
64 GENERALIZATION THEORY

We described several data-based methods for inference and learning in the
previous chapters. These methods operate directly on the data to arrive at clas-
sification or inference decisions. One key challenge these methods face is that the
available training data need not provide sufficient representation for the sample
space. For example, the training data that may be available in the neighborhood
of any feature location, h ∈ IRM , will generally provide only a sparse represen-
tation (i.e., a few examples) of the sought-after classifier behavior within this
volume of space. It is for this reason that the design of reliable inference meth-
ods in higher-dimensional spaces is more challenging than normal. In particular,
algorithms that work well in lower-dimensional feature spaces need not work well
in higher-dimensional spaces. This property is a reflection of the phenomenon
known as curse of dimensionality. We examine these difficulties in this chap-
ter and arrive at some important conditions for reliable learning from a finite
amount of training data.

64.1 CURSE OF DIMENSIONALITY

To illustrate the curse of dimensionality effect, we refer to Fig. 64.1. Consider
initially a one-dimensional space, with M = 1, and assume all N training points
{hn} (which are now scalars) are randomly distributed within the interval [0, 1].
In this case, we say that we have a sample density of d = N samples/dimension.

Let us now consider the two-dimensional case, withM = 2, and let us assume,
similarly, that the N training points are randomly distributed within the square
region [0, 1] × [0, 1]. In this case, the resulting sample density will be d = N1/2

samples/dimension. This can be seen as follows. Referring to the diagram in the
left part of Fig. 64.2, we partition the horizontal and vertical dimensions of the
square region [0, 1]× [0, 1] into N1/2 sub-intervals in each direction. This division
results in a total of N smaller squares. Since the total number of training samples
is N , and since these samples are assumed to be uniformly distributed within the
region [0, 1]× [0, 1], we conclude that the expected number of samples per small
square is equal to one. Consequently, if we consider any horizontal (or vertical)
stripe, the average number of samples in that stripe will be N1/2, from which
we infer that the sample density is d = N1/2 samples/dimension. Likewise, for

Copyright 2022. All Rights Reserved. These notes cannot be copied or distributed 
in print or electronically without the written consent of Cambridge University Press 
and the author. The notes are distributed to students attending the course  EE566: 
Adaptation and Learning taught by the author at EPFL during Spring 2022. The 
notes originate from the text: A. H. Sayed, Inference and Learning from Data, Vol. 
III: Learning, Cambridge University Press, 2022.



64.1 Curse of Dimensionality 2567

 

density = N1/M samples/dimension

Figure 64.1 The plots illustrate how sample density varies with the dimension values
M = 1, 2, 3. For a generic M−dimensional space, the density is equal to N1/M

samples per dimension.

M = 3, the density will be d = N1/3 and, more generally, for M−dimensional
spaces, the density will be

d = N1/M samples/dimension (64.1)

If we were to consider a density value of d = 100 samples/dimension to be
reasonable for one-dimensional problems within the interval [0, 1], then to attain
this same density in M−dimensions, we will need a total number N of training
samples that satisfies N1/M = 100 or

N = 100M samples (64.2)

For example, forM = 20, which is a relatively small feature dimension, we would
need to collect 1040 samples (that is a huge number of samples). For M = 40,
we would need 1080 samples (that is equal to the estimated number of atoms in
the universe)! In other words, as the dimension of the feature space increases,
we will be needing substantially more training data to maintain the sampling
density uniform. Conversely, if we keep N fixed and increaseM , then the higher-
dimensional space will become more sparsely populated by the training data.

One other way to visualize this effect is to consider a small hypercube of edge
length ` < 1 embedded within the larger [0, 1]M hypercube in M−dimensional
space, whose volume is equal to one. The volume of the smaller hypercube is
`M , which is a fraction of the larger volume — see the right plot in Fig. 64.2. If
the larger [0, 1]M hypercube has N samples distributed randomly within it, then
the smaller hypercube will contain, on average, a fraction of these samples and
their number will be `MN . Observe that asM increases, this fraction of samples
will decrease in number since ` < 1 and the smaller hypercube will become less
populated.
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Figure 64.2 The plot on the left illustrates the density expression of N1/2 samples per
dimension for the case M = 2. The plot on the right illustrates that the fraction of
training samples inside the smaller cube is equal to `3N on average.

Example 64.1 (Numerical example) We illustrate the curse of dimensionality effect by
means of an example. A collection of N = 2000 feature vectors hn ∈ IRM are generated
randomly for increasing values of M . The entries of each hn are uniformly distributed
within the range [−0.5, 0.5] so that the feature vectors lie inside a hypercube of unit
edge centered at the origin. For each fixed M , we determine the distance to the closest
neighbor for each feature vector and average these distances over all N = 2000 vectors.
The numerical values listed in the table below are obtained in this manner.

Table 64.1 Average minimum distance to nearest neighbor for different M , obtained
by averaging over N = 2000 random feature vectors.

dimension, M average minimum distance

1 0.00026
10 0.46
50 2.07
100 3.28
500 8.34
1000 12.13
5000 28.10
10000 40.06

The values in the table indicate that the minimum distance between uniformly dis-
tributed feature vectors increases quickly with the feature dimension, M , so that the
feature vectors become more dispersed in higher dimensions. Actually, as the dimension
M increases, the feature vectors tend to concentrate at the corners of the unit hyper-
cube. To see this, assume we insert a sphere of radius 1/2 inside this hypercube; it is
centered at the center of the cube — see Fig. 64.3. Its volume is given by the expression

volume =

(
1

2

)M
πM/2

Γ
(
M
2

+ 1
) (64.3)
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in terms of the Gamma function, Γ(x), defined earlier in Prob. 4.3. Since the feature
vectors are uniformly distributed in space, we find that the ratio of points that lie inside
the sphere relative to the points that lie inside the hypercube is equal to the above
volume expression. Taking the limit as M → ∞, the volume expression approaches
zero (see Prob. 64.8), which confirms that most of the volume of the hypercube is at
its 2M corners and not in the center. Consequently, the feature vectors become more
spread out as M increases.
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Figure 64.3 A cube centered at the origin with unit edge length, along with a sphere
of radius 1/2 inserted inside the cube and touching its surfaces. Feature vectors are
randomly distributed inside the cube.

Implication for classification
The curse of dimensionality is problematic when one is searching for classification
mappings, γ̂(h) : IRM → IR, over the set of all possible classifiers. This is because
the problem of determining a classifier is essentially one of fitting a function
γ̂(h) to the training data {γ(n), hn} and using it to classify test features, h, for
example, by examining the sign of γ̂(h) when γ ∈ {±1}. As the feature dimension
increases, a significantly larger amount of training data will be necessary for a
better fit. The larger amount of data allows to sample the feature space more
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densely so that the behavior of the training data {γ(n), hn} is informative enough
to obtain a classifier that performs well over the entire feature space.

One important question then is whether it is possible to design a good classifier
in high-dimensional spaces. We address this question in the next section and
answer it in the affirmative under some conditions. Specifically, it will turn out
that as long as the size of the training data is large enough and the complexity
of the classification mapping that we are seeking is moderate, then we will be
able to learn reasonably well. We have two main tools at our disposal to deal
with the curse of dimensionality:

(a) (Moderate classifier complexity) One first approach is to limit the complex-
ity of the classification model by restricting the class of classifiers, as will be
done further ahead in (64.11). This is one reason why we often rely on affine
or linear classifiers (and not arbitrary classifier structures).

(b) (Dimensionality reduction) A second approach is to reduce the dimension
of the feature space. We already encountered two dimensionality-reduction
procedures in the earlier chapters in the form of the Fisher discriminant
analysis (FDA) method of Sec. 56.4 and the principal component analysis
(PCA) method of Chapter 57.

In this chapter, we focus on the first approach, which relies on reducing the
classifier complexity. In particular, we will examine the feasibility of the learning
problem and explain how it is affected by the size of the training data, N , and
by the complexity of the classifier model.

64.2 EMPIRICAL RISK MINIMIZATION

The available information for learning is limited to the training data:

{γ(n), hn, n = 0, 1, . . . , N − 1} (64.4)

where n is the running variable and γ(n) ∈ {±1} is the binary label associated
with the n−th feature vector hn ∈ IRM . There will be no prior information about
the underlying joint data distribution, fγ,h(γ, h). As such, we will rarely be able
to solve directly the problem of minimizing the actual risk, R(c), defined as the
probability of erroneous classifications:

c•(h)
∆
= argmin

c(h)

{
R(c)

∆
= P(c(h) 6= γ) = E I [c(h) 6= γ]

}
(64.5)

where c(h) : IRM → {±1} is a classifier mapping from h to the label space.
In (64.5), the minimization is over all possible choices for c(h) and the optimal
classifier is denoted by the bullet superscript, c•(h). Observe that we are writing
the risk R(c) in two equivalent forms: as the probability of misclassification and
as the expected value of the indicator function. The second form is valid because
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the indicator function is either one or zero, and it assumes the value of one when
an error occurs. In the notation used in (64.5), the variable γ refers to the true
label associated with the feature vector h.

We already know that the solution to the above problem is given by the Bayes
classifier (28.28):

c•(h) =

{
+1, when P(γ = +1|h = h) ≥ 1/2

−1, otherwise
(64.6)

This solution requires knowledge of the conditional probability distribution of γ
given h, which is rarely available beforehand. For this reason, as we already saw
in several examples in previous chapters, we will need to deviate from seeking
the optimal Bayes solution and settle on approximating it from the training data
{γ(n), hn}. One first approximation to consider is to minimize the empirical error
rate over the training data, i.e., to replace (64.5) by

cN(h)
∆
= argmin

c(h)

{
Remp(c) =

1

N

N−1∑

n=0

I [c(hn) 6= γ(n)]

}
(64.7)

where we are now counting only the misclassification errors that occur over the
training data. We are denoting the solution to this problem by cN(h) with a filled
triangle. We reserve the filled circle and triangle superscripts to minimizations
over all classifiers without limitation.

Four optimal classifiers
Problem (64.7) continues to be challenging because it does not restrict the class
of classifiers over which the minimization of Remp(c) is performed. We have seen
in several of the learning algorithms we studied before that it is customary to
limit the search space over some restricted set of classifiers, denoted by c ∈ C.
This classifier space C is sometimes called the hypothesis space in learning theory
where it is denoted by the letter H. We will refer to it instead as the classifier
space and use the notation C. One popular classifier class C, which we have
employed extensively before is the class of “linear” or affine classifiers of the
form: {

c(h) = sign
(
hTw − θ

)
, w ∈ IRM , θ ∈ IR

}
(64.8)

where the sign function is defined by

sign(x)
∆
=

{
+1, if x ≥ 0

−1, if x < 0
(64.9)

This class of classifiers is parameterized by (w, θ); each choice for (w, θ) results
in one particular classifier. Once optimal values (w?, θ?) are selected (based on
some design criterion), for any test feature vector, h, the classification decision
is based on examining the sign of hTw? − θ?. Other families of classifiers are of
course possible such as nonlinear models that are based on kernel representations
or neural network models (which are studied in future chapters).
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cN(h)

Figure 64.4 Four inter-related optimization problems. Two classifiers {c•(h), co(h)}
minimize the actual risk, while two other classifiers {cN(h), c?(h)} minimize the
empirical error rate. Moreover, two classifiers {co(h), c?(h)} restrict the search class to
c ∈ C, while two other classifiers {c•(h), cN(h)} do not. The smaller circles are meant
to indicate that the respective optimal classifiers attain smaller risk values because
they are optimizing over a larger pool of classifiers.

Whether we restrict or not the class of classifiers, and whether we minimize the
actual or empirical risk, we end up with four inter-related optimization problems
that we can compare against each other — see Fig. 64.4. We denote the minimizer
for the actual risk (64.5) by c•(h), which uses the bullet superscript notation.
This is the optimal Bayes classifier (the ideal solution that we aim for but is
generally unattainable). This solution results from minimizing the risk (or error
rate) R(c) over all possible classifier mappings and not only over any restricted
set c ∈ C, i.e.,

c•(h)
∆
= argmin

c(h)

R(c) (64.10)

Once we limit the minimization to some classifier set, say, c ∈ C, the resulting
minimizer need not agree with c•(h) anymore, and we will denote it instead by
co(h) using the circle superscript notation to refer to optimality over a restricted
search space:

co(h)
∆
= argmin

c(h)∈C
R(c) (64.11)

The larger the space C is, the closer we expect the solution co(h) to get to the
optimal Bayes classifier, c•(h). We say that the restriction c(h) ∈ C introduces a
form of inductive bias by moving the solution away from c•(h). Problem (64.11)
continues to require knowledge of the underlying joint data distribution to eval-
uate the risk R(c). In data-based learning methods, we move away from this
requirement by relying solely on the training data. In that case, we replace R(c)
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in (64.11) by the empirical error rate over the training data and denote the
solution by c?(h):

c?(h)
∆
= argmin

c(h)∈C
Remp(c) (64.12)

We reserve the star superscript notation to solutions that result from using the
training data. Thus, note that we use the circle (o) superscript to refer to op-
timality over the entire distribution of the data, and the star (?) superscript
to refer to optimality relative to the training data. In contrast to cN(h) from
(64.7), the sought-after classifiers in (64.12) are limited to the set c ∈ C. Prob-
lem (64.12) is referred to as the Empirical Risk Minimization (ERM) problem
and its solution is solely dependent on the training data. This is the problem that
the various learning procedures that we have been studying focus on and its per-
formance should generally be compared against co(h) in (64.11). Table 64.2 lists
the four classifiers discussed in this section and indicates whether they minimize
the actual or empirical risk and whether they restrict the class of classifiers.

Table 64.2 Four optimal classification problems and their respective classifiers.
actual risk, R(c) empirical risk, Remp(c)

minimization over all c c•(h) cN(h)

minimization over c ∈ C co(h) c?(h)

64.3 GENERALIZATION ABILITY

Our main focus will be on designing c?(h), namely, classifiers that minimize the
empirical error rate over some classifier set c ∈ C, and on examining how close
their actual error performance, R(c?), gets to the solution co(h) that minimizes
the actual risk. Ideally, we would like the performance of c?(h) to approximate
the performance of the optimal Bayes solution, c•(h), as N →∞. However, this
objective is generally impossible to meet. This is because the determination of
c?(h) is limited to the restricted set c ∈ C, while the determination of c•(h) is
over all possible classifier mappings.

We therefore need to formulate a more realistic expectation. Since we are
limiting the search space to some set c ∈ C (such as the space of affine classifiers),
it is the two classifiers {c?(h), co(h)} that matter the most in our discussions.
For this reason, it is the risk value of co(h) that we would like the empirical
solution c?(h) to approach and not that of c•(h). This is an attainable objective.
We will show below in (64.20) that, under some reasonable conditions, the risk
value of c?(h) can be made to approach asymptotically, as N → ∞ and with
high probability 1 − ε, the risk value of co(h). This is a remarkable conclusion,
especially since it will hold irrespective of the joint distribution of the data (γ,h).
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64.3.1 Vapnik-Chervonenkis Bound

To arrive at this important conclusion, we let VC denote the so-called Vapnik-
Chervonenkis dimension of the classifier set, C (we will not be limiting this set
to linear classifiers in the current discussion). We will define the VC dimension
later in Sec. 64.4. Here, it is sufficient to know that this nonnegative number
serves as a measure of the complexity of the classification set: more complex
classifier models will have larger VC dimension than simpler models (but this
will not necessarily translate into better learning)! For example, for the case of
affine classifiers, we will find that VC = M + 1.

The argument that leads to future conclusion (64.20) relies on a fundamental
result in statistical learning theory, known as the Vapnik-Chervonenkis bound.
The result is motivated in Probs. 64.24–64.25 under some simplifying conditions,
and is proven more generally in Appendix 64.C. To state the result, we introduce
an auxiliary parameter. Given any small ε > 0, we introduce a positive factor
δ > 0 that depends on N , VC, and ε as follows:

δ(N,VC, ε)
∆
=

√
32

N

{
VC ln

(
Ne

VC

)
+ ln

(
8

ε

)}
(64.13)

where the letter “e” refers to the base number for natural logarithms, e ≈ 2.7183.
Observe that the value of δ is independent of the distribution of the data,
fγ,h(γ, h), and that δ is small when N is large (i.e., under sufficient training
data) and VC is small (i.e., for moderately complex classification models).
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Figure 64.5 The plot illustrates the behavior of the bound δ(N,VC, ε) in (64.13) as a
function of the VC dimension for various values of N and ε = 0.01.

Figure 64.5 illustrates the behavior of δ as a function of the VC dimension
for several values of N and ε = 0.01. Observe from the plot that, for example
for N = 104, increasing the complexity of the model (i.e., increasing its VC
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dimension), enlarges the value of δ. Observe further from (64.13) that if, on the
other hand, we fix the values of VC and ε and let the size of the training set
increase, we obtain:

lim
N→∞

δ(N) = 0, for fixed VC and ε (64.14)

Now, using the value of δ defined by (64.13), it can be shown that, regardless of
the distribution of the data and for any c ∈ C, it holds with high probability of
at least (1− ε), that:

|Remp(c)−R(c)| ≤ δ, for any c ∈ C (64.15)

That is, the empirical error rate of classifier c evaluated on the training data
is δ−close to its actual error rate over the entire data distribution with high
probability 1− ε. We restate result (64.15) in another equivalent form as follows.

Theorem 64.1. (VC bound) Consider a collection of N training data points
{γ(n), hn} and let C denote the classifier space. Let Remp(c) denote the empirical
risk for any classifier c ∈ C over the training data, and let R(c) denote its actual
risk (i.e., its probability of misclassification) over the entire data distribution:

Remp(c) =
1

N

N−1∑

n=0

I [c(hn) 6= γ(n)] , R(c) = P (c(h) 6= γ) (64.16)

Introduce the parameter δ defined by (64.13) in terms of the VC dimension for
C. Then, for any small ε > 0, it holds that

P
(

sup
c∈C
|Remp(c)−R(c)| ≤ δ

)
≥ 1− ε (64.17)

where the supremum is over the classifier set. This useful result is known as the
Vapnik-Chervonenkis bound.

Proof: See Appendix 64.C.
�

The result of the theorem provides a bound on the size of the difference between
the empirical and actual risks, Remp(c) and R(c), for any finite N and for any
classifier, c ∈ C. Loosely, it states that the difference between these risk values
is relatively small (when δ is small) with high probability. The result implies
roughly that for any classifier, c ∈ C:

P
{(

error rate on
training data

)
≈
(

error rate on
test data

)}
≥ 1− ε (64.18)

where we are using the symbol a ≈ b to indicate that the values a and b are similar
up to a small difference of magnitude δ. Obviously, since the risk values Remp(c)

and R(c) amount to misclassification error rates (and are therefore probability
measures), their individual values must lie within the interval [0, 1]. This means
that the bound (64.15) is meaningful only for parameter values (N,VC, ε) that



2576 Generalization Theory

result in small δ; this typically requires large sample size,N , as already illustrated
by Fig. 64.5.

64.3.2 PAC Learning

The VC bound (64.17) is important because it implies, as we now explain, that
learning is feasible when N is large and the VC dimension is relatively small (so
that δ is small). Indeed, note that for the classifiers {c?(h), co(h)} that we are
interested in, it holds with probability at least 1− ε that:

R(c?) ≤ Remp(c?) + δ (by (64.15) applied to c?)

≤ Remp(co) + δ (since c? minimizes Remp(c))

≤ R(co) + 2δ (by (64.15) applied to co) (64.19)

That is,

P
(
R(c?)−R(co) ≤ 2δ

)
≥ 1− ε (64.20)

Recall that, by design, R(c?) ≥ R(co) since co(h) minimizes the actual risk R(c).
The above result is known as the PAC bound, where the letters PAC stand for
“Probably Approximately Accurate” learning. When δ is small (e.g., when N is
large and VC is small), the result shows that a classifier c?(h) determined from
the training data is able to produce misclassification errors over the distribution
of the data that are comparable to the best possible value, R(co), i.e., R(c?) ≈
R(co). However, we still do not know how small R(co) is. This value can be
assessed from the empirical risk, Remp(c?). Using (64.15) and (64.19), we can
verify, again with high probability 1− ε that

|Remp(c?)−R(co)| =
∣∣∣
(
Remp(c?)−R(c?)) + (R(c?)−R(co)

)∣∣∣
≤ |Remp(c?)−R(c?)| + |R(c?)−R(co)|
(a)

≤ |Remp(c?)−R(c?)| + (R(c?)−R(co))

≤ δ + 2δ (using (64.15) and (64.19))

= 3δ (64.21)

where step (a) is because co minimizes R(c) over C and hence R(c?) ≥ R(co).
Result (64.21) provides one useful way to assess R(co) (and R(c?)) through
Remp(c?); this latter value is readily obtained from the training data.

In summary, we conclude from results (64.15), (64.19), and (64.21) that, with
high probability of at least 1 − ε and for small δ, the empirical and actual risk
values (or empirical and actual error rates) for the classifiers c?(h) and co(h) are
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clustered together and satisfy the relations:

R(co) ≤ R(c?) ≤ R(co) + 2δ (64.22a)

|R(c?)−Remp(c?)| ≤ δ (64.22b)

|R(co)−Remp(c?)| ≤ 3δ (64.22c)

Figure 64.6 illustrates these relations graphically. The first relation states that
the risk of the empirical classifier, R(c?), does not exceed the optimal risk value
R(co) by more than 2δ. The second and third relations state that the empirical
risk, Remp(c?), provides a good indication of the actual risks R(c?) and R(co).

Figure 64.6 The figure illustrates relations (64.22a)–(64.22c). The first relation states
that the risk of the empirical classifier, R(c?), does not exceed the optimal risk value
R(co) by more than 2δ. The second and third relations state that the empirical risk,
Remp(c?), provides a good indication of the actual risks R(c?) and R(co).

The main conclusion from the above analysis is the following. Assume the size
of the training data, N , is large enough and the complexity of the classification
model, VC, is moderate enough such that the corresponding δ parameter from
(64.13) is sufficiently small. Assume further that we use the training data to
determine a classifier c?(h) that minimizes the empirical risk Remp(c) defined
by (64.12) over the set of classifiers, c ∈ C. If Remp(c?) is small, then the ac-
tual risk, R(c?), that corresponds to this classifier (i.e., its generalization ability,
which corresponds to the probability of misclassification on test data apart from
the training data), will also be small. We refer to the test error or error on the
test data as the generalization error. Moreover, the value of the empirical risk,
Remp(c?), will be close to the optimal value R(co). These results hold irrespective
of the distribution of the data, fγ,h(γ, h). In other words, learning from data
is feasible under these conditions. By feasible learning we therefore mean any
learning procedure that is able to satisfy the PAC property (64.20) with suffi-
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ciently small δ. The size of δ can be made small by choosing the sample size, N ,
large enough.

64.4 VC DIMENSION

We are ready to explain the meaning of the VC parameter. This so-called Vapnik-
Chervonenkis (VC) dimension of the class of classifiers C, also referred to as the
modeling capacity of C, is a measure of the complexity of C. We will use the set
of linear classifiers to illustrate this concept and subsequently extend it more
generally.

Consider a collection of K feature vectors hn in M−dimensional space. In
a binary classification setting, each of these feature vectors can be assigned to
class +1 or −1. There are 2K possibilities (also called dichotomies) for assigning
the K feature vectors over the two classes. We say that a class of classifiers C

is able to shatter the K feature vectors if every possible assignment among the
2K possibilities can be separated by a classifier from the set. We illustrate this
definition in Fig. 64.7. The figure considers K = 3 feature vectors in IR2 (i.e.,
M = 2 in this case). There are 23 = 8 possibilities for assigning these feature
vectors to the classes ±1. All eight possibilities are shown in the figure on the
left. Observe that in each of the eight assignments, we can find at least one line
that is able to separate the feature vectors into the classes ±1. We therefore
say that the three feature vectors in this example can be shattered by linear
classifiers. In contrast, the figure on the right shows four feature vectors and one
particular assignment for them that cannot be separated by linear classifiers.

Motivated by this example, we define the VC dimension for a general class of
classifiers, C, as the largest value of K for which at least one set of K feature
vectors can be found that can be shattered by C. For the class of linear classifiers
over IR2, the above example shows that K = 3. Therefore, VC = 3 when M = 2.
It is important to observe that the definition of the VC dimension is not stating
that the value of K should be such that every set of K feature vectors can be
shattered. The definition is only requiring that at least one set of K feature
vectors should exist that can be shattered.

Example 64.2 (VC dimension for a finite number of classifiers) Assume the set of clas-
sifiers (linear or otherwise) consists of a finite number, L, of possibilities denoted by
{c1, c2, . . . , cL}. In this case, the solution of the binary classification problem amounts
to selecting one classifier from this collection. Then, it is easy to verify that the VC
dimension for this set of classifiers is bounded by:

VC (L classifiers) ≤ log2(L) (64.23)

Observe how (64.23) illustrates that the VC dimension of a set C provides an indication
of how complex that set is.

Proof: If the VC dimension of the set of classifiers is denoted by VC, then this means
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Figure 64.7 The eight squares on the left show all possible assignments of the same
three feature vectors in IR2. In each case, a line exists that separates the classes ±1
from each other. We therefore say that the three feature vectors in this example can
be shattered by linear classifiers. In contrast, the figure on the right shows four
feature vectors in the same space IR2 and an assignment of classes that cannot be
separated by a linear classifier.

that we can find a set of VC feature vectors that can be shattered by the L classifiers.
This set of VC feature vectors admits 2VC possible labeling assignments. Therefore, the
size L should be at least equal this value, i.e., L ≥ 2VC, from which we obtain (64.23).

�

The next statement identifies the VC dimension of the class of affine classifiers
of the form c(h) = sign(hTw − θ), for some parameters (w, θ).

Lemma 64.1. (Affine classifiers) The VC dimension for the class of affine
classifiers over IRM is equal to M + 1, i.e.,

VC(affine classifiers over IRM ) = M + 1 (64.24)

Proof: See Appendix 64.A.
�

64.5 BIAS-VARIANCE TRADEOFF

The size of δ in (64.13) depends on the VC dimension of the classification set,
C. The particular situation illustrated in Fig. 64.5 indicates that the value of
δ becomes worse (i.e., larger) for larger VC values. This behavior seems to be
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counter-intuitive in that it suggests that using more complex models is not nec-
essarily beneficial for learning and can degrade performance (since it can increase
the probability of misclassification and lead to poor generalization).

There are at least two ways to explain this apparent dilemma. One explanation
is more intuitive and relies on the Occam razor principle, which we already
encountered in Sec. 63.2. As was indicated in Fig. 63.2, more complex models can
succeed in weaving through the training points and separating them into their
respective classes almost flawlessly. However, this “perfect” fitting that happens
during the training phase ends up modeling spurious effects and causes poor
performance over test data. In the same token, simplistic models need not fit the
training data well and can similarly lead to poor misclassification.

64.5.1 Bias-Variance Curve

The second explanation for the dilemma is more formal and relies on an impor-
tant bias-variance tradeoff that occurs in the design of optimal classifiers.

As explained earlier, we desire the optimal Bayes classifier, c•(h), but can
only work with c?(h) ∈ C, which is obtained from the training data. The risk
associated with c•(h) is denoted by R(c•), and the risk associated with c?(h) is
denoted by R(c?). This latter risk is data-dependent and, therefore, it can be
viewed as a realization for a random variable: each training dataset leads to one
value for R(c?). We use the boldface notation to emphasize this random nature
and write R(c?). Computing the expectation of R(c?) over the distribution of
the data allows us to evaluate the expected risk value for c?(h). It is instructive
to compare the difference between the optimal risk, R(c•), and the expected risk
from the training data, ER(c?). For this purpose, we note first that we can write,
by adding and subtracting R(co):

ER(c?)−R(c•) =
(
ER(c?)−R(co)

)

︸ ︷︷ ︸
estimation error (variance)

+
(
R(co)−R(c•)

)

︸ ︷︷ ︸
approximation error (bias)

(64.25)

This relation expresses the difference on the left as the sum of two components,
referred to as the estimation error (also called variance) and the approximation
error (also called bias) — see Fig. 64.8:

(a) (bias) The bias error is independent of the training data; it measures the
discrepancy in the risk value that results from restricting the classifier models
to the set C and by using co instead of c•. The richer the set C is, the smaller
the bias is expected to be.

(b) (variance) On the other hand, each training data set results in a realization
for the risk value, R(c?). These realizations are represented by the red circles
in Fig. 64.8 and they are dispersed around R(co); the dispersion arises from
the random nature of the training data. The estimation or variance error
therefore measures how far the values of R(c?) are spread around R(co).
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Figure 64.8 The bias quantity relates to the distance from R(co) to the optimal Bayes
risk value, R(c•). The variance quantity relates to the spread of R(c?) around R(co)
due to randomness in the data.

The bias and variance terms behave differently as the complexity of the clas-
sification set, C, increases. Assume, for instance, that we enlarge the class of
classifiers to C′ ⊇ C. Then, seeking the optimal classifier co over the larger set C′

can only reduce the bias component on the right-hand side of (64.25) since

min
c∈C′

R(c) ≤ min
c∈C

R(c) (64.26)

Therefore, R(co) will get closer to R(c•) and the bias term will get smaller.
On the other hand, enlarging the classifier set generally increases the variance
component because the realizations R(c?) will get dispersed farther away from
R(co), which is now smaller. Indeed, note that for a fixed N , as the complexity
of class C increases, its VC dimension and subsequently the value of δ in (64.13)
also increases. This behavior is observed in Fig. 64.5. It follows from (64.19) that
the empirical solution will tend to have risk values, R(c?), spread farther away
from R(co).

64.5.2 Overfitting and Underfitting

We conclude from the bias-variance analysis that there exists a compromise
between bias and variance. A simple model set C may result in large bias but
smaller variance. We refer to this scenario as underfitting since we would be fitting
the data rather poorly by using simple models. In contrast, a more elaborate
model set C may result in smaller bias but larger variance. We refer to this
scenario as overfitting since we are likely to be overreaching by fitting the data
more than is necessary. Combining these facts together we arrive at the bias-
variance tradeoff curve shown in Fig. 64.9 in solid color. The curve captures
the behavior of the bias and variance components as a function of the model
complexity (i.e., its VC dimension). In general, good classifiers, c?(h), would be
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ones that are close to the minimum of the curve; these are classifiers for which the
sum of both components on the right-hand side of (64.25) is the least possible.

 

bias decreases
with model complexity

variance increases
with model complexity
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Figure 64.9 Increasing the complexity of the classifier class (i.e., increasing its VC
dimension), reduces the bias but increases the variance. The behavior of the bound in
(64.19) as a function of VC is illustrated by the solid curve. The figure indicates that
there is generally an optimal VC value at which the bound (red curve) is minimized.

64.5.3 Requirements for Feasible Learning

Based on the discussion this far on the bias-variance tradeoff in (64.25) and on
the VC bound in (64.17), we conclude that a learning algorithm is effective and
able to learn well if it meets three general conditions:

(a) (Moderate classifier complexity) The classifier structure should be moder-
ately complex with a reasonable VC dimension in order to limit overfitting
and reduce the size of the variance component in (64.25).

(b) (Sufficient training data) The algorithm should be trained on a sufficient
number of data points. Usually, the value of N is chosen to be some multiple
of the VC dimension of the classifier set.

(c) (Small empirical error rate) The algorithm should result in a small empirical
error rate, Remp(c?), on the training data (i.e., it should have a relatively
small number of misclassifications).
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When these conditions are met, learning becomes feasible irrespective of the prob-
ability distribution of the data. This means that the classifier c?(h), determined
from the training data, will be able to generalize and lead to small misclassifica-
tion errors on test data arising from the same underlying distribution.

64.6 SURROGATE RISK FUNCTIONS

The previous discussion establishes that learning from data is feasible for a suffi-
cient amount of training data and for moderately complex classifier models (such
as affine classifiers). Specifically, if we determine a classifier c?(h) with a small
empirical error rate (misclassification error) over the training data {γ(n), hn},
then it is likely that this classifier will perform equally well on test data and
its performance will approach that of co(h) (which minimizes the probability of
error over the distribution of the data).

Thus, consider again the empirical risk minimization problem (64.12) and
select the set C to be the class of affine classifiers, c(h) = sign(hTw − θ). For
convenience, we extend the feature and weight vectors using

hn ←
[

1

hn

]
, w ←

[ −θ
w

]
(64.27)

in which case c(w) = sign(hTw) and the offset parameter is represented implicitly
within w. The optimal w? that determines c?(w) is found by solving

w?
∆
= argmin

w∈IRM

{
1

N

N−1∑

n=0

I
[
hTnw 6= γ(n)

]
}

(64.28)

where we continue to denote the size of w byM . The difficulty we face now is that
this problem is not only challenging to solve but is also ill-conditioned, meaning
that decisions based on its solution are sensitive (and can change drastically) for
minor variations in the data. To see this, we rewrite (64.28) in the equivalent
form

w?
∆
= argmin

w∈IRM

{
1

N

N−1∑

n=0

I [γ(n)γ̂(hn) ≤ 0]

}
(64.29)

where

γ̂(hn)
∆
= hTnw (64.30)

This alternative rewriting is based on the observation that a classification error
occurs whenever the signs of γ(n) and hTnw do not match each other. It is gen-
erally difficult to minimize the empirical risk in (64.29) for at least two main
reasons. First, a closed-form expression for w? is rarely possible except in some
special cases. Second, and more importantly, the 0/1−loss function,

Q(w; γ, h)
∆
= I [γγ̂(h) ≤ 0] , γ̂ = hTw (64.31)
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is nonsmooth over w and its value changes abruptly from 0 to 1. For example, if
w is some classifier for which I [γγ̂(h) ≤ 0] = 1 for a particular feature vector h,
then a slight perturbation to this w can transition the indicator function to zero
and lead to I [γγ̂(h) ≤ 0] = 0. This behavior occurs because of the discontinuity
of the indicator function I[y ≤ 0] at location y = 0, which causes problem (64.29)
to be ill-conditioned — see Fig. 64.10. The term “ill-conditioning” refers to the
phenomenon in which slight variations in the input data to a problem can lead
to significant variations in the outcome.

 

I[y  0]

y

Figure 64.10 The indicator function I[y ≤ 0] is discontinuous at y = 0.

To illustrate this undesirable property numerically, assume we succeed in de-
termining a solution, w?, for (64.29). Consider further a particular training data
point h in class γ = −1 and assume the value of h is such that

γ̂ = hTw? = −10−6 (64.32)

Since γ̂ is negative, the classifier w? will classify this point correctly:

sign (γ̂) = −1 = γ (64.33)

Assume next that in the process of determining w? we end up with a slightly
perturbed version of it (e.g., due to numerical errors in the optimization process
or due to minor perturbations in the training data). We denote this perturbed
classifier by w×. It is not difficult to envision situations in which the perturbed
w× would lead to a positive value for γ̂, say,

γ̂ = hTnw
× = 10−6 (64.34)

The two values {−10−6, 10−6} are very close to each other and yet, the new value
will cause h to be misclassified and assigned to class +1.

Alternate risk functions
Due to the difficulty in dealing with 0/1−losses, it is customary to rely on sur-
rogate loss functions that are easier to minimize and better behaved. We have
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encountered several choices for alternative loss functions in the earlier chapters,
such as the logistic loss, hinge loss, quadratic loss, and so forth.

For example, since γ2 = 1, we have

(γ − γ̂)2 =
(
γ(1− γγ̂)

)2

= (1− γγ̂)2 (64.35)

so that the quadratic loss (γ − γ̂)2 will in effect be seeking values w that force
the product γγ̂ to stay close to one. We refer to the product γγ̂ as the margin
variable:

y
∆
= γγ̂(h), (margin variable) (64.36)

The margin y is a function of w since γ̂ = hTw. We can consider several surrogate
loss functions defined as follows in terms of the margin variable:

Q(y) = (1− y)2, (quadratic loss) (64.37a)

Q(y) = ln
(
1 + e−y

)
, (logistic loss) (64.37b)

Q(y) = max{0, −y}, (Perceptron loss) (64.37c)

Q(y) = max{0, 1− y}, (hinge loss) (64.37d)

Q(y) = e−y, (exponential loss) (64.37e)

Q(y) = I[y ≤ 0], (ideal 0/1−loss) (64.37f)

In each of these cases, the loss function can be interpreted as the “cost” or “price”
we incur in using γ̂(h) to predict γ. Figure 64.11 plots these various loss functions.
Several observations stand out:

(a) Observe that the ideal 0/1−loss function returns a value of zero for correct
decisions and a value of one for mismatches in the signs of γ and γ̂ (i.e.,
whenever y ≤ 0); this latter situation corresponds to misclassification.

(b) In comparison, the Perceptron loss (64.37c) also returns zero for correct
decisions but penalizes misclassifications close to the boundary y = 0 less
severely than misclassifications farther away from the boundary; the penalty
value varies linearly in the argument y.

(c) The hinge loss (64.37d) shows similar behavior with a linear penalty compo-
nent; however, this component adds some margin away from the boundary
y = 0 and penalizes arguments y that are smaller than one (rather than
smaller than zero). We already know from our study of support vector ma-
chines (SVMs) that this feature adds robustness to the operation of the
learning algorithm.

(d) Ideally, under perfect operation, the value of γ̂(h) should match γ and their
product should evaluate to one. That is why the quadratic loss penalizes
deviations away from one; both to the left and right. However, we know that
requiring the product γγ̂(h) to be exactly one is unnecessary; it is sufficient
to require the variables γ and γ̂(h) to have the same sign (i.e., to require the
margin to be sufficiently positive). For this reason, several of the other loss
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Figure 64.11 The dashed curve shows the plot of the ideal 0/1−loss I[y ≤ 0]. The
other plots show the loss functions Q(y) for quadratic, exponential, logistic, hinge,
and Perceptron designs — see expressions (64.37a)–(64.37f) for the definitions. It is
seen from the graphs that, with the exception of the Perceptron loss, all other loss
functions bound the 0/1−loss from above. Although not seen in the figure, this fact is
also true for the logistic loss if we re-scale it by 1/ ln 2 to ensure that its value
becomes one at y = 0.

functions assign more penalty to values of y smaller than one than to values
of y larger than one.

(e) It is further seen from the figure that, with the exception of the Perceptron
loss, all other loss functions bound the 0/1−loss from above. Although not
seen in the figure, this fact is also true for the logistic loss if we re-scale it
by 1/ ln 2 to ensure that its value becomes one at y = 0. This scaling by a
constant value does not affect the solution of the corresponding optimization
problem. For this reason, it is customary to list the logistic loss without the
scaling by 1/ ln 2.

(f) The five surrogate loss functions (64.37a)–(64.37e), and their corresponding
empirical risk functions defined below are convex functions in w. This is a
useful property because it helps ensure that optimization problems that seek
to minimize the surrogate risks P (w) will only have global minima.
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Using the aforementioned losses, we can replace the empirical 0/1−risk in (64.29)
by any of the following expressions and continue to denote the minimizer by w?:

P (w) =
1

N

N−1∑

n=0

(
γ(n)− hTnw

)2
, (quadratic risk) (64.38a)

P (w) =
1

N

N−1∑

n=0

ln
(

1 + e−γ(n)hT
nw
)
, (logistic risk) (64.38b)

P (w) =
1

N

N−1∑

n=0

max
{

0, −γ(n)hTnw
}
, (Perceptron risk) (64.38c)

P (w) =
1

N

N−1∑

n=0

max
{

0, 1− γ(n)hTnw
}
, (hinge risk) (64.38d)

P (w) =
1

N

N−1∑

n=0

e−γ(n)hT
nw, (exponential risk) (64.38e)

Example 64.3 (Probability of misclassification) A classifier that minimizes a surro-
gate empirical risk with small misclassification errors over the training data will still
generalize well and deliver small misclassification errors over test data. To see this, let
w? denote the solution to one of the problems listed above, excluding the Perceptron
risk. Its actual error rate is denoted by

R(w?)
∆
= P(hTw? 6= γ) = E I[hTw? 6= γ] (64.39)

whereas its empirical risk value is P (w?) and its empirical error rate (misclassifications
over the training data) is

Remp(w?) =
1

N

N−1∑
n=0

I[γ(n)γ̂(n) ≤ 0] (64.40)

Now, observe from Fig. 64.11 that it is generally the case that the new loss functions
bound the ideal 0/1−loss function from above (with the exception of the Perceptron
loss function, which we are excluding from this discussion), i.e., it holds that

I[y ≤ 0] ≤ Q(y) (64.41)

In this case, we get

Remp(w?) ≤ P (w?) (64.42)

and it follows that

R(w?) ≤ Remp(w?) + δ (by result (64.15))
≤ P (w?) + δ (by (64.42)) (64.43)

so that a small empirical risk value, P (w?), translates into a small probability of mis-
classification, R(w?), over the entire data distribution. A similar conclusion holds for
more general classifier spaces, C (other than affine classifiers — see the discussion lead-
ing to (64.64) in the comments at the end of the chapter.
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64.7 COMMENTARIES AND DISCUSSION

Curse of dimensionality. The designation “curse of dimensionality” is attributed to the
American control theorist Robert Bellman (1920–1964), who coined the term in
his development of dynamic programming in Bellman (1957a); dynamic programming
refers to a widely used class of mathematical optimization problems — discussed later
in Chapter 44. We explained in Sec. 64.1 how the curse of dimensionality degrades the
performance of learning strategies. This is because in higher dimensions, the available
training data can only provide a sparse representation of the space. Moreover, as shown
in Prob. 64.9, most of the training samples will concentrate close to the boundaries of
the space. And it is common to encounter high-dimensional data in practice. For exam-
ple, when DNA microarrays are used to measure the expression levels of a large number
of genes, the dimension for this problem is on the order of M ∼ 104. A useful theo-
retical study by Hughes (1968) illuminated how the curse of dimensionality degrades
the performance of the Bayes classifier when a finite number, N , of training data is
used to estimate conditional probabilities by using relative frequencies. It was shown in
that work that, for a fixed N , the classification accuracy increases initially but then de-
grades as the dimensionality of the feature space, M , increases beyond some threshold
value — see Prob. 64.30. From (64.1), we note that in order to design classifiers that
perform well in higher-dimensional spaces, the number of training data, N , will need
to increase exponentially fast with the dimension, M . In acknowledgment of Hughes’
work, the curse of dimensionality problem is sometimes referred to as the Hughes effect.

Bias-variance tradeoff. The bias-variance relation (64.25) reflects an important tradeoff
in the design of effective learning algorithms from training data. The relation expresses
the difference between the optimal risk R(c•) and the average performance ER(c?)
as the sum of two components. Ideally, a designer would like to keep both the bias
and variance terms small. One degree of freedom that the designer has is the choice of
the model set, C. As explained in the text, a simple model set generally under-fits the
data and leads to large bias but small variance. In contrast, a more complex model set
generally over-fits the data and leads to small bias but large variance. A compromise
needs to be struck by selecting classifier sets of moderate complexity — as illustrated
in Fig. 64.9. This is one reason why it is often observed in practice that moderately
complex classifiers perform better than more sophisticated classifiers. Some useful ref-
erences that deal with the bias-variance tradeoff in the learning context and other
related issues include the works by German, Bienenstock, and Doursat (1992), Kong
and Dietterich (1995), Breiman (1994,1996a,b), Tibshirani (1996a), James and Hastie
(1997), Kohavi and Wolpert (1996), Friedman (1997), Domingos (2000), James (2003),
and Geurts (2005), as well as the text by Hastie, Tibshirani, and Friedman (2009).

Generalization theory. The Vapnik-Chervonenkis bound (64.17) is a reassuring statisti-
cal result; it asserts that, given a sufficient amount of training data, learning is feasible
for moderately complex classifier models. This means that classifiers that perform well
on the training data are able to generalize and deliver reliable classifications on test
data. This result is one of the cornerstones of statistical learning theory and it resulted
from the landmark work by Vapnik and Chervonenkis (1968,1971); its strength lies in
the fact that the bound is distribution-free.

It is common to list the VC bound (64.17) in an alternative form where δ is fixed at
some small constant value and the right-hand side bound is made to depend on N , δ,
and the VC dimension, namely, as:

P
(

sup
c∈C
|Remp(c)−R(c)| > δ

)
≤ 8 (Ne/VC)VC e−Nδ

2/32 (64.44)

In comparison, the earlier form (64.17) fixes the right-hand side probability at some
constant level ε and then specifies the attainable δ by means of relation (64.13) in
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terms of ε, N , and the VC dimension. This earlier form motivates the Probably Ap-
proximately Accurate PAC designation introduced by Valiant (1984). More expansive
treatments of the VC bound(s) appear in the monographs by Vapnik (1995,1998) and
the textbooks by Fukunaga (1990), Kearns and Vazirani (1994), Devroye, Gyorfi, and
Lugosi (1996), Vidyasagar (1997), Cherkassky and Mulier (2007), and Hastie, Tibshi-
rani, and Friedman (2009). Accessible overviews on learning theory appear in Kulkarni,
Lugosi, and Venkatesh (1998) and Vapnik (1999). An extension that applies to other
bounded loss functions, besides the 0/1−loss function, appears in Vapnik (1998) — see
also Prob. 64.28. An interesting quote appears in Vapnik (1998) stating that “nothing
is more practical than a good theory” repeating an earlier statement made in Lewin
(1945) by the German-American social psychologist Kurt Lewin (1890–1947).

We provide a derivation of the Vapnik-Chervonenkis inequality (64.44) in Appen-
dices 64.B and 64.C; the argument is non-trivial and relies on several steps. We fol-
low in these appendices the presentation given by Devroye, Gyorfi, and Lugosi (1996,
Ch. 12). In their presentation, the coefficient appearing in the exponential factor in
(64.44) is Nδ2/32, while the coefficient appearing in the original bound given by Vap-
nik and Chervonenkis (1971) is Nδ2/8 and corresponds to a tighter bound — see also
the works by Blumer et al. (1989) and Cherkassky and Mulier (2007). This difference
is not significant for the conclusions and arguments presented in our treatment; it is
sufficient for our purposes to know that a bound exists and that this bound decays to
zero as N → ∞ at a uniform rate that is independent of the data distribution. The
derivation used in Appendix 64.C relies on two famous inequalities. The first result
is the Hoeffding inequality , which we encountered earlier in Appendix 3.B; it provides
a bound on the probability of the sum of a collection of random variables deviating
from their mean. This inequality is due to the Finnish statistician Wassily Hoeffding
(1914-1991) and appeared in the work by Hoeffding (1963). Earlier related investiga-
tions appear in Chernoff (1952) and Okamoto (1958). The second inequality is known
as Sauer lemma (also Sauer-Shelah lemma) in combinatorial analysis and is derived
in Appendix 64.B. The result was derived independently by Sauer (1972) and Shelah
(1972); a similar result also appeared in the work by Vapnik and Chervanenkis (1971).

Universally-consistent classifiers. The significance of the distribution-free property of
the VC bound can be highlighted by commenting on the notion of universal consistency.
Recalling the definitions introduced in Sec. 64.2, we let cN(h) denote the classifier that
minimizes the empirical risk (64.7), while c•(h) refers to the Bayes classifier and it
minimizes the actual risk (64.10). Both solutions do not impose any restriction on
the classifier set, which is indicated by the filled triangle and circle superscripts. The
classifier cN(h) is determined from the training data and its structure depends on the
sample size, N . This decision rule is said to be consistent if it satisfies the property:

lim
N→∞

R(cN) = R(c•), almost surely (64.45)

In other words, the risk value that is attained by the empirical classifier should approach
the optimal risk value for increasingly large datasets. If the consistency property holds
for all data distributions fγ,h(γ, h), then the empirical decision rule, cN(h), is said to
be universally consistent. Such decision rules would be desirable because the implica-
tion is that, regardless of the data distribution, sufficient training samples can make
learning feasible. A remarkable result by Stone (1977) established that universally con-
sistent classifiers exist. One notable example from this work is the asymptotic k−NN
classifier when the value of k is selected to depend on N and satisfy the two conditions
k(N) → ∞ and k/N → 0 as N → ∞. However, and unfortunately, although R(cN)
can approach R(c•) asymptotically for any data distribution, it turns out that the con-
vergence rate can be extremely slow; moreover, the performance for finite sample size
can also be disappointing. For example, a result by Devroye (1982), strengthening an
earlier conclusion by Cover (1968), shows that for any classification rule cN(h) and any
ε > 0 and finite integer N , there exists a data distribution fγ,h(γ, h) with R(c•) = 0
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and such that — see Prob. 64.31 and also Devroye, Gyorfi, and Lugosi (1996, p. 112):

R(cN) ≥ 0.5− ε, for any finite N (64.46)

This conclusion shows that the finite-sample performance can be very bad for some
distributions (in this case, the optimal Bayes risk is equal to zero and, yet, the risk by the
empirical classifier is close to 1/2). It is also shown in Cover (1968) and Devroye (1982)
that the convergence rate of R(cN) towards R(c•) can be arbitrarily slow. Specifically, if
a(n) > 0 denotes any monotonically decreasing sequence of positive numbers converging
to zero, then for any classification rule cN(h) and any ε > 0 and finite integer N , there
exists a data distribution fγ,h(γ, h) with R(c•) = 0 and such that:

R(cN) ≥ a(N), for any finite N (64.47)

As indicated by Devroye, Gyorfi, and Lugosi (1996, p. 114), statements (64.46)–(64.47)
combined imply that “good universally consistent classifiers do not exist.” In light of
this conclusion, which also relates to the concept of “no free lunch theorems” discussed
further ahead, we can now re-examine the VC bound (64.44). Similar to (64.20), this
result implies that, for a fixed constant δ,

P
(
R(cN)−R(c•) ≥ 2δ

)
≤ 8 (Ne/VC)VC e−Nδ

2/32 (64.48)

and the bound holds for all finite N and for all data distributions. Recall that this
result is obtained by restricting the search for cN(h) and c•(h) to a set c ∈ C with a
finite VC dimension (in which case cN(h) becomes c?(h) and c•(h) becomes co(h)). It
is clear from (64.48) that R(cN) can be made sufficiently close to R(c•) by selecting N
large enough; moreover, with high probability, the convergence rate of R(cN) towards
R(c•) is O(ln(N)/N).

It is worth noting that the Vapnik-Chervonenkis bound (64.44) is a generalization
of a famous result derived by the Russian mathematician Valery Glivenko (1896–
1940) and the Italian mathematician Francesco Cantelli (1875–1966) in two sep-
arate publications by Glivenko (1933) and Cantelli (1933). The result is known as the
Glivenko-Cantelli theorem and it describes the asymptotic behavior of the ensemble
cumulative distribution function. Proofs appear in the works by Dudley (1978, 1999),
Pollard (1984), Devroye, Gyorfi, and Lugosi (1996), and van der Vaart and Wellner
(1996).

Glivenko-Cantelli theorem (Glivenko (1933), Cantelli (1933)). Consider a collection
of N independent and identically-distributed realizations, {xn}, of a random vari-
able x with a cumulative density function, F (x). Introduce the ensemble average
construction for F (x):

FN (x)
∆
=

1

N

N−1∑
n=0

I [xn ≤ x] (64.49)

where the indicator function on the right-hand side counts the number of sample
values observed within the interval (−∞, x]. It then holds that

P
(

sup
x∈IR
|FN (x)− F (x)| > δ

)
≤ 8(N + 1)e−Nδ

2/32 (64.50)

No free lunch theorem. The results by Cover (1968) and Devroye (1982) revealing that
the finite-sample performance of a classifier can be very bad for some distributions
can also be explained from the perspective of the “no free lunch theorem,” which we
motivate as follows.

We have devised several learning algorithms in our treatment so far, such as logis-
tic regression, support vector machines, kernel methods, and decision trees. We will
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introduce additional learning algorithms in future chapters based on neural network
architectures. But is there one “best” algorithm? It is observed in practice that some
algorithms perform better on some data distributions and worse on other distributions.
However, this does not mean that some algorithms are better than other algorithms.
This conclusion is captured by a famous result known as the “no free lunch theorem”
by Wolpert (1992,1996); see also Schaffer (1994) and Wolpert and Macready (1997).
In broad terms, the theorem asserts that, averaged over all possible data distributions,
the performance of every classification algorithm will be the same as other algorithms
on test data! This means that no classifier can be proven to be universally better than
all other classifiers and, as such, there is no “best” learning method.

Specifically, consider two learning algorithms, say, two binary classifiers A and B.
The first classifier could be based on logistic regression while the second classifier could
be a support vector machine or a neural network. Both classifiers are trained to decide
whether feature vectors belong to one class (γ = +1) or the other (γ = −1). The train-
ing data arises from some distribution fγ,h(γ, h). Assume we assess the performance
of the algorithms on test data generated from this same distribution and write down
the classification error that each algorithm generates during this assessment phase. We
may find that one of the classifiers performs better than the other, say, classifier A
outperforms B in this assessment exercise (i.e., it yields a smaller classification error).
Now, assume we repeat the experiment but change the data distribution this time. We
train the classifiers and test their performance on a new distribution and write down
the resulting classification errors for each. It may be the case for this new distribution
that the same better-performing classifier A from the first assessment continues to out-
perform B in this second test. It may also be the case that classifier B outperforms A.
We could continue in this manner and compare the performance of both classifiers over
all possible choices of data distributions. The “no free lunch theorem” states that, av-
eraged over all choices of data distributions, the performance of the two classifiers will
match! This means that better performance by one algorithm in some data situations
will be offset by worse performance in other situations. This also means that no single
learning algorithm can be expected to work best for all data distributions (i.e., for all
types of problems). We encounter one manifestation of this property in Prob. 64.31
where we show that for any finite sample-size optimal classifier, there always exists a
data distribution for which the empirical risk of the classifier is bad. The following is
an alternative justification for this fact, and can be viewed as one form of a “free lunch
theorem.”

Consider a finite number of feature vectors, H = {h ∈ IRM}. Each feature vector
has label γ = +1 or γ = −1. Let Γ be the collection of all possible mappings γ(h) :
H → {+1,−1}. That is, every γ(h) ∈ Γ assigns ±1 labels to features in H. There are
a total of 2|H| possible mappings, γ(h), in terms of the cardinality of the set H. We
will verify next that there exists some probability distribution over the feature vectors
h ∈ H (which determines how they are selected or sampled from H) and a choice of
mapping γ(h) ∈ Γ for which a trained classifier c?(h) will perform poorly. For more
details, the reader may refer to the useful discussion in Shalev-Shwartz and Ben-David
(2014, Chapter 5).

Variation of no free lunch theorem (Wolpert (1992,1996)) Consider an arbitrary
learning algorithm that is trained on at most N ≤ |H|/2 data points {γ(n), hn} from
H. We denote the output generated by the algorithm by c?(h) : H→ {+1,−1}. Then,
there will exist a label mapping γ(h) : H → {+1,−1} and a distribution fh(h) over
H such that

P
(
c?(h) 6= γ(h)

)
≥ 1/8 holds with probability of at least 1/7 (64.51)

In other words, there exists a mapping γ(h) and a data distribution leading to bad
performance.
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Proof: We follow an argument similar to Shalev-Shwartz and Ben-David (2014, Sec.
5.1). We select 2N ≤ |H| independent and identically distributed (i.i.d.) feature vectors
at random according to some distribution h ∼ fh(h) from the set H. We place N of
these samples at random into a set S and use them to train a classification algorithm,
say, by minimizing some empirical risk function. We keep the remaining samples for
testing. The algorithm will generate some mapping c?(h) : H → {+1,−1}. For each
feature vector h ∈ H, the trained classifier will assign the label c?(h). We have several
elements of randomness involved in this setting: the distribution h ∼ fh(h), the samples
that end up in S, and also the choice of the mapping γ(h) from Γ that sets the labels
of the feature vectors. We wish to examine the size of the probability of error, denoted
by Pe(γ) = P(c?(h) 6= γ(h)); this error depends on the mapping γ(h). Obviously, the
error will also depend on the distribution fh(h) used to select the 2N feature vectors
and on the randomness in defining the test set. For this reason, we will be interested in
examining the average probability of error over these sources of randomness, namely,
the quantity Pe,av(γ) = E S,hPe(γ). The worst value for the average error over the
mappings γ(h) is

max
γ(h)∈Γ

{
Pe,av(γ)

} (a)

≥ E γ Pe,av(γ)
(b)
= E S

(
E γ,h Pe(γ)

)
(64.52)

where step (a) is because the worst performance on the left is larger than the average
performance on the right, and step (b) changes the order of the expectations. Now note
that:

E γ,h Pe(γ)

= E γ,h P(c?(h) 6= γ(h))

= E γ

{
P(h ∈ S)P

(
c?(h) 6= γ(h) |h ∈ S

)
+ P(h /∈ S)P

(
c?(h) 6= γ(h) |h /∈ S

)}
(c)

≥ 1

2
E γ P

(
c?(h) 6= γ(h) |h /∈ S

)
(64.53)

where step (c) ignores the first term from the third line and uses the fact that only
half of the selected features are used for training so that P(h /∈ S) = 1/2. We still need
to evaluate the last expectation, which averages over the choice of the mapping γ(h).
Recall that c?(h) is determined without knowledge of any of the features from outside
S. Moreover, since we are free to choose γ(h), there are mappings that could result in
γ(h) = +1 and others that could result in γ(h) = −1. Therefore, c?(h) will be wrong
half of the time:

P
(
c?(h) 6= γ(h) |h /∈ S

)
= 1/2 (64.54)

Substituting into (64.52) we conclude that maxγ Pe,av(γ) ≥ 1/4. This means that
there exists a mapping γ(h) and a distribution fh(h) such that E S,hPe(γ) ≥ 1/4. Now,
recall that Pe(c) is a probability measure and it assumes values in the interval [0, 1].
Therefore, using the result of part (a) from Prob. 3.19 we conclude that

P
(
Pe(γ) ≥ 1/8

)
≥ 1/4− (1− 1/8)

7/8
= 1/7 (64.55)

as desired.
�

We conclude that a classifier that performs well on certain data distributions need not
deliver similar performance on other distributions. This is more or less in line with
intuition. An architecture that distinguishes well between images of cats and dogs need
not perform well in distinguishing between poetry and prose. For this reason, when one
learning algorithm is said to outperform another, this statement should be qualified
to mean that one algorithm outperforms the other for the particular data distribution
under consideration.
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It is important to note that some criticism has been leveled at the “no free lunch
theorem” and its implication for practical learning algorithms. This is because the state-
ment of the theorem averages performance over all possible data distributions: these
include distributions over which the classifier was not trained and, moreover, many of
these distributions need not be reflective of how real-world data behave. For example,
the work by Fernandez-Delgado et al. (2014) has shown that some learning algorithms
consistently outperform other algorithms in real-data scenarios. Moreover, even if an
algorithm A performs badly on some distributions, it may be the case that these distri-
butions are not relevant for the problem at hand. For all practical purposes, a designer
should seek learning algorithms that perform best on the problems (or distributions)
of interest.

Surrogate loss functions. The Vapnik-Chervonenkis bound (64.44) is established in
Appendix 64.C under the assumption that the risk values are computed relative to
the ideal 0/1−loss function. That is, the classifiers {co(h), c?(h)} correspond to the
minimizers of the actual and empirical risks defined by (64.11) and (64.12):

co(h)
∆
= argmin

c∈C
R(c), c?(h)

∆
= argmin

c∈C
Remp(c) (64.56)

where

R(c)
∆
= E I[c(h) 6= γ], Remp(c)

∆
=

1

N

N−1∑
n=0

I[c(hn) 6= γ(n)] (64.57)

These expressions rely on the use of the ideal 0/1−loss defined by:

Q(c;γ,h)
∆
= I[c(h) 6= γ] (64.58)

In this way, the value of R(c) is a measure of the probability of misclassification over
the entire data distribution, while the value of Remp(c) is a measure of the fraction of
erroneous classifications over theN training data points, {γ(n), hn}. Given the difficulty
in solving the optimal design problems (64.56), due to the nonsmooth nature of the
indicator function, we motivated in Sec. 64.6 several surrogate convex losses (such as
quadratic, logistic, hinge, exponential, and Perceptron functions). A natural question is
to inquire about the generalization ability of classifiers designed under these alternative
choices.

Thus let, more generally, Q(c;γ,h) denote an arbitrary nonnegative convex loss
function. For the purposes of the discussion in this section, We denote the surrogate
risk by the notation:

P (c)
∆
= EQ(c;γ,h) (64.59)

and the corresponding empirical risk by

Pemp(c) =
1

N

N−1∑
n=0

Q(c; γ(n), hn) (64.60)

The quantities {P (c), Pemp(c)} play the role of {R(c), Remp(c)} when the 0/1−loss is
used. Now, however, we are using more general loss functions, Q(c; ·). We then replace
problems (64.56) by

co(h)
∆
= argmin

c∈C
P (c), c?(h)

∆
= argmin

c∈C
Pemp(c) (64.61)

where we continue to use the notation (co, c?) in order to avoid an explosion of symbols.
It turns out that an inequality of the Vapnik-Chervonenkis type continues to hold in
this more general case if we assume that, for any c ∈ C, the loss function Q(c;γ,h) is
bounded, say, its values lie within some interval [a, b] for nonnegative scalars a < b. If
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we examine the derivation of inequality (64.111) in Appendix 64.C, we will be able to
recognize that, under this boundedness condition, a similar bound continues to hold for
more general loss functions with the exponent −Nδ2/32 now replaced by −Nδ2/32b2;
see Prob. 64.28:

P
(

sup
c∈C
|Pemp(c?)− P (co)| > δ

)
≤ Ke−Nδ

2/32b2 (64.62)

for some constant K that is independent of the data distribution. The ultimate con-
clusion is that the bound continues to decay to zero as N →∞ at a uniform rate that
is also independent of the data distribution. Further discussion on this result can be
found in Vapnik and Chervonenkis (1968,1971), Dudley, Gine, and Zinn (1991), Alon
et al. (1997), Vapnik (1998), Cucker and Smale (2002), and Rosasco et al. (2004).

Next, following steps similar to the ones that led to (64.21) we can then conclude
that with high probability, |Pemp(c?)−P (co)| ≤ 3δ. If the loss function further satisfies
I[c(h) 6= γ] ≤ Q(c; γ, h) for any c ∈ C, then it will hold that

Remp(c?) ≤ Pemp(c?) (64.63)

Applying these inequalities to the optimal classifier c?(h) from (64.61), we conclude
that

R(c?)
(64.15)

≤ Remp(c?) + δ ≤ Pemp(c?) + δ (64.64)

so that a small Pemp(c?) translates into a small probability of misclassification for c?(h).
In other words, learning from data for general loss functions is still feasible. The main
limitation in the argument leading to this conclusion is the requirement that the loss
function Q(c; γ, h) be bounded for any c ∈ C.

Rademacher complexity There is an alternative method to examine the generalization
ability of learning algorithms for more general loss functions by relying on the concept
of the Rademacher complexity. We pursue this approach in Appendix 64.D. Recall that
the analysis in the body of the chapter has shown that classification structures with
medium VC dimensions are able to learn well with high likelihood for any data distri-
bution. In a sense, this conclusion amounts to a generalization guarantee under a worst
case scenario since it holds irrespective of the data distribution. It is reasonable to
expect that some data distributions will be more favorable than others and, therefore,
it is desirable to seek generalization results that have some dependence on the data dis-
tribution. The framework that is based on the Rademacher complexity allows for this
possibility and leads to tighter generalization error bounds. The approach also applies
to multiclass classification problems and to other loss functions, and is not restricted
to binary classification or 0/1−losses. The analysis carried out in Appendix 64.D con-
tinues to lead to similar reassuring conclusions about the ability of learning methods to
generalize for mild VC dimensions. However, the conclusions are now dependent on the
data distribution and will not correspond to worst-case statements that hold for any
distribution. The main results in the appendix are the one and two-sided generalization
bounds (64.182a)–(64.182b) and (64.197a)–(64.197b). The derivation of these results
relies on two critical tools known as the McDiarmid inequality, which we encountered
earlier in (3.259a) and is due to McDiarmid (1989), and the Massart lemma (64.145) due
to Massart (2000,2007). The first works to use the Rademacher complexity to study
the generalization ability of learning algorithm are by Koltchinskii (2001), Koltchin-
skii and Panchenko (2000,2002), Bartlett, Boucheron, and Lugosi (2001), Barlett and
Mendelson (2002), Mendelson (2002), Antos et al. (2002), and Bartlett, Bousquet, and
Mendelson (2005). Overviews and further treatments appear in Boucheron, Bousquet,
and Lugosi (2005), Shalev-Shwartz and Ben-David (2014), Mohri, Rostamizadeh, and
Talwalkar (2018), and Wainwright (2019). The designation Rademacher complexity is
motivated by the connection to the discrete Rademacher distribution, named after the
German-American mathematician Hans Rademacher (1892-1969), which refers to
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random variables that assume the values ±1 with equal probability. A sum of such
variables leads to a random walk with symmetry where it is equally likely to move
in one direction or the other. The Rademacher distribution is related to the standard
Bernoulli distribution: the former deals with values {+1,−1} chosen with probability
1/2 each, while the latter deals with values {1, 0} chosen with probabilities {p, 1− p}.

PROBLEMS

64.1 Let t(h) = P(γ = +1|h = h).
(a) For any classifier c, derive the following expression for the excess-risk:

R(c)−R(c•) = E h

(
|2t(h)− 1| I[c•(h) 6= c(h)]

)
where the expectation is over the distribution of the feature data.

(b) Show that the optimal Bayes risk is given by R(c•) = E h

{
min (t(h), 1− t(h))

}
.

(c) Show also that R(c•) = 1
2
(1− E h|2t(h)− 1|).

64.2 Continuing with Prob. 64.1, let π±1 denote the prior probabilities of classes
γ ∈ {±1}. That is, π+1 = P(γ = +1) and likewise for π−1. Assume the feature data,
h, has a continuous conditional probability distribution, fh|γ (h|γ).
(a) Verify that

R(c•) =

ˆ
h∈H

min
{
π+1fh|γ (h|γ = +1), π−1fh|γ (h|γ = −1)

}
dh

where the integration is over the feature space, h ∈ H.
(b) Assume π+1 = π−1 = 1/2. Conclude that in this case:

R(c•) =
1

2

{
1− 1

2

ˆ
h∈H

∣∣∣fh|γ (h|γ = +1) − fh|γ (h|γ = −1)
∣∣∣ dh}

In other words, the Bayes risk is related to the L1−distance between the two
conditional distributions of the feature data.

64.3 Refer to expression (64.7) for the empirical risk. Assume {γ(n), hn} are inde-
pendent and identically distributed realizations of {γ,h}.
(a) Argue that each term of the form I[c(h) 6= γ] is a binomial random variable with

probability parameter p = R(c).
(b) Conclude that the mean and variance of Remp(c) are given by p and p(1− p)/N ,

respectively,
(c) Use Chebyshev bound (3.28) to conclude that, for any scalar δ > 0,

P
(
|Remp(c)−R(c)| ≥ δ

)
≤ p(1− p)

Nδ2

64.4 Let {xn, n = 1, . . . , N} denote N independent random variables, with each
variable satisfying an ≤ xn ≤ bn. Let SN =

∑N
n=1 xn denote the sum of these random

variables. Let ∆ =
∑N
n=1(bn − an)2 denote the sum of the squared lengths of the

respective intervals. A famous inequality known as Hoeffding inequality was derived in
Appendix 3.B; it asserts that for any δ > 0:

P
(
|SN − ESN | ≥ δ

)
≤ 2e−2δ2/∆
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Now, refer to expression (64.7) for the empirical risk. Use Hoeffding inequality to es-
tablish that, for any particular classifier c and δ > 0, it holds:

P
(
|Remp(c)−R(c)| ≥ δ

)
≤ 2e−2Nδ2

In comparison with the bound obtained in part (c) of Prob. 64.3, observe that the
bound on the right-hand side of the above expression decays exponentially with the
size of the training data. Let ε = 2e−2Nδ2 . Conclude that the above bound asserts that
P( |Remp(c)−R(c)| ≥ δ) ≤ ε for any small ε > 0 and where δ and ε are related via:

δ =

√
1

2N
ln

(
2

ε

)
Remark. This result shows that the true and empirical risk values get closer to each
other as the number of training samples, N , increases. However, this conclusion assumes
a fixed classifier, c. See the extensions studied in future Probs. 64.24 and 64.25.
64.5 We reconsider the discussion on surrogate risk functions from Sec. 64.6. Consider
an arbitrary predictor function γ̂(h) : IRM → IR, which maps feature vectors h into real-
valued predictions γ̂ for their labels. For each h, let y = γγ̂ denote the corresponding
margin variable with surrogate loss denoted by Q(y) : IR → IR, for some loss function
Q(·) to be selected. In the body of the chapter we listed several choices for Q(·) in
(64.37a)–(64.37f). We associate with each Q(·) the stochastic risk function P (γ̂) =
EQ(y), where the expectation is over the distribution of the data {γ,h}.
(a) Let t(h) = P(γ = +1|h = 1). By conditioning on h = h, verify that

E
(
Q(y)|h = h

)
= t(h)Q(γ̂(h)) + (1− t(h))Q(−γ̂(h))

The right-hand side is a function of γ̂ and we denote it more compactly by
P (γ̂|h) = tQ(γ̂) + (1− t)Q(−γ̂).

(b) We know that the optimal Bayes classifier assigns γ̂Bayes(h) = +1 when t(h) > 1/2
and γ̂Bayes(h) = −1 when t(h) < 1/2. We wish to select convex loss functions
Q(y) such that P (γ̂|h) ends up having a negative minimizer γ̂ when t < 1/2 and a
positive minimizer γ̂ when t > 1/2. When this happens, the sign of the minimizer
γ̂ will match the optimal Bayes decision. Show that this occurs if, and only if,
the convex loss Q(y) is differentiable at y = 0 with a negative derivative value
at that location (i.e., Q′(0) < 0). Remark. The reader may refer to Bartlett,
Jordan, and McAuliffe (2006) for a related discussion. In the language of this
reference, convex loss function Q(·) that satisfy these two conditions are said to
be classification-calibrated.

64.6 Consider a hypercube in M−dimensions with edge length equal to one. Let ho
represent a particular feature vector located somewhere inside this hypercube. Assume
there are a total of N feature vectors distributed uniformly inside the hypercube. We
center a smaller hypercube around ho with edge size `.
(a) Assume M = 3. Determine the value of ` such that the volume of the smaller

hypercube around ho captures 10% of the N training samples.
(b) Assume now M = 20. Determine the value of ` such that the volume of the

smaller hypercube around ho captures the same fraction, 10%, of the N training
samples. Compare the result with part (a).

64.7 Consider a hypercube in M−dimensions with edge size equal to one. Consider
a smaller cube with edge size `. What should the length ` be for the volume of the
smaller cube to correspond to 1% of the volume of the larger cube? Determine ` for
both cases of M = 10 and M = 100. What do you observe?
64.8 Refer to the volume expression (64.3).
(a) Assume M = 2K is even. Show that the expression reduces to (1/4)KπK/K!.
(b) Show that it tends to zero as M →∞.
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64.9 Assume N feature vectors are distributed uniformly inside a hyper-sphere in
M−dimensions centered at the origin and of radius equal to one. Let d denote the
distance from the origin to the closest training point; this variable is random in nature.
Show that the median value of d is given by

median(d) =

(
1− 1

21/N

)1/M

Assume M = 20 and N = 1000. What is the median of d? What do you conclude?
64.10 Refer to definition (64.11) for co(h), where R(c) = P(c(h) 6= γ). Show that any
solution co that results in R(co) = 0 also leads to Remp(co) = 0, where the empirical
risk is defined by (64.7). Conclude that if a solution co exists such that R(co) = 0, then
the Bayes classifier generates zero classification errors.
64.11 Refer to the alternate loss functions (64.37a)–(64.37e), and their corresponding
risks. Show that all these functions are convex in w. Is the ideal 0/1−loss function
convex in w?
64.12 Consider feature vectors h ∈ IR2. Give an example of 3 feature vectors that
cannot be shattered by the class of linear classifiers. Does this fact contradict the
conclusion that the VC dimension is three?
64.13 (True or false) The VC dimension of a class of classifiers is the value d for
which any number N > d of training samples cannot be shattered by this class of
classifiers?
64.14 Show that the VC dimension of the class of linear classifiers c(h) = sign(hTw)
over IRM is equal to M .
64.15 Consider a collection ofM+2 vectors in IRM denoted by X = {x1, x2, . . . , xM+2}.
Radon theorem states that every such set can be split into two disjoint subsets, denoted
by X1 and X2, such that the convex hulls of X1 and X2 intersect with each other.
(a) Establish the validity of Radon theorem.
(b) Use Radon theorem to conclude that the VC dimension of the class of affine

classifiers c(h) = sign(hTw − θ) over IRM is equal to M + 1.
Remark. The theorem is due to Radon (1921). See Mohri, Rostamizadeh, and Talwalkar
(2018) for a related discussion.
64.16 Consider the class of classifiers that consists of circles centered at the origin
in IR2, where feature vectors inside the circle belong to class −1 and feature vectors
outside the circle belong to class +1. What is the VC dimension of this class of classifiers
over IR2?
64.17 Consider a class of classifiers defined by two scalar parameters a ≤ b; the
parameters define an interval [a, b] on the real line. A scalar feature value h is declared
to belong to class +1 if h ∈ [a, b] (i.e., h lies inside the interval); otherwise, h is declared
to belong to class −1. Show that the VC dimension of this class of classifiers is equal
to 2. What is the shatter coefficient for this class of classifiers?
64.18 Consider a class of classifiers defined by four scalar parameters a ≤ b < c ≤ d;
the parameters define two disjoint intervals [a, b] and [c, d] on the real line. A scalar
feature value h is declared to belong to class +1 if h ∈ [a, b] or h ∈ [c, d] (i.e., h lies
inside one of the intervals); otherwise, h is declared to belong to class −1. Show that
the VC dimension of this class of classifiers is equal to 4.
64.19 Consider the class of classifiers that consists of two separate co-centric circles
centered at the origin in IR2, where feature vectors that lie in the ring between both
circles belong to class −1 and feature vectors outside this area belong to class +1.
(a) What is the VC dimension of this class of classifiers over IR2?
(b) If we replace the circles by co-centric spheres centered at the origin in IR3, what

would the VC dimension be?
64.20 Consider feature vectors h ∈ IR2, which represent points in the plane. The
classifier class consists of rectangles with vertical or horizontal edges. Points that fall
inside a rectangle are declared to belong to class +1 and points that fall outside the
rectangle are declared to belong to class −1. Show that the VC dimension for this class
of classifiers is equal to 4.
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64.21 Consider feature vectors h ∈ IR2, which represent points in the plane. The
classifier class consists of squares with vertical edges. Points that fall inside a square
are declared to belong to class +1 and points that fall outside the square are declared
to belong to class −1. Show that the VC dimension for this class of classifiers is equal
to 3.
64.22 Refer to the VC bound in (64.17). How many training samples, N , do we need
in order to ensure that the error between the actual and empirical risks is no larger
than a prescribed value δ with probability of a least 1−ε. Compute the numerical value
for N when δ = 5% = ε and VC = 20.
64.23 Refer again to the VC bound in (64.17). At what rate does the error between
the actual and empirical risks decay as a function of the sample size, N?
64.24 The bound derived in Prob. 64.4 is applicable to a single classifier, c. We can
derive a uniform bound over all classifiers as follows. Assume first that the number of
classifiers in the set C is finite, i.e., |C| <∞.
(a) Argue that

P
(

sup
c∈C
|Remp(c)−R(c)| ≥ δ

)
≤
∑
c∈C

P
(
|Remp(c)−R(c)| ≥ δ

)
(b) Conclude that, for any δ > 0:

P
(

sup
c∈C
|Remp(c)−R(c)| ≥ δ

)
≤ 2|C|e−2Nδ2

(c) Conclude that, for any small ε > 0:

P
(

sup
c∈C
|Remp(c)−R(c)| ≥ δ

)
≤ ε

where δ and ε are related via (compare with (64.13)):

δ =

√
1

2N

(
ln |C| + ln

(
2

ε

))
(d) Conclude further that, for given (δ, ε) values, the amount of training samples that

is necessary to ensure the bound from part (c) is

N ≥ 1

2δ2
ln

(
2|C|
ε

)
so that more complex models require more data for training.

64.25 We continue with Prob. 64.24.
(a) When the number of classifiers in C is not necessarily finite, but the set has a

finite VC dimension, it can be shown that the quantity |C| that appears on the
right-hand side in the bound in part (b) should be replaced by 4(Ne/VC)VC, and
the scalar 2Nδ2 in the exponent should be replaced by Nδ2/32 — see (64.111)
and (64.88) in Appendix 64.C. Use this fact to conclude that for any small ε > 0,
it holds that

P
(

sup
c∈C
|Remp(c)−R(c)| ≥ δ

)
≤ ε

where δ and ε are now related via (compare with (64.13)):

δ =

√
8

N

(
VC ln

(
Ne

VC

)
+ ln

(
4

ε

))
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(b) An alternative bound can be obtained as follows for finite VC dimensions. It can
also be shown that the quantity |C| that appears on the right-hand side in the
bound in part (b) can be replaced by 4(N +1)VC, and the scalar 2Nδ2 in the ex-
ponent can be replaced by Nδ2/32 — see (64.111) and (64.87) in Appendix 64.C.
Use this fact to conclude that for any small ε > 0, it also holds that

P
(

sup
c∈C
|Remp(c)−R(c)| ≥ δ

)
≤ ε

where δ and ε are related via:

δ =

√
32

N

(
VC ln(N + 1) + ln

(
8

ε

))
64.26 Refer to the result of Prob. 64.25. Show that during the training phase with
N data points, it holds that

P
(
|Remp(c)−R(c)| ≥ δ

)
≤ 4

(
2Ne

VC

)VC
e−Nδ

2/8

while during the testing phase, also using a total of N test data points, and after the
classifier c?(h) has been selected, it holds that

P
(
|Remp(c?)−R(c?)| ≥ δ

)
≤ 2e−2Nδ2

Explain the difference.
64.27 Follow arguments similar to those employed in the derivation of the Vapnik-
Chervonenkis inequality (64.111) in Appendix 64.C to establish the Glivenko-Cantelli
inequality (64.50).
64.28 Let Q(c; γ, h) denote an arbitrary nonnegative convex loss function that is
assumed to be bounded, say, Q(c; γ, h) ∈ (a, b) for some nonnegative scalars a, b and
for any c ∈ C (i.e., for any choice in the classifier set under consideration). Define
the corresponding surrogate risk function P (c) = EQ(c;γ,h). In the text, we used
the indicator function I[c(h) 6= γ] in expression (64.5) instead of Q(c;γ,h). Likewise,
define the empirical risk over a set of N training points {γ(n), hn} as

Pemp(c)
∆
=

1

N

N−1∑
n=0

Q(c; γ(n), hn)

Follow arguments similar to those employed in the derivation of the Vapnik-Chervonenkis
inequality (64.111) in Appendix 64.C to establish that a similar bound holds for
these more general loss and risk functions with the exponent −Nδ2/32 replaced by
−Nδ2/32b2.
64.29 Refer to Sauer inequality (64.86). Several useful bounds on the shatter coef-
ficient are given in the text by Devroye, Gyorfi, and Lugosi (1996). In particular,
verify that the following bounds hold for the shatter coefficient of a class C of classifiers
applied to N feature vectors:

S(C, N) ≤ NVC + 1, for all VC

S(C, N) ≤ NVC, for VC > 2

S(C, N) ≤ eNH
(
VC/N

)
, for N ≥ 1 and VC < N/2

whereH(p) denotes the entropy measure for a binomial random variable with parameter
p ∈ (0, 1), i.e., H(p) = −p log2 p− (1− p) log2(1− p).
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64.30 Consider a binary classification problem with classes γ ∈ {±1} having known
prior probabilities denoted by π+1 and π−1 = 1−π+. Let h(m) denote the m−th entry
of the feature vector h ∈ IRM and assume it is a discrete random variable. Refer to the
optimal Bayes classifier.
(a) Argue that the probability of correct decisions is given by

P(correct decisions) =

M∑
m=1

max
γ=±1

{
πγ P(h(m) = h(m) |γ = γ)

}
(b) Assume first that π+1 < π−1. The expression derived in part (a) is dependent

on the data, {h(m)}. Averaging over all possible distributions for the data, show
that the average accuracy of the Bayes classifier is given by:

Pav(correct decisions) = π+1 + π−1(M − 1)

(
π+1

π−1

)M
∆

where

∆ =

M∑
m=0

M !

m!(M −m)!(2M −m− 1) [π+1/(1− 2π+1)]m

LetM →∞ and conclude that Pav → (1−π−1π+1). What does this result mean?
(c) When π+1 = π−1 = 1/2, show that

Pav(correct decisions) =
3M − 2

4M − 2

M→∞−→ 0.75

(d) What is the value of Pav when M = 1? Is this expected?
64.31 In this problem, we establish result (64.46), namely, that for any finite sample-
size empirical classifier, cN(h), there always exists a data distribution for which the
empirical risk is bad. Here, cN(h) denotes the classifier that minimizes (64.7). Assume
the data (h,γ) is constructed as follows. The feature variable h is a discrete scalar
random variable satisfying:

P(h = s) =
1

K
, for s = 0, ...,K − 1

Consider a real number b ∈ [0, 1) and introduce its binary expansion written in the
form b = 0.b0b1b2 · · · bK−1, where each bj is either 0 or 1. The label γ corresponding
to h = s is set to γ = bs. Observe that in this description, and without any loss in
generality, we are setting the binary label to the values {0, 1} rather than {−1, 1} used
in the body of the text.
(a) Argue that the risk of the optimal Bayes classifier is zero.
(b) Using the training data set DN , {(h0,γ(0)), ..., (hN−1,γ(N −1))}, we estimate

the label γ for a feature vector h by employing the empirical classifier cN(·):
γ̂ = cN(h)

Assume the training data set {(γ(n),hn}N−1
n=0 and the test data (γ,h) are gen-

erated by the same process described previously. Let us denote the actual risk of
cN(·), parameterized by b, by the notation:

R(cN; b) , P(cN(h) 6= γ]

We next model b as a random variable that is uniformly distributed in [0, 1) and
has binary expansion b = 0.b0b1b2 · · · bK−1. What is the value of P(bj = 0) for
any j? Prove that for any empirical classifier cN(h) we have

sup
b∈[0,1)

R(cN; b) ≥ Eb R(cN; b)

where the expectation is over the distribution of b.
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(c) Assume that b is independent of the test vector h and the training vectors
{hn}N−1

n=0 . Prove that

Eb R(cN; b) ≥ 1

2

(
1− 1

K

)N
What can we conclude about the lower bound on supb∈[0,1) R(cN; b) as K →∞?
Comment on the result.

64.32 Verify that the supremum function is convex, i.e., for any two sequences {xn, x′n}
and α ∈ [0, 1]:

sup
n

(
αxn + (1− α)x′n

)
≤ α sup

n
xn + (1− α) sup

n
x′n

64.33 Consider a subset A ⊂ IRN , with finite cardinality, and refer to its Rademacher
complexity defined by (64.142). Introduce the convex hull of A, denoted by conv(A),
which is the set of all convex combinations of elements in A. Show that the sets A and
conv(A) have the same Rademacher complexity. Remark. See Bartlett and Mendelson
(2002, Sec. 3) and Shalev-Shwartz and Ben-David (2014, Ch. 26).
64.34 Consider a subset A ⊂ IRN and refer to its Rademacher complexity defined by
(64.142). Let φ(x) : IR → IR denote a δ−Lipschitz function satisfying |φ(x) − φ(y)| ≤
δ|x − y|, for all x, y ∈ dom(φ) and some δ > 0. We denote the entries of each a ∈ A
by a = col{an}, for n = 1, 2, . . . , N . We define the transformation φ(a), with vector
argument a, as the vector that results from applying φ(·) to each individual entry of
a, i.e., φ(a) = col{φ(an)}. Consider the set Aφ = {φ(a), a ∈ A}. In other words, Aφ
is obtained by applying the Lipschitz continuous function φ(·) to the elements of A.
Show that the Rademacher complexity is modified as follows

RN (Aφ) ≤ δRN (A)

Remark. See Ledoux and Talagrand (1991), Kakade, Sridharan, and Tewari (2008), and
Shalev-Shwartz and Ben-David (2014, Ch. 26) for related discussion.
64.35 Consider a collection of N feature vectors {h1, . . . , hN} where each hn ∈ IRM .
Introduce two sets A,B ⊂ IRN consisting of N−dimensional vectors each defined as
follows:

A =
{
a = col{an} ∈ IRN | an = hT

nw, ‖w‖2 ≤ 1
}

B =
{
b = col{bn} ∈ IRN | bn = hT

nw, ‖w‖1 ≤ 1
}

where the only difference is the bound on the parameter w: in the first case, we bound
its Euclidean norm and in the second case we bound its `1−norm. Show that the
Rademacher complexities of these two sets satisfy

RN (A) ≤ 1√
N
×
{

max
1≤n≤N

‖hn‖2
}

RN (B) ≤
√

2 ln(2M)

N
×
{

max
1≤n≤N

‖hn‖∞
}

Remark. See Shalev-Shwartz and Ben-David (2014, Ch. 26) and Mohri, Rostamizadeh,
and Talwalkar (2018, Ch. 10) for a related discussion.
64.36 Derive the two-sided generalization bounds (64.197a)–(64.197b) by extending
the argument used to derive their one-sided counterparts in Appendix 64.D.
64.37 Refer to the binary classification context described in Example 64.9. Verify
that the empirical risk admits the representation

Remp(c) =
1

2

{
1− 1

N

N∑
n=1

γ(n)c(hn)

}
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Conclude that one can alternatively select an optimal classifier by solving

co = argsup
c∈C

{
1

N

N∑
n=1

γ(n)c(hn)

}
How does this formulation relate to the Rademacher complexity of the class of binary
classifiers C?
64.38 Refer to definitions (64.162) and (64.163) for the Rademacher complexity and
its empirical version. The Gaussian complexity of a set of functions Q ∈ Q is defined
similarly with each variable σn now selected from the standard Gaussian distribution:

ĜN (Q) = Eσ

{
sup
Q∈Q

(
1

N

N∑
n=1

σnQ(yn)

)}
, σn ∼ Nσ(0, 1)

GN (Q) = E y

{
ĜN (Q)

}
Show that the Rademacher and Gaussian complexities are related as follows:

αRN (Q) ≤ GN (Q) ≤ β lnN RN (Q)

for some nonnegative constants α and β. Remark. See Tomczak-Jaegermann (1989) for
a related discussion.
64.39 Consider a collection of vectors a ∈ A ⊂ IRN , with individual entries a =
col{an}. Consider also Rademacher variables {σn}, which take values {±1} with equal
probability. Establish the Khintchine-Kahane inequality:

1

2
Eσ
∥∥∥ N∑
n=1

σnan

∥∥∥2

≤
{
Eσ
∥∥∥ N∑
n=1

σnan‖
}2

≤ Eσ
∥∥∥ N∑
n=1

σnan

∥∥∥2

Remark. The inequality is originally due to Khintchine (1923) and was extended by
Kahane (1964). Proofs and discussion appear in Latala and Oleszkiewicz (1994), Wolff
(2003), and Mohri, Rostamizadeh, and Talwalkar (2018).
64.40 Consider a collection of N feature vectors {h1, h2, . . . , hN} from the set {h ∈
IRM |K(h, h) ≤ r2}, where K(ha, hb) denotes the kernel function. Let φ(h) represent
the mapping that is implicitly defined by the choice of kernel: it maps vectors from the
original feature space h ∈ IRM to a transformed space hφ ∈ IRMφ . Introduce the set:

A =
{
a = col{an} ∈ IRN | an = (hφn)Twφ, ‖wφ‖ ≤ 1

}
Extend the derivation from Prob. 64.35 to show that the Rademacher complexity of
this set satisfies

RN (A) ≤ r/
√
N

Remark. See Mohri, Rostamizadeh, and Talwalkar (2018, Ch. 5) for a related discussion.

64.A VC DIMENSION FOR LINEAR CLASSIFIERS

We establish in this appendix the result of Lemma 64.1 following an argument similar to
Abu-Mostafa, Magdon-Ismail, and Lin (2012), Shalev-Shwartz and Ben-David (2014,
Ch. 9), and Mohri, Rostamizadeh, and Talwalkar (2018, Ch. 3). Thus, consider the
class of affine classifiers defined by c(h) = sign(hTw − θ), with parameters w ∈ IRM
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and θ ∈ IR. If we assume the feature vectors are extended with a top unit entry, and
the weight vector w is extended with −θ as leading entry, namely,

w ←
[
−θ
w

]
, h←

[
1
h

]
(64.65)

then it is sufficient to focus on linear classifiers of the form c(h) = sign(hTw).
Assuming this extension, let us first establish that VC ≥ M + 1. We can do so by

constructing a collection of M + 1 features vectors that can be shattered by linear
classifiers. Indeed, consider the following M + 1 feature vectors collected as rows into
the matrix H below:

H
∆
=


hT

1

hT
2

...
hT
M+1

 =


1 0T

M

1 eT1
...

...
1 eTM

 ∈ IR(M+1)×(M+1) (64.66)

Each feature vector starts with the unit entry, with the remaining corresponding to the
zero vector for h1 and to the basis vectors {em} in IRM for the remaining features. It
is easy to verify that the square matrix H is invertible. Now, let γvec ∈ IRM+1 denote
any label vector of size M + 1: the individual entries of γvec can be +1 or −1 at will, so
that all labeling possibilities for the M + 1 feature vectors in H are covered. Now, for
any choice of γvec, there exists a classifier w that maps H to γvec and it can be chosen
as w = H−1γvec. Therefore, the above set of M + 1 feature vectors can be shattered
and we conclude that

VC(linear classifiers) ≥M + 1 (64.67)

Let us verify next that VC ≤M +1 so that equality must hold. To prove this second
statement, it is sufficient to exhibit an example with M + 2 feature vectors and the
corresponding labels for which no linear classifier exists. Thus, consider a collection of
M + 2 nonzero feature vectors in IRM+1. These vectors are clearly linearly dependent,
which means there exists some feature vector among them, denoted by hn, such that
hn is a linear combination of the remaining feature vectors. Specifically, we write

hn =

M+1∑
m6=n

α(m)hm (64.68)

for some coefficients {α(m)}; some of which are nonzero. We now assign the following
labels to the M + 2 feature vectors {h1, h2, . . . , hM+2}:

γ(m) =

{
sign(α(m)), for all m 6= n
−1, for m = n

(64.69)

That is, we label hn as −1 and label all other feature vectors by the sign of the
corresponding coefficient α(m); if α(m) = 0, it does not matter whether we label the
corresponding feature vector with +1 or −1. Now, note the following. For any classifier
w that is able to classify the M + 1 features {hm, m 6= n} so that

sign(hT
mw) = γ(m) = sign(α(m)) (64.70)

this classifier will not be able to classify hn correctly because

sign(hT
nw) = sign

(∑
m 6=n

α(m)hT
mw
)
> 0 (64.71)

The positive sign contradicts the fact that the label for hn is negative. Therefore, we
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have a collection of M + 2 feature vectors that cannot be separated by the linear
classifier and we conclude that

VC(linear classifiers) ≤M + 1 (64.72)

Combining (64.67) and (64.72) we arrive at the desired conclusion.

64.B SAUER LEMMA

In this appendix, we establish a useful lemma that deals with a fundamental combi-
natorial bound and use it to establish the Vapnik-Chervonenkis inequality (64.44) in
Appendix 64.C. The arguments in these two appendices are adapted from the derivation
given by Devroye, Gyorfi, and Lugosi (1996) adjusted to our notation and conventions.
Thus, let {hn ∈ IRM} denote N feature vectors and let C denote a set of classifier
models; this set may have a finite or infinite number of elements. Each c ∈ C maps a
feature vector hn into one of two binary classes, i.e., c(hn) : IRM → {±1}.

Shatter coefficient or growth function
There are 2N possibilities for assigning the N feature vectors to the two classes ±1.
For each choice of a classifier c ∈ C, we obtain one possible labeling vector (also called
a dichotomy), denoted by `c, for the given feature vectors:

`c
∆
= col

{
c(h0), c(h1), c(h2), . . . , c(hN−1)

}
∈ {±1}N (64.73)

This is a vector of size N × 1 with entries ±1.

Example 64.4 (Illustrating dichotomies) Figure 64.12 illustrates the construction. In
this example, we assume the feature data are scalars, hn ∈ IR, and that each classifier
c in the set C is defined by some threshold parameter t ∈ IR. Based on the value of
t, the classifier c assigns a feature vector to class +1 or −1 according to the following
decision rule: {

if hn ≥ t, then c(hn) = +1
if hn < t, then c(hn) = −1

(64.74)

The first row on the left-hand side of the figure shows three feature values, denoted
by {h0, h1, h2}; they occur at coordinate locations {0, 2, 3} on the real axis. The sub-
sequent rows in the figure indicate the classes that these feature entries are assigned
to depending on where the threshold value t (denoted by the red circle) is located. In
particular,

if t ≤ 0, then {h0, h1, h2} ∈ {+1,+1,+1} (64.75)
if 0 < t ≤ 2, then {h0, h1, h2} ∈ {−1,+1,+1} (64.76)
if 2 < t ≤ 3, then {h0, h1, h2} ∈ {−1,−1,+1} (64.77)

if t > 3, then {h0, h1, h2} ∈ {−1,−1,−1} (64.78)

Therefore, in this example, the classifier set C is only able to generate four possible
labeling vectors, {`c}, which we collect into the rows of an assignment matrix AC:

AC =


h0 h1 h2

+1 +1 +1
−1 +1 +1
−1 −1 +1
−1 −1 −1

 (64.79)
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There are clearly assignments that are not possible to generate by this set of threshold
classifiers, such as the assignment {+1,−1,+1}. Observe that even though the classifier
set C may have an infinite number of models, the number of dichotomies in AC (i.e.,
the number of its rows) is always finite and bounded by 2N .

 h0 h0
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1

Figure 64.12 The rows on the left show three feature values on the real line and the
four possible class assignments for them. The red circle represents the location of the
threshold value in each case. The rows on the right show the same construction for
the case in which two feature values coincide, h1 = h2. In this second case, only three
assignments are possible.

As was already explained in Sec. 64.4, we say that the set of classifiers C is able to
shatter the N feature vectors if every possible assignment among the 2N possibilities
can be generated by C. We illustrated this definition in Fig. 64.7. We observe from
the above example, with three scalar feature values, that it is not always possible to
generate all 2N valid assignments (or labeling vectors, `c) by the classifiers in C. We
let AC denote the collection of all assignments that can be generated by C:

AC (h0, h1, . . . , hN−1)
∆
= {`c, c ∈ C} (64.80)

so that each choice c ∈ C generates one assignment vector, `c, and the aggregation of all
these row vectors is the matrix AC. Observe that the assignment set AC is a function of
both the classifier space, C, and the feature vectors, {hn}. A different collection of feature
vectors {hn} would generally lead to a different assignment set AC. For instance, as
shown in the second column of the same Fig. 64.12, if two of the feature values happen
to occur at the same location, say, h0 = 0 while h1 = h2 = 2, then, in this case, the
threshold classifier set can only generate three possible labeling vectors, namely,

AC =

 ho h1 h2

+1 +1 +1
−1 +1 +1
−1 −1 −1

 (64.81)
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To remove ambiguity due to the choice of the feature data, we introduce the shatter
coefficient of the classifier set, C, and denote it by S(C, N). This coefficient, which is also
called the growth function, is an integer value that corresponds to the largest number of
assignments that can be generated by C over all possible choices for the feature vectors
{hn}, i.e.,

S(C, N)
∆
= max
{hn}

|AC(ho, h1, . . . , hN−1) | (64.82)

where the notation |AC| denotes the cardinality of the set AC; in this case, it is the num-
ber of rows in the assignment matrix. Thus, the shatter coefficient S(C, N) corresponds
to the largest possible cardinality for AC. For the example of Fig. 64.12, it is clear that
S(C, 3) = 4. For this same example, if we instead had a total of N features (rather
than only 3), then it is easy to see that the shatter coefficient will be S(C, N) = N + 1.
Obviously, for any set of classifiers and feature vectors, it holds that

S(C, N) ≤ 2N (64.83)

since 2N is the maximum number of possible assignments for binary classification sce-
narios. Observe that this bound grows exponentially with the size of the training data.
One fundamental result, derived further ahead under the designation of Sauer lemma,
is that for classifier sets with finite VC dimension, their shatter coefficients are bounded
by polynomial (rather than exponential) functions of N — see (64.87) and (64.88).

VC dimension
We defined in Sec. 64.4 the VC dimension of a class of classifiers C as the largest integer
K for which at least one set of K feature vectors can shattered by C. In other words,
the VC dimension of C is the largest K for which S(C,K) = 2K or, equivalently,

S(C,VC) = 2VC (64.84)

It turns out that when VC <∞, the growth function (or shatter coefficient) of C grows
polynomially in N . This property is established in the following statement, where we
employ the following definition for the combinatorial function:(

N

n

)
∆
=


N !

n!(N − n)!
, 0 ≤ n ≤ N

0, otherwise
(64.85)

Sauer lemma (Sauer (1972), Shelah (1972)). The shatter coefficient (or growth func-
tion) of a set of classifiers C applied to N feature vectors is bounded by the following
value in terms of the VC dimension:

S(C, N) ≤
VC∑
n=0

(
N

n

)
(64.86)

Two other useful bounds that follow from (64.86) when 1 ≤ VC ≤ N are:

S(C, N) ≤ (1 +N)VC (64.87)

S(C, N) ≤
(
Ne

VC

)VC
(64.88)

where the letter “e” refers to the basis of the natural logarithm (e ≈ 2.7183).
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Proof: The argument is lengthy and involves several steps. We employ a traditional
inductive argument. Let us first verify that the lemma holds for a couple of useful
boundary conditions.

(Boundary conditions). For N = 0 and any VC, we have

VC∑
n=0

(
0

n

)
= 1, and S(C, 0) ≤ 1 (64.89)

where the second equality is because there are no feature data to label (therefore, we
can bound the number of label possibilities by one). Likewise, for VC = 0 and any
N ≥ 1, we have

0∑
n=0

(
N

n

)
= 1, and S(C, N) = 1 (64.90)

where the second equality is because the VC dimension is zero and, therefore, the set
of classifiers can only assign the same label to all feature vectors. Similarly, for N = 1
and any VC ≥ 1, we have

VC∑
n=0

(
1

n

)
=

(
1

0

)
+

(
1

1

)
+ . . .+

(
1

VC

)
= 2 (64.91)

while S(C, 1) ≤ 2. This latter inequality is because, at best, the set of classifiers may
be able to assign the single feature vector into either class. We therefore assume VC ≥ 1.

(Induction argument). We now assume that (64.86) holds up to N − 1 and show that
it also holds for N . To do so, and in order to simplify the notation, we introduce the
shorthand symbol HN to refer to the collection of N feature vectors, say,

HN
∆
= {h0, h1, . . . , hN−1} (64.92)

Let S(C, N) denote the shatter coefficient for the set C over N feature vectors. We
already know that this value is the maximal number of different ways by which the
N vectors can be labeled. Let Cs ⊂ C denote the smallest subset of the classifier set
that attains this shatter value. That is, the number of classifiers in Cs is equal to the
number of distinct labeling/dichotomies that can be generated on HN . Likewise, we
write HN−1 to refer to the collection formed by excluding the last feature vector:

HN
∆
= HN−1 ∪ {hN−1} (64.93)

We also let S(C, N − 1) denote the shatter coefficient for the same set C over N − 1
feature vectors. This value is the maximal number of different ways by which N − 1
vectors can be labeled. We further let C1 ⊂ Cs denote the smallest subset of the classifier
set that attains this shatter value. Again, the number of classifiers in C1 is equal to the
number of distinct labeling/dichotomies that can be generated on HN−1. Moreover,
since C1 ⊂ Cs, it holds that

VC(C1) ≤ VC(Cs) ≤ VC(C) (64.94)

This is because any set of feature vectors that can be shattered by C1 can also be
shattered by Cs. We subsequently decompose the set Cs into

Cs = C1 ∪ (C\C1)
∆
= C1 ∪ C

c
1 (64.95)

It is clear that each classifier in the complementary set Cc1 generates a labeling for the
feature vectors in HN−1 that is already generated by some classifier in C1; otherwise,
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this classifier from Cc1 would need to be in C1. This also means that for every classifier
in Cc1 there exists a classifier in C1 such that both classifiers agree on their labeling of
HN−1 but disagree on their labeling of hN−1; they need to disagree on hN−1 otherwise
they will be identical classifiers.

Another property for the set Cc1 is the following. Assume two classifiers, say c1 and
c2, exist in the set Cs that classify the N − 1 feature vectors in HN−1 in the same
manner. If this happens, then only one of these classifiers, say, c1, must belong to
the set C1 because otherwise C1 would not be the smallest classifier set that attains
the shatter value for HN−1. The other classifier, say, c2, will be in Cc1. Moreover, and
importantly, this second classifier will label hN−1 differently from the classifier c1 added
to C1 (otherwise, both classifiers c1 and c2 would be identical).

The above properties are illustrated in the assignment matrix shown below for the
threshold-based classifier of Fig. 64.12 for the case N = 4:

AC =


h0 h1 h2 h3

+1 +1 +1 +1
−1 +1 +1 +1 C1

−1 −1 +1 +1
−1 −1 −1 +1
−1 −1 −1 −1 Cc1

 (64.96)

In this case, the shatter coefficient is S(C, 4) = 5, so that there are at most five di-
chotomies that can be generated by C. These dichotomies are listed as the rows of AC

shown above. These rows represent the smallest classifier set, denoted by Cs. Observe
that the first four rows correspond to the classifiers in the set C1: they attain the max-
imal shatter value of S(C, 3) = 4 on the first three feature vectors. Observe further
that the last row in AC represents the classifier set Cc1; it consists of a single classifier
that generates the same labels on the features {h0, h1, h2} as the fourth classifier, but
nevertheless leads to a different label for h3.

We now verify that more generally, and in view of the above observations regarding
the sets {C1,C

c
2,Cs}, it should hold that:

VC(Cc1) ≤ VC(Cs)− 1 ≤ VC(C)− 1 (64.97)

Indeed, assume Cc1 shatters completely some set of feature vectors H′ ⊂ HN−1. Then,
it necessarily holds that Cs should shatter the expanded collection H′ ∪ {hN−1}. It is
obvious that Cs shatters H′ since Cc1 ⊂ Cs. With regards to hN−1, we simply observe
that Cs = C1∪Cc1 and each of these sets contains a classifier that labels hN−1 differently
than the other (e.g., the classifiers c1 and c2 mentioned before).

Now note that, by the induction assumption,

S(C1, N − 1) ≤
VC∑
n=0

(
N − 1

n

)
(64.98)

S(Cc1, N − 1) ≤
VC−1∑
n=0

(
N − 1

n

)
(64.99)
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Moreover, it holds that

S(C, N) ≤ S(C1, N − 1) + S(Cc1, N − 1)

≤
VC∑
n=0

(
N − 1

n

)
+

VC−1∑
n=0

(
N − 1

n

)

=

VC∑
n=0

(
N − 1

n

)
+

VC∑
n=0

(
N − 1

n− 1

)

=

VC∑
n=0

(
N

n

)
(64.100)

where in the last equality we used the property(
N

n

)
=

(
N − 1

n

)
+

(
N − 1

n− 1

)
(64.101)

The bound (64.100) establishes result (64.86).
Now, assume 1 ≤ VC ≤ N . With regards to the bound (64.88), we note that since

VC/N ≤ 1: (
VC
N

)VC
VC∑
n=0

(
N

n

) ≤
VC∑
n=0

(
N

n

)(
VC
N

)n
(a)

≤
N∑
n=0

(
N

n

)(
VC
N

)n

=

N∑
n=0

(
N
n

)(
VC
N

)n
1N−n

(b)
=

(
1 +

VC
N

)N
(c)

≤ eVC (64.102)

where in step (a) we replaced the upper limit on the sum by N , in step (b) we used the
binomial theorem, namely,

(x+ y)m =

m∑
`=0

(
m

`

)
x`ym−` (64.103)

and in step (c) we used the fact that, for any x ≥ 0:

ex ≤
(

1 +
x

N

)N
(64.104)

Using (64.102) in (64.86) gives (64.88).
With regards to bound (64.87), we first note that, for any integer n ≥ 0, it holds

that (
N

n

)
∆
=

N !

n!(N − n)!
≤ Nn

n!
(64.105)

Consequently, since VC ≥ 1 and 0 ≤ n ≤ VC,(
N

n

)
≤ Nn

n!

VC!

(VC− n)!
=

(
VC
n

)
Nn (64.106)
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Using this result in (64.100) gives

S(C, N) ≤
VC∑
n=0

(
N

n

)
≤

VC∑
n=0

(
VC
n

)
Nn × 1(VC−n)

(a)
= (1 +N)VC (64.107)

where in step (a) we applied the binomial theorem (64.103) again.

�

64.C VAPNIK-CHERVONENKIS BOUND

In this appendix, we establish the validity of the Vapnik-Chervonenkis bound (64.44)
for binary classification problems with classes γ ∈ {±1}. The argument is adapted from
the derivation given by Devroye, Gyorfi, and Lugosi (1996) adjusted to our notation
and conventions. Let {γ(n), hn ∈ IRM} denote N independent realizations arising from
a joint (unknown) distribution fγ,h(γ, h). Let c?(h) denote a solution to the empirical
risk minimization problem over some set c ∈ C:

c?(h)
∆
= argmin

c∈C

{
Remp(c)

∆
=

1

N

N−1∑
n=0

I
[
c(hn) 6= γ(n)

]}
(64.108)

Likewise, let co(h) denote the optimal solution that minimizes the probability of mis-
classification over the same set:

co(h)
∆
= argmin

c∈C

{
R(c)

∆
= P [c(h) 6= γ]

}
(64.109)

Classifier set with finite cardinality
Assume initially that the set C has finite cardinality (i.e., a finite number of elements),
denoted by |C|. Using straightforward arguments, and Hoeffding inequality (3.233), we
are able to establish in Probs. 64.4 and 64.24 the following useful bound:

P
(

sup
c∈C
|Remp(c)−R(c)| ≥ δ

)
≤ 2|C|e−2Nδ2 , (when |C| is finite) (64.110)

The difficulty arises when the set C has uncountably infinite elements. In that case,
the term on the right-hand side of (64.110) is not useful because it degenerates to
an unbounded value. It turns out though that what matters is not the cardinality of
C, but rather the largest number of dichotomies that the set C can generate on the
training data. This number is equal to the shatter coefficient of C, which we introduced
in the previous appendix and denoted it by S(C, N). We showed in (64.86), and also
(64.87)–(64.88), that the shatter coefficient is bounded polynomially in N even when
|C| is infinite.

Derivation of VC bound
We now establish the following fundamental result; the proof of which is non-trivial
and relies again on several steps. We follow largely the presentation given by Devroye,
Gyorfi, and Lugosi (1996, Ch. 12). As indicated in the concluding remarks, the coef-
ficient appearing in the exponential factor in (64.111) below ends up being Nδ2/32,
while the coefficient appearing in the original bound given by Vapnik and Chervonenkis
(1971) is Nδ2/8 and corresponds to a tighter bound. This difference is not significant
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since it is sufficient for our purposes to know that a bound exists and that this bound
decays to zero as N →∞ at a uniform rate that is independent of the data distribution.

Vapnik-Chervonenkis inequality (Vapnik and Chervonenkis (1971)). For any given
small constant δ > 0 and Nδ2 ≥ 2, it holds that

P
(

sup
c∈C
|Remp(c)−R(c)| > δ

)
≤ 8

(
Ne

VC

)VC
e−Nδ

2/32 (64.111)

independent of the data distribution, fγ,h(γ, h), and in terms of the VC dimension of
the classifier set C.

Proof: The argument is demanding and involves several steps. We remark that the
condition Nδ2 ≥ 2 in the statement of the inequality is not a restriction. This is be-
cause for Nδ2 < 2, the bound in (64.111) becomes trivial because it will be larger than
7.5(Ne/VC), which in turn is generally larger than one (especially since we often have
VC ≤ N).

(Symmetrization step — adding fictitious samples). The first step in the argument
involves replacing the difference Remp(c)−R(c), which involves the unknown R(c), by
one that involves only empirical risks — see (64.113) below. By doing so, we will be able
to bound the probability expression that appears in (64.111) by a term that depends
symmetrically and solely on empirical data.

To achieve this task, we start by introducing a collection of N fictitious data samples,
denoted by {γ′(n), h′n}, and which are assumed to arise from the same data distribution
as the original samples, {γ(n), hn}. These fictitious samples are added merely for the
sake of argument and will not affect the final result. For any classifier c ∈ C, we denote
its empirical risk on the fictitious data by using the prime notation:

R′emp(c)
∆
=

1

N

N−1∑
n=0

I
[
c(h′n) 6= γ′(n)

]
(64.112)

We now verify that

P
(

sup
c∈C
|Remp(c)−R(c)| > δ

)
≤ 2P

(
sup
c∈C
|Remp(c)−R′emp(c)| > δ/2

)
(64.113)

where, as desired, the term on the right-hand side involves only empirical risks in a
symmetrical manner. Once established, this result relates the distance between two
empirical risks to the desired distance from the empirical risk to the optimal risk —
see Fig. 64.13.

Let c̄ ∈ C be an element in the classifier set that satisfies the bound

|Remp(c̄)−R(c̄)| > δ (64.114)

If such an element does not exist, we simply let c̄ be an arbitrary element from C. This
classifier therefore satisfies:

P
(
|Remp(c̄)−R(c̄)| > δ

)
≥ P

(
sup
c∈C
|Remp(c)−R(c)| > δ

)
(64.115)

This is because if a classifier c̄ ∈ C exists satisfying (64.114), then both probabilities in
the above relation are equal to one and the inequality holds. If, on the other hand, such
a c̄ does not exist, then the probabilities will be zero and the inequality again holds.
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Figure 64.13 The red circles represent empirical risk values for different realizations of
the data. Expression (64.113) relates the probability of the distance between Remp(c)
and R(c) being larger than δ to the probability of the distance between two empirical
risks being larger than δ/2. The subsequent analysis will bound this latter difference,
which is a useful step since R(c) is unknown.

To arrive at (64.113), we first note the following sequence of inequalities:

P
(

sup
c∈C
|Remp(c)−R′emp(c)| > δ/2

)
≥ P

(
|Remp(c̄)−R′emp(c̄)| > δ/2

)
= P

(
|Remp(c̄)−R(c̄) +R(c̄)−R′emp(c̄)| > δ/2

)
(a)

≥ P
(
|Remp(c̄)−R(c̄)| > δ and |R′emp(c̄)−R(c̄)| < δ/2

)
(64.116)

where step (a) follows from the property that for any two real numbers:

|a− b| ≥
∣∣∣∣ |a| − |b| ∣∣∣∣ (64.117)

Indeed, assume that the following two conditions hold:

(|Remp(c̄)−R(c̄)| > δ) and
(∣∣R′emp(c̄)−R(c̄)

∣∣ < δ/2
)

(64.118)

Then, property (64.117) implies that∣∣Remp(c)−R′emp(c)
∣∣ =

∣∣ (Remp(c̄)−R(c̄))−
(
R′emp(c̄)−R(c̄)

) ∣∣
≥
∣∣∣∣ |Remp(c̄)−R(c̄)|︸ ︷︷ ︸

>δ

−
∣∣R′emp(c̄)−R(c̄)

∣∣︸ ︷︷ ︸
<δ/2

∣∣∣∣
> δ/2 (64.119)

Consequently, conditions (64.118) combined imply result (64.119), which justifies step
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(a). Continuing we have from (64.116) that

P
(

sup
c∈C
|Remp(c)−R′emp(c)| > δ/2

)
(64.120)

= E
{
I[|Remp(c̄)−R(c̄)| > δ] I

[
|R′emp(c̄)−R(c̄)| < δ/2

] }
(b)
= E

(
E
{
I[|Remp(c̄)−R(c̄)| > δ] I

[
|R′emp(c̄)−R(c̄)| < δ/2

]
| {γ(n), hn}

})
= E

{
I[|Remp(c̄)−R(c̄)| > δ]

}
E
{
I
[
|R′emp(c̄)−R(c̄)| < δ/2

]
| {γ(n), hn}

}
= P

(
|Remp(c̄)−R(c̄)| > δ

)
P
(
|R′emp(c̄)−R(c̄)| < δ/2 | {γ(n), hn}

)
where step (b) introduces conditioning on the original training data {γ(n), hn}. We now
examine the rightmost probability term. For this purpose, we introduce the zero-mean,
independent, and identically-distributed random variables

z(n)
∆
= I

[
c̄(h′n) 6= γ′(n)

]
− E

(
I
[
c̄(h′n) 6= γ′(n)

]
| {γ(n), hn}

)
(64.121)

where we will be using the boldface notation for the variables {γ(n),γ′(n),hn,h
′
n}

whenever it is necessary to emphasize their stochastic nature; we will use the normal
font notation to refer to their realizations. Using the fact that, by definition, R(c̄) =
EI [c̄(h′) 6= γ′], it is straightforward to verify that the variance of each z(n) is given by

σ2
z

∆
= E (z(n))2 = R(c̄)−R2(c̄) (64.122)

But since the risk value, R(c̄), is a probability measure, it assumes values in the range
R(c̄) ∈ [0, 1]. It can then be verified that the quadratic expression in R(c̄) on the
right-hand side of (64.122) satisfies:

0 ≤ R(c̄)−R2(c̄) ≤ 1/4 (64.123)

so that σ2
z ≤ 1/4. It follows from the definition of the empirical and actual risks that:

P
(
|R′emp(c̄)−R(c̄)| < δ/2 | {γ(n), hn}

)
= P

(∣∣∣∣∣ 1

N

N−1∑
n=0

z(n)

∣∣∣∣∣ < δ/2 | {γ(n), hn}
)

= P

(∣∣∣∣∣
N−1∑
n=0

z(n)

∣∣∣∣∣ < Nδ/2 | {γ(n), hn}
)

(a)

≥ 1− 4

N2δ2
Nσ2

z

= 1− 4

Nδ2
σ2
z

(b)

≥ 1− 4

Nδ2

1

4
≥ 1/2 (64.124)

where step (a) uses Chebyshev inequality (3.28), step (b) uses σ2
z ≤ 1/4, and the last
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step uses the condition Nδ2 ≥ 2. Combining results (64.120) and (64.124) we arrive at

P
(

sup
c∈C
|Remp(c)−R′emp(c)| > δ/2

)
≥ 1

2
P
(
|Remp(c̄)−R(c̄)| > δ

)
(64.115)

≥ 1

2
P
(

sup
c∈C
|Remp(c)−R(c)| > δ

)
(64.125)

which leads to the desired result (64.113).

(Symmetrization step — randomizing the signs). Now we work on bounding the right-
hand side of (64.113) since it only involves empirical risks. Expressing these empirical
risks directly in terms of the corresponding data, we can write (where we are again
emphasizing the random nature of the training and fictitious data):

P
(

sup
c∈C
|Remp(c)−R′emp(c)| > δ/2

)

= P

(
sup
c∈C

1

N

∣∣∣∣∣
N−1∑
n=0

I [c(hn) 6= γ(n)] − I
[
c(h′n) 6= γ′(n)

] ∣∣∣∣∣ > δ/2

)

= P

(
sup
c∈C

1

N

∣∣∣∣∣
N−1∑
n=0

y(n)

∣∣∣∣∣ > δ/2

)
(64.126)

where we introduced the independent random variables:

y(n)
∆
= I [c(hn) 6= γ(n)] − I

[
c(h′n) 6= γ′(n)

]
(64.127)

Since the random variables I [c(hn) 6= γ(n)] and I [c(h′n) 6= γ′(n)] have identical prob-
ability distributions, we conclude that y(n) has zero mean and, more importantly, the
distribution of y(n) is symmetric (meaning that both y(n) and −y(n) have the same
distribution). This property implies that if we randomly switch the signs of the y(n)
terms appearing inside the sum in (64.126), then the sum variable will continue to have
the same distribution and, therefore, the value of the probability measure (64.126)
will not change. This useful observation can be exploited as follows. We introduce N
random sign variables, {s(n)}, independently of {γ(n),γ′(n),hn,h

′
n}, such that:

P(s(n) = +1) = P(s(n) = −1) = 1/2, n = 0, 1, . . . , N − 1 (64.128)

Then, in view of the symmetry of the distribution of the y(n) random variables, we
have

P

(∑
c∈C

1

N

∣∣∣∣∣
N−1∑
n=0

y(n)

∣∣∣∣∣ > δ/2

)
= P

(
sup
c∈C

1

N

∣∣∣∣∣
N−1∑
n=0

s(n)y(n)

∣∣∣∣∣ > δ/2

)
(64.129)

Now note from the definition of y(n) in (64.127) that the event

1

N

∣∣∣∣∣
N−1∑
n=0

s(n)y(n)

∣∣∣∣∣ > δ/2 (64.130)

implies that either one of the following two events is true:

1

N

∣∣∣∣∣
N−1∑
n=0

s(n)I [c(hn) 6= γ(n)]

∣∣∣∣∣ > δ

4
or

1

N

∣∣∣∣∣
N−1∑
n=0

s(n)I
[
c(h′n) 6= γ′(n)

]∣∣∣∣∣ > δ

4

(64.131)
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This is because if both events are false and the two terms in the above expression are
less than or equal to δ/4 then, from the triangle inequality of norms, we would get:

1

N

∣∣∣∣∣
N−1∑
n=0

s(n)y(n)

∣∣∣∣∣ ≤ δ

2
(64.132)

which contradicts (64.130). Therefore, for event (64.130) to hold, it must be the case
that event (64.131) also holds. It follows that

P

(
sup
c∈C

1

N

∣∣∣∣∣
N−1∑
n=0

s(n)y(n)

∣∣∣∣∣ > δ/2

)

≤ P

(
sup
c∈C

1

N

∣∣∣∣∣
N−1∑
n=0

s(n)I [c(hn) 6= γ(n)]

∣∣∣∣∣ > δ/4 or

sup
c∈C

1

N

∣∣∣∣∣
N−1∑
n=0

s(n)I
[
c(h′n) 6= γ′(n)

]∣∣∣∣∣ > δ/4

)

≤ 2P

(
sup
c∈C

1

N

∣∣∣∣∣
N−1∑
n=0

s(n)I [c(hn) 6= γ(n)]

∣∣∣∣∣ > δ/4

)
(64.133)

where in the last inequality we used the union bound for probabilities to eliminate the
fictitious data and arrive at a bound that depends only on the original training data.
Indeed, combining with (64.126) and (64.113), we conclude that:

P
(

sup
c∈C
|Remp(c)−R(c)| > δ

)
≤ 4P

(
sup
c∈C

1

N

∣∣∣∣∣
N−1∑
n=0

s(n)I [c(hn) 6= γ(n)]

∣∣∣∣∣ > δ/4

)
(64.134)

Note further that the term on the right-hand side involves the sum of a collection of
independent random variables. This property will facilitate the last step given further
ahead and which will rely on the Hoeffding inequality. In order to prepare for that step,
we need to explain how to move the sup operation on the right-hand side outside of
the probability expression — see (64.136).

(Union bound step). Given N feature vectors, {hn}, there exist at most S(C, N) distinct
dichotomies (or labeling) that can be generated by the set of classifiers, and where
S(C, N) denotes the corresponding shatter coefficient. Let Cs denote the smallest subset
of C that is able to generate all these dichotomies. Then, obviously,

|Cs| ≤ S(C, N) (64.135)
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Using the probability union bound, we now write:

P

(
sup
c∈C

1

N

∣∣∣∣∣
N−1∑
n=0

s(n)I [c(hn) 6= γ(n)]

∣∣∣∣∣ > δ/4

)

= P

(
sup
c∈Cs

1

N

∣∣∣∣∣
N−1∑
n=0

s(n)I [c(hn) 6= γ(n)]

∣∣∣∣∣ > δ/4

)

= P

( ⋃
c∈Cs

{
1

N

∣∣∣∣∣
N−1∑
n=0

s(n)I [c(hn) 6= γ(n)]

∣∣∣∣∣ > δ/4

})

≤
∑
c∈Cs

P

(
1

N

∣∣∣∣∣
N−1∑
n=0

s(n)I [c(hn) 6= γ(n)]

∣∣∣∣∣ > δ/4

)

≤ |Cs| sup
c∈Cs

{
P

(
1

N

∣∣∣∣∣
N−1∑
n=0

s(n)I [c(hn) 6= γ(n)]

∣∣∣∣∣ > δ/4

)}

≤ S(C, N) sup
c∈Cs

{
P

(
1

N

∣∣∣∣∣
N−1∑
n=0

s(n)I [c(hn) 6= γ(n)]

∣∣∣∣∣ > δ/4

)}

= S(C, N) sup
c∈C

{
P

(
1

N

∣∣∣∣∣
N−1∑
n=0

s(n)I [c(hn) 6= γ(n)]

∣∣∣∣∣ > δ/4

)}
(64.136)

Observe that, as claimed earlier, the sup operation is now outside the probability cal-
culation. Observe also that the bound involves the class size, S(C, N), as well as the
independent random variables s(n)I [c(hn) 6= γ(n)].

(Hoeffding inequality). The final step is to exploit this independence along with Hoeffd-
ing inequality to bound the right-hand side of (64.136). Thus, let

b(n)
∆
= s(n)I [c(hn) 6= γ(n)] (64.137)

Each of these random variables has zero mean and its value is +1, 0, or−1. In particular,
the value of each b(n) is bounded between −1 and 1. It then follows from Hoeffding
inequality (3.231b) by using ∆ = 4N , that

P

(
1

N

∣∣∣∣∣
N−1∑
n=0

b(n)

∣∣∣∣∣ > δ/4

)
= P

(∣∣∣∣∣
N−1∑
n=0

b(n)

∣∣∣∣∣ > Nδ/4

)

≤ 2e−
2(Nδ/4)2

4N

= 2e−Nδ
2/32 (64.138)

The bound on the right-hand side is independent of the classifier set, C, so that

sup
c∈C

{
P

(
1

N

∣∣∣∣∣
N−1∑
n=0

s(n)I [c(hn) 6= γ(n)]

∣∣∣∣∣ > δ/4

)}
≤ 2e−Nδ

2/32 (64.139)

Substituting into (64.136) and (64.134) we obtain

P

(
sup
c∈C

1

N

∣∣∣∣∣
N−1∑
n=0

s(n)I [c(hn) 6= γ(n)]

∣∣∣∣∣ > δ/4

)
≤ 2S(C, N)e−Nδ

2/32 (64.140)

as well as

P
(

sup
c∈C
|Remp(c)−R(c)| > δ

)
≤ 8S(C, N)e−Nδ

2/32 (64.141)
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We finally arrive at the desired result (64.111) by using the bound (64.88) for the
shatter coefficient, S(C, N).

�

64.D RADEMACHER COMPLEXITY

There is an alternative method to examine the generalization ability of learning al-
gorithms by relying on the concept of the Rademacher complexity. Useful overviews
appear in Boucheron, Bousquet, and Lugosi (2005), Shalev-Shwartz and Ben-David
(2014), Mohri, Rostamizadeh, and Talwalkar (2018), and Wainwright (2019).

Recall that the analysis in the body of the chapter, and the derivations in the last ap-
pendix, focused on binary classification problems where γ ∈ {±1} and on the 0/1−loss
function. The analysis showed that classification structures with medium VC dimen-
sions are able to learn well with high likelihood for any data distribution. In a sense,
this conclusion amounts to a generalization guarantee under a worst case scenario since
it holds irrespective of the data distribution. It is reasonable to expect that some data
distributions are more favorable than others and, therefore, it would be desirable to seek
generalization results that have some dependence on the data distribution. The frame-
work that is based on the Rademacher complexity will allow for this possibility and will
lead to tighter error bounds. The approach will also apply to multiclass classification
problems and to other loss functions, and is not restricted to binary classification or
0/1−losses. The analysis will continue to lead to similar reassuring conclusions about
the ability of learning methods to generalize for mild VC dimensions. However, the
conclusions will now be dependent on the data distribution and will not correspond to
worst-case statements that hold for any distribution.

Before formally introducing the concept, we remark that we have already encountered
some elements of Rademacher complexity in the last appendix, for example, when
we introduced the sign variables {s(n)} in (64.128) and incorporated them into the
probability expression (64.129).

Definition over a set
Consider initially a subset A ⊂ IRN , with cardinality |A|. Select an arbitrary vector
a ∈ A, which is N−dimensional, and denote its individual scalar entries by a = col{an},
for n = 1, 2, . . . , N . The Rademacher complexity of the set of vectors A is a scalar
denoted by RN (A) and defined as the following expectation:

RN (A) = Eσ

{
sup
a∈A

(
1

N

N∑
n=1

σnan

)}
(64.142)

where the {σn} are called the Rademacher variables: they are random variables chosen
independently of each other with

P(σn = +1) = P(σn = −1) = 1/2 (64.143)

The expectation in (64.142) is relative to the randomness in the Rademacher variables.
In the definition, the entries of each a ∈ A are first modulated by (or correlated with)
the binary variables {σn} before computing the sample average. The expected largest
value for this sample average is taken as the Rademacher complexity of the set. Observe
that RN (A) depends on N .

One famous result concerning RN (A) is the Massart lemma. Let ∆ denote the largest
Euclidean norm within A:

∆
∆
= sup

a∈A
‖a‖ (64.144)
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Massart lemma (Massart (2000)). The Rademacher complexity of a set of vectors A is
bounded by

RN (A) ≤ ∆

N
×
√

2 ln |A| (64.145)

Proof: We follow steps similar to Shalev-Shwartz and Ben-David (2014, Ch. 26) and
Mohri, Rostamizadeh, and Talwalkar (2018, Ch. 3). The argument uses the Hoeffding
lemma, which we encountered earlier in (3.233). Thus, for any positive scalar t, we
consider the following sequence of calculations:

etRN (A) (64.142)
= exp

{
t× Eσ

[
sup
a∈A

(
1

N

N∑
n=1

σnan

)]}
(a)

≤ Eσ exp

{
t× sup

a∈A

(
1

N

N∑
n=1

σnan

)}
(b)
= Eσ sup

a∈A

[
exp

{
t×

(
1

N

N∑
n=1

σnan

)}]
(c)

≤
∑
a∈A

Eσ exp

{
t×

(
1

N

N∑
n=1

σnan

)}

=
∑
a∈A

Eσ

{
N∏
n=1

exp
(
tσnan/N

)}

(d)
=

∑
a∈A

N∏
n=1

Eσ
{
exp(tσnan/N)

}
(64.146)

where step (a) uses Jensen inequality (8.77) and the fact that the function ex is convex,
step (b) switches the order of the sup and exponentiation operations since t > 0, step
(c) bounds the sup by the sum of the entries, and step (d) uses the fact that the
Rademacher variables {σn} are independent of each other. We are now ready to apply
the Hoeffding bound (3.233). Let

yn
∆
= σnan (64.147)

and note that Eyn = 0 since Eσn = 0. Moreover, the value of the variable y(n) is
either −an or an depending on the polarity of σn. It follows from (3.233) that

E etyn/N ≤ et2(2an)2/8N2

= et
2a2
n/2N

2

(64.148)
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Substituting into (64.146) gives

etRN (A) ≤
∑
a∈A

N∏
n=1

et
2a2
n/2N

2

=
∑
a∈A

exp

{
t2

2N2

N∑
n=1

a2
n

}

≤ |A| × exp

{
t2∆2

2N2

}

= exp

{
ln |A|+ t2∆2

2N2

}
(64.149)

or, equivalently,

RN (A) ≤ ln |A|
t

+
t∆2

2N2
(64.150)

We are free to select the parameter t. We therefore minimize the upper bound over t
to get

t =
N

∆
×
√

2 ln |A| (64.151)

so that, upon substitution into the right-hand side of (64.150), we conclude that

RN (A) ≤ ∆

N
×
√

2 ln |A| (64.152)

�

Example 64.5 (Finite set of classifiers) Consider a finite set of binary classifiers

C =
{
c(h) : IRM → {±1}

}
(64.153)

and a collection of N feature vectors {hn ∈ IRM}, for n = 1, 2, . . . , N . Each classifier
c ∈ C provides one possible labeling for the feature vectors, which we denote by

a
∆
= col

{
c(h1), c(h2), . . . , c(hN )

}
∈ {±1}N (64.154)

This is a vector of size N × 1 with entries ±1. By constructing the label vectors {a}
for each of the classifiers c ∈ C, we end up with a finite collection of vectors:

A =
{
a | a = col{c(hn)}, c ∈ C

}
(64.155)

In this example, the cardinality of A is equal to the cardinality of C:

|A| = |C| (64.156)

Moreover, the bound ∆ is easily seen to be ∆ =
√
N . Using the Massart bound (64.145)

we conclude that the Rademacher complexity that is associated with the set of classifiers
C is bounded by

RN (A) ≤
√

2 ln |C|
N

(64.157)
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Example 64.6 (Some intuition on the Rademacher complexity) We use the previous
example to gain some intuition into the definition of RN (A), which we rewrite in terms
of the binary classifiers:

RN (A) = Eσ

{
sup
c∈C

(
1

N

N∑
n=1

σnc(hn)

)}
(64.158)

Observe that the summation on the right-hand side is computing the correlation be-
tween the random vector of Rademacher parameters {σ1, . . . ,σN} and the label vector
{c(h1), . . . , c(hN )} that results from applying the classifier c(h). A high correlation
value means that this label vector is able to match relatively well the particular choice
of Rademacher labels {σn}. The Rademacher complexity is therefore assessing the
largest possible correlation that the class of classifiers C is able to attain on average.
The larger this value is, the more likely the class C will be able to fit randomly chosen
label vectors — Prob. 64.37 provides additional motivation. It follows from this expla-
nation that the Rademacher complexity provides an assessment of the representation
power (or richness or expressiveness) of a class of classifiers, C. In this sense, it plays
a role similar to the VC dimension. However, unlike the VC concept, the Rademacher
complexity is not limited to binary classification problems.

Example 64.7 (Rademacher complexity and VC dimension) The Massart lemma helps
link the two important concepts of Rademacher complexity and VC dimension. To see
this, we continue with Example 64.5 but consider now the situation in which the set of
classifiers C has infinitely many elements. We already know how many different labeling
vectors this set can generate for the N−feature vectors {hn}. This number is given by
the shatter coefficient S(C, N), which, in view of Sauer lemma, we showed in (64.88) to
be bounded by

S(C, N) ≤ (Ne/VC)VC (64.159)

Therefore, if we again generate the set of vectors A that corresponds to this class of
classifiers C, its cardinality will be bounded by this same value:

|A| ≤ (Ne/VC)VC (64.160)

Using the Massart bound (64.145) we conclude that the Rademacher complexity that
is associated with the class of classifiers C is now bounded by

RN (C) ≤
√

2

N
VC ln

(Ne
VC

)
(64.161)

Definition over functions
We can extend the definition of the Rademacher complexity to sets of scalar real-valued
functions Q ∈ Q, where each Q(y) : IR→ IR. We use the letter Q because it will often
correspond to the loss function in the context of learning algorithms. We also use the
letter y because it will correspond to the margin variable y = γγ̂. For now, we treat Q
and y generically and later specialize them to the learning context.

We consider a collection ofN scalar variables {yn} and define the empirical Rademacher
complexity of the set Q as follows using the hat notation:

R̂N (Q) = Eσ

{
sup
Q∈Q

(
1

N

N∑
n=1

σnQ(yn)

)}
(64.162)

where the {σn} continue to be the Rademacher variables, which assume the values {±1}
uniformly and independently of each other. In definition (64.162), the function Q(·) is
evaluated at each yn and modulated by the binary variable {σn} before computing
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the sample average. The expected largest value for this sample average, over the set of
functions, is taken as the empirical Rademacher complexity for the set Q. The reason
for the designation “empirical” is because the variables {yn} will usually correspond
to independent observations of some random variable y ∼ fy(y). If we then compute
the expectation relative to the distribution of y we obtain the Rademacher complexity
without the hat notation:

RN (Q) = E y

{
R̂N (Q)

}
(64.163)

where we are now treating the empirical complexity as a random variable due to its
dependence on the random observations {yn}. Note that by computing the expectation
relative to the distribution of y, the Rademacher complexity becomes dependent on
this distribution. This line of reasoning is unlike the analysis carried out in the previous
appendix where, for example, bounds on the shatter coefficient (or growth function)
were derived independently of any distribution.

Example 64.8 (Useful property) Consider a class of functions c ∈ C, where each c can
be expressed in the form c(y) = aQ(y) + b for some constants a, b ∈ IR and function
Q(y) from another set Q. We can relate the Rademacher complexities of both sets {C,Q}
as follows:

RN (C) = |a|RN (Q) (64.164a)

R̂N (C) = |a| R̂N (Q) (64.164b)

Proof: It is sufficient to establish the result for the empirical Rademacher complexity.
Thus, note from the definition that

R̂N (C) = Eσ

{
sup
Q∈Q

(
1

N

N∑
n=1

σnC(yn)

)}

= Eσ

{
sup
Q∈Q

(
1

N

N∑
n=1

σnaQ(yn) +
1

N

N∑
n=1

σnb

)}

= Eσ

{
sup
Q∈Q

(
1

N

N∑
n=1

σnaQ(yn)

)}
+
���

���
��:0

Eσ

{
1

N

N∑
n=1

σnb

}

= |a|Eσ
{

sup
Q∈Q

(
1

N

N∑
n=1

σnQ(yn)

)}
= |a| R̂N (Q) (64.165)

where |a| is used since the polarities of the {σn} can be switched between +1 to −1.
Any value for the sample average hat is achieved using a can also be achieved using −a
with the polarities of σn switched. Thus, for all practical purposes, we can work with
|a|.

�

In preparation for the main result of this appendix showing how the Rademacher com-
plexity leads to generalization bounds, we introduce some intermediate concepts and
results.

Empirical and stochastic risks. With each loss function Q ∈ Q we associate two risk
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functions:

E y Q(y), (stochastic risk) (64.166a)

1

N

N∑
n=1

Q(yn), (empirical risk) (64.166b)

where the first expression is the average loss value over the distribution of the data
y, while the second expression is a sample average value obtained from a collection
of N realizations {y1, y2, . . . , yN}. Although under ergodicity, these two quantities are
expected to approach each other as N → ∞, they are nevertheless generally different
for finite N . The difference between the two risks also varies with the choice of Q. We
denote the worst case difference by the notation:

(worst excess risk function)

(64.167)

φ(y1, . . . , yN )
∆
= sup

Q∈Q

{
E y Q(y)− 1

N

N∑
n=1

Q(yn)

}

The function φ(·) is dependent on the N variables {yn}.

Bounded variations. We will assume that the loss functions Q(y) assume values in some
bounded interval, namely, Q(y) : IR → [a, b] with a < b. We denote the width of this
interval by

d
∆
= b− a (64.168)

Alternatively, we can set d = supy |Q(y)|. It then follows that the excess risk function
φ(·) will have bounded variations (i.e., if any of its entries changes, the function will
change by a bounded amount). Specifically, if ym changes to y′m for any entry of index
m, it will hold that

∣∣∣φ(yn 6=m, ym) − φ(yn 6=m, y
′
m)
∣∣∣ ≤ d/N (64.169)

for all {yn, n 6= m}.

Proof of (64.169): To simplify the notation, we let

Y = {y1, . . . , ym−1, ym, ym+1, . . . , yN} (64.170)
Ym = {y1, . . . , ym−1, y

′
m, ym+1, . . . , yN} (64.171)

denote the collection of observations with ym replaced by y′m, while all other entries
remain unchanged. Let Q?(·) be the function that attains the supremum in (64.167)
with the observations {y1, . . . , yN} so that

φ(Y) = E y Q
?(y)− 1

N

∑
n∈Y

Q?(yn) (64.172)
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Then, the desired result follows from the following sequence of inequalities:

|φ(Y)− φ(Y′)|

=

∣∣∣∣∣E y Q
?(y)− 1

N

∑
n∈Y

Q?(yn) − sup
Q∈Q

{
E y Q(y)− 1

N

∑
n∈Ym

Q(yn)

}∣∣∣∣∣
(a)

≤
∣∣∣∣∣E y Q

?(y)− 1

N

∑
n∈Y

Q?(yn) −
(
E y Q

?(y)− 1

N

∑
n∈Ym

Q?(yn)
)∣∣∣∣∣

(b)
=

1

N

∣∣∣Q?(y′m)−Q?(ym)
∣∣∣

(64.169)

≤ d/N

where step (a) is because we employed the suboptimal Q?(·) in the rightmost supremum
operation, and step (b) is because the sets Y and Ym differ by a single entry.

�

One useful consequence of the bounded variation property (64.169) is that we can
bound how close the risk difference φ(Y) gets to its mean value. For this purpose, we
appeal to the McDiarmid inequality (3.259a) and note that for any given δ > 0:

P
(
φ(Y)− E y φ(Y) ≥ δ

)
≤ e−2δ2/

∑N
n=1 d

2/N2

= e−2Nδ2/d2

(64.173)

Thus, assume that we wish to determine the value of δ such that φ(Y) is δ−close to its
mean E y φ(Y) with probability 1− ε. Then, setting

e−2Nδ2/d2 ≤ ε (64.174)

we can solve for δ:

δ ≥ d
√

1

2N
ln(1/ε) (64.175)

Substituting into (64.173) we conclude that with high probability of at least 1− ε:

φ(Y) ≤ E y φ(Y) + d

√
1

2N
ln
(1

ε

)
(64.176)

Bounding the average risk. It turns out that the mean quantity E y φ(Y) in the above
expression can be bounded by the Rademacher complexity of the set Q as follows:

E y φ(Y) ≤ 2RN (Q) (64.177)

Proof: We follow steps similar to the proof of Theorem 8 in Bartlett and Mendel-
son (2002); see also Shalev-Shwartz and Ben-David (2014, Ch. 26) and Mohri, Ros-
tamizadeh, and Talwalkar (2018, Ch. 3). We introduce a fictitious collection of samples
{y′1, y′2, . . . , y′N} and denote it by Y′. This set consists of realizations of a random vari-
able y′ with the the same distribution as y, except that the realizations {y′n} are chosen
independently of the original realizations {yn}. Then, it is clear that

E y′

{
1

N

N∑
n=1

Q(y′n)

}
= E y Q(y) (64.178)
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so that

E y φ(Y)
(64.167)

= E y

(
sup
Q∈Q

{
E y Q(y)− 1

N

N∑
n=1

Q(yn)

})

(64.178)
= E y

(
sup
Q∈Q

{
E y′

[
1

N

N∑
n=1

Q(y′n)

]
− 1

N

N∑
n=1

Q(yn)

})

(a)

≤ E y,y′

{
sup
Q∈Q

1

N

N∑
n=1

(
Q(y′n)−Q(yn)

)}
(64.179)

where step (a) uses Jensen inequality (8.77) and the fact that the sup function is convex
(see Prob. 64.32). Now note that since {yn,y′n} are equally distributed and independent
of each other, the value of the last expectation will not change if we switch the roles of
yn and y′n for any n. In other words, it will holds that

E y,y′

{
sup
Q∈Q

1

N

N∑
n=1

(
Q(y′n)−Q(yn)

)}

= Eσ,y,y′
{

sup
Q∈Q

1

N

N∑
n=1

σn
(
Q(y′n)−Q(yn)

)}
(64.180)

where we have incorporated the Rademacher parameters {σn} on the right-hand side;
recall that they have zero mean and are chosen uniformly from {±1}. We can therefore
write

E y φ(Y) ≤ Eσ,y,y′
{

sup
Q∈Q

1

N

N∑
n=1

σn
(
Q(y′n)−Q(yn)

)}

≤ Eσ,y′
{

sup
Q∈Q

1

N

N∑
n=1

σnQ(y′n)

}
︸ ︷︷ ︸

= RN (Q)

+Eσ,y

{
sup
Q∈Q

1

N

N∑
n=1

σnQ(yn)

}
︸ ︷︷ ︸

= RN (Q)

= 2RN (Q) (64.181)

�

Main generalization theorem
We are now ready to establish the main result, which relates the Rademacher measure
of complexity to the generalization ability of learning algorithms. The bounds below,
which are due to Koltchinskii and Panchenko (2000,2002) and Bartlett and Mendelson
(2002), show that, with high probability, the stochastic risk of a learning algorithm will
be close to its empirical risk by an amount that depends on the Rademacher complexity.
One main difference between the two bounds shown in the statement is that the second
result (64.182b) is data-dependent; it is stated in terms of the empirical complexity
R̂N (Q), which in principle can be estimated from the data observations {y1, . . . , yN}.
This is in contrast to the first bound, which employs the actual complexity RN (Q); its
computation requires averaging over the data distribution, y ∼ fy(y).

One-sided generalization bounds (Koltchinskii and Panchenko (2000,2002), Bartlett
and Mendelson (2002)). Consider a set Q ∈ Q of loss functions with each Q(y) : IR→
[a, b]. Let d = b−a. Then, for every Q ∈ Q and with high probability of at least 1− ε,
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either of the following bounds holds in terms of the empirical or regular Rademacher
complexity:

E yQ(y) ≤ 1

N

N∑
n=1

Q(yn) + 2RN (Q) + d

√
1

2N
ln(1/ε) (64.182a)

E yQ(y) ≤ 1

N

N∑
n=1

Q(yn) + 2 R̂N (Q) + 3d

√
1

2N
ln(2/ε) (64.182b)

Proof: We put together several of the results derived so far to note that

E yQ(y) = E yQ(y) +
1

N

N∑
n=1

Q(yn)− 1

N

N∑
n=1

Q(yn)

(64.167)

≤ 1

N

N∑
n=1

Q(yn) + φ(y1, . . . , yN )

(64.176)

≤ 1

N

N∑
n=1

Q(yn) + E y φ(Y) + d

√
1

2N
ln(1/ε)

(64.177)

≤ 1

N

N∑
n=1

Q(yn) + 2RN (Q) + d

√
1

2N
ln(1/ε) (64.183)

which establishes (64.182a). To establish the second inequality, we first note that it
is straightforward to verify that the empirical Rademacher complexity R̂N (Q) satisfies
the bounded variations property with the same bound d/N as φ(·). It then follows from
the second McDiarmid inequality (3.259b) that, for any δ > 0:

P
( ∣∣∣ R̂N (Q)− RN (Q)

∣∣∣ ≥ δ) ≤ 2e−2Nδ2/d2

(64.184)

We can determine the value of δ that ensures R̂N (Q) is δ−close to its mean RN (Q) with
probability 1− ε. Then, setting

2e−2Nδ2/d2 ≤ ε (64.185)

we can solve for δ:

δ ≥ d
√

1

2N
ln(2/ε) (64.186)

Substituting into (64.184) we find that with high probability of at least 1− ε:

RN (Q) ≤ R̂N (Q) + d

√
1

2N
ln(2/ε) (64.187)

Using this bound in (64.183) leads to (64.182b).
�

Example 64.9 (Application to the 0/1−loss and VC dimension) Consider N feature
vectors {h1, . . . , hN} with binary labels γ(n) ∈ {±1}. Assume we choose Q(y) as the
0/1−loss defined by

Q(y) = I[y ≤ 0] =

{
1, y ≤ 0
0, y > 0

(64.188)
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where, in this example, y is the margin variable defined as y = γc(h). Note that we can
relate the classifier and the loss function more explicitly as follows:

Q(y) =
1

2

(
1− γ c(h)

)
(64.189)

In this way, we have one loss function Q(y) associated with each binary classifier c(h).
It then follows from property (64.164a) that

RN (Q) =
1

2
RN (C) (64.190)

In particular, using (64.161), we find that, with high likelihood, the error probability
(which is equal to E Q(y)) for any classifier c ∈ C designed under the 0/1−loss is
bounded by

sup
c∈C

(
Pe − 1

N

N∑
n=1

I[γ(n)γ̂(n)]

)
≤
√

2

N
VC ln

(Ne
VC

)
+

√
1

2N
ln
(1

ε

)
(64.191)

We can group the last two terms by using the easily verifiable algebraic inequality√
x+
√
y ≤ 2

√
x+ y for any x, y ≥ 0. Therefore, we find that

sup
c∈C

(
Pe − 1

N

N∑
n=1

I[γ(n)γ̂(n)]

)
≤

√√√√ 8

N

{
VC ln

(Ne
VC

)
+

1

4
ln
(1

ε

)}
(64.192)

A similar argument using the two-sided inequality (64.197a) would lead to

sup
c∈C

∣∣∣∣∣Pe − 1

N

N∑
n=1

I[γ(n)γ̂(n)]

∣∣∣∣∣ ≤
√√√√ 8

N

{
VC ln

(Ne
VC

)
+

1

4
ln
(2

ε

)}
(64.193)

where the right-most term resembles the form we encountered earlier in (64.13) but
provides a tighter bound. We further remark that the quantities appearing on the
left-hand side play a role similar to the risks defined in the body of the chapter:

R(c) = Pe, Remp(c) =
1

N

N∑
n=1

I[γ(n)γ̂(n)] (64.194)

�

Example 64.10 (Application to the hinge loss) Consider next the hinge loss function

Q(w; γ, h) = max{0, 1− γγ̂}, γ̂ = hTw (64.195)

and the class of prediction functions used to generate γ̂ with vectors chosen from the
set W = {w | ‖w‖2 ≤ 1}. Assume the feature data lies within ‖h‖2 ≤ R. With γ ∈ {±1}
fixed, the loss function Q(γ, γ̂) is seen to be 1−Lipschitz with respect to the argument
γ̂. Thus, using (64.182a) and the result of Probs. 64.34 and 64.35 we conclude that

E yQ(w;γ,h) ≤ 1

N

N∑
n=1

max
{

0, 1− γ(n)γ̂(n)
}

+
2δR√
N

+ d

√
1

2N
ln
(1

ε

)
(64.196)

Additional examples are given in Bartlett and Mendelson (2002, Sec. 4), Boucheron,
Bousquet, and Lugosi (2005, Sec. 4), and Shalev-Shwartz and Ben-David (2014, Ch.
26).
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Similar arguments can be repeated to establish two-sided versions of the generalization
bounds listed before. We leave the details to Prob. 64.36.

Two-sided generalization bounds (Koltchinskii and Panchenko (2000,2002), Bartlett
and Mendelson (2002)). Consider a set Q ∈ Q of loss functions with each Q(y) : IR→
[a, b]. Let d = b − a. Then, with probability of at least 1 − ε, either of the following
bounds holds in terms of the empirical or regular Rademacher complexity:

sup
q∈Q

∣∣∣E yQ(y)− 1

N

N∑
n=1

Q(yn)
∣∣∣ ≤ 2RN (Q) + d

√
1

2N
ln(2/ε) (64.197a)

sup
q∈Q

∣∣∣E yQ(y)− 1

N

N∑
n=1

Q(yn)
∣∣∣ ≤ 2 R̂N (Q) + 3d

√
1

2N
ln(4/ε) (64.197b)
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