Copyright 2022. All Rights Reserved. These notes cannot be copied or
distributed in print or electronically without the written consent of Cambridge
University Press and the author. The notes are distributed to students attending
the course EE566: Adaptation and Learning taught by the author at EPFL
during Spring 2022. The notes originate from the text: A. H. Sayed, Inference
and Learning from Data, Vol. 111: Learning, Cambridge University Press, 2022.

68 GENERATIVE NETWORKS

The material in the last three chapters focused on the use of neural network
structures for the solution of inference (regression and classification) problems.
In this chapter, we use the same networks to develop two generative methods
whose purpose is to generate samples from the same underlying distribution as
the training data.

The first method builds upon the variational inference approach from Chap-
ters 33 and 36 and leads to variational autoencoders (VAEs). Each VAE consists
of the cascade of two feedforward neural networks: one plays the role of the en-
coder and the other plays the role of the decoder. The purpose of the encoder
is to compress the feature data down to a small-dimensional latent space. The
latent variables are fed into the decoder, which then generates samples from the
data distribution at its output. The encoder-decoder combination is trained by
means of a backpropagation algorithm, with special attention to the propaga-
tion of sensitivity factors through the transition layer linking the encoder to the
decoder.

The second method relies on a zero-sum game formulation and leads to a gen-
erative adversarial network (GAN). Each GAN consists of a cascade of two feed-
forward neural networks: one is called the generator and the other the discrim-
inator. The purpose of the generator is to generate “fake” feature data to “fool”
the discriminator, while the purpose of the discriminator is to decide whether
the feature data at its input is “real” or “fake.” The generator-discriminator com-
bination is again trained by means of a backpropagation algorithm, with special
attention to the propagation of sensitivity factors through the coupling layer
linking the generator and discriminator. GANs tend to lead to better results (at
least subjectively) than VAEs. They are, however, much harder to train due to
the competition that occurs between the generator and discriminator sections
vying to reach an equilibrium. We discuss VAEs first, followed by GANs.

68.1 VARIATIONAL AUTOENCODERS

Given a collection of feature vectors {h, }Y - € R, we would like to determine
a generative model that explains the data and which can be used to generate
additional similar samples. One possibility is to learn the underlying probability

2822

68.1.1

Generative Networks

distribution, fr(h), from which the data arises. We explained in Chapter 33 that
computing such evidences is generally challenging. Moreover, it is often more
useful to construct a structure that can sample from fp(h) directly without
the need to evaluate the distribution explicitly. This section describes one such
method by using variational autoencoders (VAEs). The method exploits to great
effect the notion of latent variables and variational inference techniques from
Chapters 33 and 36.

Encoder-Decoder Structure

Variational autoencoders (VAEs) employ the same architecture we described
before in Fig. 33.1, and which we reproduce here for ease of reference with some
adjustment to the notation. Let fp,(h|u) denote the model for generating the
data h, based on some latent variable u. Recall that we used the symbol z to
refer to latent variables in Chapter 33. In this chapter, we will use the symbol w.
This is because in our study of neural networks, we have reserved the notation
z to represent internal variables prior to the activation functions.

It is generally the case that the latent variable w lies in a (much) lower dimen-
sional space than the feature data so that the mapping from h to w amounts to
some form of data compression. We refer to the model fy,,(h|u) as the decoder
since it maps u back to A (i.e., it helps decode the information summarized in u).
The distribution fp,, (h|u) represents the likelihood of h given u. On the other
hand, the conditional fu|h(u\h)7 with the roles of u and h reversed, is known as
the encoder since it maps h to u and helps encode the information from h into
U.

4 N

h u~ fuin(ulh) h~ fju(hlu)

‘ encoder
_ /

Figure 68.1 The decoder is represented by fn|.(h|u) since it decodes the information
contained in the latent variable u, while the encoder is represented by fyn(u|h) since
it codes the information from A into u.

decoder

68.1.2

68.1 Variational Autoencoders 2823

Maximizing the ELBO

We explained in Secs. 36.1 and 36.3 how to learn posterior distributions of the
form fy,p (u|h) by maximizing the evidence lower-bound (or ELBO) and by using
the mean-field approximation theory. We will again exploit the ELBO in this
section, with two main differences in relation to the earlier approach:

(a) (Data-driven solution) We will not assume knowledge of the joint distribu-
tion fp 4 (h,u), as was the case with the mean-field approximation theory.
We will rely solely on data realizations {h, }) ;"

(b) (Gaussian approximation) We will resort to a neural network formulation
rather than the mean-field theory. In particular, we will assume beforehand
a Gaussian approzimation for the posterior fyn(ulh) and train a neural
network to learn the first and second-order moments of this Gaussian distri-
bution. In contrast, in the mean-field approximation approach, we searched
for the optimal posterior approximation by using (36.42).

Thus, let gy n(u|h) denote an approximation for the actual posterior fup(ulh).
Variational inference seeks the distribution g, (u|h) that is closest to fun(ulh)
in the KL divergence sense:

Gin(ulh) 2 argmin Dy, (qun(ulh) | fun(ulh)) (68.1)

Quln(+)

This is of course a challenging problem to solve because fyn(ulh) is unknown.
However, we established a fundamental equality in (6.164) relating the KL di-
vergence of two distributions to a second quantity called the Evidence Lower
Bound (ELBO), which we denoted by £. Specifically, we showed that it always
holds

Dict. (uin (ulh) | fun @lh)) + £(un(ulh) | fnu(how)) = In fulh) (68.2)
where £ is defined by

fh,u(h; U)
/ueu Quln(ulh) In <quh(UIh)> du (68.3)

If we drop the arguments, we can rewrite (68.2) more succinctly in the form

£ (urn () | fuu (b))

Dxr + £ = In fn(h) (68.4)
where, from (68.3):
L(g) 2 Eq[lnfh,u(h,u)} _ Eq[lnqu‘h(um)] (68.5)

and the notation [, refers to expectation relative to the conditional distribution
qu)n(ulh) (which in turn depends on h). We are also writing £(q), rather than
just £, to highlight the fact that the value of £ depends on gq.

2824

68.1.3

Generative Networks

Since the joint pdf fp . (h,u) is assumed unavailable in this treatment, we
rework expression (68.5) by using Bayes rule and write:

£(q) = Eq [n(fu(w) frpu(blw))| = Eq[ngun(uln)]

= Eq [In fupu(hlw)] ~ E, [m(Wﬂ
= B [0 fuga (hfu)| = D (quin (ulh) | fu(w)) (68.6)

where the last term is equal to the KL divergence between gy x(-) and fu(-).
Substituting into (68.4) we conclude that (we are removing the subscripts from
the pdf notation for compactness):

In f(h) = D (a(ulh) || f(ulh)) +E (n f(hlu)) = Dict. (a(ulh) || £(w)

2 ELBO, £(q)

(68.7)

where the two rightmost terms correspond to the ELBO. Since the KL divergence
is always nonnegative, we conclude that the ELBO provides a lower bound for
the natural logarithm of the evidence:

L(q) < In fn(h) (68.8)

The general result (68.7) states that the ELBO and the KL divergence between
the posterior distribution and its approximation always add up to the (natu-
ral) logarithm of the evidence. By changing gy, (u|h), the values of both £ and
Dx1.(q(ulh) || f(ulh)) will adjust with one of them increasing and the other de-
creasing in such a way that their sum remains invariant. For this reason, the
minimization problem (68.1) can be replaced by the equivalent maximization
problem:

. A
Tyn(ulh) = argmfr;cﬁ(q) (68.9)
qu|h\"

where £(q) represents the objective function that needs to be maximized and is
given by (68.6). We therefore focus on solving (68.9).

Neural Network Structure

To maximize £(q), we need to explain how to approximate the likelihood fp,, (h|u)
and the pdf of the latent variable f,,(u), both of which are needed in expression
(68.6) for the ELBO. Once these factors are estimated, along with qzlh(u|h),
then we observe from (68.7) that they essentially determine the evidence fp (h).
This is because q2|h(“|h) ~ fu)n(ulh) and, hence, In fr(h) ~ L(q*). However,
as explained before, we are less interested in evaluating the evidence fp(h), and

68.1 Variational Autoencoders 2825

more interested in devising a structure that generates samples from it without
explicitly computing this pdf. The structure we will use to determine gy, p (u|h)
will be called the encoder, while the structure we will use to approximate the
likelihood fpq (h|u) will be called the decoder. The encoder and decoder will be
connected by means of a transition layer that generates realizations from f, (u).
The details are as follows.

Approximating the posterior

To begin with, we assume a particular form for gy (u|h) and solve (68.9) over
this assumed class. Specifically, we will limit g, (u|h) to the family of Gaussian
distributions. To determine elements from this family, it is sufficient to identify
their mean vector and covariance matrix. We denote the mean and covariance
matrix of gy p(ulh) by pu(h) and X(h), respectively:

qun(ulh) = No((h), 5(h)) (68.10)

Observe that the mean and variance quantities are dependent on the feature h
due to the conditioning over h. We denote the individual entries of the P x 1
mean vector p(h) by

u(h) 2 col{ul(h), pa(h), ... up(h)} (68.11)

and assume that ¥ is diagonal with entries {ai(h)} for p =1,2,...,P. In this
way, the problem of learning g, p(u|h) in (68.9) amounts to learning the mo-
ments:

{m), . oup(), 3R, ..., o2 () | (68.12)

where the ¢2(h) are nonnegative scalars (but not necessarily equal). To learn
these parameters, we will employ a feedforward neural network whose input re-
ceives the given feature vectors {h, } and whose output generates the mean and
variance parameters. Depending on the application at hand, we may employ a
convolutional neural network at this stage. However, we will continue our dis-
cussion by considering a traditional feedforward neural network to illustrate the
main idea. We explain in the sequel how to train the network in order to learn
the parameters. Usually, in practice, we train the encoder to estimate the loga-
rithm of the variance factors rather than the variances themselves for enhanced
numerical stability, i.e., the encoder will generate the log-variances:

ap(h) £ Wo2(h), p=1,2,...,P (68.13)
This step ensures that the variances recovered from the {a,(-)} are always non-
negative since
o2(h) = =™ g (h) = ew)/? (68.14)

Just like the individual means p,(h) are collected into the P x 1 mean vector
w(h), we will also collect the log-variances into a vector of similar size and denote

2826

Generative Networks

it by

a(h) . (Px1) (68.15)

I
)
()
>
~

ap.(h)

Figure 68.2 shows the encoder structure with M = 3 attributes at the input
layer, latent variable u of size P = 2, and 3 hidden layers. We denote the total
number of layers in the encoder, including its input and output layers, by Le.
Hence, for the example in the figure, we have L. = 5. The encoder generates the
vectors {u(h),a(h)} at its output.

encoder structure

pa(h) u(h)

j Hg(h) (Px1)
al(h)

a(h)

GQ(h) (Px1)

input layer N output layer
3 hidden layers

input vector: h = col{h(1),h(2),h(3)}
output vector: col{uy(h),pa(h), ai(h), az(h)}, ag(h,) = (M)

Figure 68.2 An encoder structure to approximate the posterior fyn(ulh) with M =3
attributes at the input layer (i.e., h € R3), 3 hidden layers, and latent variables of
size P = 2 so that there are 4 nodes at the output layer.

Generating latent variables
Using the mean and variance parameters {u(h),a(h)}, we can generate realiza-
tions for the latent variables u since, by assumption,

ulh ~ Ny (u(h),Z(h)) (68.16)

In principle, we could sample directly from this Gaussian distribution. However,
as we are going to see, this approach is difficult to incorporate into the training
of the encoder-decoder structure by means of the backpropagation procedure.
This is because the sampling operation is not differentiable during the backward

68.1 Variational Autoencoders 2827

stage of the learning process. An alternative approach to generate realizations
for w is to rely on a “re-parametrization trick.” We first generate a realization €
from a standard Gaussian distribution, i.e., € ~ Ne(0, Ip), and then set

w=p(h) + SY2%(h)e (68.17)

where the entries of .1/2(h) are the standard deviations {},(h)}. In this way, we
relate the realization u directly to the outputs {u(h),a(h)} of the encoder net-
work, which will facilitate the backpropagation step, as explained in the sequel.
Figure 68.3 illustrates this construction, which maps a generic 2—dimensional
standard Gaussian variable ¢ = col{e(1),€(2)} into a 2—dimensional latent vari-
able u = col{u(1),u(2)}.

Figure 68.3 Generation of a 2—dimensional latent variable u (i.e., P = 2). The
structure maps a generic 2—dimensional standard Gaussian variable
e = col{e(1),€(2)} into the 2—dimensional latent variable u = col{u(1),u(2)}.

Approximating the likelihood

Once the encoder and the re-parameterization trick are combined, we end up
with a structure that maps an input feature vector h into a latent-variable real-
ization u. Next, we examine the task of approximating the reverse distribution
(or likelihood) fp|o (h|u). Here, instead of approximating the pdf directly, we will
construct a second neural network structure that attempts to replicate h — see
Fig. 68.4. By doing so, we end up with a neural network structure that is able
to generate realizations that arise from the conditional distribution fpe, (h|u).

The input to this network will be the realization u corresponding to h, and the
output will be an approximation 1 for the same h. The mapping from u to hin
this second network will be nonlinear and denoted generically by

h = g(u) (68.18)

for some nonlinear mapping g¢(-). Figure 68.4 illustrates the structure of the
decoder with latent variables of size P = 2 at the input layer, 3 hidden layers,
and M = 3 nodes at the output to generate h. We will be using the notation

Generative Networks

decoder structure

(Px1)

. N—
input layer ~~ output layer
3 hidden layers

input vector: u = col{u(1),u(2)}
output vector: h = col{ﬁ(l)ﬁ(Q)ﬁ(S)}

Figure 68.4 A decoder structure to approximate the likelihood fp. (h|u) with P =2
latent variables at the input layer (i.e., u € IR?), M = 3 nodes at the output layer to
generate h, and 3 hidden layers.

Ly to refer to the total number of layers in the decoder structure, including its
input and output layers. Hence, for the example in the figure we have Ly = 5.
If we combine the encoder, decoder, and the generation of latent variables into
a single diagram we obtain the structure shown in Fig. 68.5. The purpose of the
overall structure is to reproduce the input h, i.e., to “match” h to h. We can
pursue this objective by minimizing a certain risk function, as we explain next.

4 N

encoder decoder

(Px1)

u=p+ X%

K /2 = <1iag{ea,,<h>/2} j

Figure 68.5 Diagram representation of the variational autoencoder (VAE) involving a
cascade of encoder and decoder structures with the intermediate step of generating
the latent variables u from standard Gaussian realizations e.

REMARK 68.1. (Distribution of the latent variables.) Expression (68.16) assumes u
is conditionally Gaussian given h. But what about the marginal distribution f,(u)?

68.2

68.2 Training Variational Autoencoders 2829

The nonlinear mapping from u to h in the decoder allows us to assume, without loss
in generality, that this marginal pdf is a standard Gaussian with zero mean and unit
variance, i.e., we can assume

u ~ Ny (0, Ip) (68.19)

This is because, as is known, we can transform a standard Gaussian-distributed random
variable to other continuous distributions by means of suitable nonlinear transforma-
tions — see Prob. 68.1. Therefore, even if the actual pdf for w is non-Gaussian, the
ovef\all nonlinear mapping by the decoder from the assumed Gaus/gian-distributed u
to h will be able to capture the model that maps the real w to h. This is because
the decoder consists of multiple neural layers, and we can regard the initial layers as
performing the mapping from the Gaussian-distributed input w to the “act/]\ial” latent
distribution for w, while the remaining layers assist with the generation of h.

TRAINING VARIATIONAL AUTOENCODERS

Since both gy (u|h) and f, (u) are assumed to be Gaussian-distributed according
to (68.16) and (68.19), we can compute the last term in (68.7) by appealing to
result (6.65):

Dt (dugn @l | () = 5{ =0 (det(S() — P+ Te(S () + 0]}
(68.20)

In VAE implementations, the reverse conditional pdf fp|, (h|u) is also approxi-
mated by a Gaussian distribution, say,

hlu ~ Np(g(u), In) (68.21)

for some mean vector g(u). The decoder focuses on learning g(u) at its output,
which we are denoting by h. This is because, as we know from mean-square-error
inference, the optimal estimate for h conditioned on w is the mean g(u) so that

~

h = g(u). It follows from (68.21) that
1 1 ~
In fuu(blu) o ~Slh— g = —2[n-BIF (68:22)

Therefore, averaging over multiple feature realizations allows us to approximate
the first term in the ELBO expression (68.6) by

1 N-1 N
By (I fuu(hl0) ~ =50 > = B

n=0

(68.23)

Combining with (68.20) we find that the design of the encoder-decoder structure
will be based on maximizing the following expression over the parameters of the

2830

Generative Networks

neural components (weights and biases):

1 N—-1

P

L(q) ~ -¥ {||hn — hal? + Z(yg(hn) + 02 (hy) —In ag(hn))} (68.24)
n=0 p=1

We mentioned before that we will be training the encoder to estimate the log-

arithm of the variance factors rather than the variances themselves. For this

reason, we rewrite (68.24) as

N—-1 P
1 ~ o
L)~ -5 > {|hn—hn||2 + 3 (1Bl + et —ap<hn>)} (68.25)
n=0 p=1

Notation

We adopt the same notational convention from Chapter 65 on neural networks
with some minimal adjustments, such as attaching the subscripts e and d to
variables within the encoder and decoder parts, respectively. Figure 68.6 shows
an implementation for a variational autoencoder involving a single hidden layer
in the encoder and a single hidden layer in the decoder. For the example in the
figure, we have that the number of layers in the encoder and decoder is L, = 3
and Ly = 3, respectively.

In general, a variational autoencoder will consist of L. total layers within the
encoder and L, total layers within the decoder so that the encoder will have
L. — 2 hidden layers while the decoder will have L; — 2 hidden layers. We denote
the weight matrices and bias vectors within the encoder by

{(Wl,eael,e)v (Wae,02c), ..., (WLrLe,@LrLe)} (68.26)
with a subscript e and sizes
Wee:Npe X Nog1e, Boe:Nogre X1 (68.27)
and those within the decoder by
{(Wl,m 01,q), Wa,a,02.4), ..., (Wr,—1.4, aLd—l,d)} (68.28)
with a subscript d and sizes
Wea:nea X nes1,d, Oed: Nes1,a X 1 (68.29)

We also denote the pre- and post-activation vectors at the internal layers of the
encoder by

{oe =h Gocspeds Goerpscdeos Groe v (68.30)
with a subscript e and sizes
Yoe:Moe X1, Zpeingexl, me=M (68.31)
The entries of the 2P x 1 output vector in the encoder are

YL, = col{ul(h), o opp(h),an(h), ... 7ap(h)} (68.32)

‘s1oA%[ndino pue jndur sit
Surpnpour ‘sieAe[(@10} Py sey 1opooop oy], ‘sioke[mndino pue indur)1 SUIPNOUL ‘SIoAR] [R)0) °77 Sel IopOodUs o], ‘Poppe p pue o syduosqns

qpm {Pg ‘Pap} pue {299 741} £q pejousp oI IOPOISP PUR IOPOJUD O} UIYIIM SIOJDOA SRIq PUR SEOLIJRUT J[S1oM oY], "Yord Ul Ioke|
uapPIY 9[SUIS ' puUe ‘IoAe] UOTHISURI) B YIIM SHIOMIOU [RINOU IOPOIIP PUE ISPOIUS JO 9PBISED oY} Jo uorjejussaidos ureiderp yoo[g 9°gg a4nSi4

(1mdjno pue ndur Surpnpour) siede| Py (1mdjno pue ndur Surpnpour) siede| >

N e —

- =~ NOILLISNVIL -~ N
10Ke] 1ndino JTokey ndur Ioke| ;ndino 1oKe] indur
¢ Ioke| 7 1oke] [10K ¢ Joke] 7 10Ke] I 1oke]

¢

P H%\

-
ef o'ey

x eh— rg— x
(Txd) (LN ~ 3 ﬁ (T x)

qaaooaa 0k = (1% 42) AAAOONH

d

2832 Generative Networks

so that ny, . = 2P. Likewise, we denote the pre- and post-activation vectors at
the internal layers of the decoder by

{y1,d =u, (22,4, Y2,d), (23,d:Y3,d),- - -5 (ZLd,dnyd,d)} (68.33)
with a subscript d and sizes
Yed :Med X1, zeginegx1l, nig=P (68.34)
The entries of the input vector are
yra=u = p+ st (68.35)
and the entries of the output vector are

Yrpa=h, np,=M (68.36)

68.2.1 Empirical Risk Minimization

We refer to the overall weights and biases within the VAE structure by the generic
notation (W, 6), and incorporate additional regularization factors over the weight
matrices into the risk function. By doing so, we are reduced to minimizing the
following empirical risk:

Le—1 Lg—1
A
?W@—{Z%mm+2ﬂmm+ zmnhw
/=1 /=1

N1 p
NZ_:Z<)+ et - “p“n’)}

(68.37)
We can rewrite the empirical risk more compactly by resorting to the vectors
w(hy,) and a(hy,). We introduce the vector notation:

calh) & o {eal(hn>7 en(hn) eap(hn>} (68.38)

That is, the exponential function applied to the vector a(h,,) is a column vector
with the exponentiation applied to the individual entries of a(h,,); this is sim-
ilar to the convention we adopted for activation functions applied to a vector
argument. Using this notation, we rewrite (68.37) in the form

Le.—1 Lg—1 N
))
?W@={Zﬁm%+2ﬁmm+z Tl
/=1 /=1 =

NZ(IIM)2+ 2Tl — fa(hn))}

(68.39)

The training of the variational autoencoder will be similar to the training
of a traditional neural network, with both feedforward and backward propaga-
tion steps. This is because the variational autoencoder consists of two cascaded

68.2.2

68.2.3

68.2 Training Variational Autoencoders 2833

networks representing the encoder and decoder. The main difference relative to
what we have seen before while training neural networks is the presence of a
transition layer, which maps the output of the encoder to the input of the de-
coder. The transition layer involves generating samples € ~ Ne(0,Ip) from a
standard Gaussian distribution and using them to produce realizations for the
latent variable, u. Therefore, during the forward and backpropagation steps we
need to adjust the variables as we move through this transition layer. Everything
else remains practically invariant relative to what we already know from training
neural networks. The details are spelled out in the sequel.

Feedforward Propagation

Given a feature vector h € RM at the input of the encoder, it is easy to describe
the forward propagation of this vector across the encoder and decoder compo-
nents, as shown in listing (68.41) where f(-) denotes the activation functions.
Observe how the feedforward step involves two loops: one over layers of the en-
coder and a second over layers of the decoder. The transition phase performs the
calculations that link the output {u(h),a(h)} of the encoder to the input u to
the decoder. Note that we are denoting the output of the feedforward phase by
ﬁ, and the corresponding pre-activation signal by z so that h= f(2).

Sensitivity Factors

In order to train the autoencoder, we need to evaluate the gradients of the
empirical risk P(W, 0) defined by (68.39) relative to the individual entries of the
weight matrices and bias vectors within the encoder and decoder. We adjust the
derivation from Sec. 65.4 to the current context. The main difference will be
in handling the propagation of signals through the transition layer linking the
encoder and decoder. To simplify the notation, we drop the subscript n from all
signals and reinstate it later when we list the final algorithm.

Sensitivity factors through the decoder
We first define sensitivity vectors and propagate them backward through the
layers of the decoder. Subsequently, we perform a transition and continue the
propagation through the layers of the encoder.

We start with the M x 1 sensitivity vector associated with the last layer of
the decoder. Its entries are given by

_Allh —n?

014,a(5) = R j=12..., M (68.40)

2834

Generative Networks

Feedforward propagation through the variational autoencoder

start with y1 . = h.

(propagation through encoder)
repeat for{=1,... L. —1:
Zl+1,e = Wg;l:eyé,e - 9@,6

Yo+1,e = f (Z€+1,e)
end

partition yr, . =

A lu(h

S1/2(0) = di ay(h)/2
(h) = diag{e (68.41)

(transition layer)
generate € ~ Ne(0, Ip)
u = p(h) + S2(h)e

(propagation through decoder)

set y1.4 =u

repeat for { =1,...,Ls—1:
2041,d = W[Idyé,d —0pa
Yer1,d = [(2041.a)

end
Z=2ZLg.d
h=yr,q

where we are attaching the subscript d to indicate that this sensitivity vector is
related to the decoder stage. Using the chain rule for differentiation gives

o L 9|k —h|)? 9h(m)
Sraald) = 2 Oh(m) 02())

B u ~ dh(m)
= 32 2(hm) — him) 0
=2(h(3) = h()) /' ((5)) (65.42)

since only TL(]) depends on z(j) through the relation ﬁ(j) = f(2(4)). Conse-
quently, using the Hadamard product notation we can write

Spgd = 2(h—h) ® f'(2) (terminal sensitivity vector) (68.43)

Next we evaluate the sensitivity vectors dyq for the earlier layers within the
decoder, i.e., for £ = Ly — 1,...,2. Since we are performing calculations within

68.2 Training Variational Autoencoders 2835

the decoder layers, we will continue to attach the subscript d to all signals and
combination weights that appear in the calculations. We can relate 6y, to d¢41.4
as follows:

>

d|[h — hlf?

0z,a(J)

Z b — h||? dz¢s1,alk)
0zp41,4(k) 0z0,qa(j)

Ne+1,d

> e 8{;‘;‘;(? (63.44)

dealj) =

where the right-most term involves differentiating the output of node & in layer
£+1 relative to the (pre-activation) output of node j in the previous layer, £. The
summation in the second equality results from the chain rule of differentiation
since the entries of 1 are generally dependent on the {#¢3+1,4(k)}. The two signals
ze,d(j) and zey1.q4(k) are related by the combination coefficient wJ(Q 4 bresent in
the combination matrix W 4 since

ziv1,4(k) = f (Zg7d(j))w§?}d + terms independent of wj(?’d (68.45)

It follows, as was the case with (65.61), that

800 = f"(z00) © Weabos1a), €=La—1,...,3,2 (68.46)

The activation function whose derivative appears in (68.46) is the one associated
with the /—th layer of the decoder.

Sensitivity factors through the encoder
In a similar vein, let d; . denote the sensitivity vectors within the encoder with
entries:

L a 9h—h|?
Ope = —F—, {=L,Lc.—1,...,2 68.47
4, (.]) azf,e(]) ()
A similar argument will show that
5@,@ = f/ (Zgje) ® (W&e (5[_;,_176) , {=1L,— 1,...,3,2 (68.48)

To enable this backward recursion, we need to evaluate its boundary value 0, .
To do so, we need to show how to transfer the end value d2 4 from the decoder
stage (68.46) through the transition layer to get the initial value dr, . for the
encoder stage.

2836 Generative Networks

Sensitivity factor at the transition
Thus, note that by definition

olh=hr
5Le,e(1) aHZL(]H), j=12,...,2P
_7§8Hh R 0z a(?)
= 024(1) Ozr,.(j)
— %62 d . aZQ d()
aZL P(])
n2 d i
a Ae z2,a(i) du(p)
=2 02.4(i : : 68.49
; all) <p—1 Ou(p) Ozr..(j) ()

Recall that the {zp, .(j)} represent the pre-activation signals prior to the gen-
eration of the outputs of the encoder, which consist of the mean and variance
parameters, i.e.,

fp = f(2L..e(p)) (68.50)
fr, e(P+p), p=12,...,P (68.51)

ap

in terms of the activation function at the output layer of the encoder, and where
the entries of u are given by

u(l) = U1 + 016(1), o1 = 6“1/2
u(2) = ug + 026(2), 09 = et2/?

(68.52)
uw(P) = up + ope(P), op = /2
It follows that
ulp) f'(zr..e(p)), whenp=jand1<j<P
57(') = %e(p)eaP/Qf’(sze(j)), whenp=j—Pand P+1<j<2P
Leeld 0, otherwise
(68.53)

Moreover, since by construction

22,4(i Z Y1,a(p Z ;(j)d (68.54)

b

and ¥y ¢ = u, we conclude that

322,d(i) - ’u)(l)

Tulp) Ui (68.55)

68.2 Training Variational Autoencoders 2837

Let j/ = j— P for P+1 < j < 2P. As a result, the index j’ runs over 1 < j' < P.
Substituting into (68.49) we get

n2.d
zLe,e <252d jld) 1§J§P
5L€,e(j) =

5 €(7")e 2 f (o, e (%m i), d), P+1<j<2P
(68.56)
Introduce the 2P x 1 vector
s 2 col{17...,1756(1)&1/2,...7;E(P)eaP/Q} (68.57)

with P leading unit entries. Then, it is easy to verify that the expression for the
boundary sensitivity vector is given by

OL..e = (s © f’(sze)) © (68.58)

Wi.d 62,4 1
Wi 402,q

This relation tells us how to propagate the sensitivity factor d; 4 at the leftmost
end of the decoder through the transition layer in order to obtain the boundary
sensitivity factor at the rightmost end of the encoder.

Second sensitivity factor
There is a second term in the risk function (68.39) for which we also need to
evaluate sensitivity factors. Thus, let

A a
J(pa) = [lp®)|* +17Te*™ —1Ta(h) (68.59)

whose terms are affected by the weights and biases within the encoder stage
only. We define the 2P x 1 sensitivity vector associated with the last layer of the
encoder:

9J (p, a)
8zLe e (]) ’

Using the chain rule for differentiation gives

AL, o(j) = j=1,2,...,2P (68.60)

Z OJ(p,a) Ayr,.e(p) _ 0J(p a)

ayLe’e aZL e(]) B 3yLe’e(j) f(ZLe7e(j)) (6861)

/\Le,e
Recall from (68.32) that the entries of the 2P x 1 vector yr_ . are given by the
mean and log-variance parameters. It follows that

97 (1, a) _{ ouj, j=12....P

.62
Do) L ew—1, j=P+1,...2P (68.62)

2838

Generative Networks

We collect these partial derivatives into the 2P x 1 vector:

z 2 c01{2p1,...,2,up, (e —1),..., (7" — 1)} (68.63)

Then, we conclude that

ALee=2TO f/(ZLe,e) (2P x 1) (68.64)
Next we evaluate the sensitivity vectors Ay, for the earlier layers within the
encoder, i.e., for £ = L. —1,...,2. We can relate Ay to Agy1 . as follows:
N A OJ(p,a)
Aeelf) = 5~
e(7) 920.0))
Ne+1,e

_ Z 8J ,[L, 62[+1,e(k)
6,2”1 e k (Q)Zg’e(j)

MNe+1,e
aZe+1 Ozp41,e(k)
Z Aeii,e(k 8z@e(3 (68.65)

The two signals zp.(j) and ze41,e(k) are related by the combination coefficient

[.
w](.k)e present in the combination matrix Wy . since

zoeg1,e(k) = f(zee(d)) w](.?e + terms independent of w](.fge (68.66)

It follows, as was the case with (65.61), that

N = f/ (2’575) ® (VV(,6)\@4_1,6) , {=L,—1,...,3,2 (68.67)

)

Comparing this recursion with (68.48) we observe that, if desired, we can group
together the § and A factors within the encoder and update their sum together
as follows. Let

Bre = St + Ao (68.68)
Then,
Boe=1 (206)© WieBrrre), £=Le—1,...,3,2 (68.69)

with boundary condition
Wi.d62,4)
Broe=4r+ |50 O f'(zL..e) (68.70)
Wi,4d2.4

For convenience, we will keep the § and)\ factors separate within the encoder to

highlight the fact that one of them arises from the presence of the quadratic term
17 —/i{nHQ while the other arises from J(u, a); if these factors are changed in the
empirical risk, then the updates for § and A will need to be adjusted accordingly.
Figure 68.7 provides a block diagram representation of the backward updates for
the sensitivity factors through the decoder and encoder stages, assuming L, = 4

*(s10Ae] USpPIY OMm) seY 9Fe)S [orS *9°'T) IOPOISP B} UIIIM SIdAR] § = P77 PUR IopOOUS oY) UIYIIM SIoe] § = 277 Jurmunsse
‘se3e)s IopodUS PUR IP0ddP 9y} YSNOIY) S1030e] AJIAIJISULS 9] 10] sajepdn premyoeq ayj) Jo uorjejussaider wreideip yoo[g 289 aindi4

NOILISNVY.L s104e] TAPPIY

/N

SI0AR] UOPPIY g

7\

7 N oy 7 N

¢ 1oke| T 1oAe]

JIaqoodd HIAOONH

2840

68.2.4

Generative Networks

layers within the encoder and L, = 4 layers within the decoder (i.e., each stage
has two hidden layers).

Expressions for the gradients
We can follow the same arguments from Sec. 65.4.3 to verify similarly that for
the decoder we have:

d|lh — h?
HGTMH =Yrabji1.q0 {=La—1,...,2,1 (68.71)
d|lh — h)?
% = T (=Lg—1.....21 (68.72)
0,d
while for the encoder:
d||h — h|? T
W = yl,e§e+1,ev t="Lc—1,...,2,1 (68.73)
e
d||h - h|?
g = ee £=Le—1...21 (68.74)
le
and
oJ
le
oJ
#:_MH& (=L,—1,...,2.1 (68.76)
le

Backpropagation Algorithm

We can now use the forward and backward recursions to train the variational
autoencoder by writing down a stochastic-gradient implementation with step-
size > 0. In this implementation, either one randomly-selected feature vector
h, may be used per iteration or a mini-batch of size B of randomly selected
feature vectors {hy} may be used. We describe the implementation in the batch
mode. By setting B = 1, we recover the version with one data point per iteration.
We also restore the subscript n to index the data; and we add a new subscript m
as iteration index. Since we are already using two subscripts for each weighting
matrix, such as Wy ., where the second subscript indicates whether the matrix
belongs to the encoder or decoder sections, we will adopt the notation Wi p,
to indicate that this is the /—th weight matrix in the encoder that is computed
at iteration m. Note that we are blending the subscript e into the index ¢ of
the weight matrix to avoid repeated commas in the subscript notation (such
as writing Wy e). Likewise, we will write Weg m, Ore,m, and g, at iteration

68.2 Training Variational Autoencoders 2841

m, where the subscripts e and d refer to layers within the encoder and decoder
segments.

In a mini-batch implementation, a collection of B—randomly selected feature
vectors {hy} are used to approximate the gradients of the risk function. In the
statement of the algorithm we assume the following conditions:

e encoder and decoder structures with L, and Ly layers, respectively;
e output of encoder has dimensions 2P x 1;
e random initial parameters {Wye _1, Wia —1,00e,—1,00a,—1}
e N feature vectors {h,, €]RM}7 n=0,1,...,N—1.
(68.77)
The training algorithm does not use any label information and will operate in
an unsupervised manner. At the end of the iterations, we set the parameters to

{Waea Wé*,da 92,(37 92@} — {WZeJna Wfd,ma ele,ma eid,m} (68'78)

Once the variational autoencoder is trained, it can be used for at least two
purposes during testing:

(a) (Compression) We can remove the decoder and feed feature vectors into the
encoder alone to generate lower-dimensional latent vector representations for
them. This amounts to a form of data compression.

(b) (Generation) We can remove the encoder and feed random latent realizations
Up ~ Ny, (0, Ip) into the decoder. This generates estimates h. For example,
if the original features {h,} arise from some image database, we would then
expect % to look similar to the images from that database, as we illustrate
in the next example. The inspection here is done visually.

2842 Generative Networks

Mini-batch backpropagation algorithm for training the VAE (68.37)

repeat until sufficient convergence over m =0,1,2,...:
select B random feature vectors {hy},b=0,1,...,B — 1.
repeat for b=0,1,...,B —1: (forward processing/encoder)
yle,b = hb

repeat for /=1,2,..., L. —1

Zi+le,b = Wz—e,m—lyée,b —Orem—1

Yotriep = f(Zeg1en)
end

A P P
YLoebh = col{ub7ab}7 a, = col{ab}p} ’ = col{ub’p} .
= e
211)/2 = diag{e“bvl/Q, e2/2 ea.p/2
generate €, ~ Ne(0,Ip); set up = po, + 2;/2%

Yid,p = Ub
repeat for { =1,2,..., Lq— 1: (forward processing/decoder)

T
Zo+1d,b = Wed,m—lym,b = 0ud,m—1

Yor1ap = J(Zer1ap)
end

Or,dp = 2(’Alb —hy) © f(zL4a0)

T, = col{Qubyl, co2py py (€30 — 1), (e F — 1)}
ALeep = Tp © f'(2L,e0)

sy — 601{1, 1 le(nem W2 %e(P)eab(P)/Q}
nd

repeat for { = Ly —1,...,2,1: (backward processing/decoder)

B-1
7
Widm = (1= 2up)Wig,m—1 — B Z Yeas001a,0
b=0

o

B-1
1
0¢dm = Orgm—1+ B ; Ovt1d,p
Ovap = f'(2eap) © <W€d,m—1ai+1d,b)7 £>2,b=0,1,..., -1
end

Widm-10240
6 e — / e))
pees = (500 f(zcn) © | 1100

repeat for { = L. —1,...,2,1: (backward processing/encoder)

B-1
M T
Wiem = (1= 2up)Wieem—1 — B bE—O Yoied <5e+1e,b + >\z+1e,b)

},b:QL“wB—l

B-1

i
Ole,m = OEe,m—l + E ; <5£+le,b +)\[4_1@7}))

Sres = F'(2000) © (Weeam—18ts1c0), £ 2 2,5 =0,1,..., B =1
Xeep = [(Zeep) © (Wée}m—l)\f-i-l@b)z £>2,6=0,1,...,B-1

end

end

(68.79)

68.2 Training Variational Autoencoders 2843

Example 68.1 (Generation of handwritten digits using a VAE) We illustrate the op-
eration of the variational autoencoder algorithm by applying it to the problem of learn-
ing to generate “handwritten digits” that are similar to the ones arising from the same
MNIST dataset considered earlier in Example 65.9. Recall that the MNIST dataset con-
sists of 60,000 labeled training samples. Each entry in the dataset is a 28 x28 grayscale
image, which we transform into an M = 784—long feature vector, h,. Each pixel in the
image and, therefore, each entry in h,,, assumes integer values in the range [0, 255]. Ev-
ery feature vector (or image) is assigned an integer label in the range 0-9 depending on
which digit the image corresponds to. The earlier Fig. 52.6 showed randomly selected
images from the training dataset.

original images original images estimated images estimated images

Figure 68.8 The plots in the two columns on the left show six randomly-selected
original images from the MNIST dataset used to train the variational autoencoder.
The plots in the last two columns on the right show the corresponding
approximations generated at the end of the training phase for these images.

We pre-process the images (or the corresponding feature vectors {h,}) by scaling their
entries by 255 (so that they assume values in the range [0, 1]). We subsequently com-
pute the mean feature vector for the training set and center the scaled feature vectors
around this mean. The earlier Fig. 52.7 showed randomly selected images for the digits
{0,1} before and after processing.

We construct a variational autoencoder with L. = 4 layers in the encoder stage and
Lq = 4 layers in the decoder stage. In this way, each section has two hidden layers.
The size of the input layer for the encoder is n1,. = 784 (which agrees with the size of
the feature vectors), while the size of each of the two hidden layers in the encoder is
n2,e = N3,e = 512 neurons. We set the dimension of the latent vector u to P = 2 so that

2844

Generative Networks

the size of the output layer of the encoder is nr,,. = 4. Likewise, the size of the input
layer for the decoder is ni 4 = 2 (which agrees with the size of the latent variable),
while the size of each of the two hidden layers in the decoder is again ns g = n3,q = 512
neurons. The size of the output layer of the decoder is nr, 4 = 784 since it needs to
match the size of the input feature vector.

We set the activation functions for all hidden layers in both the encoder and decoder
to the ReLu function. However, we set the activation functions at the output layer of
the encoder to the linear function and at the output layer of the decoder to the tanh
function.

scatter dia%ram of latent vectors
T T T

y-coordinate

x-coordinate

Figure 68.9 The figure plots the latent variables {u,} generated at the end of training
for all 60,000 handwritten digits {h,} in the dataset. The figure is color-coded so
that latent variables corresponding to the same digit value appear in the same color.
Observe how the latent variables appear clustered together depending on their digit
value.

We train the variational autoencoder by using the step-size and regularization param-
eters:

©=0.0001, p=0.0001 (68.80)

We run a stochastic-gradient version of the backpropagation algorithm (68.79) with
B = 1. We perform 200 passes over the training data; the data is randomly reshuffled
at the start of each pass. For each input feature vector h, we save the value of the latent
variable u that was generated at the end of training, after the variational autoencoder
has converged. Figure 68.8 selects six random feature vectors, h,,, and plots them next

to the corresponding output vectors, /f;n, following training.

68.2 Training Variational Autoencoders 2845

In Figure 68.9, we plot a scatter diagram for all latent variables {u,} that were saved
at the end of the training phase for all 60,000 feature samples {h,} from the dataset.
The figure is color-coded so that latent variables corresponding to the same digit value
appear in the same color. It is observed that the variables appear clustered together de-
pending on their digit value. We could have chosen latent variables of higher dimension
than P = 2; we selected this lower value to allow visualization of the clustering effect.
Besides, as the subsequent figures show, this low-dimensional latent space is sufficient
to illustrate the desired effects and results.

During testing, we disconnect the decoder from the encoder. We generate 12 Gaussian
latent variables w ~ Ny (0, Ip) and feed them into the decoder with the weights and
biases fixed at the values obt:ﬂned at the end of the training phase. We generate the
corresponding output vectors h and plot them in image form in Fig. 68.10. These are
synthetic or fake images!

"fake" handwritten digits generated by the decoder

Figure 68.10 Synthetic handwritten images generated by feeding Gaussian latent
values u ~ Ny (0, Ip) through the decoder and plotting the resulting output vectors in
image format.

Example 68.2 (Recommender systems) We revisit the recommender system studied
in Example 16.7. There we introduced a collaborative filtering approach based on ma-
trix factorization to predict ratings by users. We reconsider the user-item U X I matrix
R and replace all missing entries by zeros. That is, if some user v did not rate an item
i, we place a zero in the (u,4)—th location of R. This formulation allows us to handle
additional situations where user feedback is collected in other ways, other than by en-
tering explicit rating scores. For example, the entries of R could correspond to binary
flags that assume the values one or zero depending on whether the user clicked on an
item or not, or whether the user clicked on “like” or “dislike” buttons. The entries of R
could also correspond to counters that count how many times a user visited a particu-
lar item’s site on an online store. In all these examples, the zero entries correspond to

2846

68.3

Generative Networks

situations where there has not been any interaction between a user and the item. The
objective continues to be to design a recommender system that enables us to predict
what the interactions would be for a particular user: whether the user would like an
item or not, visit a site or not, click on a button or not, etc.

To do so, we construct a variational autoencoder (VAE) as follows. We associate with
each user v an I X 1 feature vector h, that is formed of the entries in the u—th row
of R. That is, the vector h, contains the interactions between user u and the items
represented by R (including those for which there were no interactions). In this way,
each row of R is transposed and used as a feature vector. The number of feature vectors
available for training would be {h.}, u =1,2,...,U, where U is the number of rows in
R (i.e., number of users for which data has been collected). Once training is completed,
we freeze the parameters of the VAE and feed the feature vectors {h,} through it to

obtain estimate vectors, {ﬁu} For each user u, the entries of hu would contain predicted
values for the zero entries from the original feature h.,.

CONDITIONAL VARIATIONAL AUTOENCODERS

The simulations in Example 68.1 illustrate how the decoder stage of the VAE can
be used to generate “fake” handwritten digit images that look similar to the im-
ages from the original MNIST database. This is achieved by feeding realizations
of the latent variable u ~ N, (0, Ip) into the decoder. The generated images will
be any of the digits in the range {0,1,2,...,9}. But what if we are interested in
using the decoder to generate synthetic images that correspond to a particular
digit number, say, the digit 37 How should the structure of the variational au-
toencoder be modified to allow us to generate images that belong to a particular
class, rather than arbitrarily to any of the possible classes? Conditional varia-
tional autoencoders address this problem by exploiting the label information,
which has not been used so far.

If we refer to the derivation of the variational autoencoder structure, starting
from Sec. 68.1.2, we observe that the derivation treated the feature vectors h
as input to the encoder and sought first a (Gaussian) approximation for the
conditional distribution fy,p(u|h). Figure 68.1 illustrated this formulation. In
the process of determining an optimal approximation for fyn(ulh), we were led
to the fundamental equality (68.7), which we repeat here for ease of reference
(we are again removing the subscripts from the pdf notation for compactness):

n £(h) = Dict. (a(ulh) | F(ulh)) +Eq (10 f (b)) = Dice (aCulh) || £()

2 ELBO, £(q)

(68.81)

In this expression, f(h) denotes the pdf for the observations, namely, fj(h),
while f(u) denotes the pdf for the latent variables, f,,(u). Moreover, the notation
f(ulh) and f(h|u) refer to the conditional pdfs of the latent variable given the

68.3 Conditional Variational Autoencoders 2847

feature vector and the reverse, i.e., fyn(ulh) and fp|,(h|u). Likewise, the term
q(u|h) stands for gy, p(u|h) and refers to the approximation for fyp(u|h).

Now, let v denote some other random (scalar or vector) variable that we wish
to condition against, such as the class variable or some representation for it.
Straightforward repetition of the derivation that led to (68.7) will show that we
can replace (68.81) by — see Prob. 68.2:

In £ (hl) = Dice (g(ulh,y) || £ (ulh, 7)) +
B (In f(hlu,7) = Dic, (aulh,) | ful) (68.82)

£ ELBO, £(q]v)

where all distributions are now conditioned on «. The same explanation given
in Sec. 68.1.3 can then be repeated to motivate the following structures for the
encoder and decoder stages.

Architecture

We assume that gy p,~(ulh,v) belongs to the family of Gaussian distributions.
We continue to denote its mean and covariance matrix by u(h,~) and 3(h,),
respectively, where these quantities are now dependent on both h and . We
further assume that ¥ is diagonal with entries {U%(h,'y)} for p = 1,2,..., P,
where P denotes the size of u. In this way, the problem of learning gy n ~ (ulh,)
reduces to the problem of learning the moments:

{Ml(h”wa s ,/.Lp(h,’y), U%(h”}/)a T 0-123(}"”7)} (6883)

We will learn these moments by using a neural network structure for the encoder
with input consisting of both (h, v); i.e., the feature vector and its label. Usually,
one-hot encoding is used to represent the class variable . For example, if we
desire to generate images that belong to class 3 in a problem with a total of
C =5 classes, ¢ € {1,2,3,4,5}, then we set v to the C'—dimensional vector:

€{0,1}° (68.84)

2
Il
oo~ OO

with zeros everywhere and a unit entry at the location corresponding to class 3.
The input to the encoder is then constructed as the extended vector:

hl

h
[—] , ofsize M +C (68.85)
Y

This also means that the dimension n; . changes from n; . = M ton; . = M+C.
Next, we approximate the likelihood fp |y~ (h|u,) by constructing a second

2848

Generative Networks

neural network structure that attempts to replicate h. The input to this feedfor-
ward neural network will be a realization u for the latent variable augmented by
the same label variable v, i.e.,

u 2 [il . of size P+ C (68.86)
y

where v is the compressed representation for h and ~ represents the label infor-
mation. As a result, the dimension n; 4 changes from ny g =P ton; 4 =P+ C.
The output of the decoder continues to be an approximations h for the feature
vector h. Finally, we generate realizations for the conditional latent variables
u|(h,) by using

w=p(h,y) + SY2(h,v)e, €~ Ne(0,1p) (68.87)

Figure 68.11 provides a diagram representation for the resulting conditional
variational autoencoder. It is worth comparing this structure with the earlier
Fig. 68.5. We continue to have two stages: an encoder and a decoder; both of
them modeled by means of multi-layer feedforward networks. However, in the
conditional implementation shown in Fig. 68.11, we are now assuming knowl-
edge of the class variable (in the form of one-hot encoding vectors). This class
variable is fed into both the encoder and decoder stages. This formulation is sat-
isfactory in situations where the class information is available during testing. For
example, if the purpose of testing is to use the encoder component to perform
compression, then this solution will require knowledge of h along with its class
variable v. We consider a different structure in Prob. 68.5 that does not feed ~
into the encoder during training in order to avoid the need for it while generat-
ing (compressed) latent representations during testing; the class variable (or a
representation for it) will still be needed for the generation of “fake” realizations
h by the decoder.

Training algorithm
The empirical risk continues to be the same except that the mean and log-
variance parameters are now functions of both h, and ~,:

A Le—1 Lg—1 1 N-1 N
rW,0) = { D AWeelle + D plWealli + 5 D o — hnll? +
(=1 (=1 n=0
1 N—-1 P
2 S (0 0 1) |
n=0 p=1

(68.88)
As such, the same training algorithm (68.79) continues to hold with one mi-
nor adjustment in relation to the sensitivity factor at the transition layer —
Prob. 68.4.

68.3 Conditional Variational Autoencoders 2849

encoder

(u=p+ X%
N - e) Y,

Figure 68.11 Diagram representation of one implementation for the conditional
variational autoencoder (VAE) involving a cascade of encoder and decoder structures
with the intermediate step of generating the latent variables u from standard
Gaussian realizations €. The input to the encoder is the extended vector col{h,~},
while the input to the decoder is the extended vector col{u,~}.

Specifically, recall from (68.49) that by definition

b — >
0zr,(J) ’
However, the input to the decoder now involves two terms, u and 7. As such,

the derivation that led to (68.49) will need to be adjusted slightly as follows to
account for the presence of v (observe the difference in the last equality):

Or..e(j) = i=12,...,2P (68.89)

n2.d

’ Al —h||2 8z9.4(i)
(SLE,e(]) - Z 822,d() aZLe,e(.j)

=1
NS 9%ali)
= 2%l 2
_"“ o (3~ 222400 am 9y(¢)
=2 b2() (p_l i B Z e e@))

(68.90)

Note that we are denoting the individual entries of the C' x 1 label vector v by
{~(c)}. However, since the entries of v are independent of the entries of z,_ .
then

97(c)
90z, ¢ (J)

and the last sum over ¢ disappears. It follows, as before, that

n2,d P .
5i. () = Z5z,d(i) (9z2,a(i) au(p)') (68.92)
i=1 p=1

=0 (68.91)

Ou(p) 0zr,.e(j)

so that expression (68.56) continues to hold. The main difference, however, is

2850

Generative Networks

that the entries w](;)d that appear in this expression do not correspond to all the
entries within W; 4. This is because the row dimension of W; 4 is now enlarged
to P+ C:

Wiqg: (P+C)xngq, sincen;q=P+C (68.93)

Only the entries in the leading P rows of Wy 4 appear in (68.92). We should
therefore replace (68.58) by

) W1 4 62,4
0L, = (8 of (ZLe,e)> o (68.94)
Wi1,d62,4
where W1,d contains the leading P rows of W1 4:
Wia=[1Ip 0]|Wia4 (68.95)

Example 68.3 (Generation of handwritten digits using a conditional VAE) We repeat
the experiment described in Example 68.1 involving the MNIST database and use the
same structures and parameters. Now, however, we train a conditional VAE and use it
to generate versions of the digit 3. The main difference is that we now feed the one-hot
encoded label vector into both the encoder and decoder. Figure 68.12 illustrates the
generation of synthetic handwritten samples for the digit 3.

Figure 68.12 Synthetic handwritten images of the digit 3 generated by feeding
Gaussian latent variables u ~ N, (0, Ip) into the encoder and the label v = e4 (4—th
basis vector with a unit entry at the 4—location) into both the encoder and decoder.

68.4

68.4.1

68.4 Generative Adversarial Networks 2851

GENERATIVE ADVERSARIAL NETWORKS

In this section we describe a second approach to generative models that relies on
the use of adversarial neural networks. In the variational autoencoder formulation
from the previous section, the operation of the encoder and decoder components
complemented each other: the first performed compression down to the latent
space and the second decoded the information hidden in the latent variables to
generate samples from the data distribution. In generative adversarial networks
(GANs), we will also encounter two network components called the generator
and discriminator. However, these components will now be competing against
each other with the generator trying to drive the discriminator away from its
objective. The net effect will again be a structure that enables us to generate
samples (such as images) from the same distribution as the original data.

Discriminator

We start by describing the discriminator. It takes the form of a feedforward neural
network with Ly total layers, including its input and output layers. Depending
on the application at hand, we may use a convolutional neural network. It is
sufficient for our purposes to illustrate the main ideas by continuing with a
traditional feedforward neural structure. Figure 68.13 shows a discriminator with
3 hidden layers, input vectors h of size M = 3, and output vectors 7§ of size
@@ = 2. In the figure, we are using little squares in the output layer to refer to
the softmax calculation used to generate the entries of 7, as explained in (68.97)
further ahead.

The discriminator receives feature vectors {h,, € IRM} that arise from one of
two possible sources: a real source or a fake source. For example, the data may
amount to images with some of them being genuine/real images and the others
being fake or computer-generated images. The purpose of the discriminator is
to classify these feature vectors into real or fake. This is similar, for example,
to an application where a network is required to discriminate between real and
fake currency bills. For this reason, the discriminator will be designed to operate
as a classifier. The label vector for the input features will be constructed using
one-hot encoding; they will have dimension Q = 2 and their entries will assume
binary values in {0,1}:

v €{0,1}9 (68.96)

The first entry of v will be one when the feature h is real; otherwise, the second
entry of v will be one when A is synthetic. We will assume that the discriminator
employs a regularized cross-entropy risk function with a softmax output layer,
as was described earlier in Sec. 65.7. In this case, the entries of the output vector

2852

Generative Networks

discriminator structure

/ layer 1 layer 2 layer 3 layer 4 layer 5 \
T y T) o) T) o)

real or ‘ | 0 | 3 | :

fake 3 ‘\\‘v : ‘ y

h N Adﬂ§§ S F @x1)
X SN\

(M x 1)

. N—
input layer ~~ softmax layer

\ 3 hidden layers /

Figure 68.13 A discriminator structure with M = 3 attributes at the input layer (i.e.,
h € IR3), output vector of size Q = 2 (i.e., two classes), and 3 hidden layers. The
output layer is softmax.

7 are generated by the softmax computation:
e%(@)
ez(1) + ez(2)’

1>

7(q) q=1,2 (68.97)
where the {z(q)} are the pre-activation signals in the output layer. This con-
struction ensures that the values of 4(¢g) are in the range (0,1) and add up to
one so that they can be interpreted as corresponding to probability values: 7(1)
specifies the likelihood that h is “real,” while 7(2) specifies the likelihood that h
is “fake.”

If we denote the combination matrices and bias vectors within the discrimina-
tor by {We.4,0¢.q4}, and consider a collection of N total data pairs {hy,¥,}, for

n=0,1,..., N —1, then the empirical risk function that the discriminator seeks
to minimize is — recall (65.127):
?({We,m 9z,d}> (68.98)
N La—1 | N-1 @
A 2
2N AWl — 5 30 (@) (Gala)
(=1 n=0 g=1
La—1 1 N-1
= 2 oWl - 5 3 (1) 10 (5 (1)) + 7 (2) In (3(2)) |
=1 =0
Lg—1 ~1
= > plWeallt - Z[DIn (30 (1)) + (1 = (1)) In (1 = Fa(1))]
=1 n=0

where p > 0 is a regularization factor. In the last equality, we used the fact that

68.4 Generative Adversarial Networks 2853

the entries of each of the vectors v, and %, add up to one. Other choices for
the risk function and for the structure of the discriminator are of course possible
with proper adjustments to the arguments that follow.

In GAN implementations, we ensure that the feature data feeding into the
discriminator during training is more or less equally split between real and fake
features. Thus, assume there are N, real features and Ny fake features with
N, + Ny = Nj; usually, N, = Ny = N/2. We denote the set of indexes for the
real features by N,. (its cardinality is equal to N,.), and the set of indexes for the
fake features by N (its cardinality is equal to N). For a real feature vector h we
have y(1) = 1 and y(2) = 0, while for a fake feature vector h we have v(1) =0
and 7(2) = 1. We use this information to rewrite the empirical risk (68.98) more
explicitly as follows, with the sum split over the real and fake data:

p <{We,d, 9e,d}) (68.99)
Lg—1 1

= D plWeallf = 5 | 2 AW + Y (1 -Fa(1)
(=1 neN, neNy

The discriminator would seek parameters ({Weq}, {6r,4}) in order to minimize
this risk. By doing so, the discriminator would be maximizing the likelihood
of correct classifications (i.e., of correctly discriminating real from fake data by
driving 7, (1) towards one for real data and towards zero for fake data):

{We*,dvezd} = argmin ?({Wé,dﬁe,d}> (68.100)
{We,a,0¢,a}

Stochastic risk interpretation

Observe that expression (68.99) depends only on the leading entry of the output
vector, i.e., on 7,(1). In this way, we can view the discriminator as a mapping
from h,, to 4, (1). The value of 7, (1) specifies the likelihood that h,, is real (from
which we can obviously deduce the likelihood of it being fake). We denote the
mapping by D(h,,), i.e.,

An(1) = D(hn) (68.101)

Recall that for n € N,., the 4,,(1) are generated by real feature vectors, and that
for n € Ny, the 7,(1) are generated by fake feature vectors. Assuming large
enough N, and Ny, and appealing to the law of large numbers, we can write for
the last term in (68.99):

1 _ _
N Z 1n7n(1) + Z 111(1 - ’Yn(l))
neN, neNy
N—oo Ny Nf
=8 FEg D) + B, 1n(1 - D(h))
1
~ §{th InD(h) + E ;. ln(l - D(h))} (68.102)

2854

Generative Networks

where the last equality is under the generally held condition N, = Ny =~ N/2.
Moreover, in the second line, the first expectation is relative to the distribution
of the real features, denoted by fr(h), and the second expectation is relative to
the distribution of the fake features, denoted by f;(h). That is, the argument
of D(h) in the first expectation are feature vectors that arise from the real
data distribution, while the argument of D(h) in the second expectation are
feature vectors that arise from the fake distribution. These latter vectors will be
produced by the generator, which we will describe in the next section, and they

~

will be denoted by h (i.e., we will denote feature vectors corresponding to indexes
n € N¢ by fALn) In this way, apart from regularization on the weight matrices
and assuming the generator structure is fixed so that f;(-) is fixed, we can
interpret the operation of the discriminator as secking parameters {Wpy 4, 0¢,4}

that maximize an objective of the form:

{W;ﬁd,ag,d} - {%gﬁ%}{th mD(h) + E . ln(lfﬁ(fz))} (68.103)

We are using maximization in (68.103) rather than minimization because the
term (68.102) appears with a minus sign in the empirical risk expression (68.99).

Example 68.4 (Optimal discriminator strategy) Motivated by the stochastic interpre-
tation (68.103), let us consider the following formulation:

D" — argmax {th mD(h) + E;, 1n(1 - D(ﬁ))} (68.104)

where, compared with (68.103), we are not limiting the mapping D to one that is
generated by feedforward neural networks. Instead, we are seeking the optimal mapping
D* that maximizes the cost in (68.104). We denote the cost function by

J(D) £ E4, nD(h) + E,_In(1 - D(h))

- frn(R)InD(h)dh + | fz(h)In(1 — D(R))dh
@ fn(B)InD(RYdh + [fi(h)In(1 — D(h))dh
© / (fh(h) InD(h) + fz(h) ln(lfD(h)))dh (68.105)

where in step (a) we introduced a change of variables (i.e., a change in notation) in

the second integral from h to h, and in step (b) we assume the domain H for the fake
data agrees with the domain H for the real data; this latter condition is essential for
the discriminator-generator structure to work properly. Since the pdfs are nonnegative
for all h, and since D(h) € (0,1), the integrand is non-positive. Expression (68.105)
is therefore maximized when the integrand is maximized for all h. Differentiating the
integrand relative to D(h) and setting the derivative to zero gives:

falh))
D*(h) = D*(h)) =0 (68.106)

68.4.2

68.4 Generative Adversarial Networks 2855

so that the optimal discriminator mapping is

sy = —dnh) WA
D*(h) = AOESAORE (Hfh(h)) (68.107)

In other words, given a feature vector h, an optimal strategy for the discriminator is
to evaluate the evidence under frn(-) and the evidence under f;(-). Then, the likeli-
hood of h being a real image (i.e., the value of 7(1)) is equal to the ratio (68.107).
The discriminator structure based on neural layers will be approximating this optimal
mapping. This means that the discriminator will be attempting to learn the ratio of
distributions, f7(h)/fr(h), rather than the real data distribution, fn(h). This point
represents a difference in relation to the VAE solution where the decoder attempts to

learn fr(h) or faj.(hlu) to generate the samples h.

Generator

We describe next the generator structure, which also takes the form of a feedfor-
ward neural network with L, total layers, including its input and output layers.
We denote its combination matrices and bias vectors by {Wp 4,6, 4}. Depending
on the application at hand, we may again use a convolutional neural network.
However, we will continue to present the main ideas by using a traditional feed-
forward neural structure. The generator structure is shown in Figure 68.14 for a
case involving 3 hidden layers, M = 3, and latent variables of size P = 2.

generator structure
/ layer 1 layer 2 ayer 3 layer 4 layer 5 \

latent
variable

(M x 1)
(Px1)

input layer . output layer

\ 3 hidden layers J

Figure 68.14 A generator structure with M = 3 attributes at the output layer (i.e.,
h e IRS)7 latent variables u of size P = 2, and 3 hidden layers.

The generator receives latent variables {u, € IR”} as input and generates
approximate feature vectors {h, € IRM} as output. We can view the generator

2856

68.4.3

Generative Networks

as a mapping from the latent space u to the space of fake data, h. We denote
the mapping by G(u,), i.e.,

Ty = G(uy) (68.108)

The output vectors {En} will play the role of the “fake” features that are fed into
the discriminator during training. In a sense, the generator in a GAN operates
similarly to the decoder in a VAE by decoding latent variables and mapping
them to synthetic features. The latent variables w,, are generally chosen as re-
alizations of a Gaussian distribution, w ~ N (0, Ip). In this way, the generator
samples from the standard Gaussian distribution and uses the samples {u,} to
produce synthetic features {h,,} that imitate samples from the (unknown) data
distribution fp,(h).

We explained in the previous section that the discriminator seeks to maximize
its ability to separate real from fake feature vectors. It does so by seeking the
maximizer of the risk function (68.103) (or its regularized version). The gener-
ator, on the other hand, will seek to generate fake feature vectors that succeed
in confusing the discriminator and reducing its ability to distinguish between
real and fake data. By doing so, the generator will learn how to generate good
synthetic data that look similar to the real data. The generator pursues its ob-
jective by seeking to minimize (rather than maximize) the same risk function as
the discriminator, i.e., the generator maximizes the opposite risk function used
by the discriminator:

{ng,ezg} — argmax — {th mD(h) + Ej. In(1 —ZD(E))} (68.109)
{Weg:00.6}

The discriminator and generator components pursue their objectives (68.103)
and (68.109) by adjusting their own internal weights and biases; the discriminator
has no control over the internal structure of the generator and vice-versa. We
are therefore faced with a zero-sum game, where the cost functions (also called
payoffs in the context of game problems) that are being maximized by both
players (the generator and discriminator) are opposites to each other.

Game Problem

If we continue to ignore regularization and persist a little more with the stochas-
tic interpretation, then the objective of the combined generator-discriminator
system is to solve the min-max problem:

{WZg’ 07 9s Wi de} = arg min max {th InD(h) +Ey, ln(l—'D(S(u)))}

(We g} {Wg a)
(00,43 {00,4}

(68.110)
where we replaced h by G(u) and the second expectation is now over the distri-
bution of the latent variable, u. Observe that only the second expectation term is
dependent on the parameters of both the generator and discriminator through its

68.4 Generative Adversarial Networks 2857

dependence on both D and G. The first expectation term is dependent solely on
the parameters of the discriminator. Assuming the generator structure is fixed,
the discriminator would seek to maximize the risk such that D(h) is close to
one and D(G(u)) is close to zero. On the other hand, assuming the discrimi-
nator structure is fixed, the generator will seek to minimize the risk such that
D(G(u)) is close to one. Observe that with the discriminator structure fixed, the
generator does not have any influence on D(h). Figure 68.15 shows a block dia-
gram representation of the combined generator-discriminator system. The input
to the discriminator is selected at random from the given dataset or from the
fake samples by the generator.

database

generator

discriminator

131)
S
X
=

(M x 1)

Figure 68.15 A block diagram representation of the GAN structure involving a
generator, a discriminator, and a database of original feature vectors for training.

Example 68.5 (Solution of game problem) Motivated by the same stochastic formu-
lation (68.110), let us consider the following min-max problem:

(§*,D") = argmgin rngx{E fnInD(h) + Eyo ln(l - D(E))} (68.111)

where we are again ignoring the neural network structure for both the generator and
discriminator. We denote the cost function by

J(G,D) £ Ejp, D) + E; In(1-D(h))
<aséos>/ (fa()InD(R) + fr(R)In(1 = D(R))dh (68.112)

where in the rightmost term we used a change of variables from h to h. The above

expression is a function of both § and D since h = G(u). We already know from (68.107)
that the maximum of (68.111) over D (i.e., the optimal discriminator mapping) is given
by

D*(h) = AGEND] (68.113)

2858

Generative Networks

We will now verify that the minimum of (68.111) over § (i.e., the optimal generator
mapping) is achieved when § is able to match f;(-) with the true distribution fr(-).
We denote this generator by §*(u). We establish the result by showing that the choice
f7(-) = frn(-) leads to the smallest possible payoff in (68.111).

Indeed, assume that f;(-) = fr(-). Then, the likelihood value given by (68.113) will be
1/2 and the discriminator will be confused about assigning h to the real or fake class.
Substituting D* = 1/2 into expression (68.112) and using f;(-) = fr(-), we find that
the corresponding payoff value will be

s o= [

heJ

(fa(P)n(1/2) + fu(R)In(1/2))dh

=21In(1/2) Fn(R)dh

=1

=—In4 (68.114)

If the distribution by the generator does not agree with the actual data distribution,
then we can verify that the payoff value will be larger than —In4. Indeed, when f; () #
fr(:) we get at the optimal discriminator:
J(G,D*) = J(G,D*)+1nd—1n4
= J(G,D*)+2In2—1n4

= —1n4+J(9,D*)+/fh(h)andh—k/f,;(h)andh
H H

(68.112) _ fn(h))}
In4 + e frn(h) {ln2 +1n <7fh(h)) dh +

/ﬂ{ fa(h) {ln2 +1In (#%) } dh

~ I nf o Inh)
= s (%(fh(h)+fg(h)))dh -

fa(h)
f e (s)
—In4 + Dxky, (fh [|0.5(fn + f,;)) + Dk (f;; 10.5(fn + fﬁ))

>0 >0

> —In4 (68.115)

where the last inequality is because KL divergences are nonnegative. This argument
confirms that the smallest payoff for the min-max problem (68.111) is —In4 and it is
attained by the generator mapping §*(u) that leads to f;; = fn. Another way to arrive
at this conclusion is to note that the minimum value of (68.115) is achieved when

Dict.(f 105(fn + f5)) + Dic. (£ 110-5(fn + f5)) = 0 (68.116)

which occurs when f; = fn. We note in passing that for two arbitrary probability
distributions pg(x) and g« (z), the quantity defined by

Dis(ella) 2 5[(plitp +)/2) + D (all 0+ 0)/2)] (68.117)

is called the Jenson-Shannon divergence between pg(x) and g« (z). Therefore, the opti-
mal generator mapping is seeking to minimize this divergence measure between f; (h)

68.5 Training of GANs 2859

and fn(h). We conclude that the optimal solution of the two-player game problem
(68.111) is given by

D*(h) = 1

5 G*(u) such that f;(h) = fa(h), payoff = —In4 (68.118)

68.5 TRAINING OF GANS

If we return to the original empirical risk notation shown in (68.98), we find that
the design of a generative adversarial network (GAN) involves solving a min-max
problem over the following risk, where we are re-introducing regularization:

PW, 9) (68.119)
Ly Lg—1 N—-1 Q
= Z PIWeglE + Z plIWealt — Z >) 0 (Fn(q))
n=0 gq=1

That is, the design of the GAN takes the form of a two-player game:
{WZQ, 07 5s Wi GZd} = argmax min P(W,0) (68.120)

{We, g3 {We a}
(00,4} {00.0}

with one player (the discriminator) attempting to minimize the empirical risk,
while the second player (the generator) attempts to maximize it. In practice, one
way to solve problem (68.120) is to alternate between the following two steps:

(a) (Discriminator) Fix the generator structure (i.e., fix its weight matrices and
bias vectors). Perform a number of stochastic gradient descent iterations on
the following risk (with an added subscript d) to adjust the weights and
biases of the discriminator structure:

Lg—1 N-1 Q

A 1
Pa(W.0) = > plWeall = 5 D2 D (@) (Fn(0))
/=1 n=0 ¢q=1
(68.121)
In other words, the discriminator focuses on solving:
{W[d,ﬂgd} = argmin
’ ’ {We,a,00,a}
Lg—1 1
2 ~ ~
> olWealp = (30 mF 0+ D (1 -F.(1)
(=1 neN, neNy
(68.122)

This step amounts to training a neural network using the cross-entropy risk
function and a softmax output layer. We already know how to perform this
step by means of the backpropagation algorithm — recall listing (65.149).

2860

Generative Networks

(b) (Generator) Fix the discriminator structure (i.e., fix its weight matrices and
bias vectors). Perform a number of stochastic gradient ascent iterations on
the following risk (with an added subscript g) to adjust the weights and
biases of the generator structure:

Lg_1 N—-1 Q
1 ~
Po(W,0) = > plWeglli — 5 D D wm(@) 0 (Fnla)

=1 n=0 g=1

(68.123)

In other words, the generator focuses on solving
Ly—1 1
{Wg’g,eg’g} = argmax 3 Y pWegllp -+ Y- ln(l 7%(1))
oo 0o} | = ney
(68.124)

Observe that we are retaining only the fake samples since the generator does
not have any control over the real samples.

There is, however, one difficulty with maximizing (68.124). During the
early stages of training, when the fake data produced by the generator has
not been “perfected” yet, the discriminator will be able to separate them with
relative ease from the real data. That is, during the early stages of training it
is likely that 7,,(1) = 0 for n € Ny. This is problematic because the function
In(1 — z) has gradient close to zero when x — 0; this effect is illustrated in
Fig. 68.16. The vanishingly small gradient near 7,,(1) ~ 0 will slow down the
training of the generator. For this reason, in practice, the empirical risk for
the generator is modified and problem (68.124) is replaced by

L,—1
* * c 1 o~
(Wi gty) = avamax 33 plWegl+ 1 3 I (5a(1)
Wepors} | 1 N &,

(68.125)
This modification does not alter the overall goal for the generator, which is to
drive 7,,(1) to one. Clearly, by changing the risk function for the generator,
the underlying game is no longer zero-sum since one payoff is not the opposite
of the other anymore. Nevertheless, this adjustment is necessary to enable
proper learning and avoid the vanishing gradient problem.

Notation

We will derive next the recursions for training the GAN. Before we initiate the

derivation, we indicate that we will rely on the same notation used so far for

neural networks and variational autoencoders. In particular, we will attach sub-

scripts g and d to variables within the generator and discriminator, respectively.
In general, a GAN will consist of Ly total layers within the generator and Ly

total layers within the discriminator. We denote the weight matrices and bias

68.5 Training of GANs 2861

6 -
4 F i
—In(z)
R e .
<
>0
2 F curve is approximately 7 -
. flat when x close to zero In(1 - z)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
T

Figure 68.16 The function In(1 — x) is practically flat close to x = 0, which causes a
vanishing gradient problem during training by backpropagation. This problem is
alleviated by replacing In(1 — z) by — In(z) in the risk function as explained in
(68.125). This alternative function is not flat around xz = 0.

vectors within the generator by

{(Wl,gﬂl,g)v (Wag,02,4), - (WLQ—Lg,GLy_l,g)} (68.126)
with a subsscript g and sizes
Wog:ineg X netig, BOog:nerrg x1 (68.127)
and those within the discriminator by
{(WLd, 01.4), Waa,02.a), .., (Wr,—1.4, 9Ld,1,d)} (68.128)
with a subscript d and sizes
Wea:ned X nes1,d, 0ea:nes1,d X 1 (68.129)

We also denote the pre- and post-activation vectors at the internal layers of the
generator by

{vs =t Gogrvoa)s Gog o) s (Lya¥n,0) | (68.130)
with a subscript g and sizes
Yog :neg X1, zegginggx1l, nyg=P np, =M (68.131)
The M x 1 output vector of the generator is

h=1yr,, (68.132)

Likewise, we denote the pre- and post-activation vectors at the internal layers of
the decoder by

{yl,d —horh, (22,d,Y2,d)s (23,d,Y3,d)s - - - » (ZLd,d»yLd,d)} (68.133)

2862

68.5.1

Generative Networks

with a subscript d and sizes
Ye,d - Npd X 1, Ze,d - Me,d X 1, nid =]\47 Npg,d = Q (68134)

The input and output vectors are

yra=horh, yp,a=7 2 [%(1)] since Q = 2 (68.135)

Feedforward Propagation

Given some latent vector v € IR” at the input of the generator, it is easy to
describe the forward propagation for this vector through the generator and dis-
criminator layers, as shown in listing (68.137) where f(-) denotes the activation
function. We denote the softmax operation in the last layer by

z(q)

5 = softmax(z) < 7F(q) = ———,
@) = A0 = =g

g=1,...,Q (68.136)

Feedforward propagation through the GAN

start with y1 g =u € RY.

(propagation through generator)
repeat for{=1,..., L, —1:
Ze+1,9 = WgT,g Ye,g — beg

Yer1,g = [(2041,9)
end

o~

h = ng,g

(68.137)

_ h, when fake features are used
Y.d h, when real features are used

(propagation through discriminator)

repeat for(=1,... Ls—1:

20110 = W} gyea — 0o

Ye+1,d = f (2e41,4) (use softmax for last layer)
end

2= ZLg,d
v = yr,,d = softmax(z)

Note that we are denoting the output of the feedforward phase by 7 and the
corresponding pre-activation signal by z so that 7 = softmax(z). Figure 68.17
shows a block diagram representation of the feedforward propagation scheme for
a GAN involving one hidden layer in each of the generator and discriminator
sections.

‘s10e] ndino pue jndut s)1 IUTPNOUI ‘sIAR] [€10) P

SeY I0)RUTWILIDSIP 9T], 'sIofe] jndino pue jndur sy1 Surpnoul ‘siofe] [ejoy 7 sey) 10jerouss o], ‘poppe p pue b sidirosqns yym {P7g ‘P44 }
pue {579 6‘741} £q pejousp oIe I0YRUTWILIISIP PUR I0JRISUSS O} UIYIIM SIOJIOA SRI(PUR SOOLIJRU JYSTom o1, ‘[Ded Ul IoAR] UapPIY

o[3urs ' pue ‘1oAe] 3urdnod e YIIM SYIOMIOU [RINSU IOJRUTWILIOSIP PUR I0JRIDUSS JO 9PRISRD o1 JO uorjejussoIdol wreiderp J00[g 21°89 a4nSi4

(mdyno pue jndut Surpnpour) siodey Py ONI'TdNOD (mdjno pue ndur Surpnpour) siofe 77

e —
”~ o~ ”~ S

IoAe] indur IoAe[dino 1okey ndur

I0Ae] Xeunjos
€ 104e| T 1oke| [1oKe]

€ Tokeg T 10Ke] [10Ke]

(T x) c;-

aseqeyep

HJOLVNINNIIDSIA HOLVIANID

2864

68.5.2

Generative Networks

Sensitivity Factors

In order to train the discriminator, we need to evaluate the gradients of the
empirical risk Pq(W,0) defined by (68.121) relative to the individual entries of
its weight matrices and bias vectors. The derivation is identical to what we did
earlier in Sec. 65.7 since the discriminator is simply minimizing a regularized
cross-entropy risk. We therefore review the main results here. Again, to simplify
the notation, we drop the subscript, n, from all signals and reinstate it later.

Sensitivity factors through the discriminator

We first define sensitivity vectors and propagate them backward through the
layers of the discriminator. We consider the @ x 1 sensitivity vector associated
with the last layer; its entries are given by

(Z 0 ((0)
0r,.4(q) = 520 , ¢=1,2,...,Q (68.138)

0

=~ 3o (O MGE) + 12 mEE)), since @ =2

where we are attaching the subscript d to indicate that this sensitivity vector is
related to the discriminator. We already know from (65.144) that

0Lad =7 =7, (68.139)

In particular, since the discriminator will receive feature vectors that are either
real (v(1) = 1 and v(2) = 0) or fake (v(1) = 0 and ~(2) = 1), the above
expression translates into

[7(}) —1] , When h is real
7(2)
Lad= (68.140)
7(1)] :
- , when h is fake
{ 7(2) -1
Next we evaluate the sensitivity vectors dyq for the earlier layers within the
discriminator, i.e., for { = Lg—1,Lg—2,...,2:
C s AE0@hGW)
Z,d(]) - azf,d()
= I (mEW) @mEE) (68141
z¢,a(J)

We know from (68.142) that

6Z,d = f/ (Zg,d) ® (Wé,d6£+l,d) s {=1Lg— 1, ey 3, 2 (68142)

68.5 Training of GANs 2865

Sensitivity factors through the generator
In a similar vein, let d, 4 denote the sensitivity vectors within the generator with
entries:

oA dln(R(1) B
S0g(j) 2 B) (=1L, Ly—1,...,2 (68.143)

A similar argument will show that

80 = [(20,9) © Wag0g1,9), {=Lg—1,...,3,2 (68.144)

To enable this backward recursion, we still need to evaluate its boundary value
0r,,9- To do so, we need to show how to transfer the end value 43 4 from the
discriminator stage (68.142) to the generator stage.

Sensitivity factor at the transition
Thus, note that by definition

. om(AEQ) .
1) = —" =12,....M
Lgvg(.]) 8ZLg,q(j)’ J s 4y)
n2.d

0 111 1 822 d(Z)
= — 68.145
Z 9z2,a(i) Ozr,4(j) ()

For the second partial derivative we use the relation

24()) = 05 (21,.0() = O1.a(0) (68.146)
so that
822’7d(i> — / . (1)
0zr,,4(7) =f (ZLg»Q(J))wji,d (68.147)

For the first partial derivative in (68.145), we use the definition of d2 4 to note
that

A

b2ali) 2 — (v mE) +1@) @) (68.148)

0
82’27(1(2‘)
However, during the training of the generator (which is when we need to transfer
the sensitivity factor from the discriminator stage into the generator stage),
the purpose is for the generator to produce fake features and to “trick” the
discriminator into believing that these features are real. Thus, the generator will
assign label y(1) = 1 to its fake features, which also means that v(2) = 0 for
these same features. It follows that during this stage of training:

82.4(i) = —‘m (68.149)

which is the term that appears in (68.145). Therefore, we arrive at the relation

OLg9 = — {fI(ZLg,g) © (Wl,d52,d)} (68.150)

2866

68.5.3

Generative Networks

This expression tells us how to propagate the sensitivity factor d2 4 at the left-
most end of the discriminator to obtain the boundary sensitivity factor oz, 4
at the rightmost end of the generator. Figure 68.18 provides a block diagram
representation of the backward updates for the sensitivity factors through the
discriminator and generator stages, assuming L, = 4 layers within the genera-
tor and Ly = 4 layers within the discriminator (i.e., each stage has two hidden
layers).

Expressions for the gradients
We can follow the same arguments from Sec. 65.4.3 to verify similarly that for
the discriminator we have:

(T ()
OWy.q

9(Z 0 ()
= —ip1a, (=Lg—1,...,2,1 (68.152)
00¢.q

= Ye.adj4140 {=La—1,...,2,1 (68.151)

while for the generator:

In(3(1))
oW 4
dImAF() _

00, 4

=UYrgOii1y (=Lg—1,...,2,1 (68.153)

—0p419, €=Lg—1,...,2,1 (68.154)

Backpropagation Algorithm

We can now use the forward and backward recursions to train the generative ad-
versarial network (GAN) by writing down a stochastic-gradient implementation
with step-size p > 0. The recursions will alternate between running a couple of
iterations to update the discriminator parameters, with the generator parameters
kept fixed, followed by a couple of iterations to update the generator parame-
ters, with the discriminator parameters kept fixed. This process is repeated until
sufficient convergence is attained. The listing (68.155) provides a high-level de-
scription of the algorithm for ease of reference. The detailed recursions are shown
n (68.160)—(68.161).

In description (68.155), we first freeze the parameters of the generator and
repeat for K iterations the training of the discriminator. For each iteration, we
select a random batch of B original feature vectors {h;} from the dataset. Their
one-hot encoded labels will be {7, = col{1,0}}. We also select B random latent
variables {up ~ Ny (0, Ip)} and feed them into the generator to produce B “fake”
feature vectors {ﬁb}; their corresponding one-hot encoded labels will be {y, =
col{0,1}}. We feed the collection of 2B feature vectors into the discriminator
and adjust its weight matrices and bias vectors by means of a backpropagation
procedure, as detailed in (68.160).

*(s104e] ueppIY O0M) SBY 98R)S [OrS °9'T) IOJRUIWILIOSIP 9} UIY)IM SIoAR] § = P77 pUR I0jRISULS o) UIIim sioke] § = F7 Jurunsse ‘soge)s
I0)eI9ULS pUR I0JRUIUILIOSIP 9} YSNOoIy) S1010e] AJAIISUSS 9} 10] sojepdn premsprq o) Jo uoljejussaidar ureriseip yoorg 81'89 a4nsi4

s1oAR] UOPPIY g ONI'TdNOD SIoA®R[USPPIY g

HJOLVNINIIOSIA HOLVHANTOD

2868 Generative Networks

High-level description of the training procedure for GANs

repeat until sufficient convergence for m =0,1,...:
repeat for K, iterations (listing (68.160)) :

keep the parameters of the generator fixed

select minibatch of B original feature vectors, {hy} '
generate minibatch of B “fake” feature vectors, {hy}2 !
update the parameters of the discriminator (68.155)
end

epeat for K, iterations (listing (68.161)) :

keep the parameters of the discriminator fixed

select minibatch of B latent vectors {uy ~ Ny (0, Ip)} '
update the parameters of the generator

end

-

end

We then repeat for the generator. We freeze the parameters of the discrimina-
tor and repeat for K iterations the training of the generator. For each iteration,
we select a random batch of B latent vectors {up ~ Ny, (0,Ip)} and feed them
through the cascade of generator-discriminator sections. We use the output sig-
nals {7,} of the network to adjust the weight matrices and bias vectors of the
generator by means of a backpropagation procedure, as detailed in (68.161). The
process of alternating between training the discriminator and generator continues
until sufficient convergence is attained, i.e., until the discriminator is essentially
unable to distinguish between real and fake data with the entries of its output
vector 7 split almost equally and close to 1/2 each. Usually, Ky = K, = 1, but
we can also use Kg > 1 and K, = 1, or other combinations.

We next provide the detailed implementation for training the generator and
discriminator sections in the GAN. In the descriptions (68.160)—(68.161), we
restore the subscript n to index the data; and we add a new subscript m as iter-
ation index. Since we are already using two subscripts for each weighting matrix,
such as Wy, 4, where the second subscript indicates whether the matrix belongs
to the generator or discriminator sections, we will adopt the notation Wy ., to
indicate that this is the {—th weight matrix in the generator that is computed
at iteration m. Note that we are blending the subscript g into the index ¢ of
the weight matrix to avoid repeated commas in the subscript notation (such as
writing Wy g). Likewise, we will write Weq m, O¢g m, and g, at iteration m,
where the subscripts g and d refer to layers within the generator and discrimi-
nator segments.

68.5 Training of GANs 2869

REMARK 68.2. (Notation) In the listings (68.160)—(68.161) of the detailed recursions,

~

we deal with both real and fake feature vectors, {hs, hy}. We need to introduce a slight
variation in our notation in order to distinguish between internal variables that arise
from the propagation of each type of data. We will continue to use the standard notation
{2ed,bs Yed,b, 0ea,b } for the signals and sensitivity factors arising from propagating a real
feature vector hy. We will also denote its one-hot encoded label vector by 7, = col{1, 0}.

In contrast, however, we will employ the notation {Z¢a,6, Yea,b, Sm,b}, with an upper hat
symbol, for the internal signals and sensitivity factors arising from propagating a fake

feature vector hy. We will denote its one-hot encoded label vector by 3 = col{0,1}.
This latter notation can be a source of confusion because we have been using the
hat-notation 7 to refer to the output of the GAN. In the listings (68.160)—(68.161), we

denote the outputs of the GAN that correspond to hy and hy by y, and 3, respectively.
In particular, these are the output vectors at the last layer of the discriminator, i.e.,
Yo = Yryd,p and Yo = YL d,b:

real input (hs,vs) = output y, and internal signals {z¢q.b, Yed,b, deap} (68.156)
fake input (}Aun%) = output 7, and internal signals {/Z\edymi/}d,mggd’b} (68.157)

In the statement of algorithms (68.160)—(68.161) we assume the following con-
ditions:

generator and discriminator structures with L, and Lg layers, respectively;
output of generator has dimensions M x 1
random initial parameters {Wy, _1, Wyq 1,609, -1,00a,-1}
dataset with real feature vectors {h, € RM}.
(68.158)

At the end of the iterations, we set

{Waga W;,da ng’ 92(1} — {Wég,nu W@d,nu eég,’ﬂu eld,m} (68159)

Once the GAN is trained, it can be used for at least two purposes during testing;:

(a) (Generation) We can remove the discriminator and feed latent variables
u ~ N, (0,Ip) into the generator to produce samples h that arise from
essentially the same underlying data distribution.

(b) (Classification) We can remove the generator and use the discriminator to
separate between real and fake data.

2870 Generative Networks

Mini-batch backpropagation for training GAN discriminator

repeat for K, iterations :
select B latent vectors {uy ~ N(0, Ip)} £ o
generate B fake samples {h;} as follows:
repeat for b=0,1,..., B —1:
ylg,b = Up
repeat for {=1,...,L, —1:
Ze+1g,b = Weg,mﬂ Yegb — Oeg,m—1
Yotrigp = f(zet1g,0)
end
hb = ngg,b
end

(forward propagation through discriminator)
.. B—
select B original feature vectors {hy}p "
repeat for b=0,1,..., B —1:
Y1ap = Mo, Yrap = ho (feeding real/fake data)
v, = col{1,0}, 4, =col{0,1} (their one-hot encoded labels)
repeat for / =1,2,...,Ls—1
Ze+1d,b = Wz—d,m—lyéd,b = 6vd,m—1
Yoy1ap = f(Zer1ap), (use softmax function for last layer)
Zo1ds = Wigm 1Uap — Otam-1
?712+1d,b = f(Zo+14p), (use softmax function for last layer)
end
Yo = Yr,ap Yb = YL,db (output vectors for hy, and hy,)

OLgdb =Yp — Ypr OLydp = YUp — 7 (boundary sensitivity factors)
end

(backward propagation through discriminator)
repeat for (=L, —1,...,2,1:
B-1
Wiam = (1 = 2up)Weam—1 — % Z (yéd,b‘sz-i-ldm + @éd,bgz-ﬁ—ld,b)
b=0
B-1
0¢d.m = Orgm—1+ % 2 (5é+1d,b + ge-&-ld,b)
Oeap = [(zeap) © (Wiedm-10e4140), £>2,0=0,1,...,B -1
3ed,b = [(Zeap) © W@d,mflgm»ld,b ,£>2,0=0,1,...,B-1

end

end

(68.160)

68.5 Training of GANs

2871

Mini-batch backpropagation for training the GAN generator

repeat for K, iterations:
select B latent vectors {uy ~ Ny (0, Ip)} £ o'
generate B fake samples {h;} as follows:
repeat for b=0,1,..., B —1:
Yigp = Wb
repeat for =1,...,L, —1:
T
Zl+1g,b = W@g,mfl Yogp — efg,mfl
Yot1g6 = f(zet1g0)
end
hy, = YL,g.b
end

(forward propagation through discriminator)

repeat for b=0,1,..., B —1:

Y1ap = hy, 4, = col{1,0} (fake data pretending to be real)
repeat for {=1,2,... . Ly —1

Zov1dp = W}—d,m—l Yoap — Otdm—1

Yoyrap = f(Zerrap), (use softmax function for last layer)
end

Yp = Yp,ap, (output vector for iAzb)
OLadb =Yy — Vo

end
- ~ - (=Lg—1,...,3,2
Ovap = f(Zeap)® (Wéd,m716€+1d,b)a b— Odl B_1

(Sng,b = 7f/(Zng,b) © (Wld,m—1$2d,b>a b= 07]-7 RN} B-1

(backward propagation through generator)

repeat for { =L, —1,...,2,1 (backward/generator) :
B-1

i
Wigm = (1- 2MP)W1€g,m—1 + B Z yeg,bang,b
b=0

[B-1
afg,m = eég,m—l - E g 6é+1g,b
b=0

(Sgg’b = fI(Z[g,b) ® (ngym,légﬂg’b), Y4 > 2, b= 0,]., ceey B-1

end

end

(68.161)

2872

68.6

Generative Networks

CONDITIONAL GANS

Motivated by the discussion in Sec. 68.3 we can similarly devise a conditional
GAN solution that is able to generate synthetic images that belong to a particular
class. To do so, we extend the input vectors to the generator and discriminator
sections by adding a label vector defined as follows — see Fig. 68.19.

database

generator

(C+1)x1)

((C+1)x1)

Figure 68.19 Diagram representation of one implementation for a conditional
generative adversarial network (GAN) involving a cascade of generator and
discriminator sections. The input to the generator is the extended vector col{u,~},
while the input to the discriminator is either col{h,v} or col{h, 7}

Assume there are C classes. That is, the real feature vectors h can belong to
any of the classes ¢ € {1,2,...,C}. We augment these possibilities by adding
one more class to account for fake feature vectors and employ one-hot encoding
to represent the label vector. For example, assume there are C' = 5 classes and
that h happens to be a real vector in class ¢ = 2. Then, its label vector will be
6—dimensional with entries

0
1
0
v(h) = | (68.162)
0
0

The unit entry appears in the second row with all other entries equal to zero; the
last entry of v(h) is zero since h is a real (not fake) feature vector; actually, all
real feature vectors will have this last entry set to zero. Assume instead that h
is a fake feature vector. Then, its label vector will again be 6—dimensional with

68.6 Conditional GAN 2873

entries

0

0

~ 0
W) =1, (68.163)

0

1

with a unit entry in the last row.
We see in Fig. 68.19 that the input to the generator becomes the extended
vector

o A li] , ofsize P+C+1 (68.164)
Y
This also means that the dimension n;, changes from n; 4 = P to ni 4 =

P 4+ C + 1. Likewise, the input to the discriminator is augmented by ~ and
becomes

= [Ml , ofsize M +C+1 (68.165)
v

This also means that the dimension n; 4 changes from n1 g = M to niq =
M + C' + 1. The output of the discriminator continues to be a two-dimensional
(i.e., @ = 2) label vector ¥ whose entries indicate the likelihood of the feature
fed into the discriminator being real or fake. One can modify the structure of the
GAN (and its conditional version) by requiring the output of the discriminator
to be an extended label vector 7 of size C' + 1 (rather than just 2). In this case,
the entries of 4 will provide the likelihood of the feature vector being either fake
(which would be given by the last entry of 4) or belonging to any of the C classes.
We can modify the training algorithms (68.160)—(68.161) in a straightforward
manner to allow for this extension — see Prob. 68.8.

Training algorithm
The empirical risk functions for training the conditional GAN continue to be
the same as in (68.122) and (68.125). As such, the same training algorithms
(68.160)—(68.161) continue to hold with one minor adjustment in relation to the
sensitivity factor at the transition layer.

Specifically, recall from (68.145) that, by definition,

_ 9ln(3(1))

= =, j=12,....M 68.166
921,.4(j) (68.166)

0r,.9(7)

However, the input to the discriminator now involves two terms, h and ~v. As
such, the derivation that led to (68.145) will need to be adjusted as follows to

2874

Generative Networks

account for the presence of v (observe the difference in the last equality):

aZLg,g(j)

(1)
(4)

: (1) [<= 9z2.4(i) 8 am (e)
(4) (Z Oh(m) f)ZLg,g Z (c) 3Zng(J)>

m=1

(68.167)

Note that we are denoting the individual entries of the input label vector v by
{7(c)}. However, since the entries of 7 are independent of the entries of z_ 4
then
9v(c)
aZLg,g (])

and the last sum over ¢ disappears. It follows, as before, that

=0 (68.168)

s _ X omE() iazm(z’) Oh(m)
Lyg(J < Dz,4(i) \ 2= Oh(m) 0z1,.4(j)
n2,d ~
~ d0ln(7y(1 . .
- aZQ(Z((Z')))) (2L, ()s i=1,2,...,M (68.169)
i=1 ’

where the second equality follows from the fact that only ﬁ(Jj) is dependent on
zr,.4(j) and

z2,a(1) = §7)d (j) — 01,a(3) (68.170)
h(5) = f(21,4(5) (68.171)

Therefore, expression (68.145) continues to hold. The main difference, however,
is that the entries w()d that appear in (68.169) do not correspond to all the
entries within W 4. ThlS is because the row dimension of W 4 is now enlarged
toM+C+1:

Wig:(M+C+1)xngg, sincenyqg=M+C+1 (68.172)

Only the entries in the leading M rows of W 4 appear in (68.169). We should
therefore replace (68.169) by

0L, = —f(21,,9) © (Wl,d62,d> (68.173)

where Wl,d contains the leading M rows of W1 4:

Wia=[In Omxcsr |Wia (68.174)

Example 68.6 (Generation of handwritten digits using a GAN) We reconsider the same
MNIST database from Example 68.1 and train a GAN to generate synthetic handwrit-
ten digits. We however pre-process the data so that the normalized feature vectors
assume values in the range [—1, 1], since the activation functions at the output layer of

68.6 Conditional GAN 2875

the generator are set to the tanh function.

We construct a GAN with Ly = 5 layers in the generator stage and Lq = 5 layers in
the discriminator stage. In this way, each layer has three hidden layers. The size of
the input layer for the generator is ni1,4 = 2, which is the size of the latent variable
(P = 2), while the size of each of the three hidden layers in the generator is no,4 = 256,
n3,g = 512, and n4 g = 1024 neurons. Likewise, the size of the input layer to the dis-
criminator is n1,q = 784, which is the size of the feature vectors, while the size of each
of the three hidden layers is na ¢ = 1024, n3 ¢ = 512, and n4,qg = 256 neurons. The size
of the output layer of the discriminator is np, ¢ =2 (ie., Q@ = 2).

-

ake hand

E

ritten dlglts generated by the trained GAN

7/
/1
/7
il
77
7 7
9.
q /
7/
7 Y
)f
I/
I 7
Y/
77
¢ /

4
q
L'(
/
7
?
/
1
\
{
|
[
7
/
7.
9

\\J-O"-—--"Q¢\l‘--——-‘--.9\.l—"
o~ N\‘. s BESRLN BN S S L o BN |
0 =0~ NN PN NN R~ o~ H
NO N0 0 L0~ N — N\
_—l — N =N WYY DO N -l ——
N R T U SRR Rl o | RORC RN I NS
e sl e L L I < T R R o
—_— Nl - c_-t:——-'-——\]"d-"\.—-ﬁ'-—\fh-'
NN NN SN SN N s
R e et i N
N~~~ ~—-—L~wN—NRo\

7
|
\
7
/
[
9
/
\
I?(
C!
y
4
5
/
J

Figure 68.20 Synthetic handwritten images generated by feeding Gaussian latent
values u ~ N (0, Ip) through the generator of a trained GAN and plotting the
resulting output vectors in image format.

We set the activation functions for all hidden layers in both the generator and discrimi-
nator to the ReLu function. However, we set the activation function at the output layer
of the generator to the tanh function and at the output layer of the discriminator to
the softmax function.

We train the GAN using the ADAM recursions (instead of the stochastic-gradient
recursions; we explained earlier in Example 65.3 what adjustments are necessary to
run ADAM). We employ the following step-size, regularization, and forgetting factor

2876

68.7

Generative Networks

parameters:
p = 0.0002, p=0.0001 (68.175a)
Bw,1 = Bo,1 = 0.500, (for ADAM implementation) (68.175b)
Buw,2 = Po,2 = 0.999 (68.175¢)
e=1x10""% (68.175d)

We run an ADAM-version of the backpropagation algorithm (68.160)—(68.161) with
mini-batches of size B = 128 samples. We also set K4 = Ky = 1. We perform 200
passes over the training data; the data is randomly reshuffled at the start of each pass.
The weight parameters are initialized according to the schemes (65.93b)—(65.93c).

The training of GANs is generally difficult and it can fail in many ways due to the
competition between the discriminator and generator modules. Sources of instability
include the vanishing gradient effect and the mode collapse problem where the GAN
ends up producing only one or a small subset of images regardless of the input la-
tent vector (this behavior is apparent in Fig. 68.20). Also, during the initial stages of
training when the generator has not yet perfected the generation of images that can
fool the discriminator, the latter will be able to easily discriminate between real and
fake images. Some ad-hoc techniques that can help ameliorate these convergence prob-
lems are (a) to decrease the value of the step-size parameter; (b) to add some small
zero-mean Gaussian noise to the real or fake feature vectors {h,, h,} that are fed into
the discriminator during training; and (c) to use soft (or smooth) labels for the real
features during training, such as setting v, = col{0.9,0} when h,, is real instead of the
hard value at v, = col{1,0}. These techniques interfere with the learning ability of the
discriminator and provide an opportunity for the generator to improve its performance.

In the plot, the grayscale for the images is normalized so that the maximum value in
each image is displayed as white, while the minimum value is displayed as black. During
testing, we disconnect the generator from the discriminator. We generate 256 Gaussian
latent variables u ~ Ny (0, Ip) and feed them into the generator with the weights and
biases fixed at the values obtaﬁi\ned at the end of the training phase. We generate the
corresponding output vectors h and plot them in image form in Fig. 68.20. These are
artificially-generated (fake or synthetic) images.

COMMENTARIES AND DISCUSSION

Variational autoencoders. The machinery of variational autoencoders was introduced
independently by Kingma and Welling (2014,2019) and Rezende, Mohamed, and Wier-
stra (2014). An overview appears in Doersch (2016). VAEs represent a powerful ap-
proach to learning complex distributions; they provide generative models that can be
sampled to produce data that share similar statistical properties as the features used
to train the VAEs — see, e.g., the discussion in Bengio, Courville, and Vincent (2013).
They have been successfully applied to generate different types of data such as hand-
written digits and human faces, including in the original references mentioned above.
The application to recommender systems in Example 68.2 is from Liang et al. (2018).

We explained in the text that there is not much loss in generality in assuming a
standard Gaussian model for the latent variable w. The main reason was the fact that
it is possible to transform this distribution to almost any other distribution by a proper
mapping — see, e.g., Devroye (1986), Papoulis (1991), and Leon-Garcia (2008). The
resulting VAE structure ends up performing one form of regularization. If we examine

68.7 Commentaries and Discussion 2877

expressions (68.20)—(68.25) and (68.37), we observe that the empirical risk for vari-
ational autoencoders consists of two terms: a quadratic term involving the difference
|hn — ||* and a regularization term that approximates the KL divergence between the
distribution of the latent variable, fu.(u), and the conditional approximation gy, x (u|h).

Generative adversarial networks. The framework of generative adversarial networks
(GANs) was introduced by Goodfellow et al. (2014) in parallel with the introduction
of variational autoencoders (VAEs) by Kingma and Welling (2014,2019) and Rezende,
Mohamed, and Wierstra (2014). Both classes of GAN and VAE networks enable sam-
pling from an underlying distribution without the need to learn the distribution. GANs
tend to lead to sharper synthetic images (at least subjectively) than VAEs and have
been received with substantial excitement in the field of machine learning. They have
found applications in a broad range of areas, including in advertising, face generation,
and video gaming, by allowing computers to generate images that look deceptively re-
alistic. GANs are also driving the emergence of deepfake technology, with “fake” videos
showing a person uttering sentences that they have not even spoken.

The superior performance of GANSs is largely driven by the competition between its
generator and discriminator components, which play a zero-sum game. The generator
keeps adjusting its internal structure until the discriminator is not able to distinguish
between real and fake data anymore. The results of Examples 68.4 and 68.5 on the
optimal discriminator strategy and the solution of the relevant game problem are from
Goodfellow et al. (2014). Overviews of GANs appear in Cresswell et al. (2018), Wang,
She, and Ward (2019), and Goodfellow et al. (2020). Interestingly, a similar GAN
architecture was proposed a few years earlier in a blog post by Niemitalo (2010); it
consisted of a generator and a classifier, with the input to the classifier arising either
from data produced by the generator or from a dataset. This earlier structure does not
include a source of randomness and behaves more like a conditional GAN — see Mirza
and Osindero (2014).

Generative adversarial networks (GANs) are notoriously hard to train — see Sali-
mans et al. (2016); they suffer from several failure modes and difficulty to converge.
This is largely due to the competition between the generator and discriminator sections
while vying to reach an equilibrium solution. There is also no clear stopping criterion
for training and no assessment metric to compare against other solution methods. The
training of GANs can employ dropout (especially within the generator) and can also
benefit from batch normalization.

There exist many variations of GANs, intended to improve their training, exploit
their potential more fully, as well as address their limitations and broaden their appli-
cability. We describe one variation below, known as Wasserstein GAN. In Prob. 68.8
we consider another variation. We explain there that the structure of the GAN can be
extended by requiring the output of the discriminator to be an extended label vector ¥
of size C'+ 1 (rather than of size 2), where C' is the number of classes for the real data.
In this case, the entries of the output vector will provide the likelihood of the feature
vector being either fake (which is given by the last entry of 7) or belonging to any of
the C real classes — see Springenberg (2016) and Odena (2016). It has been observed
in practice that this structure with an extended output label vector leads to improved
performance by generating (subjectively) better samples. Some other GAN variations
are considered in the problems.

There have also been prior works using adversarial (game-theoretic) techniques for
learning, including the adversarial curiosity (AC) and predictability minimization (PM)
methods from Schmidhuber (1991,1992a) — see also Schmidhuber, Eldracher, and
Foltin (1996). The article by Schmidhuber (2019) comments on how GANs are re-
lated to these earlier developments.

Wasserstein GANs. In the GAN formulation described in the text, the discriminator
is a classifier that predicts the likelihood of a feature vector being real or fake. The
Wasserstein GAN formulation from Arjovsky, Soumith, and Bottou (2017) considers

2878

Generative Networks

an alternative construction that leads to more stable performance; it helps alleviate
the vanishing gradient problem, as well as the mode collapse problem that GANs are
subject to. In this latter case, since the GAN is trained to “fool” the discriminator, it
often ends up learning to generate a particular “fake” feature vector (or a small subset
of feature vectors) and only that subset rather than a different feature vector for every
different random latent variable at the input. The Wasserstein construction is based
on replacing the discriminator by a critic, which continues to be a feedforward neural
network albeit one with a single output node and a linear output layer. The output of
the critic is used to score how realistic the feature vector is. Wasserstein GAN replaces
the stochastic formulation (68.111) by one of the form:

(6*,D") = argminmgx{IthD(h) -]EfﬁD(E)} (68.176)
S

Observe that the logarithm operation is removed and the cost involves the difference
between two expectations: one is the average score over the distribution of real data
and the second is the average score over the distribution of fake data. In this way, the
discriminator works to maximize the difference between both average scores, while the
generator works to bring them closer together. The reason for the designation “Wasser-
stein” is because given two distributions pz(z) and gz(z), the Wasserstein distance
(also called the “Earth mover” distance) between them is defined by

Wl £ sup {Esnpe 9(@) — Eong, 9(@) } (68.177)

llgll <1

where the first expectation is over the distribution pL(z) and the second expectation
is over the distribution g« (z). The supremum is computed over the space of functions
with Lipschitz constant bounded by one, written as ||g||z < 1 and used to refer to
functions that satisfy:

lg(z) =9I < [l= = yll (68.178)

If we imagine each pdf as representing a pile of sand then, informally, the Wasserstein
distance gives an indication of the amount of sand that needs to be moved to transform
one distribution to the other; hence, the name “Earth mover” distance. The measure
(68.177) is also referred to as the maximum mean discrepancy (MMD) distance by
Gretton et al. (2007), Dziugaite, Roy, and Ghahramani (2015), and Yujia, Swersky, and
Zemel (2015). Expression (68.177) is actually a dual representation for a special case
of a broader definition of the Wasserstein distance. The term was coined by Dobrushin
(1970) after the work of Wasserstein (1969).
In terms of empirical risks, we can replace problem (68.122) by

Lg—1

x px . 1 ~

{Wewbia} = argmin § 37 plWeallp = (X D) = > D(hn))
We,a00at | =1 neEN,. neNy
(68.179)
and problem (68.124) by
Lg—1
* * 1 T
{We,g,a[,g} = argmax { Y7 pWeglli + - Y Dlfa) (68.180)
{Wé-,g’el’.,.q} =1 n€Ny

where we retain the fake feature vectors. We can proceed from here to derive a training
algorithm in a manner similar to the arguments used in the text — see Prob. 68.11.

68.7 Commentaries and Discussion 2879

PROBLEMS

68.1 Establish the statement after (68.19), namely, that we can transform a standard
Gaussian-distributed random variable to any other distribution by means of suitable
nonlinear mappings.

68.2 Establish equality (68.82).

68.3 The expression for the ELBO in (68.7) is sometimes modified to include a scaling
term in the following manner:

ELBO 2 E, (In f(hlu)) = Dicw (q(ulh) || f(u))

for some scalar k € (0, 1]. Explain how the listing of algorithm (68.79) would be modified
in this case.

68.4 Show that the training algorithm (68.79) continues to hold for conditional vari-
ational autoencoders, with the main difference being the size of the input vectors to
both the encoder and decoder, which are enlarged to h' = col{h,~v} and v’ = col{u,~}
with dimensions M + C and P + C, respectively. Here, C is the number of classes and
the class variable v is C' x 1.

68.5 The structure shown in the earlier Fig. 68.11 for the conditional variational
autoencoder feeds the label variables into both the encoder and decoder. This can be
inconvenient during testing if the purpose is to use the trained encoder to perform com-
pression (which should not depend on the label information). An alternative structure
would be to consider adding a separate feedforward neural network, in parallel with the
encoder network, with the same input A and a softmax output layer that generates a
C x 1 vector of probabilities 7; the c—th entry of ¥ would correspond to the likelihood
that h belongs to class c. In this way, the feature h feeds through two parallel networks
with one network generating output {u,a} and the other network generating output
4. The input to the decoder becomes v’ = col{u,~}. Derive the algorithm for training
this structure, which is shown in Fig. 68.21. Write down the corresponding empirical
risk.

68.6 How would recursions (68.79) change if we incorporate dropout into the opera-
tion of the training algorithm?

68.7 How would recursions (68.79) change if we incorporate batch normalization into
the operation of the training algorithm?

68.8 We indicated in Sec. 68.6, right after (68.165), that we can modify the structure
of the GAN by requiring the output of the discriminator to be an extended label vector
7 of size C + 1 (rather than of size 2). In this case, the entries of this output vector
will provide the likelihood of the feature vector being either fake (which is given by
the last entry of %) or belonging to any of the C real classes. Explain how the training
algorithms (68.160)—(68.161) should be modified to account for this variation.

68.9 Design a GAN training algorithm when the binary classification labels generated
by the discriminator are flipped, with label 1 corresponding to fake features and label
0 corresponding to real features, so that the stochastic formulation (68.111) is replaced
by one of the form:

(§*,D*) = arg mgin mgx{E n ln(l - D(h)) + Ef, In D(Q(u))}
Argue further that the above problem can be replaced by
(5%, D*) = argmaxmin{th InD(h) + E g, ln(l—D(S(u)))}
5 D

68.10 The output layer of the discriminator in a GAN implementation need not rely
on a softmax calculation, and the empirical risk for the discriminator need not be limited

2880

Generative Networks

/ €~ N(0,Ip) \

encoder

(P x1) w=p+ %%

ni/2 — diag{ea,,(h)/‘z}

o

Figure 68.21 An alternative structure for conditional variational autoencoders,
described in Prob. 68.5.

to the cross-entropy formulation. For example, design a GAN training algorithm when
the stochastic formulation (68.111) is replaced by one of the form:

(G*, D) = argméixngn{thD(h) +E,, max{o, 1- D(S(u))}}
In this case, the discriminator produces high output values for fake feature vectors and
low output values for real feature vectors.

68.11 Use the empirical risks (68.179)—(68.180) to derive recursions for training the
generator and critic stages of a Wasserstein GAN.

REFERENCES

Arjovsky, M., C. Soumith, and L. Bottou (2017), “Wasserstein GAN,” Proc. Intern.
Conference on Machine Learning (ICML), PMLR, pp. 214-223, Sydney, Australia.
Also available online at arXiv:1701.07875.

Bengio, Y., A. Courville, and P. Vincent (2013), “Representation learning: A review
and new perspectives,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.
35, no. 8, pp. 1798-1828.

Cresswell, A., T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. Bharath
(2018), “Generative adversarial networks: An overview,” IEEE Signal Processing
Magazine, vol. 35, no. 1, pp. 53-65.

Devroye, L. (1986), Sample-Based Non-Uniform Random Variate Generation, Springer-
Verlag, NY.

Dobrushin, R. L. (1970), “Definition of a system of random variables by conditional
distributions,” Teor. Verojatnost. i Primenen., vol. 15, pp. 469-497 (in Russian).
Doersch, C. (2016), “Tutorial on variational autoencoders,” survey article available on-

line at arXiv:1606.05908.

68.7 Commentaries and Discussion 2881

Dziugaite, G. K., D. M. Roy, and Z. Ghahramani (2015), “Training generative neural
networks via maximum mean discrepancy optimization,” Proc. Conference on Un-
certainty in Artificial Intelligence (AUI), pp. 258-267, Amsterdam, The Netherlands.

Goodfellow, 1., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio (2014), “Generative adversarial networks,” Proc. Advances
Neural Information Processing Systems (NIPS), pp. 26722680, Montreal, Canada.

Goodfellow, 1., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio (2020), “Generative adversarial networks,” Communications
of the ACM, vol. 63, no. 1, pp. 139-144.

Gretton, A., K. M. Borgwardt, M. Rasch, B. Scholkopf, and A. J. Smola (2007), “A
kernel method for the two-sample problem,” in Proc. Advances in Neural Information
Processing Systems (NIPS), B. Scholkopf, J. C. Platt, and T. Hoffman, Eds., pp. 513~
520, MIT Press.

Kingma, D. P. and M. Welling (2014), “Auto-encoding variational Bayes,” presented
at International Conference on Learning Representations (ICLR), pp. 1-14, Banff,
Canada. Also available at arXiv:1312.6114.

Kingma, D. P. and M. Welling (2019), “An introduction to variational autoencoders,”
Foundations and Trends in Machine Learning, vol. 12, no. 4, pp. 307-392.

Leon-Garcia, A. (2008), Probability, Statistics, and Random Processes For Electrical
Engineering, 3rd edition, Prentice Hall, NJ.

Liang, D., R. G. Krishnan, M. D. Hoffman, and T. Jebara (2018), “Variational autoen-
coders for collaborative filtering,” Proc. World Wide Web Conference, pp. 689—698,
Lyon, France. Also available online at arXiv:1802.05814.

Mirza, M. and S. Osindero (2014), “Conditional generative adversarial nets,” available
online at arXiv:1411.1784.

Niemitalo, O. (2010), “A method for training artificial neural networks to generate
missing data within a variable context,” available on Internet Archive 2010 at the link
https://web.archive.org/web/20120312111546 /http://yehar.com:80/blog/?p=167.

Odena, A. (2016), “Semi-supervised learning with generative adversarial networks,”
available online at arXiv:1606.01583.

Papoulis, A. (1991), Probability, Random Variables, and Stochastic Processes, 3rd edi-
tion, McGraw-Hill, NY.

Rezende, D. J., S. Mohamed, and D. Wierstra (2014), “Stochastic backpropagation and
approximate inference in deep generative models,” Proc. International Conference
on Machine Learning (ICML), PMLR, vol. 32, no. 2, pp. 1278-1286, Beijing, China.

Salimans, T., I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen (2016),
“Improved techniques for training GANs,” Proc. Advances Neural Information Pro-
cessing Systems (NIPS), pp. 1-9, Barcelona, Spain.

Schmidhuber, J. (1991), “A possibility for implementing curiosity and boredom in
model-building neural controllers,” in J. A. Meyer and S. W. Wilson, FEds., Proc.
International Conference on Simulation of Adaptive Behavior: From Animals to An-
imats, pp. 222-227, MIT Press.

Schmidhuber, J. (1992a), “Learning factorial codes by predictability minimization,”
Neural Computation, vol. 4, no. 6, pp. 863-879.

Schmidhuber, J. (2019), “Unsupervised minimax: Adversarial curiosity, generative ad-
versarial networks, and predictability minimization,” available online at the link
arXiv:1906.04493.

Schmidhuber, J., M. Eldracher, and B. Foltin (1996), “Semilinear predictability mini-
mization produces well-known feature detectors,” Neural Computation, vol. 8, no. 4,
pp. 773-786, 1996.

Springenberg, J. T. (2016), “Unsupervised and semi-supervised learning with cate-
gorical generative adversarial networks,” Proc. Inter. Conference on Learning Rep-
resentations (ICLR), pp. 1-20, San Juan, Puerto Rico. Also available online at
arXiv:1511.06390, 20 pages, 2015.

Wang, Z., Q. She, and T. E. Ward (2019), “Generative adversarial networks in computer
vision: A survey and taxonomy,” ACM Computing Surveys, vol. 54, no. 2, pp. 1-38.

2882 Generative Networks

Wasserstein, L. N. (1969), “Markov processes over denumerable products of spaces
describing large systems of automata,” Probl. Inform. Transmission, vol. 5, pp. 47—
52.

Yujia, L., K. Swersky, and R. Zemel (2015), “Generative moment matching networks,”
Proc. International Conference on Machine Learning (ICML), pp. 1718-1727, Lille,
France.

