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65

FEEDFORWARD NEURAL
NETWORKS

We illustrated in Example 63.2 one limitation of linear separation surfaces by
considering the XOR mapping (63.11). The example showed that certain feature
spaces are not linearly separable and cannot be resolved by the Perceptron al-
gorithm. The result in the example was used to motivate one powerful approach
to nonlinear separation surfaces by means of kernel methods. In this chapter we
describe a second powerful and popular method, based on training feedforward
neural networks. These are also called multilayer Perceptrons and even deep net-
works, depending on the size and number of their layers. We revisit the XOR
mapping in Prob. 65.1 and show how a simple network of this type can separate
the features.

Feedforward neural networks are layered structures of interconnected units
called neurons, each of which will be a modified version of the Perceptron. A
neural network will consist of:

(a) one input layer, where the feature vector, h € RM | is applied to;

(b) one output layer, where the predicted label, now represented by a vector
7 € R9, is read from, and

(c) several hidden layers in between the input and output layers.

The net effect is a nonlinear mapping from the input space, h, to the output
space v:

heRM™ — e R® 65.1
y

We will describe several iterative procedures for learning the internal param-
eters of this mapping from training data {v,,h,}. In future chapters, we will
describe alternative neural network architectures and their respective training
algorithms, such as convolutional neural networks (CNNs), recurrent neural net-
works (RNNs), and long short-term memory (LSTMs) networks, where some
parameters are shared across nodes and/or layers.

Besides the ability of feedforward neural networks to model nonlinear map-
pings from h to 7, one other notable difference in relation to the learning al-
gorithms considered so far in the text is that neural networks can deal with
classification problems where the scalar binary class variable v € {+1, —1} is re-
placed by a vector class variable v € {+1, —1}9 whose entries are again binary.
This level of generality allows us to solve multiclass and multilabel classifica-
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tion problems directly without the need to resort to one-versus-all (OvA) or
one-versus-one (OvO) constructions.

For instance, in multiclass problems, the feature vector h can belong to one
of a collection of @ classes (such as deciding whether h represents cats, dogs, or
elephants), and the label vector v will contain +1 in the location corresponding
to the correct class and —1 in the remaining entries. In multilabel classification
problems, on the other hand, the feature vector h can reveal several properties
simultaneously (such as representing a male individual with high-school educa-
tion who likes mystery movies). In this case, the entries of v corresponding to
these properties will be +1 while the remaining entries will be —1, for example,

1
—1 -1

y=| -1 (multiclass problem), = | —1 | (multilabel problem)
1

(65.2)
In one of the most common implementations of neural networks, informa-
tion flows forward from the input layer into the successive hidden layers until
it reaches the output layer. This type of implementation is known as a feedfor-
ward structure. There are other implementations, known as feedback or recursive
structures, where signals from later layers feed back into neurons in earlier layers.
We will encounter examples of these in the form of recurrent neural networks
(RNNs) and long short-term memory (LSTMs) networks in a future chapter. We
focus here on feedforward structures, which are widely used in applications; they
also exhibit a universal approximation ability as explained in the comments at
the end of the chapter — see expression (65.189).

ACTIVATION FUNCTIONS

The basic unit in a neural network is the neuron shown in Fig. 65.1 (left). It
consists of a collection of multipliers, one adder, and a nonlinearity. The input
to the first multiplier is fixed at 4+1 and its coefficient is denoted by —6, which
represents an offset parameter. The coefficients for the remaining multipliers are
denoted by w(m) and their respective inputs by h(m). If we collect the input
and scaling coefficients into column vectors:

h= co1{h(1), h(2), ..., h(M)} (65.3a)
w = col{w(l),w(2)7 . ,w(M)} (65.3b)
then the output of the adder is the affine relation:

2 hTw—0 (65.4)
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where we are using the letter “z” to refer to the result of this calculation. This
signal is subsequently fed into a nonlinearity, called the activation function, to
generate the output signal y:

y 2 f(z2) = f(hTw—0) (65.5)

On the right-hand side of the same figure, we show two compact representations
for neurons. The only difference is the additional arc that appears inside the circle
in the top right corner. This arc is used to indicate the presence of a nontrivial
activation function. This is because, sometimes, the neuron may appear without
the activation function (i.e., with f(z) = z), in which case it will simply operate
as a pure linear combiner.

with nonlinearity

z=hTw—0

without nonlinearity/

Figure 65.1 (Left) Structure of a neuron consisting of an offset parameter —0, and M
multipliers with weights {w(m)} and input signals {h(m)}, followed by an adder with
output z and a nonlinearity y = f(z). (Right) Compact representations for the neuron
in terms of a circle with multiple input lines and one output line. Two circle
representations are used to distinguish between the cases when the nonlinearity is
present or not (i.e., whether f(z) = z or not). When a nonlinearity is present, we will
indicate its presence by an arc inside the circular representation, as shown in the top
right corner.

h = col{h(1),h(2),...

& w = col{w(l),w(2

g
s
=

Sigmoid and tanh functions

There are several common choices for the activation function f(z), listed in Ta-
ble 65.1 with some of them illustrated in Fig. 65.2. We encountered the sigmoid
function earlier in (59.5a) while discussing the logistic regression problem. One
useful property of the sigmoid function is that its derivative admits the repre-
sentation

f'(z) = f(z)(1 — f(2)), (sigmoid function) (65.6)

We also encountered the hyperbolic tangent function earlier in (27.33) while
studying the optimal mean-square-error inference problem. Its derivative is given
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by any of the forms:
f'(2) = 1/ cosh?(z)
— 4/(62 +e—z)2
=1 — (tanh(2))?, (tanh function) (65.7)

The sigmoid and tanh functions are related via the translation

: +16_z - % (tanh (2/2) + 1) <= tanh(z/2) = 2sigmoid(z) — 1 (65.8)

and satisfy

(sigmoid function) : lirjra f(z)=1, lim f(z)=0 (65.9a)
zZ—+00 Z—>—00
(tanh function) : Zgrlloof(z) =1, zgrzloof(z) =-1 (65.9b)

That is, both functions saturate for large |z|. This means that when |z| is large,
the derivatives of the sigmoid and tanh functions will assume small values close
to zero. We will explain later in Sec. 65.8 that this property is problematic and
is responsible for a slowdown in the speed of learning by neural networks. This is
because small derivative values at any neuron will end up limiting the learning
ability of the neurons in the preceding layers.

The scaled hyperbolic tangent function, f(z) = atanh(bz), maps the real axis
to the interval [—a,a] and, therefore, it saturates at +a for large values of z.
Typical choices for the parameters (a,b) are

2 -1
30 "7 tanh(2/3)

With these values, one finds that f(+1) = £1. In other words, when the input
value z approaches +1 (which are common values in binary classification prob-

b= ~ 1.7159 (65.10)

lems), then the scaled hyperbolic tangent will assume the same values +1, which
are sufficiently away from the saturation levels of +1.7159.

ReLU and leaky-RelLU functions

In the rectifier (or hinge) function listed in Table 65.1 (also called a “rectified
linear unit” or ReLU function), nonnegative values of z remain unaltered while
negative values of z are set to zero. In this case, we set the derivative value at
z =0 to f'(0) = 0 by convention (we could also set it to one, if desired):

0, z<0
f(2) =ReLU(z) = f'(2)=4¢ 0, z=0 (65.11)
1, z>0

Compared with the sigmoid function, we observe that the derivative of ReLLU
is constant and equal to one for all positive values of z; this property will help
speed up the training of neural networks and is one of the main reasons why
ReLU activation functions are generally preferred over sigmoid functions. ReLU
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Figure 65.2 Examples of activation functions and their derivatives. (Left) Sigmoid
function. (Center) Hyperbolic tangent function. (Right) Rectifier and softplus
functions.

functions are also easy to implement and do not require the exponentiation
operation that appears in the sigmoid implementation.

Unfortunately, the derivative of the ReL.U function is zero for negative values of
z, which will affect training when internal values in the network drop below zero.
These nodes will not be able to continue learning and recover from their state of
negative z—values. This challenge is referred to as the “dying ReL.U” problem.
The softplus function provides a smooth approximation for the rectifier function,
tending to zero gracefully as z — —oo. The leaky-ReLU version, on the other
hand, incorporates a small positive gradient for z < 0:

0.01, z<0
f(z) = leaky ReLU(z) = f'(2) =4 0, 2=0 (65.12)
1, z>0

The exponential linear unit (ELU) also addresses the problem over negative z
by incorporating an exponential decay term such that as z — —oo, the function
ELU(z) will tend to —a where a > 0. The value of « can be selected through a
(cross-validation) training process by simulating the performance of the neural
network with different choices for a.. The rectifier functions are widely used within
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Table 65.1 Typical choices for the activation function f(z) used in (65.5).

activation function | f(2)
sigmoid or logistic fz) = L
g g - 1_|_6—z
softplus f(z) =In(1 + ¢€*)
hyperbolic tangent (tanh) | f(z) = tanh(z) 2 ¢ T c
e*+e*

scaled tanh f(z) = atanh(bz),a,b >0
ReLU (hinge) f(z) = max {0, z}

Z, z>0
leaky ReLU flz) = { 001z, 2<0

Z, z>0
ELU ) = { ale? —1), 2<0
no activation flz) ==z

hidden layers in the training of deep and convolutional neural networks. ELU
activation functions have been observed to lead to neural networks with higher
classification performance than ReLUs.

Softmax activation

The activation functions shown in Table 65.1 act on scalar arguments z; these
arguments are the internal signals within the various neurons. We will encounter
another popular activation function known as softmax activation, and written
compactly as y = softmax(z). This activation will be used at the output layer of
the neural network, which has @) neurons, and it will operate simultaneously on
all z—values from these neurons denoted by {z(q)}, for ¢ = 1,2,..., Q. Softmax
transforms these values into another set of @ values constructed as:

-1

Q
e2(a) Z e2(d) . g=1,2,....Q (65.13)
q’'=1

1>

y(q)

Observe that each y(q) is influenced by all {z(¢)}. The exponentiation and nor-
malization in the denominator ensure that the output variables {y(q)} are all
nonnegative and add up to one. In this way, the softmax transformation generates
a Gibbs probability distribution — recall (3.168).

We explained earlier in Remark 36.2 that some care is needed in the numerical
implementation of the softmax procedure due to the exponentiation in (65.13)
and the possibility of overflow or underflow. For example, if the number in the
exponent has a large value, then y(g) can saturate in finite-precision implemen-
tations. One way to avoid this difficulty is to subtract from all the {z(q)} their
largest value and introduce the centered variables:

s(q) £ 2(q) — (121@%{@,2@’)), g=12....Q (65.14)
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By doing so, the largest value of the {s(q)} will be zero. It is easy to see that
using the {s(q)} instead of the {z(q)} does not change the values of the {y(q)}:

-1

Q
y(q) =@ [ 3 el (65.15)
q’'=1

Comparing with Perceptron

In Fig. 65.3 we compare the structure of the sigmoidal neuron with Perceptron,
which uses the sign function for activation with its sharp discontinuous transition.
Recall from (60.25) that Perceptron predicts the label for a feature vector h by
using

F=hTw—0 (65.16)

which agrees with the expression for z in the figure. Subsequently, the class
for h is decided based on the sign of 4. In other words, the Perceptron unit
operates on z by means of an implicit sign function. One of the key advantages of
using continuous (smooth) activation functions in constructing neural networks,
such as the sigmoid or tanh functions, over the discontinuous sign function, is
that the resulting networks will respond more gracefully to small changes in
their internal signals. For example, networks consisting solely of interconnected
Perceptron neurons can find their output signals change dramatically in response
to small internal signal variations; this is because the outputs of the sign functions
can change suddenly from —1 to +1 for slight changes at their inputs. Smooth
activation functions limit this sensitivity.

plays role of ¥ \

\ sigmoidal neuron Perceptron neuron /

Figure 65.3 (Left) Neuron where the output of the linear combiner is smoothed
through a sigmoid activation function. (Right) Perceptron neuron where the output of
the linear combiner is applied to a hard-thresholding sign function.

FEEDFORWARD NETWORKS

We explain next how to combine several neurons to form a feedforward multi-
layer neural network, which we will subsequently train to solve classification
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and regression problems. In the feedforward implementation, information flows
forward in the network and there is no loop to feed signals from future layers
back to earlier layers.

Figure 65.4 illustrates this structure for a network consisting of an input layer,
three hidden layers, and an output layer. In this example, there are two output
nodes in the output layer, denoted by 7(1) and 7(2), and three input nodes in
the input layer, denoted by h(1), h(2), and h(3). Note that we are excluding the
bias source 41 from the number of input nodes. There are also successively three,
two, and three neurons in the hidden layers, again excluding the bias sources.
The neurons in each layer are numbered with the numbers placed inside the
symbol for the neuron. We will be using the terminology “node” to refer to any
arbitrary element in the network, whether it is a neuron or an input node. In
this example, the nodes in the output layer employ activation functions. There
are situations where output nodes may be simple combiners without activation
functions (for example, when the network is applied to the solution of regression
problems).

/ layer 1 layer 2 layer 3 layer 4 layer 5 \
T N T ) o ) o ) AN

=)

input layer Y output layer
3 hidden layers

h = col{h(1),h(2),h(3)} (input vector)
= col{7(1),7(2)} (output vector)

Figure 65.4 A feedforward neural network consisting of an input layer, three hidden
layers, and an output layer. There are three input nodes in the input layer (excluding
the bias source denoted by +1) and two output nodes in the output layer denoted by

5(1) and 5(2).

2
|

For convenience, we will employ the vector and matrix notation to examine
how signals flow through the network. We let L denote the number of layers in
the network, including the input and output layers. In the example of Fig. 65.4 we
have L = 5 layers, three of which are hidden. Usually, large networks with many
hidden layers are referred to as deep networks. For every layer £ =1,2,..., L, we
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let ny denote the number of nodes in that layer (again, our convention excludes
the bias sources from this count). For our example, we have

ny = 3, Ng = 3, ng = 2, ng = 3, ns = 2 (6517)

Now, between any two layers, there will be a collection of combination coefficients
that scale the signals arriving from the nodes in the prior layer. For example,
if we focus on layers 2 and 3, as shown in Fig. 65.5, these coefficients can be
collected into a matrix Wy of size ny X ng with individual entries:

(2) (2)

Wi Wig
A 2 2
We = | w® W@ |, (n2xns) (65.18)
(2) (2)
W3y Wgg
Jayer2 layer3
oo | P 4le [
N | o, = | 2
STl i 02(2)
S .. N
S — - S~
3 \02(2) Py 1 [w? w®
: wr _ 11 )21 /31
ya(1) 2 = @ @ @ }
, T Wiz Wiy Wio
v = [ ys(1)
Y3 -
| ¥3(2)
— 5 _ 23(1)
3 23(2)
[ y2(1)
v2 = | %(2)
L y2(3)

Figure 65.5 Combination and bias weights between layers 2 and 3 for the network
shown in Fig. 65.4. The combination weights between nodes are collected into a
matrix Wa of size ny X nsz, while the bias weights are collected into a vector 62 of size
nsg x 1.

In the notation (65.18), the scalar 'wff) has the following interpretation:

wg) = weight from node 7 in layer ¢ to node j in layer £ + 1 (65.19)

In the expressions used to describe the operation of a neural network, and its
training algorithms, we will also be dealing with the transpose of the weight
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matrix, which has size ng X ne and is given by
(2) (2) (2)
A l Wiy Wy Wgy

(2) (2)

Wy @
Wiy Wi W3g

] s (’I’Lg X 7’L2) (6520)
We also associate with layers 2 and 3 a bias vector of size ng, containing the

coefficients that scale the bias arriving into layer 3 from layer 2, with entries
denoted by

92 é l92(1)

5) ] . (n3x1) (65.21)

where the notation y(j) has the following interpretation:

— 04(j) = weight from +1 bias source in layer £ to node j in layer £+ 1
(65.22)
Figure 65.5 illustrates these definitions for the parameters linking layers 2 and
3. In the figure we are illustrating the common situation when every node from
a preceding layer feeds into every node in the succeeding layer, thus leading
to a fully-connected interface between the layers. One can consider situations
where only a subset of these connections are active (selected either at random or
according to some policy); we will focus for now on the fully-connected case and
discuss later the dropout strategy where some of the links will be deactivated.
Later in Chapter 67, when we discuss convolutional neural networks, we will
encounter other strategies for connecting nodes between successive layers.
Figure 65.6 illustrates the four weight matrices, {W,", W,J, Wl W[}, and four
bias vectors, {61, 02,0s,604}, that are associated with the network of Fig. 65.4.
More generally, the combination weights between two layers £ and ¢ + 1 will be
collected into a matrix W; of size my11 X ny and the bias weights into layer
¢+ 1 will be collected in a column vector 6 of size ng41 x 1. Continuing with
Fig. 65.5, we denote the outputs of the nodes in layer 3 by y3(1) and y3(2) and
collect them into the vector:

. A lyB(l)
’ y3(2)

where the notation y(j) has the following interpretation:

] ;o (nax1) (65.23)

ye(j) = output of node j in layer ¢ (65.24)

Likewise, the output vector for layer 2 is

v 2 @) |, (e x1) (65.25)

Using the vector and matrix quantities so defined, we can now examine the flow
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Figure 65.6 The combination weights between successive layers are collected into
matrices, W), for £ =1,2,..., L — 1. Likewise, the bias coefficients for each hidden
layer are collected into vectors, 6, for ¢ =1,2,..., L — 1.

of signals through the network. For instance, it is clear that the output vector
for layer ¢ = 3 is given by

ys = f (W3 y2 — b2) (65.26)

in terms of the output vector for layer 2 and where the notation f(z) for a vector
argument z, means that the activation function is applied to each entry of z
individually. For later use, we similarly collect the signals prior to the activation
function at layer 3 into a column vector:

A [ z3(1)
’ 23(2)

where the notation z¢(j) has the following interpretation:

] , (nax1) (65.27)

z¢(j) = signal at node j of layer ¢ prior to activation function (65.28)

That is,
ys(1) = f(23(1)), w3(2) = f(23(2)) (65.29)

If we now let 4 = col{#(1),7(2)} denote the column vector that collects the
outputs of the neural network, we then arrive at the following description for the
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flow of signals through a feedforward network — this flow is depicted schemat-
ically in Fig. 65.7. In this description, the vectors {z¢,y¢} denote the pre- and
post-activation signals for the internal layer of index £. For the output layer, we
will interchangeably use either the notation {zr,yr} or the notation {z,7} for
the pre- and post-activation signals. We will also employ the following compact
notation to refer to the forward recursions (65.31), which feed a feature vector h
into a network with parameters {W;, 0,} and generates the output signals (z,7)

along with the intermediate signals {zs, y,} at the internal layers:

(ﬁ,z, {yz,ze}) = forward (h, {ngz}) (65.30)

Feedforward propagation through a neural network with L layers

given feedforward network with L layers (input+output-+hidden);
start with y; = h;
repeat for/=1,...,L —1:

2001 = W[ye — 0,

Yer1 = [ (2e41)

end
zZ=2Zy
7 =yL

4 N

input layer output layer

Figure 65.7 A block diagram representation of the feedforward recursions (65.31)
through a succession of four layers, where the notation f denotes the activation
function.

Column and row partitioning

Continuing with layers 2 and 3 from Fig. 65.5, and the corresponding combination
matrix Wy, we remark for later use that we can partition Wy either in column

(65.31)
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form or in row form as follows:

2 2 2 2

wT wil) wél) wz(n) w§1)
w?

22

(2)

2
w? (2)

2
w§1)
Wzg

2
w:(n) 1

1>

[wgz) | wéQ) | wi(f)} (65.32)

In the first case, when the partitioning is row-wise, we observe that W, consists
of two rows; one for each of the nodes in the subsequent layer 3. The entries of the
first row are the weighting coeflicients on the edges arriving at the first node in
layer 3. The entries of the second row are the weighting coefficients on the edges
arriving at the second node in the same layer 3. In other words, each row of W
consists of the weighting coefficients on the edges arriving at the corresponding
node in the subsequent layer 3.

--------- layer ¢ +

T
We : (nes1 X ne)

weights from node #1 in layer ¢
weights from node #2 in layer ¢

weights from node #3 in layer ¢

l

T[XXX

«—— weights to node #2 in layer ¢ + 1

«—— weights to node #1 in layer £+ 1
X X X :|

Figure 65.8 The weight matrix W/ can be partitioned either in column or row form.
The columns of W, represent the weights emanating from the nodes in layer £. The
rows of W, represent the weights arriving at the nodes in layer £ + 1.

In the second case, when the partitioning is column-wise, we observe that Wy
consists of three columns; one column for each of the nodes in the originating
layer 2. The entries of the first column are the weighting coefficients on the edges
emanating from the first node in layer 2 to all nodes in layer 3. The entries of the
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second column are the weighting coefficients on the edges emanating from the
second node in layer 2 to the nodes in layer 3, and likewise for the third column
of Wy . In other words, each column of W, consists of the weighting coefficients
on the edges emanating from the nodes in layer 2. Figure 65.8 illustrates this
partitioning for a generic combination matrix between two arbitrary layers ¢ and
{ + 1. For later use, we find it convenient to denote the columns of VVKT by the
notation — as depicted in the second line in (65.32):

wge) = weight vector emanating from node i in layer ¢ (65.33)
For example, from (65.32) we have
w?) = col {wﬁ), wg)} = weights from node 1 in layer 2 (65.34a)

wf) = col {wg), wg)} = weights from node 2 in layer 2 (65.34b)

w§2) = col {w:(ﬁ), wég)} = weights from node 3 in layer 2 (65.34c)

REGRESSION AND CLASSIFICATION

Feedforward neural networks can be viewed as systems that map multi-dimensional
input vectors {h € R™} into multi-dimensional output vectors {3 € IR?}, so
that the network is effectively a multi-input multi-output system. We can ex-
ploit this level of generality to solve regression problems as well as multiclass
and multilabel classification problems.

Regression

In regression problems, the nodes at the output layer of the network do not
employ activation functions. They will consist solely of linear combiners so that
7 = z, where 4 denotes the output vector of the network and z denotes the
pre-activation signal at the output layer. The individual entries of ¥ will assume
real values so that 5 € IR?.

Classification

In classification problems, the output layer of the network will employ activation
functions; it is also often modified by replacing the activation functions by the
softmax layer described earlier. Regardless of how the output vector 7 is gener-
ated, there will generally be an additional step that transforms it into a second
vector v* with @ discrete entries, just like we used sign(¥) in previous chapters
to transform a scalar real-valued 7 into +1 or —1 by examining its sign. In the
neural network context, we will perform similar operations, described below, to
generate the discrete vector v* whose entries will belong, out of convenience,
either to the choices {+1,—1} or {1,0}, e.g.,

F(h) e R ———=  ~*(h) e {+1,-119

(real output) (discrete output)

(65.35)
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The choice of which discrete values to use, {+1,—1} or {1,0}, is usually dic-
tated by the type of the activation function used. For instance, note that the
sigmoid function in Table 65.1 generates values in the range (0, 1), while the
hyperbolic tangent function generates values in the range (—1,1). Therefore, for
classification problems, we would:

(i) Employ the discrete values {1,0} when the sigmoid function is used. We
can, for instance, obtain these discrete values by performing the following
transformation on the entries of the output vector 5 € R%:

{ if 7(q) > 1/2, set v*(q)
if 3(q) < 1/2, set v*(q)

1
0 (65.36)

forgq=1,2,...,Q.

(ii) Employ the discrete values {+1,—1} when the hyperbolic tangent function
is used. We can obtain these discrete values by performing the following
transformation on the entries of the output vector 5 € IR%:

7(g) =sign(3(@), ¢=12....Q (65.37)

We can exploit the vector nature of {7,7*} to solve two types of classification
problems:

(a) (Multilabel classification) In some applications, one is interested in deter-
mining whether a feature vector, h, implies the presence of certain conditions
A or B or more, for example, such as checking whether an individual with
feature h is overweight or not (condition A) and smokes or not (condition B).
In cases like these, we would train a neural network to generate two labels,
i.e., a two-dimensional vector v* with individual discrete entries denoted by
+*(4) and 7" (B):

= 2 * '7* (A)

F(h) e R* = ~*(h) [ +*(B) } (65.38)
One of the labels relates to condition A and would indicate whether the con-
dition is present or not by assuming binary state values such as {+1, -1} or
{1,0}. Similarly, for v*(B). This example corresponds to a multilabel classi-
fication problem. Such problems arise, for example, when training a neural
network to solve a multitask problem such as deciding whether an image
contains instances of streets, cars, and traffic signs.

(b) (Muilticlass classification) In other applications, one is interested in classi-
fying a feature vector, h, into only one of a collection of classes. For ex-
ample, given a feature vector extracted from the image of a handwritten
digit, one would want to identify the digit (i.e., classify h into one of ten
classes: 0,1,2,...,9). We encountered multiclass classification problems of
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this type earlier in Examples 59.3.1 and 59.3.2 while discussing the one-
versus-all (OvA) and one-versus-one (OvO) strategies. These solution meth-
ods focused on reducing the multiclass classification problem into a collec-
tion of binary classifiers. In comparison, in the neural network approach,
the multiclass classification problem will be solved directly by generating a
vector-valued class variable, v* € IR® — see future Example 65.9. Each en-
try of this vector will correspond to one class. In particular, when h belongs
to some class r, the r—th entry of v* will be activated at +1, while all other
entries will be —1 (or zero, depending on which convention is used, {+1,—1}

or {1,0}).

Softmax formulation
In most multiclass classification problems, the output of the feedforward network
is a softmax layer where the entries 7(q) are generated by employing the softmax
function described before:

-1

Q
Alg) £ @ | Y @) (65.39)

q'=1

Here, the variable z(q) denotes the g—th entry of the output vector z prior to
activation. Observe that the computation of 7(gq) is now influenced by other
signals {2(¢)} from the other output neurons, and is not solely dependent on
z(q). For convenience, we will express the transformation (65.39) more succinctly
by writing

~ 2 softmax(z) (65.40)

The exponentiation and normalization in (65.39) ensure that the output vari-
ables {7(¢)} are all nonnegative and add up to one. As a result, in multiclass
classification problems, each 7(q) can be interpreted as corresponding to the like-
lihood that the feature vector h belongs to class ¢g. The label for vector h is then
selected as the class r* corresponding to the highest likelihood value

r* = argmax 7(q) (65.41)
1<q<@Q

In other words, the predicted label v* can be set to the r*—basis vector in RY:
= B col{O,...,O,l,O,...,O}, (basis vector) (65.42)

where the notation e, refers to the basis vector with the value one at location
r and zeros elsewhere. When the output of the network structure includes the
softmax transformation, the last line of the feedforward propagation recursion
(65.31) is modified as indicated below with 5 = yr, replaced by (65.40); the vector
yr does not need to be generated anymore. We continue to use the compact
description (65.30) to refer to this implementation.
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Feedforward propagation through L layers with softmax output

given feedforward network with L layers (input+output+hidden);

output layer is softmax;

start with y; = h;

repeat for/{=1,...,L —1: (65.43)
Zev1 = W]ye — 0,
Yer1 = f (2041)

end

zZ=Z]

7 = softmax(z)

CALCULATION OF GRADIENT VECTORS

Now that we have described the structure of feedforward neural networks, we can
proceed to explain how to train them, i.e., how to determine their weight matri-
ces {W;} and bias vectors {6;} to solve classification or regression problems. We
will do so in two steps. First, we will derive the famed backpropagation algorithm,
which is a popular procedure for evaluating gradient vectors. Subsequently, we
will combine this procedure with stochastic gradient approximation to arrive at
an effective training method. Due to the interconnected nature of the network,
with signals from one layer feeding into a subsequent layer, in addition to the
presence of nonlinear activation functions, it is necessary to pursue a systematic
presentation to facilitate the derivation. We focus initially on the case in which
all layers, including the output layer, employ activation functions; later, we ex-
plain the adjustments that are needed when the output layer relies on a softmax
construction.

To begin with, since we will now be dealing with feature vectors h € RM that
are indexed by a subscript n, say, h,, € RM (e.g., hy, can refer to vectors selected
from a training set or to vectors streaming in over time), we will similarly denote
the output vector 7 € IR corresponding to h,, by 7,, with the same subscript
n. We will also let z, € IR® denote the output vector prior to activation so that

Thus, consider a collection of N data pairs {v,,hn} for n = 0,1,...,N — 1,
where 7, denotes the actual discrete label vector corresponding to the n—th
feature vector h,. The objective is to train the neural network to result in an
input-output mapping h — 7 that matches reasonably well the mapping h — ~
that is reflected by the training data.
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Regularized Least-Squares Risk

We formulate initially a regularized empirical risk optimization problem of the
following form:

L—1 N-1
A . 1 ~
(W07} = argmin oY plWellg + D v —ull? (65.45)
We,0 N
{We, 0 =1 n=0
where the first term applies regularization to the sum of the squared Frobenius
norms of the weight matrices between successive layers. Recall that the squared
Frobenius norm of a matrix is the sum of the squares of its entries (i.e., it is the
squared Euclidean norm of the vectorized form of the matrix):

ng ne+1

2
4
IWelz = 323 [wl) (65.46)

i=1 j=1

Therefore, the regularization term is in effect adding the squares of all com-
bination weights in the network. As already explained in Sec. 51.2, regulariza-
tion helps avoid overfitting and improves the generalization ability of the net-
work. Other forms of regularization are possible, including ¢; —regularization (see
Prob. 65.15), as well as other risk functions (see Probs. 65.15-65.18). We will
motivate some of these alternative costs later in Sec. 65.8; their main purpose is
to avoid the slowdown in learning that arises from using (65.45).
Continuing with (65.45), we denote the regularized empirical risk by

L-1 N-1
A 1 ~
POW,0) = > pllWellp + N >l = Fnll? (65.47)
=1 n=0

where we are denoting the arguments of P(-) generically by {W, 8}; these refer to
the collection of all parameters {Wy, 6,} across all layers. The loss function that
is associated with each data point in (65.47) is seen to be (we used the letter @
to refer to loss functions in earlier chapters; we will use the calligraphic letter
Q here to avoid confusion with the number of classes () at the output of the
network):

AW, 0;7,h) 2 |y -7 (65.48)

This loss value depends on all weight and bias parameters of the network. For
simplicity, we will often drop the parameters (W, 6) and write only Q(v, h).

It is useful to note from (65.47) that regularization is not applied to the bias
vectors {f;}; these entries are embedded into the output signals {¥,}, as is
evident from (65.31). Observe further that the risk (65.47) is not quadratic in
the unknown variables {W;, 6,}. Actually, the dependency of 7,, on the variables
{W4,0,} is highly nonlinear due to the activation functions at the successive
nodes. As a result, the risk function P(W, 0) is non-convex over its parameters and
will generally have multiple local minima. We will still apply stochastic-gradient
constructions to seek a local minimizer, especially since it has been observed in
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practice, through extensive experimentation, that the training algorithm works
well despite the nonlinear and non-convex nature of the risk function.

In order to implement iterative procedures for “minimizing” P(W,0), we need
to evaluate the gradients of P(W, ) relative to the individual entries of {W,, 6,},
i.e., we need to evaluate quantities of the form:

OP(W,0) oOP(W, 0)

—2 and ——% 65.49
awff) 06,(j) ( )

for each layer ¢ and entries wg) and 0y(j). The backpropagation algorithm is the
procedure that enables us to compute these gradients in an effective manner, as

we explain in the remainder of this section.

Sensitivity Factors

To simplify the notation in this section, we drop the subscript n and reinstate
it later when it is time to list the final algorithm. The subscript is not necessary
for the gradient calculations.

We thus consider a generic feedforward neural network consisting of L layers,
including the input and output layers. We denote the vector signals at the output
layer by {z,7}, with the letter z representing the signal prior to the activation
function, i.e.,

7= f(2) (65.50)

We denote the pre- and post-activation signals at the £—th hidden layer by
{z¢,y¢}, which satisfy

ye = f(20) (65.51)

with individual entries indexed by {2¢(j), y¢(4)} for j = 1,2,...,ny. The number
of nodes in the layer is n, (which excludes the bias source). We associate with
each layer ¢ a sensitivity vector of size ny, denoted by d, € IR™ and whose
individual entries are defined as follows:
a Olly=Al> _ 99(v,h) .
= - = - 7=1,2,...,ny 65.52
050)  ~ owt) TR (0552
These factors measure how the unregularized term ||y —7||? (i.e., the loss value
Q(~, h)) varies in response to changes in the pre-activation signals, z¢(j); we show
later in (65.79) that this same quantity also measures the sensitivity to changes
in the bias coefficients. It turns out that knowledge of the sensitivity variables

Se(7)

facilitates evaluation of the partial derivatives (65.49).

We therefore examine how to compute the {J,} for all layers. We will show
that these variables satisfy a backward recursive relation that tells us how to
construct &y from knowledge of dp41. We start with the output layer for which
¢ = L. We denote its individual entries by {¥(1),...,7(Q)}. Likewise, we denote
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the pre-activation entries by {z(1),...,2(Q)}. In this way, the chain rule for
differentiation gives

LA Oy —7|?
iL(y) = T(])

2 9)ly —7)1? 97(k)
2 "FHm 0

Q .
~ oy(k)
k; 2(3(k) — (k) 20)

—~
S
=

2 2(50) = 1)) £ () (65.53)

where step (a) applies the following general chain-rule property. Assume y is
a function of several variables, {z1,22,...,2¢0}, which in turn are themselves
functions of some variable z, i.e.,

y:f('rlvx27"'7xQ)a Lq :gq(z) (6554)
Then, it holds that
Q
Jy Oy Oz ]
= = — h | 65.55
o 2 B, 02 (chain rule) ( )

Step (b) in (65.53) is because only 4(j) depends on z(j) through the relation
F(7) = f(2(j)). Consequently, using the Hadamard product notation we can
write

o = 2 —7) o f(2) (terminal sensitivity value) (65.56)

where a ® b denotes elementwise multiplication for two vectors a and b. It is im-
portant to note that the activation function whose derivative appears in (65.56)
is the one associated with the output layer of the network. If desired, we can
express the above relation in matrix-vector form by writing

dp = 2J(7—7) (65.57a)

where J is the diagonal matrix

J 2 ding{f/(=(1), S'2)s - S Q) (65.57D)

Next we evaluate §; for the earlier layers. This calculation can be carried out
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recursively by relating d, to dgy1. Indeed, note that

LA Olly =A?
_ 5 2 =51 (8
= Oz (k) 9ze(4)
ne41
0241 (k)
= 1) k)—— 65.58
I; Z+1( ) 62[(j) ( )

where the right-most term involves differentiating the output of node & in layer
£+1 relative to the (pre-activation) output of node j in the previous layer, £. The
summation in the second equality results from the chain rule of differentiation
since the entries of 4 are generally dependent on the {z;11(k)}. The two signals
ze(j) and zgy1(k) are related by the combination coefficient wjf; since

zer1(k) = f(20(5)) wj(? + terms independent of z(j) (65.59)

It follows that
ot .
8u(j) = (Z 64+1<k>w§-,2) £ (z(5))
k=1

= 1) () b (65.60)

where we used the inner product notation in the last line by using the column
vector wj(.e), which collects the combination weights emanating from node j in
layer ¢ — recall the earlier definition (65.33). In vector form, we arrive at the
following recursion for the sensitivity vector dy, which runs backward from ¢ =

L — 1 down to ¢ = 2 with the boundary condition d;, given by (65.56):

Op = f/ (Zz) ® (W455+1) (65.61)

It is again useful to note that the activation function whose derivative appears
in (65.61) is the one associated with the ¢—th layer of the network. If desired,
we can also express this relation in matrix-vector form by writing

(5[ = JeWg(Serl (65.62&)
where Jy is now the diagonal matrix
Jo 2 ding{f'(z0(1)), f'(20(2)), ... f'(2(Q)} (65.620)

We therefore arrive at the following description for the flow of sensitivity signals
backward through the network — this flow is depicted schematically in Fig. 65.9.
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Backward propagation through a network with L layers

given a feedforward network with L layers (input-+output-+hidden);

pre- and post-activation signals at output layer are (z,7);

internal pre-activation signals are {z}; (65.63)
given feature vector h € RM with label vector v E RY;

start from 0, = 2(7 — ) @ f'(2)

repeat for/{=L—1,,...,3,2:
6 = [ (20) © (Webe41)
end

For compactness of notation, we will sometimes express the backward recursion
(65.63), which starts from a terminal condition 67, and feeds it through a net-
work with L layers, activation functions f(-), and combination matrices {W,},
to generate the sensitivity factors {dy, £ =2,..., L — 1} by writing

(6} = backward(aL, f, {Z@,Wg}) (65.64)

( two hidden layers \

terminal sensitivity

04

Jo J3 output layer

\ layer 2 layer 3 J

Figure 65.9 A block diagram representation of the backward recursion (65.63) for the
same scenario shown earlier in Fig. 65.7, which involves only two hidden layers.

Example 65.1 (Terminal sensitivity factor for softmax layer) The backward recursion
(65.61) continues to be valid when the output layer of the neural network is modified
to be the softmax construction (65.39), in which case ¥ = softmax(z). The only change
will be in the terminal or boundary value, é1,, as we now explain.

If we refer to expressions (65.52) and (65.53), where the subscript n was dropped for
convenience, we have

Q ~
5u) = 3 2(30) — 1)) 21

2 =(3)

~

(65.65)



65.4.3

65.4 Calculations of Gradient Vectors 2653

where now, in view of the normalization (65.39):

k) _ { ) (k)
)

k#J (65.66)

(A= Fk)F*K), k=]

Substituting into (65.65) gives
Q
61.(3) = 2(30) —(1))30) - (Z 2(3(k) - w(k)ﬁ(k)) 3G) (65.67)
k=1

We can express this relation in a more compact form by collecting the partial derivatives
(65.66) into a @ x @ symmetric matrix:

a (k) .,
[k = 920’ hk=1,2,...,Q (65.68)
That is, for Q = 3:
1=3W)F1) A1) —F(1)7(3) .
J = -2y 1=-52)7R2)  —3R2)(3) = diag(d) — 33" (65.69)
-73)7(1) B2 1=733)A(3)

Then, we can rewrite (65.67) in the following matrix-vector product form:

5, =2J(7 — ) (65.70)

Comparing this expression with (65.56), we see that (65.70) does not depend on the
terminal derivative term f'(z).

Expressions for the Gradients

We are ready to evaluate the partial derivatives in (65.49). Following arguments
similar to the above, we note that

a”W vll2 nfj oy — 7||2 0ze41(k)
Oz11(k awg
_ 6||’Y*VH2 3Ze+1(j)
0z041(7) angf)
= 0u41(5)ye(d) (65.71)

where the second equality is because only z,41(j) depends on w . If we apply
result (65.71) to the combination matrix Wy defined earlier in (65 18), we find
that these gradient calculations lead to (where we are writing 9|y — y||>/0W5 to
refer to the resulting matrix):

03(Dy2(1)  65(2)y=(1)

I | @ 6@w | =w) @7

oWy
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in terms of the outer product between the output vector, y,, for layer £ and the
sensitivity vector, 41, for layer £ 4 1. Therefore, we can write for a generic ¢:

Ay —AI?
W — g52+1 (6573)
so that from (65.47), and after restoring the subscript n,
OP(W, ) 1= .
W = 20Wy + i nz:% y&négﬂm, (a matrix) (65.74)

In this notation, yg,, is the output vector for layer ¢ at time n.
A similar argument can be employed to compute the gradients of ||y — 7|2
relative to the bias weights, 6,(), across the layers. Thus, note that

9P(W, 9 Ollvn = Anll?
T00,() N Z 96:(1) (65.75)
so that, in a manner similar to the calculation (65.71),
ally =31 nf Olly = Al 9241 (k)
896 aZg_H k’ 395( )
_ 3”7 —AlI* 0ze41 (i)
(9Zg+1(i) 894(2)
= —0p+1(4) (65.76)

where the second equality is because only zp11(7) depends on (i), namely,
ze+1(1) = —04(i) + terms independent of 0y(7) (65.77)

If we apply result (65.76) to the bias vector 65 defined earlier in (65.21), we find
that these gradient calculations lead to (where we are writing ||y — 7||?/902 to
refer to the resulting gradient vector):

Oy —Al* _ —%s(l) (65.78)
90, —03(2)
More generally, we have
o _Al12
”’VT;” = 6011 (65.79)
so that from (65.47), and after restoring the subscript n,
OP(W, 6) 1
53'9@ Z 0r+1,n, (@ column vector) (65.80)

In summary, we arrive at the following listing for the main steps involved in com-
puting the partial derivatives in (65.49) relative to all combination matrices and
bias vectors in a feedforward network consisting of L layers. In the description
below, we reinstate the subscript n to refer to the sample index. Moreover, the
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quantities {ye n,0r.n, 2e.n} are all vectors associated with layer ¢, while {z,,7,}
are the pre- and post-activation vectors at the output layer of the network. When
the softmax construction (65.39) is employed at the output layer, we simply re-
place the boundary condition for dr,,, by (65.70).

Computation of partial derivatives for empirical risk (65.47)

given a feedforward network with L layers (input+output+hidden);
pre- and post-activation signals at output layer are (z,,7,);
internal pre- and post-activation signals are {z¢n, Yen};

given N training data samples {7y, hn};

repeat for n=0,1,...,N — 1:

(@m Zns Yo, ngn}> = forward (hn, {Wy, 92})

AR (65.81)
{81} = backward (31, f. {z0.0. We} )
end

compute for =1,2,...,L—1:

N-1

OP(W,0) 1

oW, 20We + N 7;) ye,n5zT+17n7 (e X ngq1)
oP(W, 0) 1 =

3794 = N 7;) 5€+1,n7 (WH x 1)

BACKPROPAGATION ALGORITHM

We can now use the forward and backward recursions from the previous section to
train the neural network by writing down a stochastic-gradient implementation
with step-size p > 0. In this implementation, either one randomly-selected data
point (vn, h,) may be used per iteration or a mini-batch block of size B. We
describe the implementation in the mini-batch mode. By setting B = 1, we
recover a stochastic-gradient version with one data point per iteration. Moving
forward, we will need to introduce an iteration index, m, and attach it to the
combination matrices and bias vectors since they will now be adjusted from one
iteration to the other. We will therefore write W, ,,, and 60y, for the parameter
values a iteration m.
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Mini-batch backpropagation algorithm for solving (65.45)

given a feedforward network with L layers (input+output+hidden);
pre- and post-activation signals at output layer are (z,,7,);
internal pre- and post-activation signals are {27 5, Yo };

given N training data samples {v,,h,}, n=0,1,...,N — 1;

given small step-size p > 0 and regularization parameter p > 0;
start from random initial parameters {W, _1,0, _1}.

repeat until convergence over m =0,1,2,...:

select B random data pairs {~,, hp}

(forward processing)
repeat for b=0,1,..., B —1:

y1,b:hb
repeat for /(=1,2,.... L —1:

S
2410 = Wi 1Yoy — Oom—1

Yor1p = f(zer1) 2
g (65.82)
V= Yrp
Zp = ZLp
Oy =27, —7) © f'(20)

end

(backward processing)
repeat for /=L —1,...,2,1:

s}

I
Wim =1 -2up)Wypm1 — B yz,b52+1,b

S
Il
o

o
—

OZ,WL = 9€,m—1 + 6€+1,b

SRS

b
Wem-18ei1p), €2 2,6=0,1,...,B~1

I
o

Oop = f'(20p) ©
end

/N

end
{W[, 02} — {ng“ el,m}

In the listing (65.82), we are denoting the training data and the network pa-
rameters in boldface to highlight their random nature. In contrast to (65.81), we
are also blending the backward update for the sensitivity factors into the same
loop for updating the parameters of the network for improved computational
efficiency; this is because the sensitivity factors and the network parameters are
updated one layer at a time. Clearly, if desired, we can perform multiple passes
over the data and repeat (65.82) for several epochs. The training of the algorithm
is performed until sufficient convergence is attained, which can be met by either
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training until a certain maximum number of iterations has been reached (i.e., for
m < Miter), or until the improvement in the risk function P(W, 6) is negligible,
say,

PUAWem, 0em}) — PUWem—1,0em-1})| <€ (65.83)

over two successive iterations and for some small enough € > 0. When the softmax
construction (65.39) is employed at the output layer, the only adjustment that is
needed to the algorithm is to replace the boundary condition for éy,; by (65.70),
namely,

Oy =2J(A, —,), J = diag(Fy) — 395 (65.84)

Stochastic gradient implementation

When the batch size is B = 1, the above mini-batch recursions simplify to the
listing shown in (65.87). Again, when the softmax construction is employed in
the last layer, the expression for the boundary condition 8, ,, in (65.82) would
be replaced by:

O =2J (A — Ym)s  J = diag(Fm) — YA (65.85)

In both implementations, the parameter values {W/, 0} } at the end of the train-
ing phase are used for testing purposes. For example, assuming a softmax output
layer, the predicted class r* corresponding to a feature vector h would be the
index of the highest value within 4 (whose entries have the interpretation of a
probability measure):

~ = softmax(z) (65.86a)

(q) = P(h € class q) (65.86b)

r* = argmax 7(q) (65.86¢)
1<q<Q

where z is the vector prior to the activation at the last layer of the neural network,
and which results from feeding the test feature h through the feedforward layers
after training.
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Stochastic-gradient backpropagation for solving (65.45)

given a feedforward network with L layers (input-+output+hidden);
pre- and post-activation signals at output layer are (z,,7,);
internal pre- and post-activation signals are {2¢ ,,, Y n };

given N training data samples {v,,hn}, n =0,1,..., N — 1;

given small step-size p > 0 and regularization parameter p > 0;
start from random initial parameters {W, _1,0, _1}.

repeat until convergence over m =0,1,2,...:

select one random data pair (h,,,",,)

yl,m = hm

(forward processing)
repeat for /=1,2,..., L —1:

T
Ze4t,m = Wi m_1Yem — 0rm—1 (65.87)
Yo+r1,m = f(zer1,m)

end

%m = yL,m

Zm = ZLm
0.m =2(¥m = Ym) © f'(Zm)
(backward processing)
repeat for / =L —1,...,2,1:
Wiom = (1-2up)Wym1 — Nyz,m‘sLl,m
¢ =00 m—1+ 16o41,m

Sem = [(Zem) © (Wem 18ei1m ), €22
end
end
{We*’ 02} A {Wé,mu eé,m}

Initialization

At step n = —1, it is customary to select the entries of the initial bias vector
{0¢,—1} randomly by following a Gaussian distribution with zero mean and unit
variance:

0o -1 ~Ng,(0,1n,,) (65.88)
The combination weights {wz(f)q} across the network are also selected randomly

according to a Gaussian distribution but one whose variance is adjusted in ac-
cordance with the number of nodes in layer ¢, which we denoted earlier by n,. It
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is customary to select the variance of the Gaussian distribution as
wii ~ Ny (0.1/n0) (65.89)
ij
The reason for this normalization is to limit the variation of the signals in the
subsequent layer ¢ + 1. Note, in particular, that for an arbitrary node j in layer
£+ 1, its initial pre-activation signal would be given by

ne
zep1() = Y wi_ye 1() — 8e-1()) (65.90)
=1

If we assume, for illustration purposes, that the output signals, y&_l(i), from
layer ¢, are independent and have uniform variance, 012/, it follows that the vari-
ance of zg11,-1(j), denoted by o2, will be given by

1
02 =1+Y —o = 1+o02, (with normalization) (65.91)

Without the variance scaling by 1/n, in (65.89), the above variance would instead
be given by

2

o2 = 1+mno,, (without normalization) (65.92)

which grows linearly with n,. In this case, the pre-activation signals in layer
£+ 1 will be more likely to assume larger (negative or positive) values when ny is
large, which in turn means that the activation functions will saturate. This fact
slows down the learning process in the network because small changes in internal
signals (or weights) will have little effect on the output of a saturated node and
on subsequent layers.

Other forms of initialization include selecting the weight variables by uniformly
sampling within the following ranges, where the second and third choices are
recommended when tanh and sigmoidal activation functions are used:

1 1

W, eu- =, mj (65.93a)
[ 6 6

wz('f,)q cu V6 V6 , (tanh activation) (65.93b)

_\/W+1 T’ e g

() 4V6 4V6

Vs ¥ e e + e

, (sigmoid activation)  (65.93c)

These choices are meant to facilitate the reliable flow of information in the for-
ward and backward directions in the network away from saturation to avoid the
difficulties caused by the vanishing gradient problem (discussed later in Sec. 65.8).

Example 65.2 (Early stopping procedure) Regularization reduces overfitting and im-
proves generalization. In the least-squares risk formulation described so far, and in the
cross-entropy formulation described further ahead, regularization is attained by adding
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a penalty term to the risk function. There are other more implicit ways by which reg-
ularization (i.e., improvement of the generalization ability) can be attained in order
to reduce the gap between the training error and the test error. Farly stopping is one
such procedure; it relies on the use of pocket variables and a validation test set. During
training, we split the original training data of size N into two groups: one larger group
of size Nt used exclusively for the standard training procedure, say, by means of the
stochastic gradient backpropagation algorithm, and a smaller disjoint collection of data
points of size Ny used for validation purposes (with N = Np + Ny ). Early stopping
operates as follows.

Assume we continually train the parameters {W;,0,} of a neural network and test
the learned parameters against the validation data after each iteration. It has been
observed in practice that while the training error improves with training and continues
to decrease, the same is not true for the validation error. The latter may improve
initially but will start deteriorating after some time. This suggests that rather than
train the network continually, we should stop and freeze the network parameters at
those values where the validation error was the smallest. These parameter values are
likely to lead to better generalization. We use pocket variables to keep track of these
specific parameters. The details of the implementation are shown in (65.94).

Early-stopping procedure for training neural networks

split the IV training samples into two disjoint sets of size (N1, Nv);

denote pocket variables by {We p,0¢5};

denote initial conditions by {Wp 1,6, -1};

set pocket variables to the initial conditions;

set initial error on validation set to a very large value, denoted by R,.

repeat for sufficient time:

run Ny iterations of the stochastic-gradient algorithm to (65.94)
update the network parameters to {We n,., 8¢~y }-

evaluate the network error, R,, on the validation set.

if Ry < R,
update Ry, < R,
set the pocket variables to {Wy p, 00} < {We,ngp, 00,85}
end
end
return {W; ., 0, ,}

Example 65.3 (Training using ADAM) Algorithm (65.87) relies on the use of stochastic-
gradient updates for {W ,,0¢m}. There are of course other methods to update the
network parameters, including the use of adaptive gradients. Here, we describe how the
updates for {W g, m, 0¢,m } should be modified if we were to employ instead the ADAM
recursions from Sec. 17.4.

Note first that the gradient matrix for the update of Wy ., at iteration m is given by

G 2 20W i1+ Ygmbis1.m (65.95)

while the gradient vector for updating 8¢ ., is given by —&¢41,m. Now, let W and
0, denote smoothed quantities that are updated as follows starting from zero initial
conditions at m = —1:

W@,rn == Bw,lWZ,mfl + (1 - /Bw,l)Génn (65963)
0¢m = B89,100,m—1 — (1 — B9,1)0041,m (65.96b)
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A typical value for the forgetting factors Buw,1,80,1 € (0,1) is 0.9. Let further S¢,m
and s, denote variance quantities associated with {W, 8,} and updated as follows

starting again from zero initial conditions for m = —1:
Stn = BuaSem—1+ (1= fu2) (Gem © Gem ) (65.97a)
St,m = Po,28,m—1+ (1 — Bo,2) (5e+1,m ® 5z+1,m) (65.97b)

where ® denotes the Hadamard (elementwise) product of two matrices or vectors. A
typical value for the forgetting factors B2, 80,2 € (0,1) is 0.999.

Let the notation A2 refer to the elementwise computation of the square-roots of the
entries of a matrix or vector argument. The ADAM updates for {W¢ m,0sm} then
take the form:

1— ﬂ7n+1

w,2

1— ﬂm+1

w,1

_ 1
Wi = W1 — i X x {Wg,m o (enwﬂlm + Sf)fm)} (65.98a)

1— m—+1

0,2 _ 1
Ot = Opmot = 13X Y {og,m o (ennm + sf;)} (65.98b)
“ Mo

where € is a small positive number to avoid division by zero, and where we are using
the symbol @ to refer to elementwise division.

Example 65.4 (Use of neural networks as autoencoders) We can use three-layer neu-
ral networks to act as “autoencoders.” The network consists of an input layer, one hidden
layer, and an output layer, and its objective would be to map the input space back onto
itself. This is achieved by constructing a feedforward network with the same number
of output nodes as input nodes, and by setting v = h:

Q=M, v=h (65.99)

If the individual entries of h happen to lie within the interval (0, 1), then the output
layer will include sigmoidal nonlinearities so that the output signals will lie within the
same interval. On the other hand, if the entries of h lie within the interval (—1,1),
then the neurons in the output layer will include hyperbolic-tangent nonlinearities. If,
however, the individual entries of h are arbitrary real numbers, then the neurons in the
output layer should not include nonlinearities. For illustration purposes, we assume the
entries of h lie within (0,1) and consider an autoencoder structure of the form shown
in Fig. 65.10 where the output neurons contain sigmoidal nonlinearities.

Now, by applying the training algorithm in any of its forms, e.g., in the stochastic-
gradient form (65.87) or in the mini-batch form (65.82), to a collection of N feature
vectors h, using v, = h,, we end up with an unsupervised learning procedure that
trains the network to learn how to map h, onto itself (i.e., it learns how to recreate the
input data). This situation is illustrated in Fig. 65.10, which shows an autoencoder fed
by h. The hidden layer in this example has three nodes. If we denote their outputs by

{y2(1), y2(2), y2(3)} (65.100)

then the network will be mapping these three signals through the output layer back
into a good approximation for the five entries of the input data, h. The step of gener-
ating the outputs in the hidden layer amounts to a form of data compression since it
generates three hidden signals that are sufficient to reproduce the five input signals.

Recall that we are denoting the post-activation output vector of the hidden layer by
y2 € IR"2, the weight matrix between the input layer and the hidden layer by Wi €
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Figure 65.10 An autoencoder with a single hidden layer. The network is trained to
map the feature vectors back to themselves using, for example, either the
stochastic-gradient algorithm (65.87) or the mini-batch implementation (65.82) .

RM*"2 and the bias vector feeding into the hidden layer by 6;. Then, using these
symbols, the auto-encoder effectively determines a representation y2 for h of the form:

y2 = f(W{h—6), (encoding) (65.101)

where f(-) denotes the activation function. Moreover, since the autoencoder is trained

to recreate h, then 7 = h and we find that the representation y2 is mapped back to the
original feature vector by using

h = f(Wayz—0), (decoding) (65.102)

in terms of the bias vector, 02, for the output layer and the weight matrix Wy € IR"2*M
between the hidden layer and the output layer. We refer to these two transformations
as “encoding” and “decoding” steps, respectively. In some implementations, the Welght
matrices of the encoder and decoder sections are tied together by setting Wo = Wy —
see Prob. 65.16.

Autoencoders provide a useful structure to encode data, i.e., to learn a compressed
representation for the data and to perform dimensionality reduction. The reduced rep-
resentation will generally extract the most significant features present in the data. For
example, if the input data happens to be a raw signal, then the autoencoder can func-
tion as a feature extraction/detection module. Compact representations of this type are
useful in reducing the possibility of overfitting in learning algorithms. This is because
the reduced features can be used to drive learning algorithms to perform classification
based on less complex models.

One can also consider designing autoencoders where the number of hidden units is
larger than the dimension of the input vector, i.e., for which ne > M. Obviously, this
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case will not lead to dimensionality reduction. However, it has been observed in practice
that such “overcomplete” representations are useful in that the features yo that they
produce can lead to reduced classification errors. In order to prevent the autoencoder
from mapping the input vector back to itself at the hidden layer (i.e., in order to prevent
the autoencoder from learning the identity mapping), a variation of the autoencoder
structure is often used, known as a “denoising’ autoencoder. Here, a fraction of the
input entries in h are randomly set to zero (possibly as many as 50% of them). The
perturbed input vector, denoted by h’, is then applied to the input of the autoencoder
while the original vector h continues to be used as the reference signal, «. By doing so,
the autoencoder ends up performing two tasks: encoding the input data and predicting
the missing entries (i.e., countering the effect of the corruption). In order to succeed
at the second task, the autoencoder ends up learning the correlations that may exist
among the entries of the input vector in order to be able to “recover” the missing data.

One can further consider autoencoder implementations that involve multiple hidden
layers, thus leading to deep autoencoder architectures. Obviously, the training of these
layered structures becomes more challenging due to the vanishing gradient problem
that we will be discussing in a future section.

Example 65.5 (Linear autoencoders and PCA) Consider a collection of N feature vec-
tors {h, € ]RM} and assume they have already been preprocessed according to pro-
cedure (57.6), i.e., each vector is centered around the ensemble mean and each entry
is scaled by the ensemble standard deviation. We continue to denote the preprocessed
features by {h,}. We introduce the sample covariance matrix

1 N-1
D T
R=— nZ:O By (65.103)

and define its eigendecomposition R=UAU T where U is M x M orthogonal and A is
diagonal with nonnegative ordered entries

AM>X>...22w >0 (65.104)

Assume we wish to reduce the dimension of the feature data to M’ < M. We retain the
leading M’ x M’ block of A and the leading M’ columns of U denoted by U; (which is
M x M'). We showed in listing (57.34) and Fig. 57.2 that the PCA implementation ad-
mits an encoder-decoder structure where the transformations frgm the original feature

space h to the reduced space h’ and back to the original space h are given by
By =Ulhn, hn=Uh, (65.105)

If we make the identification ys < h/,, Wi = Uy, and Wa = U7, we conclude that PCA
is a special case of the structure shown in Fig. 65.10 with the nonlinearities removed
and with the weight matrices tied together (since we now have Wa = W{). It should
be noted that referring to PCA as a “linear” autoencoder, which is common in the lit-
erature, is technically inaccurate because the weight matrix U; depends on the feature
data in a rather nonlinear fashion. The “linear” qualification is meant to refer to the
fact that there are no nonlinearities when PCA is represented according to Fig. 65.10.

Interestingly, it turns out that the modeling capability of the PCA construction is com-
parable to autoencoders that employ nonlinearities. To see this, we collect all feature
vectors into the N x M matrix (where N > M):

H=[ho hi ... hy-1 ], (NxM) (65.106)

and formulate the problem of seeking an approximation for H of rank M’ < M that is
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optimal in the following sense:

H 2 argmin |H — X||2, subject to rank(X) = M’ (65.107)
X

Then, we know from (57.49) that the solution is constructed as follows. We introduce
the singular value decomposition:

H=V { g ] U’ (65.108)

where V' is N x N orthogonal, U is M x M orthogonal, and ¥ is M x M. We let U
denote the leading M x M’ submatrix of U. Then, it holds that

H=HU,U' (65.109)

In other words, the optimal approximation for H is given by the PCA construction. It
involves applying U, followed by U{ to the input matrix H, as already described by
(65.105).

Example 65.6 (Graph neural network) A standing assumption in our treatment of
feedforward neural networks will be that all nodes from one layer are connected to
all nodes in the subsequent layer. There are variations, however, in the form of graph
neural networks where sparse connections are allowed. We describe one of them here
to illustrate the main idea. Consider for instance the relations:

zep1 = Wiye — 0, yer1 = f2e41) (65.110a)

which map the output vector y, for the {—th layer to the output vector y,11 for the
subsequent layer. If we use j to index the individual entries, then we can rewrite the
above relations more explicitly as

210 waf)yz )= 0e(),  yes1(d) = fze1(4)) (65.111a)

in terms of the weights {w(e)} that appear on the j—row of WET It is seen that all

ng—outputs {ye(7)} from layer ¢ contribute to the formation of each y¢4+1(7). We may
consider instead a sparse structure where only a subset of the nodes from the previous

layer contribute to y¢+1(7). For example, let N(“‘l) denote the subset of nodes from
layer £ that contribute to y¢+1(7). Then, we can replace the above expressions by writing

()= Y. wiyi) - 0:0) (65.112a)
sen(tHD
J
Yer1(5) = f(2e41(5)) (65.112b)

In this way, procedure (65.31) for propagating signals forward through the network will
need to be adjusted to (65.114).

For the backward recursions, we start from relation (65.61), which shows how to update
the sensitivity factors for two consecutive layers:

6e = f"(20) © (Webeg1) (65.113)
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Feedforward propagation: graph neural network with L layers

given a feedforward network with L layers (input+output-+hidden);
given neighborhoods {N;Hl)} for every node j in every layer £ > 1;
start with y1 = h;

repeat for/=1,...,L —1:

forj:12...,ng+1: ( "
65.11
()= Y wiye(i) — 0(h)
ien(tD)
J
Yer1(d) = f(24+1(j))
end
end
z =z
7 =yL

If we again use j to index individual entries we have

se(j) = f <§w S041(1) ) (65.115)

in terms of the weights {w§f)} that appear on the j—th row of Wy. It is seen once more
that all entries of dz+1 contribute to the formation of d,(j). Motivated by the derivation
(65.58)—(65.60), we consider a similar sparse construction and use instead

Me41

8e(4) = 1 (2e(4)) © ( > H[j € Ni“”]w](.?am(i)) (65.116)

i=1

In this way, the backward recursions appearing in procedure (65.87) to propagate signals
back through the network will need to be adjusted to (65.119). If the neighborhoods
happen to satisfy the symmetry condition:

(e+1)

jENSY = ienNY (65.117)

then we can simplify (65.116) to

8e(5) = f' (ze(5)) © < S wiPeea )) (65.118)

(1)
zeNjJrl

Other variations are possible.
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Backward propagation: graph neural network with L layers

for every pair (v, h), feed h forward through network using (65.114);
determine {z¢,y¢} across layers and output 7;

51 =27 -7) 0 '(2).

repeat for /=L —1,...,2,1:

0p < 0¢ + 1ot
for j =1,2,...,ng:
Mne41
5e(j) « f'(2(3)) @ ( Safje NEZ*I)}w§f>6z+1(z’)>, 0>2 (65.119)
i=1
end
for j =1,2,... ,n41:
for 7 € ’Ng-“'l):
wl) (1= 2pp)wly — pye(i)deia ()
end
end

DROPOUT STRATEGY

We described in Sec. 62.1 the bagging technique for enhancing the performance
of classifiers and combating overfitting. The same technique can in principle
be applied to neural networks. As explained in that section, bagging is based
on the idea of training multiple networks, by sampling from the same dataset,
and on combining the classification decisions, e.g., by taking a majority vote.
In order to ensure variability across the networks, the training data for each
network is obtained by sampling from the original dataset with replacement.
While the bagging procedure is justified for simple network architectures, it can
nevertheless become expensive for networks with many hidden layers that require
training a large number of combination weights and offset coefficients. One useful
alternative to reduce overfitting and provide a form of regularization is to employ
the dropout method.

We refer to the mini-batch implementation (65.82), which trains a network
with L layers. Each iteration m involves feeding a batch of B randomly-selected
data points {7, hs} through the network and adjusting its parameters from
{Wem=1,00m—-1} to {Wem,0em}. Dropout is based on the idea that during
each iteration m, only a random fraction of the connections in the network are
retained and their parameters adjusted. The thinning operation is achieved by
switching a good portion of the nodes into sleeping mode where nodes are turned
off with probability p (usually, p is close to 1/2 for internal nodes and close to
0.1 for the input nodes). When a node is turned off, it does not feed any signals
into subsequent layers and its incoming and outgoing combination weights and
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bias coefficient are frozen and not adjusted during the iteration. The other active
nodes in the network participate in the training and operate as if the sleeping
nodes do not exist. The ultimate effect is that the size of the original network
is scaled down by p (e.g., halved when p = 1/2). Only the combination weights
and bias coefficients of the active nodes are adjusted by the backpropagation
algorithm (65.82). This situation is illustrated in Fig 65.11.

layer ¢+ 1

Figure 65.11 A succession of three layers where node 2 in layer £ is turned off at
random. The dashed lines arriving at this node from the preceding layer £ — 1, and
also leaving from it towards layer ¢ + 1, represent the weighting and bias coefficients
that will be frozen and not adjusted by the training algorithm. These coefficients
correspond to one column in W/, one row in W, ,, and one entry in 6,_;.

Forward propagation

The training of the network proceeds as follows. During each iteration m, we
associate a Bernoulli variable with each node in a generic layer £: it is equal to
zero with probability p, and one with probability 1 — p,. The variable will be
zero when the node is turned off. We collect the Bernoulli variables for layer ¢
into a vector ap € {0,1}™ and denote it by writing

ay 2 Bernoulli(pg, n¢) (65.120)

This notation means that a, is a vector of dimension n, x 1 and its entries are
Bernoulli variables, each with success probability 1—py. Then, during the forward
propagation of signals through the feedforward network by means of algorithm
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(65.31), the expression for z,11 will be modified to:
zep1 = W( (ye © ar) — b, (65.121)

where the Hadamard product is used to annihilate the output signals from sleep-
ing nodes. During normal operation of the forward step, the quantities {ys, z¢+1}
in this expression will be computed for every index b within a mini-batch, while
the parameters {Wy, 0y, a,} will be the ones available at the start of iteration m,
so that we should write more explicitly:

21,0 = Wiy ey © agm) — Opm—1, b=0,1,...,B—1 (65.122)

The Bernoulli vectors {as,} only vary with m and, therefore, remain fixed for
all samples within the B—size mini-batch. In other words, the thinned network
structure remains invariant during the processing of each mini-batch of samples.

Backward propagation
During the backward step of the training algorithm, at iteration m, only the
combination weights and bias coefficients of active nodes are updated while the
combination weights and bias coefficients of sleeping nodes remain intact. For
example, in the context of Fig. 65.11, the second column of ngfl, the second
row of W;ﬁl)mil, and the second entry of 6¢_; ,,,—1 are not updated; they remain
frozen at their existing values within the new Wy ., Wi—1 m, and 0¢_1 .. At the
next iteration, m + 1, involving a new mini-batch of samples, the process is
repeated. A new collection of Bernoulli vectors {ag m1} is generated resulting
in a new thinned network. The batch of B samples is fed forward through this
network and its thinned parameters adjusted to {Wy m11,0¢m+1}, and so on.
If we repeat the derivation of the backpropagation algorithm under the dropout
condition, we arrive at listing (65.124). Again, if the softmax construction (65.39)
is employed at the output layer, then the expression for the boundary condition
01, would be replaced by

ory =2J(, — ), J =diag(v,) — e (65.123)

Observe that the recursions in the forward and backward passes are similar to
the implementation without dropout, with the main difference being the incor-
poration of the Bernoulli vector ay ,, in three locations: during the generation
of zy41, in the forward pass, and during the generation of W ,,, and d, in the
backward pass. The net effect of the dropout step is the following:

(a) During the backward pass, at the first iteration corresponding to £ = L — 1,
the columns of WI_Lm corresponding to sleeping nodes in ar_1,, (i-e., to
its zero entries) would not be updated and stay at the values in szl,mfl'

(b) For the subsequent stages ¢ = L — 2,L — 3,...,1, the columns of Wzm
corresponding to sleeping nodes in ay,, are not updated and stay at the
values in Wszl. Likewise, the rows of Wzm corresponding to sleeping
nodes in a;41,, are not updated and stay at the values in WzT,m—r In the
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same token, all entries in 6y ,,, corresponding to the sleeping nodes in a¢y 1 m
are not updated and stay at the values in 6 ,,,—1.

Mini-batch backpropagation for solving (65.45) with dropout

given a feedforward network with L layers (input-+output-+hidden);
pre- and post-activation signals at output layer are (z,,7,);
internal pre- and post-activation signals are {2z, Yr.n };

given N training data samples {v,,h,}, n=0,1,..., N —1;

given Bernoulli probabilities {p;},£{=1,2,..., L —1;

given small step-size p > 0 and regularization parameter p > 0;
start from random initial parameters {W, _1,0, _1}.

repeat until convergence over m =0,1,2,...:

select B random data pairs {~,, hp}

generate ay ,,, = Bernoulli(pg,ne), £=1,2,...,L—1

(forward processing)

repeat for b=0,1,..., B —1:

Yip = hy,

repeat for /=1,2,..., L —1
Ze+1,b = W}—,m—l(y&b © ae,m) - oé,m—l
Yor10 = f(zev1p)

end

Ny = Yrp

Zp = ZLp

O =209 — 1) © f'(20)

end

(backward processing)

repeat for /=L — 1 2,1:

g ooy Ly

i

Wé,m = (]- - QNP)WE,mfl - (yZ,b © af,m)derLb

W=
o
]
o

B—1
I
Opm =00m—1+ B ; 0410

Opp = {f/(zm) ©) (W;z,mq(szﬂ,b)} O agm, £>2, Y
end

end
{WFr, 07}« {(1 — ) Wom, (1 —py) Qe,m}

(65.124)

The convergence time of the dropout implementation is expected to be worse
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than an implementation without dropout. Once training is completed, all nodes
in the network are activated again for testing purposes without any dropout.
As indicated in the last line of the algorithm, the combination weights and bias
coeflicients for the network will be set to scaled versions of the parameter values
obtained at the end of training. If a particular node was dropped with probability
p during training, then its outgoing combination weights will need to be scaled
by 1 — p (e.g., they should be scaled by 2/3 if p = 1/3) in order to account for
the fact that these weights were determined with only a fraction of the nodes
active. By doing so, we are in effect averaging the performance of a collection
of randomly thinned networks, in a manner that mimics the bagging technique,
except that the training was performed on successive networks with a reduced
number of parameters. As a result, the possibility of overfitting is reduced since
each iteration involves training a sparse version of the network.

REGULARIZED CROSS-ENTROPY RISK

The derivations in the earlier sections illustrated the training of feedforward neu-
ral networks by minimizing the regularized least-squares empirical risk (65.47).
Other risk functions are of course possible. In this section we examine one popu-
lar scheme that is suitable for multiclass classification problems where the label
vector v is assumed to be one-hot encoded. That is, the entries of v assume bi-
nary values in {0,1} with only one entry equal to one while all other entries are
Zero:

v €{0,1}9 (65.125)

In this setting, there are @ classes and a feature vector h € IR™ can belong to
one of the classes. The corresponding label v € IR? will have the form of a basis
vector and the location of its unit entry will identify the class of h.

The output layer of the neural network will now be a softmax layer where the
entries of the output vector 7 are computed as follows:

-1
Q

() = @ [ Y7 ) (65.126)
q¢'=1

where the symbol z refers to the pre-activation signal at the last layer. The pa-
rameters {Wy, 0y} of the network will be determined by minimizing the following
regularized cross-entropy empirical risk:

N—-1 Q
. gy A .
{(wr,0;} = argmm{ ZﬂIIWeIIF—*ZZ% In (Fn(q ))}

{We,0,} n=0 ¢=1
(65.127)
where 7, is the label vector associated with the n—th feature vector h,, and 7, is
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the corresponding output vector. The loss function that is associated with each
data point in (65.127) is seen to be:

QW,0;7,h) £ = (a) In(3(q)) (65.128)

q=1

This loss value depends on all weight and bias parameters. For simplicity, we
will drop the parameters and write Q(v, h).

Example 65.7 (Binary labels) Consider the special case in which Q = 2 so that the
network has only two outputs, denoted by

y= { 2% } (65.129)

These outputs add up to one in view of the softmax calculation (65.126). The feature
vectors belong to one of two classes so that

'y:{é} or 7:[(1)} (65.130)
In this case, expression (65.127) for the empirical risk simplifies to
L Lt | N1
PW,0) £ 3 plWelp — D (3 (D IEn (1) + (1 = 3 (1) (1L = 7a(1))
=1 n=0

(65.131)

where, for each n, only one of the terms inside the rightmost summation is nonzero
since either v, (1) =0 or v,(1) = 1.

Motivation for Cross-Entropy

We already know from the result of the earlier Example 31.5 that cross-entropy
minimization is related to maximum-likelihood inference and to the minimization
of the KL divergence between a true distribution and an empirical approximation
for it. We provide further motivation for this observation here and explain how
it applies to the choice of risk function in (65.127).

Consider two probability mass functions, denoted generically by ps(z) and
s (x), for a random variable . Their cross-entropy is denoted by H(p, s) and
defined as the value:

H(p, s)

~E, log, s4(2)

= — me (z)logy s ()

- ZIP’,,(a: = z)log, Ps(x = x) (65.132)

where the sum is over the discrete realizations for «, and the notation P, (z = z)
refers to the probability that event @ = x occurs under the discrete distribution
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pz(x). Similarly, for Ps(x = ) under distribution s (z). It is straightforward to
verify that the cross-entropy is, apart from an offset value, equal to the Kullback-
Leibler divergence measure between the two distributions, namely,

H(p,s) = H(p)+ Dxw(p, ) (65.133)

in terms of the entropy of the distribution pg(z):
—> Py(x = x)log, Py(x = ) (65.134)

In this way, the cross-entropy between two distributions is effectively a measure
of how close the distributions are to each other.

To illustrate the relevance of this conclusion in the context of classification
problems, let us consider a multiclass classification scenario with @ classes where
the label vectors v € IR¥ are one-hot encoded. For example, if a feature vector
h belongs to some class r, then the r—th entry of its label vector v will be equal
to one while all other entries will be zero. Let 7 denote the output vector that is
generated by the neural network for this feature vector. Recall that the output
layer is based on a softmax calculation and, hence, we can interpret 4 as defining
a probability distribution over the class variable, denoted by

Ps(r=q)=7(q), ¢=1,2,...,Q (65.135)

Likewise, if v is the true label vector, we can use its entries to define a second
probability distribution on the same class variable, denoted by

Pp(r=q)=7(2), ¢=12,...,Q (65.136)

Since only one entry of the vector -~y is equal to one, this second distribution will be
zero everywhere except at location ¢ = r. Ideally, we would like the distribution
that results from 74 to match the distribution from ~y. The cross-entropy between
the two distributions is given by

Q
Zv ) logs 7(q) (65.137)

qg=1
This result is the reason for the form of the rightmost term in (65.127), where
the outer sum is over all training samples.

Example 65.8 (Log loss function) The rightmost term in (65.127) is often referred to
as the log-loss function. We denote it by

N—-1 Q

LogLoss 2 —— Z Z’yn )In (Yn(q)) (65.138)

anl

which in view of the above discussion has the following interpretation in terms of the
class variables:

LogLoss 2 —% Z Z I[r(hn) = q) P(r*(hn) = q) (65.139)
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Here, the indicator term I[r(h,) = ¢| is equal to one or zero depending on whether the
true label for feature h, is ¢, while the term P(r*(h,) = q) represents the probability
that the classifier will assign label ¢ to h,. The notation r(hy) and r*(hy,) refers to the
true and assigned labels for feature h,,, respectively; they both assume integer values
in the set {1,2,...,Q}.

Sensitivity Factors

We return to problem (65.127) where the objective is to minimize the risk func-
tion over the parameters {Wpy, 0,}. The derivation that follows is meant to show
that the same backpropagation algorithm from before will continue to apply,
where the only adjustment that is needed is in the value of the boundary sensi-
tivity vector.

We drop the subscript n for convenience of the derivation; we restore it in the
listing of the algorithm. As before, we associate with each layer ¢ a sensitivity
vector of size ny denoted by d, € IR™* and with entries {§,(j)} defined by

&U)Aé%ggp,jlﬂ,“mg (65.140)
in terms of the partial derivative of the loss function (65.128). We can derive a
recursive update for the vector §,. We consider first the output layer for which
£ = L. The chain rule for differentiation gives

Q
) & G - o (qlwq) ln@(q))) (65.141)
Using the fact that
(@) [ 1-3(G), a=j
92() ‘{ “AG), a#J (65.142)

we find that

Q
61.() =30 (3 1@) = 2G) = 30) = 0) (65.143)

5, =7 -~ (65.144)

Next, repeating the same arguments after (65.57b), we can similarly derive a
backward recursion for updating the sensitivity vectors as

¢ = f/ (Zg) ® (W454+1) (65.145)
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along with the same gradient expressions:

N-1

aP(W, 0) 1 .
TI/VK =2pW, + N 3:0 yz)n55+17n (65.1463.)
oP(W,0) 1~

=N ; Sei1m (65.146b)

In summary, the same backpropagation algorithm (65.82), and its dropout ver-
sion (65.124), continue to hold with the main difference being that the boundary
condition for éy, , should be replaced by

Orb =7~ Y (65.147)

Recall that this conclusion assumes a neural network with softmax construction
at the output layer, and one-hot encoded label vectors of the form ~ € {0,1}%.

When the batch size is B = 1, the mini-batch recursions (65.149) simplify to
the listing shown in (65.150). In both implementations, the parameters {W/, 6 }
at the end of the training phase are used for testing purposes. For example,
assume a new feature vector h is fed into the network and let 5 denote the
corresponding output vector. We declare the class of A to be the index that
corresponds to the largest value within 7:

r* = argmax 7v(q) (65.148)
1<q<@

For ease of reference, we collect in Table 65.2 the boundary values for the
sensitivity factor under different scenarios.

Table 65.2 List of terminal sensitivity factors for different risk functions and/or
network structure.

risk function | output layer | boundary sensitivity factor, 61,

least-squares (65.47) activation, f(-) 2(Fm — Ym) © f'(zm)
least-squares (65.47) softmax (65.39) | 2J(Fm — ¥m), J = diag(Fm) — Y Gn) "
cross-entropy (65.127) | softmax (65.39) | Fm — Ym
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Mini-batch backpropagation algorithm for solving (65.127)

given a feedforward network with L layers (input+output+hidden);
pre- and post-activation signals at output layer are (z,,7,);
internal pre- and post-activation signals are {2z ,,, Y. };

given N training data samples {v,,h,}, n=0,1,...,N — 1;

given small step-size p > 0 and regularization parameter p > 0;
start from random initial parameters {W, _1,0, _1}.

repeat until convergence over m =0,1,2,...:

select B random data pairs {~,, hp}

(forward processing)

repeat for b=0,1,..., B —1:

Yip = ho

repeat for (=1,2,.... L —1:
Zop1p = WZm_lyz,b —0pm—1
Yor1p = f(Zer1p)

end

Zp = ZLp

9, = softmax(zp)

OLb =y — Yo
end

(backward processing)
repeat for /=L —1,...,2,1:

w
L

Wiem =0 —-2up)Wipmo1 — ye,b‘s;zrﬂ,b

[vs}
Wl
o
I
o

—1

0@,7n = gf,m—l + 5Z+1,b

®I=

b
Wem-18es1p), €22,6=0,1,...,B~1

I
=}

0oy = f'(zep) ®
end

S

end
{Wg, 9;} A {W&mv aé,m}

(65.149)
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Stochastic-gradient backpropagation for solving (65.127)

given a feedforward network with L layers (input-+output+hidden);
pre- and post-activation signals at output layer are (z,,7,);
internal pre- and post-activation signals are {zsn, Yr.n };

given N training data samples {y,,h,}, n=0,1,..., N —1;

given small step-size p > 0 and regularization parameter p > 0;
start from random initial parameters {W, _1,0, _1}.

repeat until convergence over m =0,1,2,...:

select one random data pair (R, 7,,)

y],m = hm

(forward processing)

repeat for /=1,2,...,L — 1:
Ze+1,m = W;”r,m—lyf,m - 0€7W—1

Yor1,m = f(zer1,m)
end

Zm = ZLm
¥, = softmax(z,)

6L7m = %m —Tm
(backward processing)
repeat for (=L —1,...,2,1:
Wiem = (1- QMP)WZ,M—I - Mye,m62+1,m
OZ,m = Of,m,—l + ,LL(SE—Q—l,m
6l,m = f/(zl,m) O] (W[,m—16l+1,m>7 l > 2
end

end

(65.150)

Example 65.9 (Classification of handwritten digits) We illustrate the operation of a
neural network by applying it to the problem of identifying handwritten digits using
the same MNIST dataset considered earlier in Example 52.3. The dataset consists of
60,000 labeled training samples and 10,000 labeled testing samples. Each entry in the
dataset is a 28 x28 grayscale image, which we transform into an M = 784—long feature
vector, h,. Each pixel in the image and, therefore, each entry in h,,, assumes integer
values in the range [0, 255]. Every feature vector (or image) is assigned an integer la-
bel in the range 0-9 depending on which digit the image corresponds to. The earlier
Fig. 52.6, which is repeated here, shows randomly selected images from the training
dataset.

We pre-process the images (or the corresponding feature vectors {h,}) by scaling their
entries by 255 (so that they assume values in the range [0, 1]). We subsequently com-
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Figure 65.12 Randomly selected images from the MNIST dataset for handwritten
digits. Each image is 28 x 28 grayscale with pixels assuming integer values in the
range [0, 255].

pute the mean feature vectors for both the training and test sets. We center the scaled
feature vectors around these means in both sets. The earlier Fig. 52.7 showed randomly
selected images for the digits {0, 1} before and after processing.

We construct a neural network with a total of 4 layers: one input layer, one output layer,
and two hidden layers. The size of the input layer is n1 = 784 (which agrees with the size
of the feature vectors), while the size of the output layer is ny = 10 (which agrees with
the number of classes). The size of the hidden layers is set to na = ng = 512 neurons.
We employ a softmax layer at the output and train the network using a regularized
cross-entropy criterion with parameters

p=0.001, p=0.0001 (65.151)

We run P = 200 passes of the stochastic-gradient algorithm (65.150) over the training
data, with the data being randomly reshuffled at the start of each pass. At the end of
the training phase, we evaluate the empirical error rate over the 10,000 test samples,
as well as over the 60,000 training samples. We simulate three different scenarios where
we vary the nonlinearity at the output of the internal neurons: sigmoid, rectifier, and
tanh. We also simulate a dropout implementation with p; = 0.1 for the input layer
and p2 = p3 = 0.5 for the two hidden layers; in this last simulation, we use the
sigmoid activation function for the internal nodes and perform the same number of
200 passes over the data. The results are summarized in Table 65.3. The performance
under dropout can be improved by using a larger number of passes due to the slower
convergence in this case.

Example 65.10 (Classification of tiny color images) We again illustrate the operation
of neural networks by applying them to the problem of classifying color images into
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Table 65.3 The table lists the empirical error rates over both the test and training
samples from the MNIST dataset for three types of internal nonlinearities: sigmoid,
rectifier, and tanh. The last row in the table corresponds to a dropout
implementation using 200 passes over the data, the sigmoid activation function, and
putting 50% of the neurons in the hidden layers to sleep at each iteration.

empirical number of empirical number of
nonlinearity | test error (%) | test errors | training error (%) | training errors
sigmoid 2.18% 218 1.02% 613
tanh 1.84% 184 0.00167% 1
rectifier 1.82% 182 0.00167% 1
dropout 6.22% 622 6.25% 3752

one of ten classes using the CIFAR-10 dataset. This dataset consists of color images
that can belong to one of 10 classes: airplanes, automobiles, birds, cats, deer, dogs,
frogs, horses, ships, and trucks. Figure 65.13 shows random selections of images from
the dataset. The images in the dataset have low resolution and that is why they appear

B [ @) (=
R e IEm 1=
BN sl [ = B4
e A ]
A ] ) e

Figure 65.13 Randomly selected color images from the CIFAR-10 dataset. Each image
has 3 channels (red, green, blue) of size 32 x 32 each. The pixels in each channel
assume integer values in the range [0, 255]. The CIFAR-10 dataset is found at
http://www.cs.toronto.edu/ kriz/cifar.html.

There are 6,000 images per class for a total of 60,000 images in the dataset. There are
50,000 training images and 10,000 test images. There are 1,000 random images from
each class in the test collection of 10,000 images. The training images are divided into
5 batches of 10,000 images each. Each training batch may contain more images from
one class or another.

Each image has size 32x32 in the red, green, and color channels, which we transform
into an M = 32 x 32 x 3 = 3072—long feature vector, h,. Each pixel in the image
assumes integer values in the range [0, 255]. Each feature vector (or image) is assigned
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an integer class label in the range 0-9. We pre-process the images (or the corresponding
feature vectors {h,}) by scaling their entries by 255 (so that they assume values in the
range [0, 1]). We subsequently compute the mean feature vectors for the training and
test sets and center the scaled feature vectors in both sets around these means.

We construct a neural network with a total of 4 layers: one input layer, one output layer,
and two hidden layers. The size of the input layer is n1 = 3072 (which agrees with the
size of the feature vectors), while the size of the output layer is n4s = 10 (which agrees
with the number of classes). The size of the hidden layers is set to no = ng = 2048
neurons. We employ a softmax layer at the output of the network, and rectifier units at
the internal neurons. We train the network using a regularized cross-entropy criterion
with parameters

1=0.001, p=0.0001 (65.152)

We run a stochastic-gradient version of the backpropagation algorithm (65.82) with
mini-batches of size equal to one sample, and adjusted to the cross-entropy scenario
where the boundary condition dr is replaced by

5L,b :ﬁb — Y (65.153)

We run P = 200 passes of the stochastic-gradient algorithm (65.150) over the training
data, with the data being randomly reshuffled at the start of each pass. At the end of
the training phase, we evaluate the empirical error rate over the 10,000 test samples
and also over the 50,000 training samples. We also simulate a dropout implementation
with p; = 0.1 for the input layer and p2 = p3 = 0.5 for the two hidden layers using
now P = 300 passes over the data. The results are summarized in Table 65.4. It is seen
from the results on the test data that this is a more challenging classification problem.

Table 65.4 The table lists the empirical error rates over 10,000 test samples and
50,000 training samples from the CIFAR-10 dataset with and without dropout.

empirical number of empirical number of
setting test error (%) | test errors | training error (%) | training errors
w/ dropout 42.28% 4228 0.02% 10
with dropout 42.92% 4292 5.62% 2810

Example 65.11 (Transfer learning) Assume a neural network has been trained to per-
form a certain task A such as detecting images of cars (“car” versus “no car”). This
assumes that a large amount of training data is available so that the network can be
trained well (say, by minimizing a regularized cross-entropy empirical risk) to perform
its intended task with minimal classification error. Now assume we wish to train a sec-
ond neural network to perform another task B, which also involves classifying images,
say, detecting whether an image is showing a bird or not. This objective is different from
detecting the presence of cars. If we happen to have a sufficient amount of training data
under task B, then we could similarly train this second network to perform its task well.
However, it may be the case that while we had a large amount of data to train network
A, we may only have a limited amount of data to train network B. Transfer learning
provides one useful method to transfer the knowledge acquired from training the first
network and apply it to assist in training the second network. The approach exploits
the fact that the input data to both tasks, A and B (i.e, to both neural networks), are
of similar type: they are images of the same size. There are of course other methods
to transfer learning/knowledge from one situation to another, and we will describe one
such method later in Chapter 72 when we study meta learning. Here, we continue with
transfer learning.
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Figure 65.14 The top part shows the neural network for solving task A; it consists of 3
hidden layers. The last layer is replaced, with new parameters (W4, 64), as shown in
the lower part of the figure. These parameters are trained using the data {y(n), ya,n}
for task B.

The main idea is to replace the last output layer of network A by a new weight matrix

and a new bias vector, and to retrain only these last-layer parameters, while keeping the

weights and biases from all prior layers fixed at the values obtained during the training
of network A. The main reason why this approach works reasonably well is because the
earlier layers from network A have been well trained to identify many low-level features

(such as edges, texture) that continue to be useful for task B. It is generally the last

layer that is responsible for performing the final step of prediction or classification in

a network. We can therefore limit our training for network B by re-training the weight

matrix and bias vector for this last layer using the data {v(n),ys,n} from network B.

Some variations are possible:

(a) We can use the training data available for task B to train the last layer only, while
keeping the weights and bias vectors of all prior layers fixed at the values obtained
from training network A. This is the approach described above.

(b) Once the training from step (a) is concluded, we can consider fine-tuning all weight
and bias vector parameters across all layers by using the training data from task
B. That is, we can retrain all parameters starting from their current values as
initial conditions.

(¢c) Under step (a), we can consider replacing the last layer of network A by two or
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more layers and retrain these using the data from task B.

The situation under option (a) is illustrated in Fig. 65.14 for a network A with three
hidden layers shown in the top part of the figure. The new weight matrix and bias vector
of the last layer are denoted by (W4, 04) and shown in the lower part of the figure. The
hidden layers of network B continue to be the same as those trained under network A.
Fixing the parameters of these earlier layers, we can feed the training data {y(n), hn}
under task B and generate realizations {ya4,, } for the vector y4 shown in network B. We
are then faced with the problem of training a single-layer neural network: its training
data are {y(n),ya,»} and its output are {7¥(1),7(2)} in the lower part of the figure. The
parameters to be trained are (Wa, 04).

Example 65.12 (Multitask learning) The objective in multitask learning is to design
a single neural network to identify the presence or absence of several labels at once,
as is the case with multilabel classification. For example, the purpose may be to ex-
amine an image and to indicate which of the following objects appear in the image:
a car, a street, a traffic signal, a pedestrian, or a bicycle. The network should be able
to detect the presence of several of these objects simultaneously, such as indicating
that the image shows a pedestrian, a stop sign, and a bicycle. In principle, if we have
sufficient amount of training data for each situation, then we could design 5 separate
neural networks: one for detecting cars in images, a second one for detecting streets,
a third one for detecting traffic signals, a fourth one for detecting pedestrians, and a
fifth one for detecting bicycles. Once trained, these networks would operate separately.

Multitask learning provides an alternative approach to the problem; it relies on training
a single network to detect the presence of any of the objects of interest simultaneously.
This is possible when the multiple tasks benefit from some shared low-level features
(such as edges or texture), and the amount of training data available for each task is
more or less uniform.

Assume there are T separate tasks. Motivated by expression (65.131), one way to design
a multitask neural network is to minimize an empirical risk function of the form:

P(W,0) = iP”WeH% - (65.154)
(=1
o33 (1) (1)) + (1= (1)) 1~ F (1)

where we associate a pair of outputs {7n,:(1),9n,:(2)} with each task ¢; these outputs
continue to add up to one because they are defined by applying the softmax construction
to their respective pre-activation signals, denoted by {2n,:(1), 2n,:(2)}:

R e7n.t(a)
An.t(q) = i@ poma@ 47 1,2 (65.155)
Thus, the value of 4, +(1) represents the likelihood that the n—th feature vector con-
tains the attribute that is present under task t. If desired, it is sufficient to have a
single output J,(1) associated with each task ¢. We continue with 2—dimensional la-
bel vectors to remain consistent with the assumed one-hot encoding formulation from

the earlier sections.

Figure 65.15 shows a network structure for a two-task learning problem (7' = 2); we are
dropping the iteration index n from the variables in the figure. The network consists
of three hidden layers and one output layer. The top part shows the network with
output vectors 71 € IR? for task t = 1 and 72 € IR? for task ¢t = 2 (i.e., the subscripts
here refer to the task number). The lower part of the figure shows in greater detail the
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Figure 65.15 The top part shows a neural network for solving a two-task problem with
outputs 41 for task ¢ = 1 and 75 for task ¢t = 2. The lower part of the figure shows the
forward processing of signals through the layers. In the last layer, and for added
clarity, we are splitting the weight matrix W4 and the bias vector 64 into two
components to highlight the parts that relate to the output vectors for the separate
tasks.

forward processing of signals through the layers. In the last layer, we are splitting for
illustration purposes the weight matrix W, and the bias vector 64 into two components
to highlight the parts that relate to the output vectors for the separate tasks:

25,1 Wi, 011
- = : — . 65.156
{ %52 } { Wiz } o { 04,2 ( Y
N—— —— N——
z5 :W4T 04
1 = softmax(zs,1), for task t =1 (65.156b)
72 = softmax(zs,2), for task ¢t =2 (65.156¢)

The same algorithms (65.149) or (65.150) will continue to be valid for minimizing
(65.155) with the main difference being that the boundary sensitivity factor (65.144)
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should be replaced by — see Prob. 65.21:

M—m
N T :Y\Q — Y2
Sp = col{% - %} = , (65.157)
t=1 .
AT — AT

where 7; denotes the output vector for task ¢ and «: the corresponding one-hot encoded
label; each of the vectors 4 and 7; has dimensions 2 x 1 and their entries add up to

v (i) -] e

with 3¢ (1) +7:(2) = 1 and ~:(q) € {0,1} for ¢ = 1, 2. Moreover, in a manner similar to
(65.140), the sensitivity factors for this problem are now defined by

5e(j) 2 _%@) {Z(%(1)m@(1))+(1—%(1))111(1—%(1)))} (65.159)

with the subscript n dropped for convenience of notation.

Consider an example with two tasks, T' = 2, where the network is tasked with detecting
whether images have instances of cats (task 1) and dogs (task 2) in them. For example,
a training sample h with an aggregate label vector of the form

-1
N T R (65.160)
fy 72 1 .
L 0]
corresponds to an image that has both a cat and a dog in it, while
S0
Al T 1
= | L= =|— 65.161
2= (65.161)
L 0]

corresponds to an image with only a dog in it. It may happen that not all training
samples are completely labeled. For example, some images may have been labeled in
relation to the presence of dogs in them, but without paying attention to whether cats
are present. For instance, one image in the training set may have an aggregate label
vector of the form

?

A Y1 ?
= = |— .162
b2 -4 (65.162)

0

where the labeling under task 1 is missing and represented by the question marks.
Multitask learning allows us to perform training even when some labeling information
is missing. To do so, we modify the empirical risk function and redefine it as follows:

L-1
PW,0) = > plWillp — (65.163)
=1

% Z_ Z]I[%,t € valid] (%,t(l) In(Fn,e(1)) + (1 — vn,t(1)) In(1 — %,t(l)))

where we added an indicator function that assumes the value one when the label vector
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for the t—th task has valid entries in {0,1}. In this way, in the sum over tasks, only
samples that have valid labels are taken into account. The ultimate effect on the training
algorithm is that the boundary sensitivity factor (65.157) would be replaced by

o = col{]l[fyt € valid] (ﬁt - fyt> }T (65.164)

t=1

SLOWDOWN IN LEARNING

There is one important impairment that arises in the training of feedforward
networks with a large number of hidden layers (such as deep networks; these may
include dozens or hundreds of layers and millions of parameters). The impairment
is already evident from examining the backward recursion (65.63) for updating
the sensitivity vectors, d,. The recursion shows that the flow of information
back to the earlier layers is hindered by saturation effects that cause gradient
values, which depend on 4, , through (65.74) and (65.80), to become small or
negligible.

To see this effect more clearly, consider an arbitrary combination weight, w!?

ij o
in some internal layer of index ¢. It is clear from recursion (65.87) for d; ,,, that,
starting from the terminal vector dr, ,, and propagating it backwards, the entries
in d¢,, will involve a product of derivatives of the activation function, f'(-), at

successive output signals, namely,

entries of 8¢pm o< f' (ze.m) [/ (zes1m) -+ F (zL.m) (65.165)

For the sigmoid and hyperbolic tangent functions listed in Table 65.1 it holds
that

fl(x)=f(x)(1— f(z)), 0< f'(x) <1/4, (sigmoid)
{ f'(z) =1/ cosh(x), 0< f/(x)<1, (tanh) (65.166)

such that products of a large collection of derivative values for these functions
can result in a small number, especially when some nodes are close to saturation
levels where the corresponding derivative values f’ () will be practically zero.
In general, saturation is more likely to occur at the output nodes resulting in a
small f'(zL ). This problem, known as the vanishing gradient problem, is more
pronounced for the sigmoid activation function since its derivative function is
bounded by the smaller value of 1/4 rather than one. When the entries of dg
become small, the updates for Wy ,,, and 6, ,,, in algorithm (65.87) end up evolving
slowly. Observe, in particular, that this effect is magnified for the earlier layers
of the network due to the backward nature of the recursion for dg,,: as we
move further back into the earlier layers, more terms are included in the product
(65.165) and it is more likely that it will assume small values. This means that
earlier layers in the network will learn at a relatively slower rate compared to
the subsequent layers.



65.9

65.9 Batch Normalization 2685

These observations help explain why other choices for the activation func-
tion are considered, such as the rectifier function from Table 65.1, although this
function still suffers from the problem of turning off learning for negative values
of its argument, z. Note further that when the output layer of the network is
modified to include the softmax construction (65.39), then the boundary sensi-
tivity factor, 0, m,, given by expression (65.70) does not depend on the terminal
derivative term f’(zp ., ). This fact helps ameliorate the vanishing gradient prob-
lem but does not resolve it completely because the sensitivity factors for the
earlier (hidden) layers will continue to depend on the derivatives f’(zgm).

Autoencoders and RBMs

There are several mechanisms by which the difficulties arising from the gradient
vanishing problem can be ameliorated. Some of the techniques are more suc-
cessful than others. In the next chapter, we will describe two mechanisms that
have been used in earlier implementations of neural networks: one is based on
cascading layers of autoencoders, while the other is based on cascading layers
of restricted Boltzmann machines (RBMs). This latter method was originally
devised for training deep belief networks and was subsequently observed to also
provide good initialization for feedforward networks. In the context of the gra-
dient vanishing problem, the purpose of these methods is to generate convenient
ingtial conditions for the network parameters {Wy, 6;} from which training of the
network by backpropagation can subsequently be launched. These two methods
(autoencoders and RBMs), however, are not as effective or popular today, as the
more powerful approach of batch normalization described in the next section.
Nevertheless, we will still discuss autoencoders and RBMs because these tech-
niques have independent value of their own. In particular, deep belief networks
serve as generative network models.

BATCH NORMALIZATION

The batch normalization method is effective in speeding up the convergence of
neural networks and ameliorating the degrading effect of the vanishing gradi-
ent problem. We motivate the method by referring to the mini-batch stochastic
gradient implementation (65.82) of the backpropagation algorithm. During any
iteration m, the signal that feeds forward into layer £+1 is denoted by y, , € IR"™
with b representing the index within the mini-batch of size B. This signal gen-
erates the output signal, Y, ;, for layer £ + 1 via the calculations:

Zo41p = WzT,m_ﬂ/z,b —O0pm—1 (65.167a)
Yoy = f(Ze11) (65.167b)

in terms of the parameters {W ,,_1,80¢,,—1} that scale the signals feeding into
the nonlinearities in layer £+ 1. These parameters are updated during the back-
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ward processing step and therefore evolve with the iteration index m. Recall that
Z¢4+1, and Yo p are vectors of size nyy;1 each. Likewise, W ,,_1 has dimensions
ng X ne4q while 8y ,,—1 has dimension ng4.

Now note that the statistical distribution of the signals {y, 1, z¢+1,}, in-
cluding the range of values for their individual entries, change continually during
training as we iterate over m. This change is due to two effects: (a) the change in
the parameters {W ,,,_1,0¢ -1}, which scale the signals feeding directly into
layer £ 4 1, and (b) the change in the parameters {Wy ,,_1,60¢ m—1} for the
earlier layers as well. This constant change in the statistical distribution of the
signals in the internal layers in response to changes in the values of the parame-
ters helps compound the saturation effect in the presence of nonlinearities due to
changes that occur in the dynamic range of the signals. The same change in the
statistical distribution of the data in the internal layers interferes with the task
of locating the minimizing (or optimal) parameters that the network is seeking,
which further contributes to slowdown in convergence.

Centering and Normalization

Batch normalization is based on the idea of normalizing the signals feeding into
each layer so that their range of values would fall within controlled bounds and
away from saturation effects. Doing so would enable the use of saturating nonlin-
earities without serious concerns. As we explain in the sequel, the normalization
is achieved by scaling the input signals at each layer by certain amounts, the val-
ues of which will also be learned (i.e., adjusted) by the training algorithm. Since
the values of the scaling constants will be learned by relying on batches of data,
the resulting procedure is referred to as batch normalization. It has been observed
through experimental validation that batch normalization generally eliminates
the need for dropout and speeds up the training of neural networks.

More specifically, batch normalization normalizes the individual entries of the
vectors {z,y1,} by centering them around “zero-mean” and by scaling them to
“unit-variance.” By performing these transformations at every layer, we end up
ensuring that the inputs to all layers will have a uniform “white” distribution.
One way to achieve these transformations is to employ a construction similar
to the procedure described earlier in Sec. 57.1 to normalize the feature vectors
feeding into PCA. Thus, consider a mini-batch of size B involving the signals
{ze416, b =0,1,...,B — 1} feeding into the nonlinearities in layer ¢ + 1. We
denote the individual entries of each z4y; by

ZZJF])b = Col{ze+1)b(1)7 Zg+17b(2), ey Z@+1)b(TLg+1)} (65.168)

with the index running from 1 to ng4;1. Then, each of these entries will first be
transformed as follows:

1
2y 1k — (2zgp10(k) — Zop1(k 65.169
AR U?H(k)ﬂ(ﬂ oK) = 2001 (1)) (65.169)
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where € is a small positive number to avoid division by zero, and where the mean
and variance parameters {z,41(k), 07, | (k)} are estimated from the realizations
within the batch as:

B—1
1
Zor1(k) = B Zg.;,_l’b(k), k=1,2,...,n,+1 (65.170a)
=0
| Bl )
op (k) = 5.1 Z (Ze+1,b(k) - 5@+1(/€)) (65.170b)
b=0

This construction is illustrated inside the first dotted box in Fig. 65.16 for two
successive layers ¢ and £41 with ny = 3 and nyy1 = 2 internal nodes, respectively.
Note in the figure that we have one pair of parameters {z,41(k), 07, (k)} for each
entry of zy11; moreover, this pair is the same for all vectors {z,41 4} within the

same mini-batch of data of size B, i.e., for b=0,1,...,B — 1.
4 - N

layer ¢

Yer1,6(1)

Yer1,6(2)

1

ne =3 centering and scaling and
normalization shifting

Figure 65.16 Illustration of the centering, normalization, scaling, and shifting
operations that are applied to the entries of the internal signals z,41,5.

In this way, we end up transforming the vector 2,41 = col{z,+1,(k)} at the
input of the nonlinearities for layer £+ 1 into the vector 2y, , = col{z}, ,(k)}.
We can represent this transformation in vector form. To do so, we collect the
sample means {Zy41(k)} into the vector:

T 2 col{ZgH(l), Z001(2), ..., zm(nm)} (65.171)
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which can be calculated directly from the batch vectors {zpy1,}:

Sy}

1
2@4_1 = E Z04+1,b (65172)
b

Il
o

We also collect the sample variances into the diagonal matrix

A .
S22 el +dlag{a§+1(1), al?ﬂ(neﬂ)} (65.173)

Then, it holds that

z2+1,b = Sg_+11 (Z£+1,b - 5/3+1> (65.174)

This normalization is applied to each internal layer, as well as to the input layer
(i.e., to the feature vectors {hy}).

Observe that, during the training procedure, the values of the sample mean and
variance parameters {z,41(k), 07, ,(k)} vary from one batch of data to another.
For this reason, we will smooth them out during the entire training session over
the successive mini-batches of data by means of a first-order running filter and
generate the smoothed values (with a subscript s):

Zog1,s(k) = A Zop1,s (k) + (1 = A) Ze41 (k) (65.175a)
0741,8(k) = Aofi o(k) + (1= A) o7y (k) (65.175b)

Here, the scalar A is a smoothing parameter assuming values close to one, say,
A = 0.95. These smoothed values will be used during testing. That is, following
training, the parameters of the neural network will be fixed at their learned
values, whereas the mean and variance parameters for the successive layers will
be set to the smoothed values {Z¢41,5(k), 07, ,(k)}. We can rewrite the above
recursions in vector and matrix forms as well, in terms of smoothed quantities
Zoy1,s and Spyq s

Zog1,s = AZep1,s + (1= A) Zoga (65.176a)
Sti1s = A+ (1= 574, (65.176b)

Scaling and Shifting

The normalization (65.174) is insufficient because it increases the likelihood that
the transformed entries of 2} +1,p Will assume values within the linear regime
of the nonlinearities, thus reducing the modeling power of the neural network.
To overcome this possibility, we apply a second linear transformation to the
normalized values by scaling and shifting them as follows:

zip(k) < ar(k)zpyq (k) — Oc(k) (65.177)



65.9 Batch Normalization 2689

for some scalars {a¢(k), 0¢(k)} to be learned by the training algorithm (along with
the weights {W,}). The ultimate effect is to transform 2}, , = col{z},, ,(k)}
into a new vector 27, ,, = col{zf,,,(k)}. Note again that we have a pair of
parameters {ay(k),0¢(k)} for each entry of zj,, ,, which means that we have
ne41 such pairs of parameters for zj +1,- The same parameters will be used for
all entries within the mini-batch of size B (and will only be updated from one
mini-batch to another). Note further that if we set

1/2
ag(k)<—(03+1(k)+e) Ou(k) — —z0(K) (65.178)

then the above transformation leads to 2, ,(k) = z¢41,5(k). In other words,
these particular choices for {a(k), 0¢(k)} lead us back to the original setting with
the input vector z,y1;, without any modification to the internal signals in the
network. Continuing, we collect the scaling factors {a¢(k), 0;(k)} into the matrix
and vector quantities:

ae = col{a(l),a(Q),...,a(ng_,_l)}, (nes1 x 1) (65.179)
60 = col{6(1),0(2), ... 0(nes1) }, (ne41 X 1) (65.180)
Ap = diag{ae}, (ne41 X neq1 diagonal matrix) (65.181)

We are reusing the symbol 6, here because there will be no need anymore in
the batch normalization implementation for the separate bias correction term
—0;.m—1 appearing in (65.167a). This is because the correction by the 6,(k) in
(65.177) will achieve the same effect. Using the notation (Ag,6;), the transfor-
mation from 2y, , to 27, , can be written as

Zii1p = Avzipp — 0 (65.182)

For simplicity of notation, we drop the double prime superscript and replace the
symbol 27, , , by vey1p so that, in terms of the original internal signal,

v = Ar S (Zul,b - 5@+1) — 0, (65.183)

We therefore started with an input vector z,41; and transformed it into the
vector vei1p as illustrated schematically by the diagram in Fig. 65.17.

The entries of v,41,5 are fed into the subsequent nonlinearities. We express the
batch normalization (BN) transformation (65.183) more compactly by writing

Vet1,p = BN(Z@_H’[,; ag, 0y, Sg+1, 5@4_1) (65184)

We still need to explain how the parameters {as, 0;} are determined; it turns out
that the training algorithm will need to learn the values of {W, 0y, a;} as opposed
to just {Wy, 6,}. In summary, under batch normalization, relations (65.167a)—
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scaling and

centering and |
shifting 1
|
1

1
1
1
i normalization
1
1
1

K Vot1,6 = BN(2041,65 ar, 00, Se1, Ze41) /

Figure 65.17 Schematic representation of the transformation from z,11,, to vet1,6.
The first block on the left performs centering and normalization, while the second
block performs scaling and shifting.

(65.167b) are replaced by

T
Zep1b = Wim_ 1Yy

consider the mini-batch B = {zg+17b}f:_()l of size B.
estimate the sample mean Zy;1 from B using (65.172)

estimate the sample variance Sy11 from B using (65.173) (65.185)

Vit1,hp = BN(ZzH,b; arm—1, 0om—1, Se+1, 5e+1)

Yo+1p = f(W+1,b)

where {W m—1, 0¢.m—1, @sm—1} denote the values of the parameters {Wy, 0, as}
at iteration m — 1. Although the batch normalization step BN(:) depends on the
parameters (Sgy1,Zet1), these values do not need to be learned recursively by
the training algorithm because they are computed as sample averages over the
successive mini-batches of data. Observe from (65.185) that each layer £+ 1 now
receives V41, as input rather than zp4q .

65.9.3  Training Algorithm

We derive in Appendix 65.A the algorithm for learning the parameters {Wy, 8, as}
by showing how to adjust the earlier backpropagation recursions. The result is
listing (65.187) for minimizing the regularized least-squares risk:

L—1 N-1
. o A . A 1 ~
{We.0;0} = argmin {?(vm,a) = AWl + 5 Do vn—vnnz}
{We,0¢,a¢} =1 n=0
(65.186)
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Backpropagation with batch normalization for solving (65.186).

given a feedforward network with L layers (input-+output-+hidden);
given N data samples {7y, h,} preprocessed by (57.5b);

given small step-size p > 0 and regularization parameter p > 0;
start from random initial parameters {W, _1,0, _1};

set initial parameters {a¢ 1} to zero;

set initial smoothed values {Z;41,s =0, SZ_LS =l 1

set A =0.95, ¢ = 107 (or similar values).

repeat until convergence over m =0,1,2,...:

select B random data pairs {hy,v,} and set y,; , = hy.
repeat for { =1,2,..., L —1: (forward processing)
propagate z¢41 = Wszlyz,b, b=0,1,....B—-1

_ 1 «—
2041 = E g Z0+1,b
b=0

1 B-1

oF (k) = 5— <2e+1 b(k) — 5€+1(/f))2a k=1, 1
B-1 Pt ’

Sy = €ln,,, +diag{of,(1),...,07, (ng+1)}

Zogp1,s = Mog1,s + (1 — M) Zega

Slg-‘rl,s = )\Sl?+l,s ( A)Sl%+1

2y = S[Jrll Zeg1,b = Ze41

Vo1 = diaglarm—1} 254, — Oem—1

Yoy10 = f(ve+1,b)

end

set ¥, =YLy, Vb =Vrp, 00 =23, —7) O f'(vs)

repeat for { =L —1,...,2,1: (backward processing)

WZ,’m—l [wgf)m 1] Zzla"'an&j:lw"anf-‘rl
compute cl(); )( ) from (65.221) for j =1,...,np41, Vb,V

Dyym1 = diag {arm 1 (el V) (sr xnes)

;p(e) é (1 — 2,up)w(,,)

ij,m—1 ij,m—1
B 1

l V4 (+1

Ej)m = ‘ng)m 175 Z Or41,6(J)aem—1( (Z Chpr ) Yo (i )>
L =0

1
¢ =61 m—1+ 5 ; Ori1p

T
aym = AQgm—1 — /.L dlag { Z 5(.;,_1 b <Z@+1 b) }

0oy = f'(vep) © (We,m—1De,b,m—15e+1,b), > 2,V
end

end
{Wé*a 02) a;v 224-17 SZ+1} — {Wf,mv al,ma Qg m, ZlJrl.,s» SE+1,S}

(65.187)
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The description shows how to adjust the earlier mini-batch listing (65.187),
which did not include batch normalization. The listing here assumes that the
feature vectors {h,} entering the algorithm have already been centered and
normalized in the same manner used earlier for PCA in (57.5b); this step is
similar to (65.174) with minimal differences in notation.

We can extend the same batch normalization analysis to the cross-entropy for-
mulation (65.127)—(65.126) and minimize its empirical risk over the augmented
parameters {Wy, 6;, as}. The same algorithm will continue to hold with the only
modification being the boundary condition for the sensitivity factor. Specifically,
expression (65.226) would be replaced by

Oy = b — Y, (for cross-entropy risk) (65.188)

Once the neural network is trained, we freeze the coefficients {Wy, 6, as}, and
replace the parameters {z,11(k), 07, ,(k)} by the smoothed versions denoted by
{Ze11.5(k), 07, ,(k)} and computed via (65.175a)—(65.175b).

COMMENTARIES AND DISCUSSION

Perceptron and neural networks. We explained in the concluding remarks of Chap-
ter 60 that the Perceptron rule was introduced and implemented into a hardware unit
in 1957 by the American psychologist Frank Rosenblatt (1928-1971). Rosenblatt
(1957,1958,1962) showed that his Perceptron rule converges to a separating hyperplane
if one exists and promoted its potential. Soon thereafter, Minsky and Papert (1969)
published a textbook in which they highlighted the modeling limitations of Perceptrons
such as their inability to emulate certain logical functions including the XOR function.
However, it was realized soon thereafter that networks of Perceptron units are able
to implement any logical function of binary inputs. This is because the single Percep-
tron neuron can implement the NAND gate defined in Table 65.5, and NAND gates
are known to be universal building blocks for logical functions — see Prob. 60.3. An
overview of the history of Perceptron and early developments of the theory of learning
and neural networks can be found in the texts by Rosenblatt (1962), Nilsson (1965),
and Duda and Hart (1973), as well as in more recent texts by Siu, Roychowdhury, and
Kailath (1995), Haykin (1999, 2009), Duda, Hart, and Stork (2000), Theodoridis and
Koutroumbas (2008), and Theodoridis (2015), and in the overview article by Widrow
and Lehr (1990).

Table 65.5 Input-output mapping of the NAND logical operation.
input a | input b | NAND

0 0 1
0 1 1
1 0 1
1 1 0

Universal approximation theorem. The criticism by Minsky and Papert (1969) moti-
vated a flurry of work on multi-layer neural networks, leading to a powerful universal
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approximation theorem. Consider a feedforward neural network architecture consist-
ing of a single hidden layer containing a finite number of neurons. Each neuron has a
non-constant nonlinearity that is bounded, continuous, and monotonically increasing
(such as the sigmoidal function). The output layer of the network consists of a single
linear neuron without a nonlinearity. In one of its versions, the universal approxima-
tion theorem asserts that such networks have the ability to approximate uniformly any
continuous function g(h) : RM — [01] over any compact subset § C IRM. Specifically,
if we denote by g(h) the mapping from the input feature space to the output of the
neural network, then a network exists such that

lg(h) —g(h)| < €, forall h €8 and any small € >0 (65.189)

where the neural network mapping has the form — see Fig. 65.18

K
ah) = > al) F(Tw; - 007)) (65.190)
j=1
In this notation, K is the number of neurons in the hidden layer (which we denoted
by m2 in the body of the chapter). We are also using «(j) to designate the weight
that scales the signal generated by the j—th neuron in the hidden layer and feeding
into the output node; these scalars correspond to the notation wﬁ) used in the body
of the chapter. We are further using w; to refer to the weight vector that aggregates
the factors that scale the feature entries into the j—th neuron in the hidden layer; the
entries of w; correspond to the j—th row in the weight matrix W1 in the notation
used in the body of the chapter. Moreover, the offset parameter 6(j) corresponds to
the scalars 61(j) used to denote the offset feeding from the first layer into the j—th
neuron in the second layer.

ﬂnpuﬂayer hidden layer \

+1
0(1)
02)
w1
O\
. & 7O~ a(1)
\ h a(h) = Y al) £ (hTw; - 009))
] .
2HS® T =
output node
ws o(3)
L A

N o -

Figure 65.18 Graphical representation of the approximation model (65.190) with
K = 3 neurons in the hidden layer for illustration purposes. The output node is a
simple linear combiner without an activation function.

The universal approximation result was established by Hecht-Nielsen (1989), Hornik,
Stinchcombe, and White (1989), Stinhcombe and White (1989), Cybenko (1989), and
Funahashi (1989) for sigmoidal activation functions and, more broadly, by Hornik,
Stinchcombe and White (1989) and Hornik (1991) for bounded, continuous, and mono-
tonically increasing activation functions. In particular, one of the results from Hornik
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(1991) affirms that multilayer feedforward networks can approximate any continuous
function on compact subsets of IRM to arbitrary precision “provided a sufficient num-
ber of hidden units are used and the activation functions are continuous, bounded, and
non-constant.” The arguments in these articles are quite technical for the untrained
reader relying on important results from functional analysis such as the Hahn-Banach
theorem (which allows extending a linear functional defined on a subspace to the entire
vector space) and the Riesz Representation theorem (which relates linear functionals
on a space to measure theory). The work by Leshno et al. (1993) provides a generaliza-
tion that showed, as stated in the abstract of the paper, that any “standard multilayer
feedforward network with a locally bounded piecewise continuous activation function
can approximate any, continuous function to any degree of accuracy if, and only if, the
network’s activation function is not a polynomial.” This conclusion therefore applies to
the important class of ReLLU activation functions.

Training of neural networks. The universal approximation theorem implies that the
class of feedforward networks is rich enough to model almost any arbitrary function
even with a single hidden layer. This is a remarkable conclusion and it has motivated ex-
pansive research on neural networks. When trained with the powerful backpropagation
algorithm, developed by Werbos (1974,1988,1990,1994) and rediscovered by Rumel-
hart, Hinton, and Williams (1985,1986), these networks end up providing a rich class
of learning machines with powerful variations in the form of deep learning architectures
(discussed in the next chapter), autoencoder architectures, and convolutional architec-
tures (also discussed in a future chapter). We introduced autoencoders in Example 65.4.
These structures will be used in the design of deep architectures in the next chapter.
Some of the early works on the concept of autoencoders are those by Boulard and
Kamp (1988), Hinton and Zemel (1994), and Schwenk and Milgram (1995). The first
work by Boulard and Kamp (1988) comments on the connection of PCA to autoen-
coders, as illustrated in Example 65.5. The work by Bengio et al. (2006) showed how
overcomplete autoencoders can lead to lower classification errors, while the work by
Vincent et al. (2008) introduced denoising autoencoders by masking a random subset
of the input entries for enhanced representation capabilities.

Studies on the use of different activation functions in training neural networks appear
in Jarrett et al. (2009), Glorot, Bordes, and Bengio (2011), and Goodfellow, Bengio,
and Courville (2016). It is indicated in the last reference that the hyperbolic tangent
activation function performs better than the sigmoidal function for feedforward and
convolutional neural networks, and that the rectifier function yields similar performance
to the hyperbolic tangent. Discussions on the initialization of neural networks appear
in Duda, Hart, and Stork (2000) and Glorot and Bengio (2010). One of the first studies
to explain the origin of the slowdown in learning (also known as the vanishing gradient
problem discussed in Sec. 65.8) is the work by Hochreiter (1991); see also Hochreiter
et al. (2001). An interpretation for the backpropagation procedure as the solution to a
min-max optimization problem is given by Hassibi, Sayed, and Kailath (1994a,b).

Some of the earliest discussions on the use of the cross-entropy measure in the training
of neural networks appears in Hinton (1987), Solla, Levin, and Fleisher (1988), Bourlard
and Wellekens (1989), Zhou and Austin (1989), Bridle (1990a,b), Bourlard and Morgan
(1993), Ney (1995), and Bishop (1995). Several subsequent works considered other
entropy-based measures such as Linsker (1998), Xu and Principe (1999), Principe,
Xu, and Fisher (2000), Erdogmus and Principe (2002). Useful references on the cross-
entropy design criterion are Rubinstein and Kroese (2004) and De Boer et al. (2005).
The use of the cross-entropy risk function is nowadays the preferred design methodology,
motivated in large part by its close statistical connection to the maximum-likelihood
and KL divergence formalisms as explained earlier in Example 31.5. The performance
of the networks has greatly improved with the use of such cross-entropy losses, as well
as with the employment of rectified linear units (ReLU) as shown in the works by
Jarrett et al. (2009) and Glorot, Bordes, and Bengio (2011).

For further reading on the history and impact of these developments, readers may
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consult the overviews by Bengio (2009), Bengio, Courville, and Vincent (2013), Schmid-
huber (2015), and LeCun, Bengio, and Hinton (2015), and also the pioneering works
by Rumelhart, Hinton, and Williams (1986) on backpropagation, LeCun et al. (1998)
on convolutional (deep) networks, Hinton and Salakhutdinov (2006) on autoencoders,
Hinton, Osindero, and Teh (2006) on deep belief networks, and Hinton et al. (2012b),
Krizhevsky, Sutskever, and Hinton (2012), and Srivastava et al. (2014) on the dropout
strategy.

Graph neural networks. The feedforward neural network structures discussed in the
body of the chapter assume full connectivity between nodes in adjacent layers. Sparse
connections can also be considered where neighborhoods are defined for every node. For
example, we can associate with every generic node j in layer £+ 1, a subset of the nodes
from layer ¢ and denote this set by N;Hl). Only neighbors ¢ within this neighborhood
will contribute to the formation of the signals {z¢41(7), ye+1(j)} in the subsequent layer.
We illustrated one such construction in Example 65.6 and showed how the forward and
backward passes are adjusted. There are other variations along these lines; in partic-
ular, we will discuss in Chapter 67 the related class of convolutional neural networks,
which are particularly useful to exploit graph-structured data. Some of the earliest ref-
erences on the topic of graph neural networks are the works by Scarselli et al. (2004)
and Gori, Monfardini and Scarselli (2005). For further discussions, readers may refer to
Scarselli et al. (2008), Bui, Ravi, and Ramavajjala (2018), Zhou et al. (2019), Ward et
al. (2020), Zhou, Zheng, and Huang (2020), Wu et al. (2020), and Liu and Zhou (2020).

Initialization and batch normalization. Useful references on the initialization of the
weights of neural networks are the works by Glorot and Bengio (2010), Bengio (2012),
and LeCun et al. (2012). The first two references motivate the choices (65.93b)—(65.93c)
in lieu of the popular heuristics (65.93a). The original reference on the batch normaliza-
tion procedure described in Sec. 65.9 is Ioffe and Szegedy (2015). The article motivates
the scaling and normalization steps and comments on the implementation of the al-
gorithm, although actual derivations for the training recursions are missing. It is still
not well understood why batch normalization is so effective at improving network per-
formance, e.g., see the discussion in Bjorck et al. (2018), Santurkar et al. (2018), and
Kohler et al. (2018).

Multitask and transfer learning. We encountered instances of multitask and transfer
learning in Examples 65.11 and 65.12. The main idea of multitask learning is to exploit
the presence of some low-level common features among different tasks to enable a single
trained classifier to address multiple tasks. In a similar vein, under transfer learning,
knowledge acquired by a classifier trained on a particular task can be “transfered” to
enable the same classifier to perform well on another “related” task for which there is
only a limited amount of training data. In Chapter 72 we will consider similar concepts
under the broader framework of meta learning. Some of the earlier references on multi-
task and transfer learning are the works by Suddarth and Kergosien (1990), Dietterich,
Hild, and Bakiri (1990), Suddarth and Holden (1991), and Caruana (1993,1997). Ap-
plications to image processing and language models appear, for example, in Deng et al.
(2009), Donahue et al. (2014), Yosinki et al. (2014), Dai and Le (2015), Russakovsky
et al. (2015), and Radford et al. (2018).

Gaussian process modeling. We indicated earlier that networks with a single hidden
layer satisfy a useful universal approximation property. Following Neal (1995,1996),
we can further argue that, when the number of hidden units is large, the output of
the network actually tends to a Gaussian process (recall the definition from Sec. 4.5).
Moreover, as is shown by Williams (1996), the covariance matrix of this process can
be specified in terms of the moments of the parameters of the network. This conclu-
sion is useful for analyzing the behavior and modeling capabilities of networks. More
specifically, consider the neural network shown in Fig. 65.19, and which consists of one
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hidden layer and one output node. The hidden layer is assumed to have K units (the
figure shows K = 3 units for illustration purposes only). The output node does not
involve a nonlinearity and only combines the outputs of the hidden layer. We denote
the weight vector for the output layer by w. It follows that

yo = f(W1 h—01) (65.191a)
ys =w'ys — 0 (65.191b)

where f(-) is the activation function. In this example, we select f(z) as the error function
that is associated with the standard Gaussian distribution, namely,

erf(z) 2 %/ e 2 dy (65.192)
0

This function behaves like tanh(z): its value is zero at z = 0 and it tends to £1 as
z — too. We will view the output of the network as the response to the input feature
vector, h. To make this interpretation explicit, we write g(h) instead of ys, where the
function g(-) represents the input-output mapping of the network. It is given by

g(h) = werf(Wlh — 61) — 0 (65.193)

=  ——| mapping | —p

Figure 65.19 A network with a single hidden layer and one output node. It can be
represented as inducing a mapping from the input h to the output denoted by g(h).

We model (w, 82) as independent random variables with zero mean and second-order
moments given by Ef2 = ¢} and Eww' = (02 /K)Ix, where the latter moment is
scaled by K. We also model all entries of W and 0; to be independent and identically
distributed (iid) with bounded variances. All random variables are independent of each
other. It follows from the discussion on the central limit theorem in (4.158) and (4.159)
that g(h) approaches a Gaussian distribution as K — co. We can evaluate the first
and second-order moments of this Gaussian distribution as follows. For any two feature

vectors (h,h'), we have

Eg(h) = (65.194a)

E g(h)g(h') = o2 + % E { (erf(WIh - 91))Terf(WIh’ - 01)} (65.194b)
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If we let " denote any generic row in W1 and a the corresponding entry in 0, then
we can write by virtue of the iid assumption:

Eg(h)g(h') = 0§ + 02 E {erf(rTh —a)erf(r'h' — a)}
— 024+ 02E {erf((re)The)erf((re)ThE’)} (65.195)
in terms of the extended vectors
e - e 1
T:{r}’ h:[h] (65.196)
We assume that r° is Gaussian distributed with covariance matrix X. We can then

appeal to the result of Prob. 4.11 to conclude that

2

e\T e’
E g(h)g(h') =05 + 207"’ arcsin 2(h7) h

{ V(1 +2(he)TShe) (1 + 2(her ) TShe")
We therefore conclude that, for a sufficient large number of hidden units, the input-

output mapping induced by the neural network of Fig. 65.19 generates a Gaussian
process g(h), with covariance matrix specified by (65.197) — see Prob. 65.25.

} (65.197)

CIFAR dataset. Figure 65.13 illustrates images from the CIFAR-10 dataset. It consists
of color images that can belong to one of 10 classes: airplanes, automobiles, birds, cats,
deer, dogs, frogs, horses, ships, and trucks. The dataset is described in Krizhevsky
(2009) and can be downloaded from http://www.cs.toronto.edu/ kriz/cifar.html.

PROBLEMS

65.1 Refer to the earlier Example 63.2 dealing with the XOR mapping and how
linear classifiers are unable to discriminate among the four possible feature vectors
h = col{a,b} where a = +1 and b = £1. In this problem, we verify that a three-layer
feedforward network is able to separate the four feature locations and assign them to
the correct labels. We denote the labels by v = —1 for h = {+1,4+1} and h = {—1,—-1}
and v = +1 for h = {41, -1} and h = {—1,+1}. The network is shown in Fig. 65.20:
it consists of an input layer with two input nodes, a hidden layer with two nodes and
an output layer with a single node. The activation functions in the hidden units are
ReLU, whereas the output node is linear. The network parameters are set to:

T S R )

Verify that this structure is capable of implementing the XOR mapping.

65.2 Refer to the sigmoidal and tanh functions defined in Table 65.1. Verify that
f(z) = 0.5(1 + tanh(z/2)).

65.3 Consider a feedforward neural network with tanh activation functions. Change
the signs of all weights for two successive hidden layers and their respective offset
parameters. Does the output of the network change? What do you conclude?

65.4 One generalization of the ReLU is f(z) = max{0, z} + a min{0, z}, for some
nonzero scalar . What does f(z) simplify to when o = —1? Remark. See Jarrett et al.
(2009) for an application in the context of object recognition in images.

65.5 How would the listing of the stochastic-gradient backpropagation algorithm
(65.87) change if the nodes in the output layer of the network do not include acti-
vation functions and are simply linear combiners?
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Figure 65.20 A three-layer feedforward neural network for implementing the XOR
mapping.

65.6 Assume each node in a feedforward neural network employs an individual acti-
vation function, denoted by f¢;(x) for node i in layer ¢. How would the listing of the
stochastic-gradient backpropagation algorithm (65.87) change in this case?
65.7 Assume all nodes in a feedforward neural network employ the rectifier function
listed in Table 65.1. How would the listing of the stochastic-gradient backpropagation
algorithm (65.87) change in this case?
65.8 Assume all nodes in a feedforward neural network are simply linear combiners
without activation functions. How would the listing of the stochastic-gradient back-
propagation algorithm (65.87) change in this case?
65.9 Consider a feedforward neural network classifier with L layers, including the
input and output layers. The network receives input vectors h € IR™ and generates
output vectors 7 € IR? with entries {J(g)}. The output layer employs a softmax map-
ping and the network is trained by minimizing a regularized cross-entropy empirical
risk of the same form studied in the body of the chapter. Select any output entry of in-
dex ¢ and define the sensitivity vector A\{ with entries A\](j) = 979(q)/0h(j). Define also
similar sensitivity vectors A7 for the internal layers with entries A7(j) = 07(q)/0z¢(J)-
(a) Determine the boundary condition A%.
(b) Determine a backward recursion for evaluating A{.
(¢) How does the recursion simplify when ReLu activation functions are employed in
the input and hidden layers?
65.10 Consider the same setting as Prob. 65.9. Introduce the @) x M terminal sensi-
tivity Jacobian matrix Ay, with entries [AL];; = 07(¢)/Oh(j). Introduce similar Jaco-
bian matrices A, for the internal layers with entries [A¢]i; = Oye(2)/0h(j). Verify that
A1 = Iy and derive a forward recursion to update these matrices.
65.11 Consider a feedforward neural network classifier with L layers, including the
input and output layers. The network receives input vectors h € IR™ and generates out-
put vectors 7 € IR? with entries {§(¢)}. The output layer employs a softmax mapping
and the network is trained by minimizing a regularized empirical risk of the following
generic form

L—1 N-—1
1
PW,0) = > plWellt + 5 D AW, 0:v(n), hn)
=1 n=0
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where the notation Q(-) denotes some generic loss function, which we also write more
compactly as Q(y, h) by dropping the (W, #) arguments. Define the sensitivity vector d,
with entries d¢(j) = 9Q(~, h)/dz¢(j). Derive a a backward recursion for updating the
sensitivity vectors.

65.12 Refer to expression (65.71) for the gradient of Q(v,h) = ||y — 7||* relative to

wz(? Show that the second-order derivative is given by

0% 9(y, h)
A(w'))?

ij

= yi (i) [ (ze+1(5)) (w5 "Geqn

where f”(-) denotes the second-order derivative of the activation function. Verify that
the same expression holds for cross-entropy risk minimization where Q(vy, h) is instead
given by (65.128). Verify further that for both cases, we can aggregate the second-order
gradients into the following rank-one matrix product representation:

090 = (e © )£ ) © (Wenbis) )

8W62 Y, Ye Ye 0+1 £+10¢042

65.13 Refer to expression (65.76) for the gradient of Q(v,h) = ||y — 7||? relative to
0¢(3). Show that the second-order derivative is given by

9% 9(v, h)
0(0e(4))?

where f”(-) denotes the second-order derivative of the activation function. Verify that
the same expression holds for cross-entropy risk minimization where Q(v, h) is given by
(65.128). Verify further that for both cases, we can aggregate the second-order gradients
into the following vector representation:

82 "
262 Ay, h) = [ (2e41) © (Weg10e42)

= f"(ze41(5)) (i) 6eso

65.14 Refer to listing (65.81) which provides expressions for the gradients of the em-
pirical risk relative to the weight matrices and bias vectors for the regularized empirical
risk (65.47). Use the results of Probs. 65.12 and 65.13 to derive the following expres-
sions for the second-order derivatives of the empirical risk relative to the same weight
matrices and bias vectors:

PPV, 0) e .
87‘/[142 = 2p1nznle+1 + N P (yé,n O] yé,n){f//(25+1’n) ® (W€+l5é+2,n)}
8233 W@ 1 N—-1

Verify that the same expressions hold for the cross-entropy empirical risk (65.127).
In this problem, the notation 8%a/0W? is a matrix having the same size as W; its
individual entries consist of the second-order partial derivatives of the scalar-valued
function « relative the individual entries of W:

[0%a/oW?] = &afou},
ij
65.15 Refer to the listing of the stochastic-gradient backpropagation algorithm (65.87).
Assume we replace the original regularized empirical risk (65.47) by the ¢; —regularized
form:
=, 1 V=l
PW,0) = > allvec(Wo)lr + N >l = All?
(=1 n=0
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where @ > 0 and the notation vec(A) refers to replacing a matrix A by a vector

constructed by stacking its columns on top of each other.

(a) Argue that the expression for the gradient of the above empirical risk relative to
Wy in (65.81) now becomes

2

OP(W, 0 . 1
ngz) = asign(Wy) + i . Yendiirm (g X negr)

0

where the sign function is applied to the individual entries of W,.

(b)  Conclude that the only change in the listing of the backpropagation algorithm
(65.87) is the update for Wy, ,,, which now becomes

Wim =Wim-1 — pasign(We 1) — ,u’yg,m(s}H,m

65.16 Refer to the autoencoder structure shown in Fig. 65.10 and impose the con-
straint Wy = W{. Use a regularized cross entropy criterion and derive a stochastic
gradient algorithm for training the autoencoder. Use sigmoidal units and assume the
entries of the feature vectors lie within the interval (0, 1).

65.17 Refer to the listing of the stochastic-gradient backpropagation algorithm (65.87),
which was derived for the f;—regularized empirical risk (65.47). It is known that
quadratic costs are sensitive to outliers. Consider instead the following risk function:

L—1 N-1
A 1 ~
POV.0) 2 D plWillk + 5 D Halvn —7n)
=1 n=0

in terms of the Huber loss, which was defined earlier in (11.86), namely,

1 2
asllzll®, el < A
Ha @) = { 5

Izl =, lzl > A

for some scalar parameter A > 0. The Huber loss is linear in ||z|| over the range
lz|]| > A and, therefore, it penalizes less drastically large values for ||z| in comparison
with the quadratic loss, ||z||*>. Repeat the derivation that led to the backpropagation
algorithm and determine the necessary adjustments.

65.18 Consider a feedforward neural network with a single output node; its output
signals are denoted by {z(n),7(n)}. Set all activation functions to the hyperbolic tan-
gent function from Table 65.1. Replace the regularized empirical risk (65.47) by the
following logistic risk:

L—1 N-1
1 —y(n)y(n
PW,0 2 3 plWell + Zln(1+e Y(mAC >)
=1 n=0

where y(n) = £1. Repeat the derivation that led to the backpropagation algorithm
(65.81) and determine the necessary adjustments.

65.19 Let P(W,0,a) denote a differentiable empirical risk function that is dependent
on three sets of parameters {Wy, 0, as} similar to the least-squares risk (65.186) intro-
duced during our treatment of the batch normalization procedure in Sec. 65.9. Using
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the notation of that section, establish the validity of the following expressions:

P aek) P
7 = ae . (L)
0z, q 4 (k) 0z, (k)
P 1 1 = 9P
o - z k) —z k
902, (k) 2 (02, (k) + ¢)3/2 ; 8zé+1’b(k:)( e+10(k) = Zea( ))
o 1 Bil o
0Ze11(k) (0741 (k) + €)1/ = 0z, (k)
2 ap =
=5 D (Zer1,6(k) — Zepa (k)
B o7, (k) ; * *
0P 1 o
0ze11,6(k) (‘7?4-1(]@) + 5)1/2 822+1,b(k)
2 B P 1 9P
B (ZH—I’b(k) B Zu—l(k)) 301?+1(k) + B 0Ze+1(k)
P = e,
Pan(k) = 2 57, o0y o)
P = oy

65.20 Refer to expression (65.212b) for o7, (j) and note that Z(j) also depends on
ze+1,6(7). Verify that, for any batch index b:

dopii(j) 2 N
#w(j) =3 (Ze+1,b(J) - 2e+1(3))

65.21 Establish the validity of expressions (65.157) and (65.164) for the boundary
sensitivity factors under multitask learning.

65.22 Consider two identical feedforward neural networks. The input to one net-
work consists of feature vectors {hﬁ?} € RM, while the input to the second network
consists of feature vectors {h%z)} € RM. For example, the inputs to each of the net-
works could correspond to images of signatures written by individuals on a device. The
@—dimensional outputs of the networks are similarly denoted by {'y\fll)} and {%(12)}
They are assumed to be generated by sigmoidal activation functions in the last layer.
The cosine of the angle (denoted by £) between the output vectors is used as a measure
of similarity between them:

~(D)\To(2)
3(n) = cos G0 ,7) = BT
[ 117

If the angle is small then the cosine value is close to 1, and if the angle is large then
the cosine value is close to —1. In this way, class +1 would correspond to a situation in
which the two signatures are more or less matching while the class —1 would correspond
to a situation in which one of the signatures is a forgery. We refer to the output vectors
{;%(11)’ %(12)} as embeddings for the original input images. We impose the condition that
the weight matrices and bias vectors of both networks should be the same. The resulting
architecture is related to the “Siamese” network studied later in Sec. 72.2. Develop a
backpropagation algorithm to train the parameters of the network, say, by minimizing
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an empirical risk of the form

wmin {?(W,f)) 53 pwillp + }Vzmm—a(n)f}

’ =0

where v(n) € {+1,—1} are the true labels and 7(n) is the predicted label (i.e., the
cosine output of the network). Remark. For more motivation, see the work by Bromley
et al. (1994) where Siamese networks are introduced and applied to the verification of
signatures written on pen-input tablets.

65.23 Consider the same setting of the Siamese network described in Prob. 65.22. We
incorporate two modifications. First, we compute the absolute element-wise difference
between the entries of the embedding vectors {377(11), '7)(?)} and determine the vector 7,
with entries

ra 2 col{ [7"(0) =37()| }

The vector r,, € IR? is then fed into a neural layer with a single output node employing
the sigmoidal activation function and generating the scalar output J(n):

F(n) = sigmoid(w,rn, — 0,), w, € R®, 6, € R

where (wr,0,) are the weight and bias parameters for the output layer. The value of
7 can be interpreted as a probability measure indicating which class is more likely
(matching signatures or forgery). Note that, for all practical purposes, the output layer
operates as an affine classifier, with values of w, 7, — 0, larger than 1/2 corresponding
to one class and smaller values corresponding to another class. We continue to impose
the condition that the weight matrices and bias vectors of both networks should be
the same. Develop a backpropagation algorithm to train the parameters of the Siamese
network by minimizing now a cross-entropy empirical risk of the form

L—1 1 Nt ~ ~
L min {p|wr|§ + 3 Wil = 5 3 {30 0) + (1 =2 (w) 1 - v(n))}}
where y(n) € {1,0} are the true labels with y(n) = 1 corresponding to matching
signatures and y(n) = 0 corresponding to forgery. Remark. For more motivation, see the
work by Koch el al. (2015), which applies this structure to one-shot image recognition
problems.

65.24 Consider the same setting of the Siamese network described in Prob. 65.23 with
the following modification. We concatenate the outputs of the two Siamese branches
into

4, 2 col{ig”, %f)} € R®

and feed d, into another feedforward network with L’ layers and a scalar softmax
output node denoted by F(n). This node is referred to as the “relation score” between
the two inputs {hm7 h(z)}. We denote the parameters of the third network by {Wy, 6;}.
We continue to impose the condition that the weight matrices and bias vectors of the
first two Siamese branches are the same. Develop a backpropagation algorithm to train
the parameters of this new architecture by minimizing:

L—1 L'—1 N—-1
. 2 112 1 ~ 2
EER DO LIS SRS SETRLON

where y(n) € {1,0} are the true labels with v(n) = 1 corresponding to matching
signatures and y(n) = 0 corresponding to forgery. Remark. For more motivation, see
the work by Sung et al. (2018) on relation networks in meta-learning.
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65.25 Refer to expression (65.197) for the variance of the Gaussian process at the
output of the neural network. Assume ¥ is diagonal with ¥ = diag{o?Z, 02Ix} where
the variance of a is different from the variance of the entries of r. Let A denote the
angle between vectors h and h’. Argue that when the squared norms ||h||?> and ||A’||?
are much larger than (1 4+ 202)/202, it holds that

E g(h)g(h') ~ o3 + o2 (1 — 2\/m)

DERIVATION OF BATCH NORMALIZATION ALGORITHM

We derive in this appendix algorithm (65.187) for learning the parameters of a batch-
normalized neural network. We illustrate the learning procedure by reconsidering the
regularized least-squares risk (65.45):

L-1 N-1
* gk * A . A 1 ~
{Wi.0;,ai} = argmin §P(W.0,0) = 3 plWelle + 5 D v =l
{We,0¢,a0} =1 n=0
(65.198)

where the arguments of P(-) are augmented to include the vectors {a¢}. Here, the
notation {W, 6, a} is referring to the collection of all parameters {W¢, 8¢, a¢} from across
all layers. In order to implement iterative procedures for minimizing P(W, 6, a), we need
to know how to evaluate (or approximate) the gradients of P(W, 0, a) relative to the
individual entries of {W¢, 8¢, ac}, namely, the quantities

OP(W, 6, a) OP(W, 6, a) OP(W,0,a)

1
o 0@ 0w (05:199)

for each layer ¢ and entries {w§§), 00(%), ae(7)}; the notation {0¢(7), ae(?)} refers to the
i—th entries in the vectors 6; and a, defined earlier in (65.179)—(65.180). To compute
the gradients in (65.199), we repeat the arguments from Sec. 65.4.1.

Expressions for the gradients

Since, under batch normalization, it is the signal vector denoted generically by v that
is fed into the nonlinear activation functions (rather than the original vector z), we
replace the earlier definition (65.52) for the sensitivity factor by

N el
5e(d4) = 90:0) (65.200)

where the differentiation is now relative to the j—th entry of the vector v, feeding into
layer ¢; the output of this layer is given by

Ye = f('Ug) (65.201)

The above two expressions are written for a generic internal vector v,, regardless of
its batch index (i.e., we are simply writing v, instead of v¢;). However, we will soon
restore the index within the batch for clarity and completeness.
We are ready to evaluate the partial derivatives in (65.199). To begin with, note that
OP(W, 9 a) 8||'yn — H2
_ =% Z

.202
90,(i 90,(i (65.202)
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Using a mini-batch of size B to approximate the gradient we replace (65.202) by

5‘||% 7b|| _ * 8l — VbH Oves1,6(1)
B Z 00, (i - B Z Ovgt1,p( 06,(7)

(65.183) Z 8||’yb ’Yb||

Ovgy1,p(
(65.200) _% Z Ser10(i) (65.203)
b=0

where the notation d¢+1,5(2) denotes the sensitivity factor relative to the b—th signal
vet1,6(2) in the batch. It follows that, in terms of the gradients relative to the vectors
0, and not only relative to their individual entries, we have

B—1 N B-1
Lyl =Gl e (65.204)
B b=0 06e B b=0 ’

where 41,5 is the sensitivity vector that collects the factors {de+1,5(7)}.
Next, we consider partial derivative relative to the individual entries of the parameter
vector ag. Thus, note that

OP(W,0,a) Ol —Anll® vn||
e =N Z Barli (65.205)

Using a mini-batch of size B to approximate the gradient we have

Al —Wll® %II _ 2 Al — %H Ove1,6(1)
Z BZ

=0 Da(i Ovgt1,p( Oay (i)
(65.182) 1 il
= B D Ser1,(d) Zhp1,(0) (65.206)
b=0

so that, in terms of the gradient relative to the vector a; and not only relative to their
individual entries, we can write

L= e =3l - T
= ; P dlag { > berin (z[“ ,,) } (65.207)

b=0

where the diag{-} operation applied to a matrix argument returns a column vector with
the diagonal entries of the matrix. Moreover,

S = Si (zw,b - 2e+1) (65.208)

We now compute the partial derivatives of the risk function relative to the individual
entries of the weight matrices. Thus, note that for the regularized least-squares risk:

2
g1 (65.209)

N—

PW.0,a) _, @ , L Z II% -
' Wi N

1] n=0 7,

J



65.A Derivation of Batch Normalization Algorithm 2705

Using a mini-batch of size B to approximate the rightmost term we have

3% Vo
BZ I (1,) I (65.210)

2 allv — %H Dves1,0(4) (’“ 02)11,,(j) aze+1,p<j>)

Over1p(5) 0241,,(7) \ i Ozer10(0) w0y

where the rightmost sum over the batch index p = 0,1,..., B — 1 appears in view of
the chain rule of differentiation and the fact that the variable 2y, ;,(j) depends on all
vectors z¢4+1,, within the mini-batch of size B (this dependence is through the mean
and variance variables Zy41 and Si+1 — see second equation below). To evaluate the
partial derivatives in (65.210) we first recall the relations:

ver1,6(5) = ae(f) ze41,6(5) — 0e(4) (65.211a)
Zop1p(J) = W(%ﬂ,b(j) - 2e+1(j)) (65.211b)
zo+1,p(J) = f(w@(i))wl(f) + terms independent of w((Z> (65.211c)

Yep(i) £ fluep(i) (65.211d)

as well as the definitions

] Bl
Zo+1(J) = B Zo4+1,q(4) (65.212a)
q=0
, = 9
ot () = 5 3 (4140) = 21 () (65.212b)
q=0
We conclude from the expression for J?H(j) that, for any batch indexp =0,1,...,B—1

— see Prob. 65.20:

o7 (j) +e) /2
0ze41,p(9)

1 A(oi1(j) + )
(07,1() + )32 ze11,p(4)
1
)

(65.213)

30?+1(j)

W (Zz+1,p(j) - 5/3+1(j))

Returning to the partial derivatives in (65.210) we deduce from (65.200), (65.211a),
and (65.211c) that

Ay — ) .
HWF 7b|| :5£+1,b(])

BorrCl) (65.214)

gvz+1 bgi = a(j) (65.215)
Ze+1 b

Oz 1,0 (J) _ = o () (65.216)

w o

ij
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while (65.211b) gives

011000) 12 O(e410) — 210)

= (0711(j) + )~

0ze41,p(J) Oze41,p(4)
S N Ot G) e
— 21

(Zul,b(J) Zé+l(])) 9200120) (65.217)

Note from the definition of the mean value Z¢41(j) that
8<Zé+1,b(j) - Zz+1(j)) B ~1/B, whenp#b (65.218)

0z011.0(5) - (1-1/B), whenp=%»b ’
Combining with (65.213) we get
0z} j

Ze+1,z;(]) A C(Z+1)(j) (65.219)

0ze41,p(7) b

MH)(]), whose value depends on the layer index, is computed as

where the scalar ¢
follows. Let
1

(0711(5) + )/

(1- B)e) (1~ 57 80) (01000~ 506

(when p = b)

1>

&e(7) (65.220)

—%fe(j) (1 +£2(7) (Ze+1,b(j) - 2@+1(J')) (Ze+1,p(J) - 5£+1(J)))

(when p # b)
(65.221)

Substituting into (65.209)—(65.210) we find that a batch approximation for the gradient

of the risk function relative to the individual entries w ) of the weight matrices can be
computed as follows:

w® 4 8|I% Aol
w BZ Vo

= gpw(@) Z Ses1,0(5)ae(s (Z Cz(fpﬂ H)ye,p(i )>

(65.222)

Sensitivity factors

It remains to show how to propagate the sensitivity vectors &g defined by (65.200).
We start with the output layer for which ¢ = L. We denote the vector signals at the
output layer in the b—th sample of the batch by {vr 4,7}, using the subscript b, with
the letter v representing the signal prior to the activation function, i.e.,

A = f(vrp) (65.223)

We denote the individual entries at the output layer by {75(1),...,9(Q)}. Likewise,
we denote the pre-activation entries by {vr (1),...,vrs(Q)}. We also denote the pre-
and post-activation signals at a generic /—th hidden layer by {ves,ye,s} with

yen = f (vep) (65.224)
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with individual entries indexed by {ve,5(i), ye,5(2) }. The number of nodes within hidden
layer ¢ is denoted by ng.
In this way, the chain rule for differentiation gives

Al — 3ll?
Ovrb(J)

Q ~ "
_ 25”%—%“2 Ao (k)
= (k) Ourp(y)
Q

1>

Sr,b(4)

= 320 = wlh) 5
= 2(%0) = () £ (wrs(i)) (65.225)

since only 'yb( i) depends on vr (j) through the relation 75(j) = f(vr,p(5)). Conse-
quently, using the Hadamard product notation we get

Sy = 29 — ) @ f(vLp) (65.226)

Next we evaluate d,,5 for the earlier layers. This calculation can be carried out re-
cursively by relating ;5 to d¢+1,5. Indeed, note that

, Ay —l*
P A Y 7 il 65.227
en(d) 90r30) ( )
_ WZH Alvs —Fbll* dvesr,p(k) Z * 021, (K) Dzesa (k)
8ve+1 b ) 822_‘_1 b k 8Ze+1 p(k} a’l}e,b( )
where the signals z,11,,(k) and v, (j) are related via
zer1p(k) = flonp(@) (65.228)
Therefore, when p = b, we have
0ze41,p(k) / ()
szj) = f(ves(4)) wjy, whenp="5 (65.229)

Otherwise, the above partial derivative is zero when p # b. Using this result and
expression (65.219) we find that the partial derivatives in (65.227) evaluate to

Nne+1

Seald) = 3 Sevrs(bhae) e 1) (vens) )y (65.230)
If we introduce the diagonal scaling matrix
A .
Dyp = diag {az( cl(f;_l)(l), ce az(n4+1)02€;1)(ng+1)} (65.231)
then, in vector form, we arrive at the following recursion for the sensitivity vector d¢ s,

which runs backward from ¢ = L — 1 down to £ = 2 with the boundary condition 1
given by (65.226):

6o = f" (vep) © (WeDgpboy1,p) (65.232)

The resulting algorithm with batch normalization for minimizing the regularized least-
squares risk (65.198) is listed in (65.187).
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