function Hcyoo[z}: it is equal to zero
when z € and +o0o otherwise. Show that 9. ¢ oo[2] = N¢(2) in terms of the normal
cone at location z. The result is illustrated geometrically in Fig. 8.9, where the normal
cone is shown at one of the corner points.

8.35 Let g(2) = ||#]le in terms of the co—norm of the vector z € IR™. What is
0,7 9(0)?
8.36 Let

_ T M
g9(z) = ez {anz + a(n)}, an,z € R, a(n) € R
and assume the maximum is attained at some index n,. Show that a,, € 9,7 g(2).
8.37 For any convex function g(z) that is nondifferentiable at some location z,, show
that its subdifferential at this location is a convex set.
8.38 Consider L convex functions ge(z) for £ = 1,2,..., L and define the pointwise
maximum function

o(:) = max, {au(2)}
At any point z1, let geo(21) be one of the functions for which geo(21) = g(21). There
may exist more than one function attaining the value g(z1). It is sufficient to consider
one of them. Show that if s € 9,7 gro(21), then s € 0,7 g(z1). That is, show that a
subgradient for geo(z) at z1 can serve as a subgradient for g(z) at the same location.
More generally, show that the subdifferential of g(z) is given by the following convex

hull:
0,19(z) = conv{ U 0,7 ge(z)}

9e(z)=g(2)

8.39 Consider two differentiable convex functions {g1(z),g2(z)} and define g(z) =
max {g1(2), g2(z)}. Show that

V. g1(2), if g1(2) > g2(2)
0:9(z) = ¢ V:g2(2), if g2(2) > g1(2)
aV.g1(2) + (1 - a)V:g2(2), if gi(2) = g2(2)
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where a € [0,1]. The last condition amounts to selecting any point on the segment
linking the gradient vectors of g1(z) and g2(z).

8.40 Let g(2) : R™ — IR denote a convex function and consider subgradient vectors
s1 € 9,1 g(z1) and s2 € 9,7 g(z2) at locations z1 and z2. Establish the following inner
product inequality:

(82 — Sl)T(ZQ — 21) Z 0

Let 2° denote the global minimizer of g(z). Conclude that (9,1 g(2))" (z — 2°) > 0 for
any subgradient vector at location z.

8.41 For a convex function g(z), show that z° is a minimum if, and only if, 0 €
0,7 g(z°).

8.42 Let g(2) = 0, |v(n) — h}z|, where 2, h, € RM and v(n) € IR. Show that a
subgradient for g(z) is given by

N
Z —hpsign (’y(n) - hlz) € 0.79(z)
n=1

where sign(z) = +1 if z > 0 and sign(z) = —1 if z < 0.
8.43 Let g(z) = maxi<n<n (y(n) — hiz), where z,h, € RM and v(n) € R. Show
that the subdifferential of g(z) is given by

0.19(z) = ) —a(n)hn

where the scalars {«(n)} satisfy the conditions
N
an) >0, > am)=1, am)=0 if (y(m) - hy,2) < g(2)
n=1

8.44 Consider the set of points (x,y,0) € IR? satisfying 222 +y* < 1. Does this set of
points have an interior? Does it have a relative interior? If so, identify it.

8.45 What is the affine hull of two points in IR3?

8.46 Consider a closed convex function A(w) and its Fenchel conjugate h*(z) as defined
by (8.83). Show that the subgradients of h(w) and h*(z) are related as follows:

v € d,rh(w) < w € Oh)7(v)

8.47 Refer to definition (8.83) for the conjugate function of h(w). Show that the set
X is a convex set. Furthermore, assume h(w) is v—strongly convex and closed. Show
that in this case X = IR™ so that dom(h*) = R™ and, moreover, h*(z) is differentiable
everywhere with the gradient vector given by

V. h*(x) = argmax {xTw — h(w)}
welRM

and satisfies the 1/v—Lipschitz condition

* * 1
IVar 17 (21) = Var 7 (22)|] < ~llz1 — 22|

8.48 Refer to definition (8.83) for the conjugate function of h(w). Show that for any
function h(w) and its conjugate, the so-called Fenchel-Young inequality holds:
h(w) +h*(z) > w'z, for any w,z

Show that the inequality becomes an equality when x € 9,7 h(w), i.e., when x belongs
to the subdifferential set of h(:) at location w (or, alternatively, when w € 9,7h*(x)).
Conclude that if h*(z) is differentiable, then equality holds when w = V _th*(z).
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8.49 Refer to definition (8.83) for the conjugate function of h(w). Establish the prop-
erties listed in Table 8.6.

Table 8.6 List of properties for conjugate pairs (h(w), h*(x)).

Function transformation | Conjugate function

h(w) = g(w) + ¢ h*(z) = g*(z) — ¢ (cis a constant)
h(w): g(w), a>0 h(x) = ag*(xz/a)

h(w) = g(aw), a# 0 h*(z) = g*(z/a)

h(w) = g(w — wo) h*(z) = g*(z) + = wo

h(w) = g(A ), A invertible | h*(z) = g*(A™Tz)

h(w) = g(w) +z"w h*(z) = g"(z — 2)

8.50 Refer to definition (8.83) for the conjugate function of h(w) and consider the
separable sum g(w1,wz2) = h(w1) + h(wz). Show that g*(x1,z2) = h*(z1) + h*(z2).
8.51 Let h(w) = 1|w[%, where w € R™ and A > 0. Show that h*(z) = %||z[%_..
8.52 Let h(w) = %wTAw +b"w + ¢, where w € RM and A > 0. Show that h*(z) =
Lz-0)TA (z-b) —c

8.563 Let h(w) = %Hw”% Show that h*(z) = %Hzﬂgo

8.54 Let h(w) = 1|wl|;. Show that h*(z) = S ||z||;, where 1/p+1/q = 1.

8.55 Let h(w) = ﬁle. Show that h*(z) = 0 if ||z||cc < 1 and oo otherwise. That is,
the conjugate function is the indicator function that verifies whether = belongs to the
convex set ||z|loc < 1. More generally, let h(w) = ||w|| denote an arbitrary norm over
w € RM and let || - ||« denote the dual norm defined as ||z||, = sup,, {z"w||w| < 1}
— recall (1.157). Show that h*(z) = 0 if ||z]|. < 1 and oo otherwise.

8.56 Consider a convex set € and the indicator function h(w) = I¢, oo [w] defined as
follows: its value is zero if w € € and +oco otherwise. Show that the conjugate function
h*(z) is given by h*(z) = sup,,ce ' w. The function h*(z) is called the support function
of the set €. Show that the support function is convex over x.

8.57 Let h(w) = aw + B where {a, 8, w} are all scalars. Show that its conjugate

function is given by
K (z) = { —B, z=a

oo, otherwise

8.58 Let h(w) = max{0,1 — w}, where w is scalar. Show that its conjugate function
is given by

* _ T, TE [715 0]
h*(z) _{ 400, otherwise

8.59 For matrix arguments W, we define the conjugate function using
R (X) = sup{mXTW) - h(W)}
w

Consider the matrix function h(W) = —Indet(W) for positive-definite W € TRM*M,
Show that h*(X) = —Indet(—X) —

8.60 The characterization (8.21) for a v—strongly convex function relied on the use
of the squared-Euclidean norm term, ||z — z,||>. We indicated then that other vector
norms can be used as well. For instance, the same function will also be 4 —strongly
convex relative to the squared ¢; —norm, namely, it will satisfy for any (22, 2):

g(z2) 2 9(x) + (V2 g(2)) (22— 2) + Tz — I3

for some parameter v; > 0.
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(a) Maximize the right-hand side over z2 and use the result of Prob. 8.53 to conclude
that at the minimizer z° (compare with the upper bound in (8.29)):

9(%) 2 9(2) - 519 9(2) %

(b) For vectors z € IR™, use the known norm bounds ﬁ”w“l < |lzll2 < ||lz|1 to

conclude that the strong convexity constants (v,v1) can be selected to satisfy
+; <1 < v. Remark. See Nutini et al. (2015) for a related discussion.

8.61 Let w € RM with entries {wy, }. Establish the conjugate pairs (with the conven-
tion 0 x In0 = 0) listed in Table 8.7.

Table 8.7 List of conjugate pairs (h(w), h*(z)).

Original function, h(w) | Conjugate function, h*(x)
M M
Zwmlnwm, W > 0 Zez’”fl
m=1 m=1
M M
Z Wi (lnwm - 1), W >0 Z erm
m=1 m=1
M M
— Zlnwm, Wm >0 — Zln(—zm)—M
i M "M
Zwmlnwm7 W > 0, Zwmzl ln(z ewm)
m=1 m=1 m=1
8.62 Refer to definition (8.96) for the Bregman divergence. Show that ¢(w) is v—strongly
convex with respect to some norm || - || if, and only if, Dg(p,q) > %|lp — q||* for any
D, q € dom(g).
8.63 Refer to definition (8.96) for the Bregman divergence. The function ¢(w) is
said to be a—strongly smooth relative to some norm || - || if it is differentiable and

Dy(p,q) < %Hp—q“2 for all p, ¢ € dom(¢), where o > 0. Let ¢*(x) denote the conjugate
function of some closed convex ¢(w). Show that

¢(w) is v—strongly convex relative to some norm || - || <
¢*(z) is L —strongly smooth relative to the dual norm || - ||«

v

Argue from the differentiability of ¢*(z) and the result of Prob. 8.48 that the equality
¢*(x) = 2"w — ¢(w) holds when w = V, ¢*(x). Conclude that

V0 (z) = argmax {:rTw - d)(w)}

Remark. The reader may refer to Zalinescu (2002) and Shalev-Shwartz (2011) for a
related discussion.
8.64 We continue with definition (8.96) for the Bregman divergence. Let ¢(w) be a
differentiable and strictly convex closed function and consider its conjugate function,
¢* (). Show that

Dy (p,q) = Dy~ (Vwmb(q), VwT¢(p))

where the Bregman divergences are computed relative to ¢ and ¢* and the arguments
are swapped.
8.65 Refer to definition (8.96) for the Bregman divergence. Show that it satisfies

Dy (p,q) + Dy (r,p) — Dy(r,q) = (Vw¢(p) - Vm(fJ)) (p—r)
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8.66 Refer to definition (8.96) for the Bregman divergence. Let ¢(w) = 1w’ Qu where
Q > 0 is symmetric and w € IRM. Verify that the Bregman divergence in this case
reduces to the weighted Euclidean distance shown below, also called the squared Ma-
halanobis distance:

Dy(p,q)==(p—q)' Qp—q), p.ge R

N | =

8.67 We can extend definition (8.96) for the Bregman divergence to matrix arguments
P and Q as follows:

Ds(P.Q) £ 6(P) - ¢(Q) — Tr(Vwre(Q) (P - Q)

Let ¢(W) = Tr(W In W — W), where W is symmetric positive-definite. If W = UAW T
is the eigen-decomposition for W, then In(W) is defined as In(W) = U In(A)V". Show
that the resulting Bregman divergence (also called the von Neumann divergence in this
case) is given by

Dy(P,Q) = Tr(PlnP— PlnQ— P+Q)
8.68 Continuing with Prob. 8.67, choose now ¢(W) = —Indet(W) where W > 0 is
M x M symmetric. Show that
Dy(P,Q) = Tr(PQ ™" — Iny) — Indet(PQ™")

8.69 Consider a proper convex function f(w) : R — IR and a closed convex set €
such that € C dom(f). Consider the optimization problem for a given wy,_1:

w, 2 argmin {f(w) + D¢(w,wn_1)}
weR

Show that
f(c)+ Dg(c,wn—1) > f(wn)+ Dg(wn,wn-1) + De(c,wn), Vc€C

8.70 Determine the Bregman divergences corresponding to the choices ¢(w) = 1/w
and ¢(w) = e®.
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