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2.1

Vector Differentiation

Gradiont vectors and Hessian matrices play an important role in the devel-
opment of iterative algorithms for inference and learning. In this chapter, we
define the notions of first and second-order differentiation for functions of vector
arguments, and introduce the notation for future chapters.

GRADIENT VECTORS

We describe two closely related differentiation operations that we will be using
regularly in our treatment of inference and learning problems.
Let z € RM denote a real-valued column vector with M entries denoted by

z = : (2.1)

Let also g(z) : RM — IR denote a real-valued function of the vector argument, z.
We denote the gradient vector of g(z) with respect to z by the notation V, g(2)
and define it as the following row vector

(2.2)

A dg 99 dg } { z is a column

V. = | = . .
9(2) 0z1 0z 0zym V. g(z) is a row

Note that the gradient is defined in terms of the partial derivatives of g(z) relative
to the individual entries of z.

Jacobian

Expression (2.2) for V, g(z) is related to the concept of a Jacobian matrix for
vector-valued functions.. Specifically, consider a second function h(z) : RM —
IRY, which now maps z into a vector, assumed of dimension N and whose indi-
vidual entries are denoted by

h(z) = col{hl(z), ha(2), hs(2), ...,hN(z)} (2.3)
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The Jacobian of h(z) relative to z is defined as the matrix:

8h1/6z1 6]11/822 6h1 /82’3 . 8h1/82’M
8h2/62’1 6h2/822 6h2/8z3 . 8}12/82’]\4

vz h(Z) é 8}13/82’1 6h3/822 (9]7,3/623 . 8}13/82’]\4 (24)
ahN/E)zl 8hN/8zQ 3}1]\7/823 8hN/8zM

Thus, note that if h(z) were scalar-valued, with N = 1, then its Jacobian will
reduce to the first row in the above matrix, which agrees with the definition for
the gradient vector in (2.2).

In the same token, we will denote the gradient vector of g(z) relative to the
row vector z' by V.t g(z) and define it as the column vector:

69/821
69/822 T35
A 2" is a row

Verglz) = ’ { V.rg(z) is a column (2:5)

89/6zM
It is clear that
T

Vorg(z) = (V.9(2)) (2.6)

Notation

Observe that we are defining the gradient of a function with respect to a column
vector to be a row vector, and the gradient with respect to a row vector to be a
column vector:

gradient vector relative to a column is a row (2.7a)

gradient vector relative to a row is a column (2.7b)

Some references may reverse these conventions, such as defining the gradient
vector of g(z) relative to the column z to be the column vector (2.5). There is no
standard convention in the literature. To avoid any ambiguity, we make a dis-
tinction between differentiating relative to z and z'. Specifically, we adopt the
convention that the gradient relative to a column (row) is a row (column). The
main motivation for doing so is because the results of differentiation that follow
from this convention will be consistent with what we would expect from tradi-
tional differentiation rules from the calculus of single variables. This is illustrated
in the next examples.

Observe further that the result of the gradient operation (2.5) relative to z"
is a vector that has the same dimension as z; we will also use the following
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alternative notation for this gradient vector when convenient:

89/821

dg(z) a 99/ 0z
e S (2.8)

0g/0zm

In this way, we end up with the following convention:

a) zis M x 1 column vector;
b) 0g(z)/0z and V,r g(z) coincide and have the same dimensions as z;

c) V.g(2) has the same dimensions as 2"

(2.9)

The notation dg(z)/0z organizes the partial derivatives in column form, while
the notation V, g(z) organizes the same partial derivatives in row form. The two
operations of differentiation and gradient evaluation are the transpose of each
other. We will be using these forms interchangeably.

Example 2.1 (Calculations for vector arguments) We consider a couple of examples.

(1) Let g(z) = a'z, where {a,z} are column vectors in IR with entries {am, zm}.

Then,
V.g(z) 2 [ 89(2)/021 89(2)/0z ... 89(2)/02nr |
= [ al az apnr }
=a' (2.10)

Note further that since g(z) is real-valued, we can also write g(z) = z'a and a
similar calculation gives

V.rg(z)=a (2.11)

(2) Let g(z) = ||z||* = 2"z, where z € R™. Then,

V.g(z) = [ 09(2)/0z1 0g(z)/0z2 ... 0g(z)/0zm ]
= [ 221 222 e 221»1 ]
= 22" (2.12)

Likewise, we get V7 g(z) = 2.

(3) Let g(z) = 2" Cz, where C is a symmetric matrix in RM** that does not depend
on z. If we denote the individual entries of C' by Ci,», then we can write

M M
g(z) = Z Zcmnzmzn (2.13)

m=1n=1
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so that
M
99(2)
n#m
M
=2 Z Chmzn
n=1
=2:"Cim (2.14)
where in the second equality we used the fact that C is symmetric and, hence,
Cmn = Cpm, and in the last equality we introduced the notation C. ,, to refer
to the m—th column of C. Collecting all partial derivatives {9g(z)/zm }, for m =
1,2,..., M, into a row vector we conclude that
V.g(z) = 22'C (2.15)

(4) Let g(z) = 2"Cz, where C is now an arbitrary (not necessarily symmetric) matrix
in RM™*M If we repeat the same argument as in part (3) we arrive at

V.g(z) = 2" (C+C") (2.16)

(5) Let g(z) =x+a'z+4 2"b+ 2'Cz, where & is a scalar, {a,b} are column vectors
in R, and C is a matrix in R™*™_ Then,

V.g(z) = a" +b" +2(C+C") (2.17)

(6) Let g(z) = Az, where A € R™*M does not depend on z. Then, the Jacobian
matrix is given by V. g(z) = A.

HESSIAN MATRICES

Hessian matrices involve second-order partial derivatives. Consider again the
real-valued function g¢(z) : R — IR. We continue to denote the individual
entries of the column vector z € R™ by z = col{z1,29,...,2za}. The Hessian
matrix of ¢g(z) is an M x M symmetric matrix function of z, denoted by H(z),
and whose (m,n)—th entry is constructed as follows:

(H(2)lmn 2 ;jjéi = afm (agz)) = % (%gz(:) (2.18)

in terms of the partial derivatives of g(z) with respect to the scalar arguments
{2zm, zn }. For example, for a two-dimensional argument z (i.e., M = 2), the four
entries of the 2 x 2 Hessian matrix are:

9%g(2) g(2)
82’% 821822
H(z) = (2.19)
g(2) >g(2)
022021 023
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It is straightforward to verify that H(z) can also be obtained as the result of two
successive gradient vector calculations with respect to z and 2" in the following
manner (where the order of the differentiation does not matter):

H(z) 2 Vo (Vag(2) = V2(Varg(2) (2.20)

For instance, using the first expression, the gradient operation V, ¢(z) generates
alx M (row) vector function and the subsequent differentiation with respect to
2T leads to the M x M Hessian matrix, H(z). It is clear from (2.18) and (2.20)
that the Hessian matrix is symmetric so that

H() = (H(z))T (2.21)

A useful property of Hessian matrices is that they help characterize the nature
of stationary points for functions g(z) that are twice differentiable. Specifically,
if z° is a stationary point of g(z) (i.e., a point where V, g(z) = 0), then the
following facts hold:

(a) z° will correspond to a local minimum of ¢(z) if H(2°) > 0, i.e., if all
eigenvalues of H(z°) are positive.

(b) z° will correspond to a local maximum of g(z) if H(z°) < 0, i.e., if all
eigenvalues of H(z°) are negative.

Example 2.2 (Quadratic cost functions) Consider g(z) = k 4 2a"z 4 2" Cz, where &
is a real scalar, a is a real column vector of dimension M x 1, and C'is an M x M real
symmetric matrix. We know from (2.17) that

V.g(z) =2a" +22'C (2.22)
Differentiating again gives:
H(z) 2 V.1 (V.g(2)) = V. (QaT + 2zTC’) = 20 (2.23)

We find that for quadratic functions g(z), the Hessian matrix is independent of z.
Moreover, any stationary point z° of g(z) should satisfy

20" +2(z°)'C=0 = Cz°=—a (2.24)

The stationary point will be unique if C' is invertible. And the unique z° will be a global
minimum of g(z) if, and only if, C > 0.

MATRIX DIFFERENTIATION

We end the chapter with a list of useful matrix differentiation results, collected
in Table 2.1. We leave the derivations to Probs. 2.10-2.14. The notation used in
the table refers to the following definitions.

Let X € RM*M pe a square matrix whose individual entries are functions of
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Table 2.1 Some useful matrix differentiation results; inverses are assumed to exist
whenever necessary. The last column provides the problem numbers where these
properties are established.

property | result | problem
1 A(A(a)) /0o = —A"1(9A)da) A" 2.10
2 ddet A/Oc = det(A) Tr{A"1(0A/da)} 2.10
3. dln|det A|/a = Tr{(A—l(aA/aa)} 2.10
4 0A(a)B(a)/0a = A(OB/da) + (0A/0a)B | 2.10
5. Vit Tr(AXB) = ATBT 2.11
6. VxT Tr(AX B)=—(X"'BAX 1T 2.11
7. VyrTr(X71A) = —(xtATx T 2.11
8. Vyr Tr(XTAX) = (A+ AT)X 2.11
9. Vit Tr(XTX) =2X 2.11
10. Vit f(X)=-X"T(Vya f(X)X T 2.11
11. Vyr det(X) = det(X)X T 2.12
12. Vyr det(X 1) = —det(X )X T 2.12
13. Vyr det(AXB) = det(AXB)(X 4T 2.12
14. Vit det(XTAX) = 2det(XTX) (X H)T 2.12
15. Vyr In|det(X)] = (X HT 2.12
16. Vit || X|IE =2X 2.13
17. Vit Tr(X?P) =pXP™', pe R 2.14

some real scalar «. We denote the individual entries of X by X,,,, and define its
derivative relative to « as the M x M matrix whose individual entries are the
partial derivatives:

0X () 0Xn
= M x M 2.25
O [ O :|m,n’ ( ) ( )
Likewise, let f(X) denote some scalar real-valued function of a real-valued M x
N matrix argument X. We employ two closely related operations to refer to
differentiation operations applied to f(X). The derivative of f(-) relative to X is
defined as the M x N matrix whose individual entries are the partial derivatives

of f(X):

ag())(() = {Zﬁf(fﬁmn = Vxtf(X), (MxN) (2.26)

Observe that the result has the same dimensions as X. Likewise, we define the



2.4

2.4 Commentaries and Discussion 65

gradient matrix of f(-) relative to X as the N x M matrix

.
Vx f(X) = <[g§:{:}m) . (N x M) (2.27)

The result has the same dimensions as the transpose matrix, X . This construc-
tion is consistent with our earlier convention for the differentiation and gradient
operations for vector arguments. In particular note that

"
Yy f(X) = (a{;(j(()) = (Vi f)) (2.28)

COMMENTARIES AND DISCUSSION

Gradients and Hessians. Gradient vectors help identify the location of stationary points
of a function and play an important role in the development of iterative algorithms for
seeking these locations. Hessian matrices, on the other hand, help clarify the nature
of a stationary point such as deciding whether it corresponds to a local minimum,
a local maximum, or a saddle point. Hessian matrices are named after the German
mathematician Ludwig Hesse (1811-1874) who introduced them in his study of
quadratic and cubic curves — see the work collection by Dyck et al. (1972). A useful
listing of gradient vector calculations for functions of real arguments is given by Petersen
and Pedersen (2012). Some of these results appear in Table 2.1. For more discussion on
first and second-order differentiation for functions of several variables, the reader may
refer to Fleming (1987), Edwards (1995), Zorich (2004), Moskowitz and Paliogiannis
(2011), Hubbard and Hubbard (2015), and Bernstein (2018).

PROBLEMS

2.1 Let g(z,z) = 2" Cz, where z,z € R and C is a matrix. Verify that
V.g(x,2)=2'C, Vag(x,z)=2"C"

2.2 Let g(z) = Ah(z), where A € RM™*M and both g(z) and h(z) are vector-valued
functions. Show that the Jacobian matrices of g(z) and h(z) are related as follows:

V.g(z) = AV.h(z)

2.3 Let g(z) = (h(2))" h(z) = ||h(2)||?, where g(2) is scalar-valued while h(z) is vector-
valued with z € IR™. Show that
V.g(2) = 2(h(=)" V. h(z)
in terms of the Jacobian matrix of h(z).
24 Let g(z) =1 (h(2))" A~ h(z), where A > 0 and g(z) is scalar-valued while h(z)
is vector-valued with z € IR™. Show that
V.g(2) = (h(2))" A7V h(2)

in terms of the Jacobian matrix of h(z).
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2.5 Let g(z) = 2" Cw, where z,w € IRY and both are functions of a vector z € RM
ie, z = z(z) and w = w(z), while C is a matrix that is independent of z. Establish
the chain rule

V.9(2) =2"CV.w(z) + w' CT V., z(2)

in terms of the Jacobian matrices of z(z) and w(z) relative to z.
2.6 Let g(2) be a real-valued differentiable function with z € IR™. Assume the entries

of z are functions of a scalar parameter ¢, i.e., z = col{z1(¢), 22(t), ..., zm(¢)}. Introduce
the column vector dz/dt = col{dz1/dt, dz2/dt, ..., dzar/dt}. Show that

dg dz

Fr V2 g(2) it

2.7 Let g(z) be a real-valued function with z € IR™. Let f(t) be a real-valued function
with ¢ € IR. Both functions are differentiable in their arguments. Show that

V. f(9(2) = (dj;(f)

2.8 Let g(z) be a real-valued twice-differentiable function with z € IR™. Define f(t) =
g(z + tAz) for t € [0,1]. Show from first principles that

) x V. g(z)

t=g(z)

PO _ (v gz + 189 2z

d d’; gt) = (A2)" (VZg(z +tAz)) Az

2.9 Let |||, denote the p—th norm of vector = € RM. Verify that

@ |zP?

Vot llz|lp, = W
P

where ® denotes the Hadamard (elementwise) product of two vectors, and the notation
|£|P~2 refers to a vector whose individual entries are the absolute values of the entries
of x raised to the power p — 2.

2.10 Let A € RM*M be a matrix whose individual entries are functions of some real
scalar a. We denote the individual entries of A by A, and define its derivative relative
to « as the M x M matrix whose individual entries are given by the partial derivatives:

(5], =25

Establish the following relations:
(a) 0A'/0a=—A"H(OA/Da)AT .
(b) 90AB/da = A(0B/da) + (DA/da)B, for matrices A and B that depend on a.

(c) Odet A/ = det(A) T}{A*l(aA/aa)}.
(d) ln|det A|/da = Tr{A-l(aA/aa)}.

2.11 Let f(X) denote a scalar real-valued function of a real-valued M x N matrix
argument X. Let X,,, denote the (m,n)—th entry of X. The gradient of f(-) relative
to X' is defined as the M x N matrix whose individual entries are given by the partial
derivatives:

_0r(X)
ma OXmn

[Vr £(X)]

Establish the following differentiation results (assume X is square and/or invertible
when necessary):
(a) VyrTr(AXB)=A"B".
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(b) Vit Tr(A B)=—-(X *1BAX*1)T.

(c) VyrTr(X ) —(X7'ATXHT.

(d) Vit Tr(XTAX) = (A+AT)

() VxrTr(XTX) =

(f) Vxr f(X)=- 'J(Vx—aﬂAU)X‘T

2.12 Consider the same setting of Prob. 2.11. Show that
(a) Vit det(X) =det(X)X .

(b) Vyr det(X™1) = —det(X )X,

(c) Vxr det(AXB) =det(AXB)(X HT.

(d) Vxr det(XTAX) = 2det(XTX)(X~HT, for square invertible X.
() Vxt In|det(X)| = (X~HT.

2.13 Let || X||r denote the Frobenius norm of matrix X, as was defined in Table 1.4.
Show that V 7 || X ||f = 2X.

2.14 Let p € R and consider a positive-definite matrix, X. Show that V y+ Tr(X?) =
pXPL.

2.15 For the purposes of this problem, let the notation || X||; denote the sum of the
absolute values of all entries of X. Find V y7 [| XX |)1.
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